xref: /netbsd-src/sys/kern/kern_proc.c (revision 62a8debe1dc62962e18a1c918def78666141273b)
1 /*	$NetBSD: kern_proc.c,v 1.163 2010/02/26 18:47:13 jym Exp $	*/
2 
3 /*-
4  * Copyright (c) 1999, 2006, 2007, 2008 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9  * NASA Ames Research Center, and by Andrew Doran.
10  *
11  * Redistribution and use in source and binary forms, with or without
12  * modification, are permitted provided that the following conditions
13  * are met:
14  * 1. Redistributions of source code must retain the above copyright
15  *    notice, this list of conditions and the following disclaimer.
16  * 2. Redistributions in binary form must reproduce the above copyright
17  *    notice, this list of conditions and the following disclaimer in the
18  *    documentation and/or other materials provided with the distribution.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
21  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
22  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
23  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
24  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30  * POSSIBILITY OF SUCH DAMAGE.
31  */
32 
33 /*
34  * Copyright (c) 1982, 1986, 1989, 1991, 1993
35  *	The Regents of the University of California.  All rights reserved.
36  *
37  * Redistribution and use in source and binary forms, with or without
38  * modification, are permitted provided that the following conditions
39  * are met:
40  * 1. Redistributions of source code must retain the above copyright
41  *    notice, this list of conditions and the following disclaimer.
42  * 2. Redistributions in binary form must reproduce the above copyright
43  *    notice, this list of conditions and the following disclaimer in the
44  *    documentation and/or other materials provided with the distribution.
45  * 3. Neither the name of the University nor the names of its contributors
46  *    may be used to endorse or promote products derived from this software
47  *    without specific prior written permission.
48  *
49  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
50  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
51  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
52  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
53  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
54  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
55  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
56  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
57  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
58  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
59  * SUCH DAMAGE.
60  *
61  *	@(#)kern_proc.c	8.7 (Berkeley) 2/14/95
62  */
63 
64 #include <sys/cdefs.h>
65 __KERNEL_RCSID(0, "$NetBSD: kern_proc.c,v 1.163 2010/02/26 18:47:13 jym Exp $");
66 
67 #include "opt_kstack.h"
68 #include "opt_maxuprc.h"
69 #include "opt_dtrace.h"
70 
71 #include <sys/param.h>
72 #include <sys/systm.h>
73 #include <sys/kernel.h>
74 #include <sys/proc.h>
75 #include <sys/resourcevar.h>
76 #include <sys/buf.h>
77 #include <sys/acct.h>
78 #include <sys/wait.h>
79 #include <sys/file.h>
80 #include <ufs/ufs/quota.h>
81 #include <sys/uio.h>
82 #include <sys/pool.h>
83 #include <sys/pset.h>
84 #include <sys/mbuf.h>
85 #include <sys/ioctl.h>
86 #include <sys/tty.h>
87 #include <sys/signalvar.h>
88 #include <sys/ras.h>
89 #include <sys/sa.h>
90 #include <sys/savar.h>
91 #include <sys/filedesc.h>
92 #include "sys/syscall_stats.h"
93 #include <sys/kauth.h>
94 #include <sys/sleepq.h>
95 #include <sys/atomic.h>
96 #include <sys/kmem.h>
97 #include <sys/dtrace_bsd.h>
98 
99 #include <uvm/uvm.h>
100 #include <uvm/uvm_extern.h>
101 
102 /*
103  * Other process lists
104  */
105 
106 struct proclist allproc;
107 struct proclist zombproc;	/* resources have been freed */
108 
109 kmutex_t	*proc_lock;
110 
111 /*
112  * pid to proc lookup is done by indexing the pid_table array.
113  * Since pid numbers are only allocated when an empty slot
114  * has been found, there is no need to search any lists ever.
115  * (an orphaned pgrp will lock the slot, a session will lock
116  * the pgrp with the same number.)
117  * If the table is too small it is reallocated with twice the
118  * previous size and the entries 'unzipped' into the two halves.
119  * A linked list of free entries is passed through the pt_proc
120  * field of 'free' items - set odd to be an invalid ptr.
121  */
122 
123 struct pid_table {
124 	struct proc	*pt_proc;
125 	struct pgrp	*pt_pgrp;
126 };
127 #if 1	/* strongly typed cast - should be a noop */
128 static inline uint p2u(struct proc *p) { return (uint)(uintptr_t)p; }
129 #else
130 #define p2u(p) ((uint)p)
131 #endif
132 #define P_VALID(p) (!(p2u(p) & 1))
133 #define P_NEXT(p) (p2u(p) >> 1)
134 #define P_FREE(pid) ((struct proc *)(uintptr_t)((pid) << 1 | 1))
135 
136 #define INITIAL_PID_TABLE_SIZE	(1 << 5)
137 static struct pid_table *pid_table;
138 static uint pid_tbl_mask = INITIAL_PID_TABLE_SIZE - 1;
139 static uint pid_alloc_lim;	/* max we allocate before growing table */
140 static uint pid_alloc_cnt;	/* number of allocated pids */
141 
142 /* links through free slots - never empty! */
143 static uint next_free_pt, last_free_pt;
144 static pid_t pid_max = PID_MAX;		/* largest value we allocate */
145 
146 /* Components of the first process -- never freed. */
147 
148 extern struct emul emul_netbsd;	/* defined in kern_exec.c */
149 
150 struct session session0 = {
151 	.s_count = 1,
152 	.s_sid = 0,
153 };
154 struct pgrp pgrp0 = {
155 	.pg_members = LIST_HEAD_INITIALIZER(&pgrp0.pg_members),
156 	.pg_session = &session0,
157 };
158 filedesc_t filedesc0;
159 struct cwdinfo cwdi0 = {
160 	.cwdi_cmask = CMASK,		/* see cmask below */
161 	.cwdi_refcnt = 1,
162 };
163 struct plimit limit0;
164 struct pstats pstat0;
165 struct vmspace vmspace0;
166 struct sigacts sigacts0;
167 struct turnstile turnstile0;
168 struct proc proc0 = {
169 	.p_lwps = LIST_HEAD_INITIALIZER(&proc0.p_lwps),
170 	.p_sigwaiters = LIST_HEAD_INITIALIZER(&proc0.p_sigwaiters),
171 	.p_nlwps = 1,
172 	.p_nrlwps = 1,
173 	.p_nlwpid = 1,		/* must match lwp0.l_lid */
174 	.p_pgrp = &pgrp0,
175 	.p_comm = "system",
176 	/*
177 	 * Set P_NOCLDWAIT so that kernel threads are reparented to init(8)
178 	 * when they exit.  init(8) can easily wait them out for us.
179 	 */
180 	.p_flag = PK_SYSTEM | PK_NOCLDWAIT,
181 	.p_stat = SACTIVE,
182 	.p_nice = NZERO,
183 	.p_emul = &emul_netbsd,
184 	.p_cwdi = &cwdi0,
185 	.p_limit = &limit0,
186 	.p_fd = &filedesc0,
187 	.p_vmspace = &vmspace0,
188 	.p_stats = &pstat0,
189 	.p_sigacts = &sigacts0,
190 };
191 struct lwp lwp0 __aligned(MIN_LWP_ALIGNMENT) = {
192 #ifdef LWP0_CPU_INFO
193 	.l_cpu = LWP0_CPU_INFO,
194 #endif
195 	.l_proc = &proc0,
196 	.l_lid = 1,
197 	.l_flag = LW_SYSTEM,
198 	.l_stat = LSONPROC,
199 	.l_ts = &turnstile0,
200 	.l_syncobj = &sched_syncobj,
201 	.l_refcnt = 1,
202 	.l_priority = PRI_USER + NPRI_USER - 1,
203 	.l_inheritedprio = -1,
204 	.l_class = SCHED_OTHER,
205 	.l_psid = PS_NONE,
206 	.l_pi_lenders = SLIST_HEAD_INITIALIZER(&lwp0.l_pi_lenders),
207 	.l_name = __UNCONST("swapper"),
208 	.l_fd = &filedesc0,
209 };
210 kauth_cred_t cred0;
211 
212 int nofile = NOFILE;
213 int maxuprc = MAXUPRC;
214 int cmask = CMASK;
215 
216 MALLOC_DEFINE(M_EMULDATA, "emuldata", "Per-process emulation data");
217 MALLOC_DEFINE(M_SUBPROC, "subproc", "Proc sub-structures");
218 
219 /*
220  * The process list descriptors, used during pid allocation and
221  * by sysctl.  No locking on this data structure is needed since
222  * it is completely static.
223  */
224 const struct proclist_desc proclists[] = {
225 	{ &allproc	},
226 	{ &zombproc	},
227 	{ NULL		},
228 };
229 
230 static struct pgrp *	pg_remove(pid_t);
231 static void		pg_delete(pid_t);
232 static void		orphanpg(struct pgrp *);
233 
234 static specificdata_domain_t proc_specificdata_domain;
235 
236 static pool_cache_t proc_cache;
237 
238 static kauth_listener_t proc_listener;
239 
240 static int
241 proc_listener_cb(kauth_cred_t cred, kauth_action_t action, void *cookie,
242     void *arg0, void *arg1, void *arg2, void *arg3)
243 {
244 	struct proc *p;
245 	int result;
246 
247 	result = KAUTH_RESULT_DEFER;
248 	p = arg0;
249 
250 	switch (action) {
251 	case KAUTH_PROCESS_CANSEE: {
252 		enum kauth_process_req req;
253 
254 		req = (enum kauth_process_req)arg1;
255 
256 		switch (req) {
257 		case KAUTH_REQ_PROCESS_CANSEE_ARGS:
258 		case KAUTH_REQ_PROCESS_CANSEE_ENTRY:
259 		case KAUTH_REQ_PROCESS_CANSEE_OPENFILES:
260 			result = KAUTH_RESULT_ALLOW;
261 
262 			break;
263 
264 		case KAUTH_REQ_PROCESS_CANSEE_ENV:
265 			if (kauth_cred_getuid(cred) !=
266 			    kauth_cred_getuid(p->p_cred) ||
267 			    kauth_cred_getuid(cred) !=
268 			    kauth_cred_getsvuid(p->p_cred))
269 				break;
270 
271 			result = KAUTH_RESULT_ALLOW;
272 
273 			break;
274 
275 		default:
276 			break;
277 		}
278 
279 		break;
280 		}
281 
282 	case KAUTH_PROCESS_FORK: {
283 		int lnprocs = (int)(unsigned long)arg2;
284 
285 		/*
286 		 * Don't allow a nonprivileged user to use the last few
287 		 * processes. The variable lnprocs is the current number of
288 		 * processes, maxproc is the limit.
289 		 */
290 		if (__predict_false((lnprocs >= maxproc - 5)))
291 			break;
292 
293 		result = KAUTH_RESULT_ALLOW;
294 
295 		break;
296 		}
297 
298 	case KAUTH_PROCESS_CORENAME:
299 	case KAUTH_PROCESS_STOPFLAG:
300 		if (proc_uidmatch(cred, p->p_cred) == 0)
301 			result = KAUTH_RESULT_ALLOW;
302 
303 		break;
304 
305 	default:
306 		break;
307 	}
308 
309 	return result;
310 }
311 
312 /*
313  * Initialize global process hashing structures.
314  */
315 void
316 procinit(void)
317 {
318 	const struct proclist_desc *pd;
319 	u_int i;
320 #define	LINK_EMPTY ((PID_MAX + INITIAL_PID_TABLE_SIZE) & ~(INITIAL_PID_TABLE_SIZE - 1))
321 
322 	for (pd = proclists; pd->pd_list != NULL; pd++)
323 		LIST_INIT(pd->pd_list);
324 
325 	proc_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
326 	pid_table = kmem_alloc(INITIAL_PID_TABLE_SIZE
327 	    * sizeof(struct pid_table), KM_SLEEP);
328 
329 	/* Set free list running through table...
330 	   Preset 'use count' above PID_MAX so we allocate pid 1 next. */
331 	for (i = 0; i <= pid_tbl_mask; i++) {
332 		pid_table[i].pt_proc = P_FREE(LINK_EMPTY + i + 1);
333 		pid_table[i].pt_pgrp = 0;
334 	}
335 	/* slot 0 is just grabbed */
336 	next_free_pt = 1;
337 	/* Need to fix last entry. */
338 	last_free_pt = pid_tbl_mask;
339 	pid_table[last_free_pt].pt_proc = P_FREE(LINK_EMPTY);
340 	/* point at which we grow table - to avoid reusing pids too often */
341 	pid_alloc_lim = pid_tbl_mask - 1;
342 #undef LINK_EMPTY
343 
344 	proc_specificdata_domain = specificdata_domain_create();
345 	KASSERT(proc_specificdata_domain != NULL);
346 
347 	proc_cache = pool_cache_init(sizeof(struct proc), 0, 0, 0,
348 	    "procpl", NULL, IPL_NONE, NULL, NULL, NULL);
349 
350 	proc_listener = kauth_listen_scope(KAUTH_SCOPE_PROCESS,
351 	    proc_listener_cb, NULL);
352 }
353 
354 /*
355  * Initialize process 0.
356  */
357 void
358 proc0_init(void)
359 {
360 	struct proc *p;
361 	struct pgrp *pg;
362 	struct lwp *l;
363 	rlim_t lim;
364 	int i;
365 
366 	p = &proc0;
367 	pg = &pgrp0;
368 	l = &lwp0;
369 
370 	KASSERT((void *)uvm_lwp_getuarea(l) != NULL);
371 	KASSERT(l->l_lid == p->p_nlwpid);
372 
373 	mutex_init(&p->p_stmutex, MUTEX_DEFAULT, IPL_HIGH);
374 	mutex_init(&p->p_auxlock, MUTEX_DEFAULT, IPL_NONE);
375 	p->p_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
376 
377 	rw_init(&p->p_reflock);
378 	cv_init(&p->p_waitcv, "wait");
379 	cv_init(&p->p_lwpcv, "lwpwait");
380 
381 	LIST_INSERT_HEAD(&p->p_lwps, l, l_sibling);
382 
383 	pid_table[0].pt_proc = p;
384 	LIST_INSERT_HEAD(&allproc, p, p_list);
385 	LIST_INSERT_HEAD(&alllwp, l, l_list);
386 
387 	pid_table[0].pt_pgrp = pg;
388 	LIST_INSERT_HEAD(&pg->pg_members, p, p_pglist);
389 
390 #ifdef __HAVE_SYSCALL_INTERN
391 	(*p->p_emul->e_syscall_intern)(p);
392 #endif
393 
394 	callout_init(&l->l_timeout_ch, CALLOUT_MPSAFE);
395 	callout_setfunc(&l->l_timeout_ch, sleepq_timeout, l);
396 	cv_init(&l->l_sigcv, "sigwait");
397 
398 	/* Create credentials. */
399 	cred0 = kauth_cred_alloc();
400 	p->p_cred = cred0;
401 	kauth_cred_hold(cred0);
402 	l->l_cred = cred0;
403 
404 	/* Create the CWD info. */
405 	rw_init(&cwdi0.cwdi_lock);
406 
407 	/* Create the limits structures. */
408 	mutex_init(&limit0.pl_lock, MUTEX_DEFAULT, IPL_NONE);
409 	for (i = 0; i < __arraycount(limit0.pl_rlimit); i++)
410 		limit0.pl_rlimit[i].rlim_cur =
411 		    limit0.pl_rlimit[i].rlim_max = RLIM_INFINITY;
412 
413 	limit0.pl_rlimit[RLIMIT_NOFILE].rlim_max = maxfiles;
414 	limit0.pl_rlimit[RLIMIT_NOFILE].rlim_cur =
415 	    maxfiles < nofile ? maxfiles : nofile;
416 
417 	limit0.pl_rlimit[RLIMIT_NPROC].rlim_max = maxproc;
418 	limit0.pl_rlimit[RLIMIT_NPROC].rlim_cur =
419 	    maxproc < maxuprc ? maxproc : maxuprc;
420 
421 	lim = MIN(VM_MAXUSER_ADDRESS, ctob((rlim_t)uvmexp.free));
422 	limit0.pl_rlimit[RLIMIT_RSS].rlim_max = lim;
423 	limit0.pl_rlimit[RLIMIT_MEMLOCK].rlim_max = lim;
424 	limit0.pl_rlimit[RLIMIT_MEMLOCK].rlim_cur = lim / 3;
425 	limit0.pl_corename = defcorename;
426 	limit0.pl_refcnt = 1;
427 	limit0.pl_sv_limit = NULL;
428 
429 	/* Configure virtual memory system, set vm rlimits. */
430 	uvm_init_limits(p);
431 
432 	/* Initialize file descriptor table for proc0. */
433 	fd_init(&filedesc0);
434 
435 	/*
436 	 * Initialize proc0's vmspace, which uses the kernel pmap.
437 	 * All kernel processes (which never have user space mappings)
438 	 * share proc0's vmspace, and thus, the kernel pmap.
439 	 */
440 	uvmspace_init(&vmspace0, pmap_kernel(), round_page(VM_MIN_ADDRESS),
441 	    trunc_page(VM_MAX_ADDRESS));
442 
443 	/* Initialize signal state for proc0. XXX IPL_SCHED */
444 	mutex_init(&p->p_sigacts->sa_mutex, MUTEX_DEFAULT, IPL_SCHED);
445 	siginit(p);
446 
447 	kdtrace_proc_ctor(NULL, p);
448 
449 	proc_initspecific(p);
450 	lwp_initspecific(l);
451 
452 	SYSCALL_TIME_LWP_INIT(l);
453 }
454 
455 /*
456  * Session reference counting.
457  */
458 
459 void
460 proc_sesshold(struct session *ss)
461 {
462 
463 	KASSERT(mutex_owned(proc_lock));
464 	ss->s_count++;
465 }
466 
467 void
468 proc_sessrele(struct session *ss)
469 {
470 
471 	KASSERT(mutex_owned(proc_lock));
472 	/*
473 	 * We keep the pgrp with the same id as the session in order to
474 	 * stop a process being given the same pid.  Since the pgrp holds
475 	 * a reference to the session, it must be a 'zombie' pgrp by now.
476 	 */
477 	if (--ss->s_count == 0) {
478 		struct pgrp *pg;
479 
480 		pg = pg_remove(ss->s_sid);
481 		mutex_exit(proc_lock);
482 
483 		kmem_free(pg, sizeof(struct pgrp));
484 		kmem_free(ss, sizeof(struct session));
485 	} else {
486 		mutex_exit(proc_lock);
487 	}
488 }
489 
490 /*
491  * Check that the specified process group is in the session of the
492  * specified process.
493  * Treats -ve ids as process ids.
494  * Used to validate TIOCSPGRP requests.
495  */
496 int
497 pgid_in_session(struct proc *p, pid_t pg_id)
498 {
499 	struct pgrp *pgrp;
500 	struct session *session;
501 	int error;
502 
503 	mutex_enter(proc_lock);
504 	if (pg_id < 0) {
505 		struct proc *p1 = p_find(-pg_id, PFIND_LOCKED | PFIND_UNLOCK_FAIL);
506 		if (p1 == NULL)
507 			return EINVAL;
508 		pgrp = p1->p_pgrp;
509 	} else {
510 		pgrp = pg_find(pg_id, PFIND_LOCKED | PFIND_UNLOCK_FAIL);
511 		if (pgrp == NULL)
512 			return EINVAL;
513 	}
514 	session = pgrp->pg_session;
515 	if (session != p->p_pgrp->pg_session)
516 		error = EPERM;
517 	else
518 		error = 0;
519 	mutex_exit(proc_lock);
520 
521 	return error;
522 }
523 
524 /*
525  * p_inferior: is p an inferior of q?
526  */
527 static inline bool
528 p_inferior(struct proc *p, struct proc *q)
529 {
530 
531 	KASSERT(mutex_owned(proc_lock));
532 
533 	for (; p != q; p = p->p_pptr)
534 		if (p->p_pid == 0)
535 			return false;
536 	return true;
537 }
538 
539 /*
540  * Locate a process by number
541  */
542 struct proc *
543 p_find(pid_t pid, uint flags)
544 {
545 	struct proc *p;
546 	char stat;
547 
548 	if (!(flags & PFIND_LOCKED))
549 		mutex_enter(proc_lock);
550 
551 	p = pid_table[pid & pid_tbl_mask].pt_proc;
552 
553 	/* Only allow live processes to be found by pid. */
554 	/* XXXSMP p_stat */
555 	if (P_VALID(p) && p->p_pid == pid && ((stat = p->p_stat) == SACTIVE ||
556 	    stat == SSTOP || ((flags & PFIND_ZOMBIE) &&
557 	    (stat == SZOMB || stat == SDEAD || stat == SDYING)))) {
558 		if (flags & PFIND_UNLOCK_OK)
559 			 mutex_exit(proc_lock);
560 		return p;
561 	}
562 	if (flags & PFIND_UNLOCK_FAIL)
563 		mutex_exit(proc_lock);
564 	return NULL;
565 }
566 
567 
568 /*
569  * Locate a process group by number
570  */
571 struct pgrp *
572 pg_find(pid_t pgid, uint flags)
573 {
574 	struct pgrp *pg;
575 
576 	if (!(flags & PFIND_LOCKED))
577 		mutex_enter(proc_lock);
578 	pg = pid_table[pgid & pid_tbl_mask].pt_pgrp;
579 	/*
580 	 * Can't look up a pgrp that only exists because the session
581 	 * hasn't died yet (traditional)
582 	 */
583 	if (pg == NULL || pg->pg_id != pgid || LIST_EMPTY(&pg->pg_members)) {
584 		if (flags & PFIND_UNLOCK_FAIL)
585 			 mutex_exit(proc_lock);
586 		return NULL;
587 	}
588 
589 	if (flags & PFIND_UNLOCK_OK)
590 		mutex_exit(proc_lock);
591 	return pg;
592 }
593 
594 static void
595 expand_pid_table(void)
596 {
597 	size_t pt_size, tsz;
598 	struct pid_table *n_pt, *new_pt;
599 	struct proc *proc;
600 	struct pgrp *pgrp;
601 	pid_t pid;
602 	u_int i;
603 
604 	pt_size = pid_tbl_mask + 1;
605 	tsz = pt_size * 2 * sizeof(struct pid_table);
606 	new_pt = kmem_alloc(tsz, KM_SLEEP);
607 
608 	mutex_enter(proc_lock);
609 	if (pt_size != pid_tbl_mask + 1) {
610 		/* Another process beat us to it... */
611 		mutex_exit(proc_lock);
612 		kmem_free(new_pt, tsz);
613 		return;
614 	}
615 
616 	/*
617 	 * Copy entries from old table into new one.
618 	 * If 'pid' is 'odd' we need to place in the upper half,
619 	 * even pid's to the lower half.
620 	 * Free items stay in the low half so we don't have to
621 	 * fixup the reference to them.
622 	 * We stuff free items on the front of the freelist
623 	 * because we can't write to unmodified entries.
624 	 * Processing the table backwards maintains a semblance
625 	 * of issueing pid numbers that increase with time.
626 	 */
627 	i = pt_size - 1;
628 	n_pt = new_pt + i;
629 	for (; ; i--, n_pt--) {
630 		proc = pid_table[i].pt_proc;
631 		pgrp = pid_table[i].pt_pgrp;
632 		if (!P_VALID(proc)) {
633 			/* Up 'use count' so that link is valid */
634 			pid = (P_NEXT(proc) + pt_size) & ~pt_size;
635 			proc = P_FREE(pid);
636 			if (pgrp)
637 				pid = pgrp->pg_id;
638 		} else
639 			pid = proc->p_pid;
640 
641 		/* Save entry in appropriate half of table */
642 		n_pt[pid & pt_size].pt_proc = proc;
643 		n_pt[pid & pt_size].pt_pgrp = pgrp;
644 
645 		/* Put other piece on start of free list */
646 		pid = (pid ^ pt_size) & ~pid_tbl_mask;
647 		n_pt[pid & pt_size].pt_proc =
648 				    P_FREE((pid & ~pt_size) | next_free_pt);
649 		n_pt[pid & pt_size].pt_pgrp = 0;
650 		next_free_pt = i | (pid & pt_size);
651 		if (i == 0)
652 			break;
653 	}
654 
655 	/* Save old table size and switch tables */
656 	tsz = pt_size * sizeof(struct pid_table);
657 	n_pt = pid_table;
658 	pid_table = new_pt;
659 	pid_tbl_mask = pt_size * 2 - 1;
660 
661 	/*
662 	 * pid_max starts as PID_MAX (= 30000), once we have 16384
663 	 * allocated pids we need it to be larger!
664 	 */
665 	if (pid_tbl_mask > PID_MAX) {
666 		pid_max = pid_tbl_mask * 2 + 1;
667 		pid_alloc_lim |= pid_alloc_lim << 1;
668 	} else
669 		pid_alloc_lim <<= 1;	/* doubles number of free slots... */
670 
671 	mutex_exit(proc_lock);
672 	kmem_free(n_pt, tsz);
673 }
674 
675 struct proc *
676 proc_alloc(void)
677 {
678 	struct proc *p;
679 	int nxt;
680 	pid_t pid;
681 	struct pid_table *pt;
682 
683 	p = pool_cache_get(proc_cache, PR_WAITOK);
684 	p->p_stat = SIDL;			/* protect against others */
685 
686 	proc_initspecific(p);
687 	/* allocate next free pid */
688 
689 	for (;;expand_pid_table()) {
690 		if (__predict_false(pid_alloc_cnt >= pid_alloc_lim))
691 			/* ensure pids cycle through 2000+ values */
692 			continue;
693 		mutex_enter(proc_lock);
694 		pt = &pid_table[next_free_pt];
695 #ifdef DIAGNOSTIC
696 		if (__predict_false(P_VALID(pt->pt_proc) || pt->pt_pgrp))
697 			panic("proc_alloc: slot busy");
698 #endif
699 		nxt = P_NEXT(pt->pt_proc);
700 		if (nxt & pid_tbl_mask)
701 			break;
702 		/* Table full - expand (NB last entry not used....) */
703 		mutex_exit(proc_lock);
704 	}
705 
706 	/* pid is 'saved use count' + 'size' + entry */
707 	pid = (nxt & ~pid_tbl_mask) + pid_tbl_mask + 1 + next_free_pt;
708 	if ((uint)pid > (uint)pid_max)
709 		pid &= pid_tbl_mask;
710 	p->p_pid = pid;
711 	next_free_pt = nxt & pid_tbl_mask;
712 
713 	/* Grab table slot */
714 	pt->pt_proc = p;
715 	pid_alloc_cnt++;
716 
717 	kdtrace_proc_ctor(NULL, p);
718 
719 	mutex_exit(proc_lock);
720 
721 	return p;
722 }
723 
724 /*
725  * Free a process id - called from proc_free (in kern_exit.c)
726  *
727  * Called with the proc_lock held.
728  */
729 void
730 proc_free_pid(struct proc *p)
731 {
732 	pid_t pid = p->p_pid;
733 	struct pid_table *pt;
734 
735 	KASSERT(mutex_owned(proc_lock));
736 
737 	pt = &pid_table[pid & pid_tbl_mask];
738 #ifdef DIAGNOSTIC
739 	if (__predict_false(pt->pt_proc != p))
740 		panic("proc_free: pid_table mismatch, pid %x, proc %p",
741 			pid, p);
742 #endif
743 	/* save pid use count in slot */
744 	pt->pt_proc = P_FREE(pid & ~pid_tbl_mask);
745 
746 	if (pt->pt_pgrp == NULL) {
747 		/* link last freed entry onto ours */
748 		pid &= pid_tbl_mask;
749 		pt = &pid_table[last_free_pt];
750 		pt->pt_proc = P_FREE(P_NEXT(pt->pt_proc) | pid);
751 		last_free_pt = pid;
752 		pid_alloc_cnt--;
753 	}
754 
755 	atomic_dec_uint(&nprocs);
756 }
757 
758 void
759 proc_free_mem(struct proc *p)
760 {
761 
762 	kdtrace_proc_dtor(NULL, p);
763 	pool_cache_put(proc_cache, p);
764 }
765 
766 /*
767  * proc_enterpgrp: move p to a new or existing process group (and session).
768  *
769  * If we are creating a new pgrp, the pgid should equal
770  * the calling process' pid.
771  * If is only valid to enter a process group that is in the session
772  * of the process.
773  * Also mksess should only be set if we are creating a process group
774  *
775  * Only called from sys_setsid and sys_setpgid.
776  */
777 int
778 proc_enterpgrp(struct proc *curp, pid_t pid, pid_t pgid, bool mksess)
779 {
780 	struct pgrp *new_pgrp, *pgrp;
781 	struct session *sess;
782 	struct proc *p;
783 	int rval;
784 	pid_t pg_id = NO_PGID;
785 
786 	sess = mksess ? kmem_alloc(sizeof(*sess), KM_SLEEP) : NULL;
787 
788 	/* Allocate data areas we might need before doing any validity checks */
789 	mutex_enter(proc_lock);		/* Because pid_table might change */
790 	if (pid_table[pgid & pid_tbl_mask].pt_pgrp == 0) {
791 		mutex_exit(proc_lock);
792 		new_pgrp = kmem_alloc(sizeof(*new_pgrp), KM_SLEEP);
793 		mutex_enter(proc_lock);
794 	} else
795 		new_pgrp = NULL;
796 	rval = EPERM;	/* most common error (to save typing) */
797 
798 	/* Check pgrp exists or can be created */
799 	pgrp = pid_table[pgid & pid_tbl_mask].pt_pgrp;
800 	if (pgrp != NULL && pgrp->pg_id != pgid)
801 		goto done;
802 
803 	/* Can only set another process under restricted circumstances. */
804 	if (pid != curp->p_pid) {
805 		/* must exist and be one of our children... */
806 		if ((p = p_find(pid, PFIND_LOCKED)) == NULL ||
807 		    !p_inferior(p, curp)) {
808 			rval = ESRCH;
809 			goto done;
810 		}
811 		/* ... in the same session... */
812 		if (sess != NULL || p->p_session != curp->p_session)
813 			goto done;
814 		/* ... existing pgid must be in same session ... */
815 		if (pgrp != NULL && pgrp->pg_session != p->p_session)
816 			goto done;
817 		/* ... and not done an exec. */
818 		if (p->p_flag & PK_EXEC) {
819 			rval = EACCES;
820 			goto done;
821 		}
822 	} else {
823 		/* ... setsid() cannot re-enter a pgrp */
824 		if (mksess && (curp->p_pgid == curp->p_pid ||
825 		    pg_find(curp->p_pid, PFIND_LOCKED)))
826 			goto done;
827 		p = curp;
828 	}
829 
830 	/* Changing the process group/session of a session
831 	   leader is definitely off limits. */
832 	if (SESS_LEADER(p)) {
833 		if (sess == NULL && p->p_pgrp == pgrp)
834 			/* unless it's a definite noop */
835 			rval = 0;
836 		goto done;
837 	}
838 
839 	/* Can only create a process group with id of process */
840 	if (pgrp == NULL && pgid != pid)
841 		goto done;
842 
843 	/* Can only create a session if creating pgrp */
844 	if (sess != NULL && pgrp != NULL)
845 		goto done;
846 
847 	/* Check we allocated memory for a pgrp... */
848 	if (pgrp == NULL && new_pgrp == NULL)
849 		goto done;
850 
851 	/* Don't attach to 'zombie' pgrp */
852 	if (pgrp != NULL && LIST_EMPTY(&pgrp->pg_members))
853 		goto done;
854 
855 	/* Expect to succeed now */
856 	rval = 0;
857 
858 	if (pgrp == p->p_pgrp)
859 		/* nothing to do */
860 		goto done;
861 
862 	/* Ok all setup, link up required structures */
863 
864 	if (pgrp == NULL) {
865 		pgrp = new_pgrp;
866 		new_pgrp = NULL;
867 		if (sess != NULL) {
868 			sess->s_sid = p->p_pid;
869 			sess->s_leader = p;
870 			sess->s_count = 1;
871 			sess->s_ttyvp = NULL;
872 			sess->s_ttyp = NULL;
873 			sess->s_flags = p->p_session->s_flags & ~S_LOGIN_SET;
874 			memcpy(sess->s_login, p->p_session->s_login,
875 			    sizeof(sess->s_login));
876 			p->p_lflag &= ~PL_CONTROLT;
877 		} else {
878 			sess = p->p_pgrp->pg_session;
879 			proc_sesshold(sess);
880 		}
881 		pgrp->pg_session = sess;
882 		sess = NULL;
883 
884 		pgrp->pg_id = pgid;
885 		LIST_INIT(&pgrp->pg_members);
886 #ifdef DIAGNOSTIC
887 		if (__predict_false(pid_table[pgid & pid_tbl_mask].pt_pgrp))
888 			panic("enterpgrp: pgrp table slot in use");
889 		if (__predict_false(mksess && p != curp))
890 			panic("enterpgrp: mksession and p != curproc");
891 #endif
892 		pid_table[pgid & pid_tbl_mask].pt_pgrp = pgrp;
893 		pgrp->pg_jobc = 0;
894 	}
895 
896 	/*
897 	 * Adjust eligibility of affected pgrps to participate in job control.
898 	 * Increment eligibility counts before decrementing, otherwise we
899 	 * could reach 0 spuriously during the first call.
900 	 */
901 	fixjobc(p, pgrp, 1);
902 	fixjobc(p, p->p_pgrp, 0);
903 
904 	/* Interlock with ttread(). */
905 	mutex_spin_enter(&tty_lock);
906 
907 	/* Move process to requested group. */
908 	LIST_REMOVE(p, p_pglist);
909 	if (LIST_EMPTY(&p->p_pgrp->pg_members))
910 		/* defer delete until we've dumped the lock */
911 		pg_id = p->p_pgrp->pg_id;
912 	p->p_pgrp = pgrp;
913 	LIST_INSERT_HEAD(&pgrp->pg_members, p, p_pglist);
914 
915 	/* Done with the swap; we can release the tty mutex. */
916 	mutex_spin_exit(&tty_lock);
917 
918     done:
919 	if (pg_id != NO_PGID) {
920 		/* Releases proc_lock. */
921 		pg_delete(pg_id);
922 	} else {
923 		mutex_exit(proc_lock);
924 	}
925 	if (sess != NULL)
926 		kmem_free(sess, sizeof(*sess));
927 	if (new_pgrp != NULL)
928 		kmem_free(new_pgrp, sizeof(*new_pgrp));
929 #ifdef DEBUG_PGRP
930 	if (__predict_false(rval))
931 		printf("enterpgrp(%d,%d,%d), curproc %d, rval %d\n",
932 			pid, pgid, mksess, curp->p_pid, rval);
933 #endif
934 	return rval;
935 }
936 
937 /*
938  * proc_leavepgrp: remove a process from its process group.
939  *  => must be called with the proc_lock held, which will be released;
940  */
941 void
942 proc_leavepgrp(struct proc *p)
943 {
944 	struct pgrp *pgrp;
945 
946 	KASSERT(mutex_owned(proc_lock));
947 
948 	/* Interlock with ttread() */
949 	mutex_spin_enter(&tty_lock);
950 	pgrp = p->p_pgrp;
951 	LIST_REMOVE(p, p_pglist);
952 	p->p_pgrp = NULL;
953 	mutex_spin_exit(&tty_lock);
954 
955 	if (LIST_EMPTY(&pgrp->pg_members)) {
956 		/* Releases proc_lock. */
957 		pg_delete(pgrp->pg_id);
958 	} else {
959 		mutex_exit(proc_lock);
960 	}
961 }
962 
963 /*
964  * pg_remove: remove a process group from the table.
965  *  => must be called with the proc_lock held;
966  *  => returns process group to free;
967  */
968 static struct pgrp *
969 pg_remove(pid_t pg_id)
970 {
971 	struct pgrp *pgrp;
972 	struct pid_table *pt;
973 
974 	KASSERT(mutex_owned(proc_lock));
975 
976 	pt = &pid_table[pg_id & pid_tbl_mask];
977 	pgrp = pt->pt_pgrp;
978 
979 	KASSERT(pgrp != NULL);
980 	KASSERT(pgrp->pg_id == pg_id);
981 	KASSERT(LIST_EMPTY(&pgrp->pg_members));
982 
983 	pt->pt_pgrp = NULL;
984 
985 	if (!P_VALID(pt->pt_proc)) {
986 		/* Orphaned pgrp, put slot onto free list. */
987 		KASSERT((P_NEXT(pt->pt_proc) & pid_tbl_mask) == 0);
988 		pg_id &= pid_tbl_mask;
989 		pt = &pid_table[last_free_pt];
990 		pt->pt_proc = P_FREE(P_NEXT(pt->pt_proc) | pg_id);
991 		last_free_pt = pg_id;
992 		pid_alloc_cnt--;
993 	}
994 	return pgrp;
995 }
996 
997 /*
998  * pg_delete: delete and free a process group.
999  *  => must be called with the proc_lock held, which will be released.
1000  */
1001 static void
1002 pg_delete(pid_t pg_id)
1003 {
1004 	struct pgrp *pg;
1005 	struct tty *ttyp;
1006 	struct session *ss;
1007 
1008 	KASSERT(mutex_owned(proc_lock));
1009 
1010 	pg = pid_table[pg_id & pid_tbl_mask].pt_pgrp;
1011 	if (pg == NULL || pg->pg_id != pg_id || !LIST_EMPTY(&pg->pg_members)) {
1012 		mutex_exit(proc_lock);
1013 		return;
1014 	}
1015 
1016 	ss = pg->pg_session;
1017 
1018 	/* Remove reference (if any) from tty to this process group */
1019 	mutex_spin_enter(&tty_lock);
1020 	ttyp = ss->s_ttyp;
1021 	if (ttyp != NULL && ttyp->t_pgrp == pg) {
1022 		ttyp->t_pgrp = NULL;
1023 		KASSERT(ttyp->t_session == ss);
1024 	}
1025 	mutex_spin_exit(&tty_lock);
1026 
1027 	/*
1028 	 * The leading process group in a session is freed by proc_sessrele(),
1029 	 * if last reference.  Note: proc_sessrele() releases proc_lock.
1030 	 */
1031 	pg = (ss->s_sid != pg->pg_id) ? pg_remove(pg_id) : NULL;
1032 	proc_sessrele(ss);
1033 
1034 	if (pg != NULL) {
1035 		/* Free it, if was not done by proc_sessrele(). */
1036 		kmem_free(pg, sizeof(struct pgrp));
1037 	}
1038 }
1039 
1040 /*
1041  * Adjust pgrp jobc counters when specified process changes process group.
1042  * We count the number of processes in each process group that "qualify"
1043  * the group for terminal job control (those with a parent in a different
1044  * process group of the same session).  If that count reaches zero, the
1045  * process group becomes orphaned.  Check both the specified process'
1046  * process group and that of its children.
1047  * entering == 0 => p is leaving specified group.
1048  * entering == 1 => p is entering specified group.
1049  *
1050  * Call with proc_lock held.
1051  */
1052 void
1053 fixjobc(struct proc *p, struct pgrp *pgrp, int entering)
1054 {
1055 	struct pgrp *hispgrp;
1056 	struct session *mysession = pgrp->pg_session;
1057 	struct proc *child;
1058 
1059 	KASSERT(mutex_owned(proc_lock));
1060 
1061 	/*
1062 	 * Check p's parent to see whether p qualifies its own process
1063 	 * group; if so, adjust count for p's process group.
1064 	 */
1065 	hispgrp = p->p_pptr->p_pgrp;
1066 	if (hispgrp != pgrp && hispgrp->pg_session == mysession) {
1067 		if (entering) {
1068 			pgrp->pg_jobc++;
1069 			p->p_lflag &= ~PL_ORPHANPG;
1070 		} else if (--pgrp->pg_jobc == 0)
1071 			orphanpg(pgrp);
1072 	}
1073 
1074 	/*
1075 	 * Check this process' children to see whether they qualify
1076 	 * their process groups; if so, adjust counts for children's
1077 	 * process groups.
1078 	 */
1079 	LIST_FOREACH(child, &p->p_children, p_sibling) {
1080 		hispgrp = child->p_pgrp;
1081 		if (hispgrp != pgrp && hispgrp->pg_session == mysession &&
1082 		    !P_ZOMBIE(child)) {
1083 			if (entering) {
1084 				child->p_lflag &= ~PL_ORPHANPG;
1085 				hispgrp->pg_jobc++;
1086 			} else if (--hispgrp->pg_jobc == 0)
1087 				orphanpg(hispgrp);
1088 		}
1089 	}
1090 }
1091 
1092 /*
1093  * A process group has become orphaned;
1094  * if there are any stopped processes in the group,
1095  * hang-up all process in that group.
1096  *
1097  * Call with proc_lock held.
1098  */
1099 static void
1100 orphanpg(struct pgrp *pg)
1101 {
1102 	struct proc *p;
1103 
1104 	KASSERT(mutex_owned(proc_lock));
1105 
1106 	LIST_FOREACH(p, &pg->pg_members, p_pglist) {
1107 		if (p->p_stat == SSTOP) {
1108 			p->p_lflag |= PL_ORPHANPG;
1109 			psignal(p, SIGHUP);
1110 			psignal(p, SIGCONT);
1111 		}
1112 	}
1113 }
1114 
1115 #ifdef DDB
1116 #include <ddb/db_output.h>
1117 void pidtbl_dump(void);
1118 void
1119 pidtbl_dump(void)
1120 {
1121 	struct pid_table *pt;
1122 	struct proc *p;
1123 	struct pgrp *pgrp;
1124 	int id;
1125 
1126 	db_printf("pid table %p size %x, next %x, last %x\n",
1127 		pid_table, pid_tbl_mask+1,
1128 		next_free_pt, last_free_pt);
1129 	for (pt = pid_table, id = 0; id <= pid_tbl_mask; id++, pt++) {
1130 		p = pt->pt_proc;
1131 		if (!P_VALID(p) && !pt->pt_pgrp)
1132 			continue;
1133 		db_printf("  id %x: ", id);
1134 		if (P_VALID(p))
1135 			db_printf("proc %p id %d (0x%x) %s\n",
1136 				p, p->p_pid, p->p_pid, p->p_comm);
1137 		else
1138 			db_printf("next %x use %x\n",
1139 				P_NEXT(p) & pid_tbl_mask,
1140 				P_NEXT(p) & ~pid_tbl_mask);
1141 		if ((pgrp = pt->pt_pgrp)) {
1142 			db_printf("\tsession %p, sid %d, count %d, login %s\n",
1143 			    pgrp->pg_session, pgrp->pg_session->s_sid,
1144 			    pgrp->pg_session->s_count,
1145 			    pgrp->pg_session->s_login);
1146 			db_printf("\tpgrp %p, pg_id %d, pg_jobc %d, members %p\n",
1147 			    pgrp, pgrp->pg_id, pgrp->pg_jobc,
1148 			    LIST_FIRST(&pgrp->pg_members));
1149 			LIST_FOREACH(p, &pgrp->pg_members, p_pglist) {
1150 				db_printf("\t\tpid %d addr %p pgrp %p %s\n",
1151 				    p->p_pid, p, p->p_pgrp, p->p_comm);
1152 			}
1153 		}
1154 	}
1155 }
1156 #endif /* DDB */
1157 
1158 #ifdef KSTACK_CHECK_MAGIC
1159 
1160 #define	KSTACK_MAGIC	0xdeadbeaf
1161 
1162 /* XXX should be per process basis? */
1163 static int	kstackleftmin = KSTACK_SIZE;
1164 static int	kstackleftthres = KSTACK_SIZE / 8;
1165 
1166 void
1167 kstack_setup_magic(const struct lwp *l)
1168 {
1169 	uint32_t *ip;
1170 	uint32_t const *end;
1171 
1172 	KASSERT(l != NULL);
1173 	KASSERT(l != &lwp0);
1174 
1175 	/*
1176 	 * fill all the stack with magic number
1177 	 * so that later modification on it can be detected.
1178 	 */
1179 	ip = (uint32_t *)KSTACK_LOWEST_ADDR(l);
1180 	end = (uint32_t *)((char *)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE);
1181 	for (; ip < end; ip++) {
1182 		*ip = KSTACK_MAGIC;
1183 	}
1184 }
1185 
1186 void
1187 kstack_check_magic(const struct lwp *l)
1188 {
1189 	uint32_t const *ip, *end;
1190 	int stackleft;
1191 
1192 	KASSERT(l != NULL);
1193 
1194 	/* don't check proc0 */ /*XXX*/
1195 	if (l == &lwp0)
1196 		return;
1197 
1198 #ifdef __MACHINE_STACK_GROWS_UP
1199 	/* stack grows upwards (eg. hppa) */
1200 	ip = (uint32_t *)((void *)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE);
1201 	end = (uint32_t *)KSTACK_LOWEST_ADDR(l);
1202 	for (ip--; ip >= end; ip--)
1203 		if (*ip != KSTACK_MAGIC)
1204 			break;
1205 
1206 	stackleft = (void *)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE - (void *)ip;
1207 #else /* __MACHINE_STACK_GROWS_UP */
1208 	/* stack grows downwards (eg. i386) */
1209 	ip = (uint32_t *)KSTACK_LOWEST_ADDR(l);
1210 	end = (uint32_t *)((char *)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE);
1211 	for (; ip < end; ip++)
1212 		if (*ip != KSTACK_MAGIC)
1213 			break;
1214 
1215 	stackleft = ((const char *)ip) - (const char *)KSTACK_LOWEST_ADDR(l);
1216 #endif /* __MACHINE_STACK_GROWS_UP */
1217 
1218 	if (kstackleftmin > stackleft) {
1219 		kstackleftmin = stackleft;
1220 		if (stackleft < kstackleftthres)
1221 			printf("warning: kernel stack left %d bytes"
1222 			    "(pid %u:lid %u)\n", stackleft,
1223 			    (u_int)l->l_proc->p_pid, (u_int)l->l_lid);
1224 	}
1225 
1226 	if (stackleft <= 0) {
1227 		panic("magic on the top of kernel stack changed for "
1228 		    "pid %u, lid %u: maybe kernel stack overflow",
1229 		    (u_int)l->l_proc->p_pid, (u_int)l->l_lid);
1230 	}
1231 }
1232 #endif /* KSTACK_CHECK_MAGIC */
1233 
1234 int
1235 proclist_foreach_call(struct proclist *list,
1236     int (*callback)(struct proc *, void *arg), void *arg)
1237 {
1238 	struct proc marker;
1239 	struct proc *p;
1240 	int ret = 0;
1241 
1242 	marker.p_flag = PK_MARKER;
1243 	mutex_enter(proc_lock);
1244 	for (p = LIST_FIRST(list); ret == 0 && p != NULL;) {
1245 		if (p->p_flag & PK_MARKER) {
1246 			p = LIST_NEXT(p, p_list);
1247 			continue;
1248 		}
1249 		LIST_INSERT_AFTER(p, &marker, p_list);
1250 		ret = (*callback)(p, arg);
1251 		KASSERT(mutex_owned(proc_lock));
1252 		p = LIST_NEXT(&marker, p_list);
1253 		LIST_REMOVE(&marker, p_list);
1254 	}
1255 	mutex_exit(proc_lock);
1256 
1257 	return ret;
1258 }
1259 
1260 int
1261 proc_vmspace_getref(struct proc *p, struct vmspace **vm)
1262 {
1263 
1264 	/* XXXCDC: how should locking work here? */
1265 
1266 	/* curproc exception is for coredump. */
1267 
1268 	if ((p != curproc && (p->p_sflag & PS_WEXIT) != 0) ||
1269 	    (p->p_vmspace->vm_refcnt < 1)) { /* XXX */
1270 		return EFAULT;
1271 	}
1272 
1273 	uvmspace_addref(p->p_vmspace);
1274 	*vm = p->p_vmspace;
1275 
1276 	return 0;
1277 }
1278 
1279 /*
1280  * Acquire a write lock on the process credential.
1281  */
1282 void
1283 proc_crmod_enter(void)
1284 {
1285 	struct lwp *l = curlwp;
1286 	struct proc *p = l->l_proc;
1287 	struct plimit *lim;
1288 	kauth_cred_t oc;
1289 	char *cn;
1290 
1291 	/* Reset what needs to be reset in plimit. */
1292 	if (p->p_limit->pl_corename != defcorename) {
1293 		lim_privatise(p, false);
1294 		lim = p->p_limit;
1295 		mutex_enter(&lim->pl_lock);
1296 		cn = lim->pl_corename;
1297 		lim->pl_corename = defcorename;
1298 		mutex_exit(&lim->pl_lock);
1299 		if (cn != defcorename)
1300 			free(cn, M_TEMP);
1301 	}
1302 
1303 	mutex_enter(p->p_lock);
1304 
1305 	/* Ensure the LWP cached credentials are up to date. */
1306 	if ((oc = l->l_cred) != p->p_cred) {
1307 		kauth_cred_hold(p->p_cred);
1308 		l->l_cred = p->p_cred;
1309 		kauth_cred_free(oc);
1310 	}
1311 
1312 }
1313 
1314 /*
1315  * Set in a new process credential, and drop the write lock.  The credential
1316  * must have a reference already.  Optionally, free a no-longer required
1317  * credential.  The scheduler also needs to inspect p_cred, so we also
1318  * briefly acquire the sched state mutex.
1319  */
1320 void
1321 proc_crmod_leave(kauth_cred_t scred, kauth_cred_t fcred, bool sugid)
1322 {
1323 	struct lwp *l = curlwp, *l2;
1324 	struct proc *p = l->l_proc;
1325 	kauth_cred_t oc;
1326 
1327 	KASSERT(mutex_owned(p->p_lock));
1328 
1329 	/* Is there a new credential to set in? */
1330 	if (scred != NULL) {
1331 		p->p_cred = scred;
1332 		LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
1333 			if (l2 != l)
1334 				l2->l_prflag |= LPR_CRMOD;
1335 		}
1336 
1337 		/* Ensure the LWP cached credentials are up to date. */
1338 		if ((oc = l->l_cred) != scred) {
1339 			kauth_cred_hold(scred);
1340 			l->l_cred = scred;
1341 		}
1342 	} else
1343 		oc = NULL;	/* XXXgcc */
1344 
1345 	if (sugid) {
1346 		/*
1347 		 * Mark process as having changed credentials, stops
1348 		 * tracing etc.
1349 		 */
1350 		p->p_flag |= PK_SUGID;
1351 	}
1352 
1353 	mutex_exit(p->p_lock);
1354 
1355 	/* If there is a credential to be released, free it now. */
1356 	if (fcred != NULL) {
1357 		KASSERT(scred != NULL);
1358 		kauth_cred_free(fcred);
1359 		if (oc != scred)
1360 			kauth_cred_free(oc);
1361 	}
1362 }
1363 
1364 /*
1365  * proc_specific_key_create --
1366  *	Create a key for subsystem proc-specific data.
1367  */
1368 int
1369 proc_specific_key_create(specificdata_key_t *keyp, specificdata_dtor_t dtor)
1370 {
1371 
1372 	return (specificdata_key_create(proc_specificdata_domain, keyp, dtor));
1373 }
1374 
1375 /*
1376  * proc_specific_key_delete --
1377  *	Delete a key for subsystem proc-specific data.
1378  */
1379 void
1380 proc_specific_key_delete(specificdata_key_t key)
1381 {
1382 
1383 	specificdata_key_delete(proc_specificdata_domain, key);
1384 }
1385 
1386 /*
1387  * proc_initspecific --
1388  *	Initialize a proc's specificdata container.
1389  */
1390 void
1391 proc_initspecific(struct proc *p)
1392 {
1393 	int error;
1394 
1395 	error = specificdata_init(proc_specificdata_domain, &p->p_specdataref);
1396 	KASSERT(error == 0);
1397 }
1398 
1399 /*
1400  * proc_finispecific --
1401  *	Finalize a proc's specificdata container.
1402  */
1403 void
1404 proc_finispecific(struct proc *p)
1405 {
1406 
1407 	specificdata_fini(proc_specificdata_domain, &p->p_specdataref);
1408 }
1409 
1410 /*
1411  * proc_getspecific --
1412  *	Return proc-specific data corresponding to the specified key.
1413  */
1414 void *
1415 proc_getspecific(struct proc *p, specificdata_key_t key)
1416 {
1417 
1418 	return (specificdata_getspecific(proc_specificdata_domain,
1419 					 &p->p_specdataref, key));
1420 }
1421 
1422 /*
1423  * proc_setspecific --
1424  *	Set proc-specific data corresponding to the specified key.
1425  */
1426 void
1427 proc_setspecific(struct proc *p, specificdata_key_t key, void *data)
1428 {
1429 
1430 	specificdata_setspecific(proc_specificdata_domain,
1431 				 &p->p_specdataref, key, data);
1432 }
1433 
1434 int
1435 proc_uidmatch(kauth_cred_t cred, kauth_cred_t target)
1436 {
1437 	int r = 0;
1438 
1439 	if (kauth_cred_getuid(cred) != kauth_cred_getuid(target) ||
1440 	    kauth_cred_getuid(cred) != kauth_cred_getsvuid(target)) {
1441 		/*
1442 		 * suid proc of ours or proc not ours
1443 		 */
1444 		r = EPERM;
1445 	} else if (kauth_cred_getgid(target) != kauth_cred_getsvgid(target)) {
1446 		/*
1447 		 * sgid proc has sgid back to us temporarily
1448 		 */
1449 		r = EPERM;
1450 	} else {
1451 		/*
1452 		 * our rgid must be in target's group list (ie,
1453 		 * sub-processes started by a sgid process)
1454 		 */
1455 		int ismember = 0;
1456 
1457 		if (kauth_cred_ismember_gid(cred,
1458 		    kauth_cred_getgid(target), &ismember) != 0 ||
1459 		    !ismember)
1460 			r = EPERM;
1461 	}
1462 
1463 	return (r);
1464 }
1465 
1466