1 /* $NetBSD: kern_proc.c,v 1.138 2008/04/27 01:12:27 christos Exp $ */ 2 3 /*- 4 * Copyright (c) 1999, 2006, 2007, 2008 The NetBSD Foundation, Inc. 5 * All rights reserved. 6 * 7 * This code is derived from software contributed to The NetBSD Foundation 8 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility, 9 * NASA Ames Research Center, and by Andrew Doran. 10 * 11 * Redistribution and use in source and binary forms, with or without 12 * modification, are permitted provided that the following conditions 13 * are met: 14 * 1. Redistributions of source code must retain the above copyright 15 * notice, this list of conditions and the following disclaimer. 16 * 2. Redistributions in binary form must reproduce the above copyright 17 * notice, this list of conditions and the following disclaimer in the 18 * documentation and/or other materials provided with the distribution. 19 * 3. All advertising materials mentioning features or use of this software 20 * must display the following acknowledgement: 21 * This product includes software developed by the NetBSD 22 * Foundation, Inc. and its contributors. 23 * 4. Neither the name of The NetBSD Foundation nor the names of its 24 * contributors may be used to endorse or promote products derived 25 * from this software without specific prior written permission. 26 * 27 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS 28 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 29 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 30 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 31 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 32 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 33 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 34 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 35 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 36 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 37 * POSSIBILITY OF SUCH DAMAGE. 38 */ 39 40 /* 41 * Copyright (c) 1982, 1986, 1989, 1991, 1993 42 * The Regents of the University of California. All rights reserved. 43 * 44 * Redistribution and use in source and binary forms, with or without 45 * modification, are permitted provided that the following conditions 46 * are met: 47 * 1. Redistributions of source code must retain the above copyright 48 * notice, this list of conditions and the following disclaimer. 49 * 2. Redistributions in binary form must reproduce the above copyright 50 * notice, this list of conditions and the following disclaimer in the 51 * documentation and/or other materials provided with the distribution. 52 * 3. Neither the name of the University nor the names of its contributors 53 * may be used to endorse or promote products derived from this software 54 * without specific prior written permission. 55 * 56 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 57 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 58 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 59 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 60 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 61 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 62 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 63 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 64 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 65 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 66 * SUCH DAMAGE. 67 * 68 * @(#)kern_proc.c 8.7 (Berkeley) 2/14/95 69 */ 70 71 #include <sys/cdefs.h> 72 __KERNEL_RCSID(0, "$NetBSD: kern_proc.c,v 1.138 2008/04/27 01:12:27 christos Exp $"); 73 74 #include "opt_kstack.h" 75 #include "opt_maxuprc.h" 76 #include "opt_multiprocessor.h" 77 #include "opt_lockdebug.h" 78 79 #include <sys/param.h> 80 #include <sys/systm.h> 81 #include <sys/kernel.h> 82 #include <sys/proc.h> 83 #include <sys/resourcevar.h> 84 #include <sys/buf.h> 85 #include <sys/acct.h> 86 #include <sys/wait.h> 87 #include <sys/file.h> 88 #include <ufs/ufs/quota.h> 89 #include <sys/uio.h> 90 #include <sys/malloc.h> 91 #include <sys/pool.h> 92 #include <sys/mbuf.h> 93 #include <sys/ioctl.h> 94 #include <sys/tty.h> 95 #include <sys/signalvar.h> 96 #include <sys/ras.h> 97 #include <sys/filedesc.h> 98 #include "sys/syscall_stats.h" 99 #include <sys/kauth.h> 100 #include <sys/sleepq.h> 101 #include <sys/atomic.h> 102 #include <sys/kmem.h> 103 104 #include <uvm/uvm.h> 105 #include <uvm/uvm_extern.h> 106 107 /* 108 * Other process lists 109 */ 110 111 struct proclist allproc; 112 struct proclist zombproc; /* resources have been freed */ 113 114 kmutex_t *proc_lock; 115 116 /* 117 * pid to proc lookup is done by indexing the pid_table array. 118 * Since pid numbers are only allocated when an empty slot 119 * has been found, there is no need to search any lists ever. 120 * (an orphaned pgrp will lock the slot, a session will lock 121 * the pgrp with the same number.) 122 * If the table is too small it is reallocated with twice the 123 * previous size and the entries 'unzipped' into the two halves. 124 * A linked list of free entries is passed through the pt_proc 125 * field of 'free' items - set odd to be an invalid ptr. 126 */ 127 128 struct pid_table { 129 struct proc *pt_proc; 130 struct pgrp *pt_pgrp; 131 }; 132 #if 1 /* strongly typed cast - should be a noop */ 133 static inline uint p2u(struct proc *p) { return (uint)(uintptr_t)p; } 134 #else 135 #define p2u(p) ((uint)p) 136 #endif 137 #define P_VALID(p) (!(p2u(p) & 1)) 138 #define P_NEXT(p) (p2u(p) >> 1) 139 #define P_FREE(pid) ((struct proc *)(uintptr_t)((pid) << 1 | 1)) 140 141 #define INITIAL_PID_TABLE_SIZE (1 << 5) 142 static struct pid_table *pid_table; 143 static uint pid_tbl_mask = INITIAL_PID_TABLE_SIZE - 1; 144 static uint pid_alloc_lim; /* max we allocate before growing table */ 145 static uint pid_alloc_cnt; /* number of allocated pids */ 146 147 /* links through free slots - never empty! */ 148 static uint next_free_pt, last_free_pt; 149 static pid_t pid_max = PID_MAX; /* largest value we allocate */ 150 151 /* Components of the first process -- never freed. */ 152 153 extern const struct emul emul_netbsd; /* defined in kern_exec.c */ 154 155 struct session session0 = { 156 .s_count = 1, 157 .s_sid = 0, 158 }; 159 struct pgrp pgrp0 = { 160 .pg_members = LIST_HEAD_INITIALIZER(&pgrp0.pg_members), 161 .pg_session = &session0, 162 }; 163 filedesc_t filedesc0; 164 struct cwdinfo cwdi0 = { 165 .cwdi_cmask = CMASK, /* see cmask below */ 166 .cwdi_refcnt = 1, 167 }; 168 struct plimit limit0 = { 169 .pl_corename = defcorename, 170 .pl_refcnt = 1, 171 .pl_rlimit = { 172 [0 ... __arraycount(limit0.pl_rlimit) - 1] = { 173 .rlim_cur = RLIM_INFINITY, 174 .rlim_max = RLIM_INFINITY, 175 }, 176 }, 177 }; 178 struct pstats pstat0; 179 struct vmspace vmspace0; 180 struct sigacts sigacts0; 181 struct turnstile turnstile0; 182 struct proc proc0 = { 183 .p_lwps = LIST_HEAD_INITIALIZER(&proc0.p_lwps), 184 .p_sigwaiters = LIST_HEAD_INITIALIZER(&proc0.p_sigwaiters), 185 .p_nlwps = 1, 186 .p_nrlwps = 1, 187 .p_nlwpid = 1, /* must match lwp0.l_lid */ 188 .p_pgrp = &pgrp0, 189 .p_comm = "system", 190 /* 191 * Set P_NOCLDWAIT so that kernel threads are reparented to init(8) 192 * when they exit. init(8) can easily wait them out for us. 193 */ 194 .p_flag = PK_SYSTEM | PK_NOCLDWAIT, 195 .p_stat = SACTIVE, 196 .p_nice = NZERO, 197 .p_emul = &emul_netbsd, 198 .p_cwdi = &cwdi0, 199 .p_limit = &limit0, 200 .p_fd = &filedesc0, 201 .p_vmspace = &vmspace0, 202 .p_stats = &pstat0, 203 .p_sigacts = &sigacts0, 204 }; 205 struct lwp lwp0 __aligned(MIN_LWP_ALIGNMENT) = { 206 #ifdef LWP0_CPU_INFO 207 .l_cpu = LWP0_CPU_INFO, 208 #endif 209 .l_proc = &proc0, 210 .l_lid = 1, 211 .l_flag = LW_INMEM | LW_SYSTEM, 212 .l_stat = LSONPROC, 213 .l_ts = &turnstile0, 214 .l_syncobj = &sched_syncobj, 215 .l_refcnt = 1, 216 .l_priority = PRI_USER + NPRI_USER - 1, 217 .l_inheritedprio = -1, 218 .l_class = SCHED_OTHER, 219 .l_pi_lenders = SLIST_HEAD_INITIALIZER(&lwp0.l_pi_lenders), 220 .l_name = __UNCONST("swapper"), 221 }; 222 kauth_cred_t cred0; 223 224 extern struct user *proc0paddr; 225 226 int nofile = NOFILE; 227 int maxuprc = MAXUPRC; 228 int cmask = CMASK; 229 230 MALLOC_DEFINE(M_EMULDATA, "emuldata", "Per-process emulation data"); 231 MALLOC_DEFINE(M_PROC, "proc", "Proc structures"); 232 MALLOC_DEFINE(M_SUBPROC, "subproc", "Proc sub-structures"); 233 234 /* 235 * The process list descriptors, used during pid allocation and 236 * by sysctl. No locking on this data structure is needed since 237 * it is completely static. 238 */ 239 const struct proclist_desc proclists[] = { 240 { &allproc }, 241 { &zombproc }, 242 { NULL }, 243 }; 244 245 static void orphanpg(struct pgrp *); 246 static void pg_delete(pid_t); 247 248 static specificdata_domain_t proc_specificdata_domain; 249 250 static pool_cache_t proc_cache; 251 252 /* 253 * Initialize global process hashing structures. 254 */ 255 void 256 procinit(void) 257 { 258 const struct proclist_desc *pd; 259 int i; 260 #define LINK_EMPTY ((PID_MAX + INITIAL_PID_TABLE_SIZE) & ~(INITIAL_PID_TABLE_SIZE - 1)) 261 262 for (pd = proclists; pd->pd_list != NULL; pd++) 263 LIST_INIT(pd->pd_list); 264 265 proc_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE); 266 267 pid_table = malloc(INITIAL_PID_TABLE_SIZE * sizeof *pid_table, 268 M_PROC, M_WAITOK); 269 /* Set free list running through table... 270 Preset 'use count' above PID_MAX so we allocate pid 1 next. */ 271 for (i = 0; i <= pid_tbl_mask; i++) { 272 pid_table[i].pt_proc = P_FREE(LINK_EMPTY + i + 1); 273 pid_table[i].pt_pgrp = 0; 274 } 275 /* slot 0 is just grabbed */ 276 next_free_pt = 1; 277 /* Need to fix last entry. */ 278 last_free_pt = pid_tbl_mask; 279 pid_table[last_free_pt].pt_proc = P_FREE(LINK_EMPTY); 280 /* point at which we grow table - to avoid reusing pids too often */ 281 pid_alloc_lim = pid_tbl_mask - 1; 282 #undef LINK_EMPTY 283 284 proc_specificdata_domain = specificdata_domain_create(); 285 KASSERT(proc_specificdata_domain != NULL); 286 287 proc_cache = pool_cache_init(sizeof(struct proc), 0, 0, 0, 288 "procpl", NULL, IPL_NONE, NULL, NULL, NULL); 289 } 290 291 /* 292 * Initialize process 0. 293 */ 294 void 295 proc0_init(void) 296 { 297 struct proc *p; 298 struct pgrp *pg; 299 struct session *sess; 300 struct lwp *l; 301 rlim_t lim; 302 303 p = &proc0; 304 pg = &pgrp0; 305 sess = &session0; 306 l = &lwp0; 307 308 KASSERT(l->l_lid == p->p_nlwpid); 309 310 mutex_init(&p->p_stmutex, MUTEX_DEFAULT, IPL_HIGH); 311 mutex_init(&p->p_auxlock, MUTEX_DEFAULT, IPL_NONE); 312 mutex_init(&l->l_swaplock, MUTEX_DEFAULT, IPL_NONE); 313 p->p_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE); 314 315 rw_init(&p->p_reflock); 316 cv_init(&p->p_waitcv, "wait"); 317 cv_init(&p->p_lwpcv, "lwpwait"); 318 319 LIST_INSERT_HEAD(&p->p_lwps, l, l_sibling); 320 321 pid_table[0].pt_proc = p; 322 LIST_INSERT_HEAD(&allproc, p, p_list); 323 LIST_INSERT_HEAD(&alllwp, l, l_list); 324 325 pid_table[0].pt_pgrp = pg; 326 LIST_INSERT_HEAD(&pg->pg_members, p, p_pglist); 327 328 #ifdef __HAVE_SYSCALL_INTERN 329 (*p->p_emul->e_syscall_intern)(p); 330 #endif 331 332 callout_init(&l->l_timeout_ch, CALLOUT_MPSAFE); 333 callout_setfunc(&l->l_timeout_ch, sleepq_timeout, l); 334 cv_init(&l->l_sigcv, "sigwait"); 335 336 /* Create credentials. */ 337 cred0 = kauth_cred_alloc(); 338 p->p_cred = cred0; 339 kauth_cred_hold(cred0); 340 l->l_cred = cred0; 341 342 /* Create the CWD info. */ 343 rw_init(&cwdi0.cwdi_lock); 344 345 /* Create the limits structures. */ 346 mutex_init(&limit0.pl_lock, MUTEX_DEFAULT, IPL_NONE); 347 348 limit0.pl_rlimit[RLIMIT_NOFILE].rlim_max = maxfiles; 349 limit0.pl_rlimit[RLIMIT_NOFILE].rlim_cur = 350 maxfiles < nofile ? maxfiles : nofile; 351 352 limit0.pl_rlimit[RLIMIT_NPROC].rlim_max = maxproc; 353 limit0.pl_rlimit[RLIMIT_NPROC].rlim_cur = 354 maxproc < maxuprc ? maxproc : maxuprc; 355 356 lim = ptoa(uvmexp.free); 357 limit0.pl_rlimit[RLIMIT_RSS].rlim_max = lim; 358 limit0.pl_rlimit[RLIMIT_MEMLOCK].rlim_max = lim; 359 limit0.pl_rlimit[RLIMIT_MEMLOCK].rlim_cur = lim / 3; 360 361 /* Configure virtual memory system, set vm rlimits. */ 362 uvm_init_limits(p); 363 364 /* Initialize file descriptor table for proc0. */ 365 fd_init(&filedesc0); 366 367 /* 368 * Initialize proc0's vmspace, which uses the kernel pmap. 369 * All kernel processes (which never have user space mappings) 370 * share proc0's vmspace, and thus, the kernel pmap. 371 */ 372 uvmspace_init(&vmspace0, pmap_kernel(), round_page(VM_MIN_ADDRESS), 373 trunc_page(VM_MAX_ADDRESS)); 374 375 l->l_addr = proc0paddr; /* XXX */ 376 377 /* Initialize signal state for proc0. XXX IPL_SCHED */ 378 mutex_init(&p->p_sigacts->sa_mutex, MUTEX_DEFAULT, IPL_SCHED); 379 siginit(p); 380 381 proc_initspecific(p); 382 lwp_initspecific(l); 383 384 SYSCALL_TIME_LWP_INIT(l); 385 } 386 387 /* 388 * Check that the specified process group is in the session of the 389 * specified process. 390 * Treats -ve ids as process ids. 391 * Used to validate TIOCSPGRP requests. 392 */ 393 int 394 pgid_in_session(struct proc *p, pid_t pg_id) 395 { 396 struct pgrp *pgrp; 397 struct session *session; 398 int error; 399 400 mutex_enter(proc_lock); 401 if (pg_id < 0) { 402 struct proc *p1 = p_find(-pg_id, PFIND_LOCKED | PFIND_UNLOCK_FAIL); 403 if (p1 == NULL) 404 return EINVAL; 405 pgrp = p1->p_pgrp; 406 } else { 407 pgrp = pg_find(pg_id, PFIND_LOCKED | PFIND_UNLOCK_FAIL); 408 if (pgrp == NULL) 409 return EINVAL; 410 } 411 session = pgrp->pg_session; 412 if (session != p->p_pgrp->pg_session) 413 error = EPERM; 414 else 415 error = 0; 416 mutex_exit(proc_lock); 417 418 return error; 419 } 420 421 /* 422 * Is p an inferior of q? 423 * 424 * Call with the proc_lock held. 425 */ 426 int 427 inferior(struct proc *p, struct proc *q) 428 { 429 430 for (; p != q; p = p->p_pptr) 431 if (p->p_pid == 0) 432 return 0; 433 return 1; 434 } 435 436 /* 437 * Locate a process by number 438 */ 439 struct proc * 440 p_find(pid_t pid, uint flags) 441 { 442 struct proc *p; 443 char stat; 444 445 if (!(flags & PFIND_LOCKED)) 446 mutex_enter(proc_lock); 447 448 p = pid_table[pid & pid_tbl_mask].pt_proc; 449 450 /* Only allow live processes to be found by pid. */ 451 /* XXXSMP p_stat */ 452 if (P_VALID(p) && p->p_pid == pid && ((stat = p->p_stat) == SACTIVE || 453 stat == SSTOP || ((flags & PFIND_ZOMBIE) && 454 (stat == SZOMB || stat == SDEAD || stat == SDYING)))) { 455 if (flags & PFIND_UNLOCK_OK) 456 mutex_exit(proc_lock); 457 return p; 458 } 459 if (flags & PFIND_UNLOCK_FAIL) 460 mutex_exit(proc_lock); 461 return NULL; 462 } 463 464 465 /* 466 * Locate a process group by number 467 */ 468 struct pgrp * 469 pg_find(pid_t pgid, uint flags) 470 { 471 struct pgrp *pg; 472 473 if (!(flags & PFIND_LOCKED)) 474 mutex_enter(proc_lock); 475 pg = pid_table[pgid & pid_tbl_mask].pt_pgrp; 476 /* 477 * Can't look up a pgrp that only exists because the session 478 * hasn't died yet (traditional) 479 */ 480 if (pg == NULL || pg->pg_id != pgid || LIST_EMPTY(&pg->pg_members)) { 481 if (flags & PFIND_UNLOCK_FAIL) 482 mutex_exit(proc_lock); 483 return NULL; 484 } 485 486 if (flags & PFIND_UNLOCK_OK) 487 mutex_exit(proc_lock); 488 return pg; 489 } 490 491 static void 492 expand_pid_table(void) 493 { 494 uint pt_size = pid_tbl_mask + 1; 495 struct pid_table *n_pt, *new_pt; 496 struct proc *proc; 497 struct pgrp *pgrp; 498 int i; 499 pid_t pid; 500 501 new_pt = malloc(pt_size * 2 * sizeof *new_pt, M_PROC, M_WAITOK); 502 503 mutex_enter(proc_lock); 504 if (pt_size != pid_tbl_mask + 1) { 505 /* Another process beat us to it... */ 506 mutex_exit(proc_lock); 507 FREE(new_pt, M_PROC); 508 return; 509 } 510 511 /* 512 * Copy entries from old table into new one. 513 * If 'pid' is 'odd' we need to place in the upper half, 514 * even pid's to the lower half. 515 * Free items stay in the low half so we don't have to 516 * fixup the reference to them. 517 * We stuff free items on the front of the freelist 518 * because we can't write to unmodified entries. 519 * Processing the table backwards maintains a semblance 520 * of issueing pid numbers that increase with time. 521 */ 522 i = pt_size - 1; 523 n_pt = new_pt + i; 524 for (; ; i--, n_pt--) { 525 proc = pid_table[i].pt_proc; 526 pgrp = pid_table[i].pt_pgrp; 527 if (!P_VALID(proc)) { 528 /* Up 'use count' so that link is valid */ 529 pid = (P_NEXT(proc) + pt_size) & ~pt_size; 530 proc = P_FREE(pid); 531 if (pgrp) 532 pid = pgrp->pg_id; 533 } else 534 pid = proc->p_pid; 535 536 /* Save entry in appropriate half of table */ 537 n_pt[pid & pt_size].pt_proc = proc; 538 n_pt[pid & pt_size].pt_pgrp = pgrp; 539 540 /* Put other piece on start of free list */ 541 pid = (pid ^ pt_size) & ~pid_tbl_mask; 542 n_pt[pid & pt_size].pt_proc = 543 P_FREE((pid & ~pt_size) | next_free_pt); 544 n_pt[pid & pt_size].pt_pgrp = 0; 545 next_free_pt = i | (pid & pt_size); 546 if (i == 0) 547 break; 548 } 549 550 /* Switch tables */ 551 n_pt = pid_table; 552 pid_table = new_pt; 553 pid_tbl_mask = pt_size * 2 - 1; 554 555 /* 556 * pid_max starts as PID_MAX (= 30000), once we have 16384 557 * allocated pids we need it to be larger! 558 */ 559 if (pid_tbl_mask > PID_MAX) { 560 pid_max = pid_tbl_mask * 2 + 1; 561 pid_alloc_lim |= pid_alloc_lim << 1; 562 } else 563 pid_alloc_lim <<= 1; /* doubles number of free slots... */ 564 565 mutex_exit(proc_lock); 566 FREE(n_pt, M_PROC); 567 } 568 569 struct proc * 570 proc_alloc(void) 571 { 572 struct proc *p; 573 int nxt; 574 pid_t pid; 575 struct pid_table *pt; 576 577 p = pool_cache_get(proc_cache, PR_WAITOK); 578 p->p_stat = SIDL; /* protect against others */ 579 580 proc_initspecific(p); 581 /* allocate next free pid */ 582 583 for (;;expand_pid_table()) { 584 if (__predict_false(pid_alloc_cnt >= pid_alloc_lim)) 585 /* ensure pids cycle through 2000+ values */ 586 continue; 587 mutex_enter(proc_lock); 588 pt = &pid_table[next_free_pt]; 589 #ifdef DIAGNOSTIC 590 if (__predict_false(P_VALID(pt->pt_proc) || pt->pt_pgrp)) 591 panic("proc_alloc: slot busy"); 592 #endif 593 nxt = P_NEXT(pt->pt_proc); 594 if (nxt & pid_tbl_mask) 595 break; 596 /* Table full - expand (NB last entry not used....) */ 597 mutex_exit(proc_lock); 598 } 599 600 /* pid is 'saved use count' + 'size' + entry */ 601 pid = (nxt & ~pid_tbl_mask) + pid_tbl_mask + 1 + next_free_pt; 602 if ((uint)pid > (uint)pid_max) 603 pid &= pid_tbl_mask; 604 p->p_pid = pid; 605 next_free_pt = nxt & pid_tbl_mask; 606 607 /* Grab table slot */ 608 pt->pt_proc = p; 609 pid_alloc_cnt++; 610 611 mutex_exit(proc_lock); 612 613 return p; 614 } 615 616 /* 617 * Free a process id - called from proc_free (in kern_exit.c) 618 * 619 * Called with the proc_lock held. 620 */ 621 void 622 proc_free_pid(struct proc *p) 623 { 624 pid_t pid = p->p_pid; 625 struct pid_table *pt; 626 627 KASSERT(mutex_owned(proc_lock)); 628 629 pt = &pid_table[pid & pid_tbl_mask]; 630 #ifdef DIAGNOSTIC 631 if (__predict_false(pt->pt_proc != p)) 632 panic("proc_free: pid_table mismatch, pid %x, proc %p", 633 pid, p); 634 #endif 635 /* save pid use count in slot */ 636 pt->pt_proc = P_FREE(pid & ~pid_tbl_mask); 637 638 if (pt->pt_pgrp == NULL) { 639 /* link last freed entry onto ours */ 640 pid &= pid_tbl_mask; 641 pt = &pid_table[last_free_pt]; 642 pt->pt_proc = P_FREE(P_NEXT(pt->pt_proc) | pid); 643 last_free_pt = pid; 644 pid_alloc_cnt--; 645 } 646 647 atomic_dec_uint(&nprocs); 648 } 649 650 void 651 proc_free_mem(struct proc *p) 652 { 653 654 pool_cache_put(proc_cache, p); 655 } 656 657 /* 658 * Move p to a new or existing process group (and session) 659 * 660 * If we are creating a new pgrp, the pgid should equal 661 * the calling process' pid. 662 * If is only valid to enter a process group that is in the session 663 * of the process. 664 * Also mksess should only be set if we are creating a process group 665 * 666 * Only called from sys_setsid and sys_setpgid. 667 */ 668 int 669 enterpgrp(struct proc *curp, pid_t pid, pid_t pgid, int mksess) 670 { 671 struct pgrp *new_pgrp, *pgrp; 672 struct session *sess; 673 struct proc *p; 674 int rval; 675 pid_t pg_id = NO_PGID; 676 677 if (mksess) 678 sess = kmem_alloc(sizeof(*sess), KM_SLEEP); 679 else 680 sess = NULL; 681 682 /* Allocate data areas we might need before doing any validity checks */ 683 mutex_enter(proc_lock); /* Because pid_table might change */ 684 if (pid_table[pgid & pid_tbl_mask].pt_pgrp == 0) { 685 mutex_exit(proc_lock); 686 new_pgrp = kmem_alloc(sizeof(*new_pgrp), KM_SLEEP); 687 mutex_enter(proc_lock); 688 } else 689 new_pgrp = NULL; 690 rval = EPERM; /* most common error (to save typing) */ 691 692 /* Check pgrp exists or can be created */ 693 pgrp = pid_table[pgid & pid_tbl_mask].pt_pgrp; 694 if (pgrp != NULL && pgrp->pg_id != pgid) 695 goto done; 696 697 /* Can only set another process under restricted circumstances. */ 698 if (pid != curp->p_pid) { 699 /* must exist and be one of our children... */ 700 if ((p = p_find(pid, PFIND_LOCKED)) == NULL || 701 !inferior(p, curp)) { 702 rval = ESRCH; 703 goto done; 704 } 705 /* ... in the same session... */ 706 if (sess != NULL || p->p_session != curp->p_session) 707 goto done; 708 /* ... existing pgid must be in same session ... */ 709 if (pgrp != NULL && pgrp->pg_session != p->p_session) 710 goto done; 711 /* ... and not done an exec. */ 712 if (p->p_flag & PK_EXEC) { 713 rval = EACCES; 714 goto done; 715 } 716 } else { 717 /* ... setsid() cannot re-enter a pgrp */ 718 if (mksess && (curp->p_pgid == curp->p_pid || 719 pg_find(curp->p_pid, PFIND_LOCKED))) 720 goto done; 721 p = curp; 722 } 723 724 /* Changing the process group/session of a session 725 leader is definitely off limits. */ 726 if (SESS_LEADER(p)) { 727 if (sess == NULL && p->p_pgrp == pgrp) 728 /* unless it's a definite noop */ 729 rval = 0; 730 goto done; 731 } 732 733 /* Can only create a process group with id of process */ 734 if (pgrp == NULL && pgid != pid) 735 goto done; 736 737 /* Can only create a session if creating pgrp */ 738 if (sess != NULL && pgrp != NULL) 739 goto done; 740 741 /* Check we allocated memory for a pgrp... */ 742 if (pgrp == NULL && new_pgrp == NULL) 743 goto done; 744 745 /* Don't attach to 'zombie' pgrp */ 746 if (pgrp != NULL && LIST_EMPTY(&pgrp->pg_members)) 747 goto done; 748 749 /* Expect to succeed now */ 750 rval = 0; 751 752 if (pgrp == p->p_pgrp) 753 /* nothing to do */ 754 goto done; 755 756 /* Ok all setup, link up required structures */ 757 758 if (pgrp == NULL) { 759 pgrp = new_pgrp; 760 new_pgrp = 0; 761 if (sess != NULL) { 762 sess->s_sid = p->p_pid; 763 sess->s_leader = p; 764 sess->s_count = 1; 765 sess->s_ttyvp = NULL; 766 sess->s_ttyp = NULL; 767 sess->s_flags = p->p_session->s_flags & ~S_LOGIN_SET; 768 memcpy(sess->s_login, p->p_session->s_login, 769 sizeof(sess->s_login)); 770 p->p_lflag &= ~PL_CONTROLT; 771 } else { 772 sess = p->p_pgrp->pg_session; 773 SESSHOLD(sess); 774 } 775 pgrp->pg_session = sess; 776 sess = 0; 777 778 pgrp->pg_id = pgid; 779 LIST_INIT(&pgrp->pg_members); 780 #ifdef DIAGNOSTIC 781 if (__predict_false(pid_table[pgid & pid_tbl_mask].pt_pgrp)) 782 panic("enterpgrp: pgrp table slot in use"); 783 if (__predict_false(mksess && p != curp)) 784 panic("enterpgrp: mksession and p != curproc"); 785 #endif 786 pid_table[pgid & pid_tbl_mask].pt_pgrp = pgrp; 787 pgrp->pg_jobc = 0; 788 } 789 790 /* Interlock with ttread(). */ 791 mutex_spin_enter(&tty_lock); 792 793 /* 794 * Adjust eligibility of affected pgrps to participate in job control. 795 * Increment eligibility counts before decrementing, otherwise we 796 * could reach 0 spuriously during the first call. 797 */ 798 fixjobc(p, pgrp, 1); 799 fixjobc(p, p->p_pgrp, 0); 800 801 /* Move process to requested group. */ 802 LIST_REMOVE(p, p_pglist); 803 if (LIST_EMPTY(&p->p_pgrp->pg_members)) 804 /* defer delete until we've dumped the lock */ 805 pg_id = p->p_pgrp->pg_id; 806 p->p_pgrp = pgrp; 807 LIST_INSERT_HEAD(&pgrp->pg_members, p, p_pglist); 808 809 /* Done with the swap; we can release the tty mutex. */ 810 mutex_spin_exit(&tty_lock); 811 812 done: 813 if (pg_id != NO_PGID) 814 pg_delete(pg_id); 815 mutex_exit(proc_lock); 816 if (sess != NULL) 817 kmem_free(sess, sizeof(*sess)); 818 if (new_pgrp != NULL) 819 kmem_free(new_pgrp, sizeof(*new_pgrp)); 820 #ifdef DEBUG_PGRP 821 if (__predict_false(rval)) 822 printf("enterpgrp(%d,%d,%d), curproc %d, rval %d\n", 823 pid, pgid, mksess, curp->p_pid, rval); 824 #endif 825 return rval; 826 } 827 828 /* 829 * Remove a process from its process group. Must be called with the 830 * proc_lock held. 831 */ 832 void 833 leavepgrp(struct proc *p) 834 { 835 struct pgrp *pgrp; 836 837 KASSERT(mutex_owned(proc_lock)); 838 839 mutex_spin_enter(&tty_lock); 840 pgrp = p->p_pgrp; 841 LIST_REMOVE(p, p_pglist); 842 p->p_pgrp = NULL; 843 mutex_spin_exit(&tty_lock); 844 845 if (LIST_EMPTY(&pgrp->pg_members)) 846 pg_delete(pgrp->pg_id); 847 } 848 849 /* 850 * Free a process group. Must be called with the proc_lock held. 851 */ 852 static void 853 pg_free(pid_t pg_id) 854 { 855 struct pgrp *pgrp; 856 struct pid_table *pt; 857 858 KASSERT(mutex_owned(proc_lock)); 859 860 pt = &pid_table[pg_id & pid_tbl_mask]; 861 pgrp = pt->pt_pgrp; 862 #ifdef DIAGNOSTIC 863 if (__predict_false(!pgrp || pgrp->pg_id != pg_id 864 || !LIST_EMPTY(&pgrp->pg_members))) 865 panic("pg_free: process group absent or has members"); 866 #endif 867 pt->pt_pgrp = 0; 868 869 if (!P_VALID(pt->pt_proc)) { 870 /* orphaned pgrp, put slot onto free list */ 871 #ifdef DIAGNOSTIC 872 if (__predict_false(P_NEXT(pt->pt_proc) & pid_tbl_mask)) 873 panic("pg_free: process slot on free list"); 874 #endif 875 pg_id &= pid_tbl_mask; 876 pt = &pid_table[last_free_pt]; 877 pt->pt_proc = P_FREE(P_NEXT(pt->pt_proc) | pg_id); 878 last_free_pt = pg_id; 879 pid_alloc_cnt--; 880 } 881 kmem_free(pgrp, sizeof(*pgrp)); 882 } 883 884 /* 885 * Delete a process group. Must be called with the proc_lock held. 886 */ 887 static void 888 pg_delete(pid_t pg_id) 889 { 890 struct pgrp *pgrp; 891 struct tty *ttyp; 892 struct session *ss; 893 int is_pgrp_leader; 894 895 KASSERT(mutex_owned(proc_lock)); 896 897 pgrp = pid_table[pg_id & pid_tbl_mask].pt_pgrp; 898 if (pgrp == NULL || pgrp->pg_id != pg_id || 899 !LIST_EMPTY(&pgrp->pg_members)) 900 return; 901 902 ss = pgrp->pg_session; 903 904 /* Remove reference (if any) from tty to this process group */ 905 mutex_spin_enter(&tty_lock); 906 ttyp = ss->s_ttyp; 907 if (ttyp != NULL && ttyp->t_pgrp == pgrp) { 908 ttyp->t_pgrp = NULL; 909 #ifdef DIAGNOSTIC 910 if (ttyp->t_session != ss) 911 panic("pg_delete: wrong session on terminal"); 912 #endif 913 } 914 mutex_spin_exit(&tty_lock); 915 916 /* 917 * The leading process group in a session is freed 918 * by sessdelete() if last reference. 919 */ 920 is_pgrp_leader = (ss->s_sid == pgrp->pg_id); 921 SESSRELE(ss); 922 923 if (is_pgrp_leader) 924 return; 925 926 pg_free(pg_id); 927 } 928 929 /* 930 * Delete session - called from SESSRELE when s_count becomes zero. 931 * Must be called with the proc_lock held. 932 */ 933 void 934 sessdelete(struct session *ss) 935 { 936 937 KASSERT(mutex_owned(proc_lock)); 938 939 /* 940 * We keep the pgrp with the same id as the session in 941 * order to stop a process being given the same pid. 942 * Since the pgrp holds a reference to the session, it 943 * must be a 'zombie' pgrp by now. 944 */ 945 pg_free(ss->s_sid); 946 kmem_free(ss, sizeof(*ss)); 947 } 948 949 /* 950 * Adjust pgrp jobc counters when specified process changes process group. 951 * We count the number of processes in each process group that "qualify" 952 * the group for terminal job control (those with a parent in a different 953 * process group of the same session). If that count reaches zero, the 954 * process group becomes orphaned. Check both the specified process' 955 * process group and that of its children. 956 * entering == 0 => p is leaving specified group. 957 * entering == 1 => p is entering specified group. 958 * 959 * Call with proc_lock held. 960 */ 961 void 962 fixjobc(struct proc *p, struct pgrp *pgrp, int entering) 963 { 964 struct pgrp *hispgrp; 965 struct session *mysession = pgrp->pg_session; 966 struct proc *child; 967 968 KASSERT(mutex_owned(proc_lock)); 969 970 /* 971 * Check p's parent to see whether p qualifies its own process 972 * group; if so, adjust count for p's process group. 973 */ 974 hispgrp = p->p_pptr->p_pgrp; 975 if (hispgrp != pgrp && hispgrp->pg_session == mysession) { 976 if (entering) { 977 pgrp->pg_jobc++; 978 p->p_lflag &= ~PL_ORPHANPG; 979 } else if (--pgrp->pg_jobc == 0) 980 orphanpg(pgrp); 981 } 982 983 /* 984 * Check this process' children to see whether they qualify 985 * their process groups; if so, adjust counts for children's 986 * process groups. 987 */ 988 LIST_FOREACH(child, &p->p_children, p_sibling) { 989 hispgrp = child->p_pgrp; 990 if (hispgrp != pgrp && hispgrp->pg_session == mysession && 991 !P_ZOMBIE(child)) { 992 if (entering) { 993 child->p_lflag &= ~PL_ORPHANPG; 994 hispgrp->pg_jobc++; 995 } else if (--hispgrp->pg_jobc == 0) 996 orphanpg(hispgrp); 997 } 998 } 999 } 1000 1001 /* 1002 * A process group has become orphaned; 1003 * if there are any stopped processes in the group, 1004 * hang-up all process in that group. 1005 * 1006 * Call with proc_lock held. 1007 */ 1008 static void 1009 orphanpg(struct pgrp *pg) 1010 { 1011 struct proc *p; 1012 int doit; 1013 1014 KASSERT(mutex_owned(proc_lock)); 1015 1016 doit = 0; 1017 1018 LIST_FOREACH(p, &pg->pg_members, p_pglist) { 1019 if (p->p_stat == SSTOP) { 1020 p->p_lflag |= PL_ORPHANPG; 1021 mutex_spin_exit(&tty_lock); 1022 psignal(p, SIGHUP); 1023 psignal(p, SIGCONT); 1024 mutex_spin_enter(&tty_lock); 1025 } 1026 } 1027 } 1028 1029 #ifdef DDB 1030 #include <ddb/db_output.h> 1031 void pidtbl_dump(void); 1032 void 1033 pidtbl_dump(void) 1034 { 1035 struct pid_table *pt; 1036 struct proc *p; 1037 struct pgrp *pgrp; 1038 int id; 1039 1040 db_printf("pid table %p size %x, next %x, last %x\n", 1041 pid_table, pid_tbl_mask+1, 1042 next_free_pt, last_free_pt); 1043 for (pt = pid_table, id = 0; id <= pid_tbl_mask; id++, pt++) { 1044 p = pt->pt_proc; 1045 if (!P_VALID(p) && !pt->pt_pgrp) 1046 continue; 1047 db_printf(" id %x: ", id); 1048 if (P_VALID(p)) 1049 db_printf("proc %p id %d (0x%x) %s\n", 1050 p, p->p_pid, p->p_pid, p->p_comm); 1051 else 1052 db_printf("next %x use %x\n", 1053 P_NEXT(p) & pid_tbl_mask, 1054 P_NEXT(p) & ~pid_tbl_mask); 1055 if ((pgrp = pt->pt_pgrp)) { 1056 db_printf("\tsession %p, sid %d, count %d, login %s\n", 1057 pgrp->pg_session, pgrp->pg_session->s_sid, 1058 pgrp->pg_session->s_count, 1059 pgrp->pg_session->s_login); 1060 db_printf("\tpgrp %p, pg_id %d, pg_jobc %d, members %p\n", 1061 pgrp, pgrp->pg_id, pgrp->pg_jobc, 1062 LIST_FIRST(&pgrp->pg_members)); 1063 LIST_FOREACH(p, &pgrp->pg_members, p_pglist) { 1064 db_printf("\t\tpid %d addr %p pgrp %p %s\n", 1065 p->p_pid, p, p->p_pgrp, p->p_comm); 1066 } 1067 } 1068 } 1069 } 1070 #endif /* DDB */ 1071 1072 #ifdef KSTACK_CHECK_MAGIC 1073 #include <sys/user.h> 1074 1075 #define KSTACK_MAGIC 0xdeadbeaf 1076 1077 /* XXX should be per process basis? */ 1078 int kstackleftmin = KSTACK_SIZE; 1079 int kstackleftthres = KSTACK_SIZE / 8; /* warn if remaining stack is 1080 less than this */ 1081 1082 void 1083 kstack_setup_magic(const struct lwp *l) 1084 { 1085 uint32_t *ip; 1086 uint32_t const *end; 1087 1088 KASSERT(l != NULL); 1089 KASSERT(l != &lwp0); 1090 1091 /* 1092 * fill all the stack with magic number 1093 * so that later modification on it can be detected. 1094 */ 1095 ip = (uint32_t *)KSTACK_LOWEST_ADDR(l); 1096 end = (uint32_t *)((char *)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE); 1097 for (; ip < end; ip++) { 1098 *ip = KSTACK_MAGIC; 1099 } 1100 } 1101 1102 void 1103 kstack_check_magic(const struct lwp *l) 1104 { 1105 uint32_t const *ip, *end; 1106 int stackleft; 1107 1108 KASSERT(l != NULL); 1109 1110 /* don't check proc0 */ /*XXX*/ 1111 if (l == &lwp0) 1112 return; 1113 1114 #ifdef __MACHINE_STACK_GROWS_UP 1115 /* stack grows upwards (eg. hppa) */ 1116 ip = (uint32_t *)((void *)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE); 1117 end = (uint32_t *)KSTACK_LOWEST_ADDR(l); 1118 for (ip--; ip >= end; ip--) 1119 if (*ip != KSTACK_MAGIC) 1120 break; 1121 1122 stackleft = (void *)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE - (void *)ip; 1123 #else /* __MACHINE_STACK_GROWS_UP */ 1124 /* stack grows downwards (eg. i386) */ 1125 ip = (uint32_t *)KSTACK_LOWEST_ADDR(l); 1126 end = (uint32_t *)((char *)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE); 1127 for (; ip < end; ip++) 1128 if (*ip != KSTACK_MAGIC) 1129 break; 1130 1131 stackleft = ((const char *)ip) - (const char *)KSTACK_LOWEST_ADDR(l); 1132 #endif /* __MACHINE_STACK_GROWS_UP */ 1133 1134 if (kstackleftmin > stackleft) { 1135 kstackleftmin = stackleft; 1136 if (stackleft < kstackleftthres) 1137 printf("warning: kernel stack left %d bytes" 1138 "(pid %u:lid %u)\n", stackleft, 1139 (u_int)l->l_proc->p_pid, (u_int)l->l_lid); 1140 } 1141 1142 if (stackleft <= 0) { 1143 panic("magic on the top of kernel stack changed for " 1144 "pid %u, lid %u: maybe kernel stack overflow", 1145 (u_int)l->l_proc->p_pid, (u_int)l->l_lid); 1146 } 1147 } 1148 #endif /* KSTACK_CHECK_MAGIC */ 1149 1150 int 1151 proclist_foreach_call(struct proclist *list, 1152 int (*callback)(struct proc *, void *arg), void *arg) 1153 { 1154 struct proc marker; 1155 struct proc *p; 1156 struct lwp * const l = curlwp; 1157 int ret = 0; 1158 1159 marker.p_flag = PK_MARKER; 1160 uvm_lwp_hold(l); 1161 mutex_enter(proc_lock); 1162 for (p = LIST_FIRST(list); ret == 0 && p != NULL;) { 1163 if (p->p_flag & PK_MARKER) { 1164 p = LIST_NEXT(p, p_list); 1165 continue; 1166 } 1167 LIST_INSERT_AFTER(p, &marker, p_list); 1168 ret = (*callback)(p, arg); 1169 KASSERT(mutex_owned(proc_lock)); 1170 p = LIST_NEXT(&marker, p_list); 1171 LIST_REMOVE(&marker, p_list); 1172 } 1173 mutex_exit(proc_lock); 1174 uvm_lwp_rele(l); 1175 1176 return ret; 1177 } 1178 1179 int 1180 proc_vmspace_getref(struct proc *p, struct vmspace **vm) 1181 { 1182 1183 /* XXXCDC: how should locking work here? */ 1184 1185 /* curproc exception is for coredump. */ 1186 1187 if ((p != curproc && (p->p_sflag & PS_WEXIT) != 0) || 1188 (p->p_vmspace->vm_refcnt < 1)) { /* XXX */ 1189 return EFAULT; 1190 } 1191 1192 uvmspace_addref(p->p_vmspace); 1193 *vm = p->p_vmspace; 1194 1195 return 0; 1196 } 1197 1198 /* 1199 * Acquire a write lock on the process credential. 1200 */ 1201 void 1202 proc_crmod_enter(void) 1203 { 1204 struct lwp *l = curlwp; 1205 struct proc *p = l->l_proc; 1206 struct plimit *lim; 1207 kauth_cred_t oc; 1208 char *cn; 1209 1210 /* Reset what needs to be reset in plimit. */ 1211 if (p->p_limit->pl_corename != defcorename) { 1212 lim_privatise(p, false); 1213 lim = p->p_limit; 1214 mutex_enter(&lim->pl_lock); 1215 cn = lim->pl_corename; 1216 lim->pl_corename = defcorename; 1217 mutex_exit(&lim->pl_lock); 1218 if (cn != defcorename) 1219 free(cn, M_TEMP); 1220 } 1221 1222 mutex_enter(p->p_lock); 1223 1224 /* Ensure the LWP cached credentials are up to date. */ 1225 if ((oc = l->l_cred) != p->p_cred) { 1226 kauth_cred_hold(p->p_cred); 1227 l->l_cred = p->p_cred; 1228 kauth_cred_free(oc); 1229 } 1230 1231 } 1232 1233 /* 1234 * Set in a new process credential, and drop the write lock. The credential 1235 * must have a reference already. Optionally, free a no-longer required 1236 * credential. The scheduler also needs to inspect p_cred, so we also 1237 * briefly acquire the sched state mutex. 1238 */ 1239 void 1240 proc_crmod_leave(kauth_cred_t scred, kauth_cred_t fcred, bool sugid) 1241 { 1242 struct lwp *l = curlwp, *l2; 1243 struct proc *p = l->l_proc; 1244 kauth_cred_t oc; 1245 1246 KASSERT(mutex_owned(p->p_lock)); 1247 1248 /* Is there a new credential to set in? */ 1249 if (scred != NULL) { 1250 p->p_cred = scred; 1251 LIST_FOREACH(l2, &p->p_lwps, l_sibling) { 1252 if (l2 != l) 1253 l2->l_prflag |= LPR_CRMOD; 1254 } 1255 1256 /* Ensure the LWP cached credentials are up to date. */ 1257 if ((oc = l->l_cred) != scred) { 1258 kauth_cred_hold(scred); 1259 l->l_cred = scred; 1260 } 1261 } else 1262 oc = NULL; /* XXXgcc */ 1263 1264 if (sugid) { 1265 /* 1266 * Mark process as having changed credentials, stops 1267 * tracing etc. 1268 */ 1269 p->p_flag |= PK_SUGID; 1270 } 1271 1272 mutex_exit(p->p_lock); 1273 1274 /* If there is a credential to be released, free it now. */ 1275 if (fcred != NULL) { 1276 KASSERT(scred != NULL); 1277 kauth_cred_free(fcred); 1278 if (oc != scred) 1279 kauth_cred_free(oc); 1280 } 1281 } 1282 1283 /* 1284 * proc_specific_key_create -- 1285 * Create a key for subsystem proc-specific data. 1286 */ 1287 int 1288 proc_specific_key_create(specificdata_key_t *keyp, specificdata_dtor_t dtor) 1289 { 1290 1291 return (specificdata_key_create(proc_specificdata_domain, keyp, dtor)); 1292 } 1293 1294 /* 1295 * proc_specific_key_delete -- 1296 * Delete a key for subsystem proc-specific data. 1297 */ 1298 void 1299 proc_specific_key_delete(specificdata_key_t key) 1300 { 1301 1302 specificdata_key_delete(proc_specificdata_domain, key); 1303 } 1304 1305 /* 1306 * proc_initspecific -- 1307 * Initialize a proc's specificdata container. 1308 */ 1309 void 1310 proc_initspecific(struct proc *p) 1311 { 1312 int error; 1313 1314 error = specificdata_init(proc_specificdata_domain, &p->p_specdataref); 1315 KASSERT(error == 0); 1316 } 1317 1318 /* 1319 * proc_finispecific -- 1320 * Finalize a proc's specificdata container. 1321 */ 1322 void 1323 proc_finispecific(struct proc *p) 1324 { 1325 1326 specificdata_fini(proc_specificdata_domain, &p->p_specdataref); 1327 } 1328 1329 /* 1330 * proc_getspecific -- 1331 * Return proc-specific data corresponding to the specified key. 1332 */ 1333 void * 1334 proc_getspecific(struct proc *p, specificdata_key_t key) 1335 { 1336 1337 return (specificdata_getspecific(proc_specificdata_domain, 1338 &p->p_specdataref, key)); 1339 } 1340 1341 /* 1342 * proc_setspecific -- 1343 * Set proc-specific data corresponding to the specified key. 1344 */ 1345 void 1346 proc_setspecific(struct proc *p, specificdata_key_t key, void *data) 1347 { 1348 1349 specificdata_setspecific(proc_specificdata_domain, 1350 &p->p_specdataref, key, data); 1351 } 1352