1 /* $NetBSD: kern_proc.c,v 1.167 2010/07/01 02:38:30 rmind Exp $ */ 2 3 /*- 4 * Copyright (c) 1999, 2006, 2007, 2008 The NetBSD Foundation, Inc. 5 * All rights reserved. 6 * 7 * This code is derived from software contributed to The NetBSD Foundation 8 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility, 9 * NASA Ames Research Center, and by Andrew Doran. 10 * 11 * Redistribution and use in source and binary forms, with or without 12 * modification, are permitted provided that the following conditions 13 * are met: 14 * 1. Redistributions of source code must retain the above copyright 15 * notice, this list of conditions and the following disclaimer. 16 * 2. Redistributions in binary form must reproduce the above copyright 17 * notice, this list of conditions and the following disclaimer in the 18 * documentation and/or other materials provided with the distribution. 19 * 20 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS 21 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 22 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 23 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 24 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 25 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 26 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 27 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 28 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 29 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 30 * POSSIBILITY OF SUCH DAMAGE. 31 */ 32 33 /* 34 * Copyright (c) 1982, 1986, 1989, 1991, 1993 35 * The Regents of the University of California. All rights reserved. 36 * 37 * Redistribution and use in source and binary forms, with or without 38 * modification, are permitted provided that the following conditions 39 * are met: 40 * 1. Redistributions of source code must retain the above copyright 41 * notice, this list of conditions and the following disclaimer. 42 * 2. Redistributions in binary form must reproduce the above copyright 43 * notice, this list of conditions and the following disclaimer in the 44 * documentation and/or other materials provided with the distribution. 45 * 3. Neither the name of the University nor the names of its contributors 46 * may be used to endorse or promote products derived from this software 47 * without specific prior written permission. 48 * 49 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 50 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 51 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 52 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 53 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 54 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 55 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 56 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 57 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 58 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 59 * SUCH DAMAGE. 60 * 61 * @(#)kern_proc.c 8.7 (Berkeley) 2/14/95 62 */ 63 64 #include <sys/cdefs.h> 65 __KERNEL_RCSID(0, "$NetBSD: kern_proc.c,v 1.167 2010/07/01 02:38:30 rmind Exp $"); 66 67 #ifdef _KERNEL_OPT 68 #include "opt_kstack.h" 69 #include "opt_maxuprc.h" 70 #include "opt_dtrace.h" 71 #endif 72 73 #include <sys/param.h> 74 #include <sys/systm.h> 75 #include <sys/kernel.h> 76 #include <sys/proc.h> 77 #include <sys/resourcevar.h> 78 #include <sys/buf.h> 79 #include <sys/acct.h> 80 #include <sys/wait.h> 81 #include <sys/file.h> 82 #include <ufs/ufs/quota.h> 83 #include <sys/uio.h> 84 #include <sys/pool.h> 85 #include <sys/pset.h> 86 #include <sys/mbuf.h> 87 #include <sys/ioctl.h> 88 #include <sys/tty.h> 89 #include <sys/signalvar.h> 90 #include <sys/ras.h> 91 #include <sys/sa.h> 92 #include <sys/savar.h> 93 #include <sys/filedesc.h> 94 #include "sys/syscall_stats.h" 95 #include <sys/kauth.h> 96 #include <sys/sleepq.h> 97 #include <sys/atomic.h> 98 #include <sys/kmem.h> 99 #include <sys/dtrace_bsd.h> 100 101 #include <uvm/uvm.h> 102 #include <uvm/uvm_extern.h> 103 104 /* 105 * Other process lists 106 */ 107 108 struct proclist allproc; 109 struct proclist zombproc; /* resources have been freed */ 110 111 kmutex_t *proc_lock; 112 113 /* 114 * pid to proc lookup is done by indexing the pid_table array. 115 * Since pid numbers are only allocated when an empty slot 116 * has been found, there is no need to search any lists ever. 117 * (an orphaned pgrp will lock the slot, a session will lock 118 * the pgrp with the same number.) 119 * If the table is too small it is reallocated with twice the 120 * previous size and the entries 'unzipped' into the two halves. 121 * A linked list of free entries is passed through the pt_proc 122 * field of 'free' items - set odd to be an invalid ptr. 123 */ 124 125 struct pid_table { 126 struct proc *pt_proc; 127 struct pgrp *pt_pgrp; 128 }; 129 #if 1 /* strongly typed cast - should be a noop */ 130 static inline uint p2u(struct proc *p) { return (uint)(uintptr_t)p; } 131 #else 132 #define p2u(p) ((uint)p) 133 #endif 134 #define P_VALID(p) (!(p2u(p) & 1)) 135 #define P_NEXT(p) (p2u(p) >> 1) 136 #define P_FREE(pid) ((struct proc *)(uintptr_t)((pid) << 1 | 1)) 137 138 #define INITIAL_PID_TABLE_SIZE (1 << 5) 139 static struct pid_table *pid_table; 140 static uint pid_tbl_mask = INITIAL_PID_TABLE_SIZE - 1; 141 static uint pid_alloc_lim; /* max we allocate before growing table */ 142 static uint pid_alloc_cnt; /* number of allocated pids */ 143 144 /* links through free slots - never empty! */ 145 static uint next_free_pt, last_free_pt; 146 static pid_t pid_max = PID_MAX; /* largest value we allocate */ 147 148 /* Components of the first process -- never freed. */ 149 150 extern struct emul emul_netbsd; /* defined in kern_exec.c */ 151 152 struct session session0 = { 153 .s_count = 1, 154 .s_sid = 0, 155 }; 156 struct pgrp pgrp0 = { 157 .pg_members = LIST_HEAD_INITIALIZER(&pgrp0.pg_members), 158 .pg_session = &session0, 159 }; 160 filedesc_t filedesc0; 161 struct cwdinfo cwdi0 = { 162 .cwdi_cmask = CMASK, /* see cmask below */ 163 .cwdi_refcnt = 1, 164 }; 165 struct plimit limit0; 166 struct pstats pstat0; 167 struct vmspace vmspace0; 168 struct sigacts sigacts0; 169 struct proc proc0 = { 170 .p_lwps = LIST_HEAD_INITIALIZER(&proc0.p_lwps), 171 .p_sigwaiters = LIST_HEAD_INITIALIZER(&proc0.p_sigwaiters), 172 .p_nlwps = 1, 173 .p_nrlwps = 1, 174 .p_nlwpid = 1, /* must match lwp0.l_lid */ 175 .p_pgrp = &pgrp0, 176 .p_comm = "system", 177 /* 178 * Set P_NOCLDWAIT so that kernel threads are reparented to init(8) 179 * when they exit. init(8) can easily wait them out for us. 180 */ 181 .p_flag = PK_SYSTEM | PK_NOCLDWAIT, 182 .p_stat = SACTIVE, 183 .p_nice = NZERO, 184 .p_emul = &emul_netbsd, 185 .p_cwdi = &cwdi0, 186 .p_limit = &limit0, 187 .p_fd = &filedesc0, 188 .p_vmspace = &vmspace0, 189 .p_stats = &pstat0, 190 .p_sigacts = &sigacts0, 191 }; 192 kauth_cred_t cred0; 193 194 int nofile = NOFILE; 195 int maxuprc = MAXUPRC; 196 int cmask = CMASK; 197 198 MALLOC_DEFINE(M_EMULDATA, "emuldata", "Per-process emulation data"); 199 MALLOC_DEFINE(M_SUBPROC, "subproc", "Proc sub-structures"); 200 201 /* 202 * The process list descriptors, used during pid allocation and 203 * by sysctl. No locking on this data structure is needed since 204 * it is completely static. 205 */ 206 const struct proclist_desc proclists[] = { 207 { &allproc }, 208 { &zombproc }, 209 { NULL }, 210 }; 211 212 static struct pgrp * pg_remove(pid_t); 213 static void pg_delete(pid_t); 214 static void orphanpg(struct pgrp *); 215 216 static specificdata_domain_t proc_specificdata_domain; 217 218 static pool_cache_t proc_cache; 219 220 static kauth_listener_t proc_listener; 221 222 static int 223 proc_listener_cb(kauth_cred_t cred, kauth_action_t action, void *cookie, 224 void *arg0, void *arg1, void *arg2, void *arg3) 225 { 226 struct proc *p; 227 int result; 228 229 result = KAUTH_RESULT_DEFER; 230 p = arg0; 231 232 switch (action) { 233 case KAUTH_PROCESS_CANSEE: { 234 enum kauth_process_req req; 235 236 req = (enum kauth_process_req)arg1; 237 238 switch (req) { 239 case KAUTH_REQ_PROCESS_CANSEE_ARGS: 240 case KAUTH_REQ_PROCESS_CANSEE_ENTRY: 241 case KAUTH_REQ_PROCESS_CANSEE_OPENFILES: 242 result = KAUTH_RESULT_ALLOW; 243 244 break; 245 246 case KAUTH_REQ_PROCESS_CANSEE_ENV: 247 if (kauth_cred_getuid(cred) != 248 kauth_cred_getuid(p->p_cred) || 249 kauth_cred_getuid(cred) != 250 kauth_cred_getsvuid(p->p_cred)) 251 break; 252 253 result = KAUTH_RESULT_ALLOW; 254 255 break; 256 257 default: 258 break; 259 } 260 261 break; 262 } 263 264 case KAUTH_PROCESS_FORK: { 265 int lnprocs = (int)(unsigned long)arg2; 266 267 /* 268 * Don't allow a nonprivileged user to use the last few 269 * processes. The variable lnprocs is the current number of 270 * processes, maxproc is the limit. 271 */ 272 if (__predict_false((lnprocs >= maxproc - 5))) 273 break; 274 275 result = KAUTH_RESULT_ALLOW; 276 277 break; 278 } 279 280 case KAUTH_PROCESS_CORENAME: 281 case KAUTH_PROCESS_STOPFLAG: 282 if (proc_uidmatch(cred, p->p_cred) == 0) 283 result = KAUTH_RESULT_ALLOW; 284 285 break; 286 287 default: 288 break; 289 } 290 291 return result; 292 } 293 294 /* 295 * Initialize global process hashing structures. 296 */ 297 void 298 procinit(void) 299 { 300 const struct proclist_desc *pd; 301 u_int i; 302 #define LINK_EMPTY ((PID_MAX + INITIAL_PID_TABLE_SIZE) & ~(INITIAL_PID_TABLE_SIZE - 1)) 303 304 for (pd = proclists; pd->pd_list != NULL; pd++) 305 LIST_INIT(pd->pd_list); 306 307 proc_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE); 308 pid_table = kmem_alloc(INITIAL_PID_TABLE_SIZE 309 * sizeof(struct pid_table), KM_SLEEP); 310 311 /* Set free list running through table... 312 Preset 'use count' above PID_MAX so we allocate pid 1 next. */ 313 for (i = 0; i <= pid_tbl_mask; i++) { 314 pid_table[i].pt_proc = P_FREE(LINK_EMPTY + i + 1); 315 pid_table[i].pt_pgrp = 0; 316 } 317 /* slot 0 is just grabbed */ 318 next_free_pt = 1; 319 /* Need to fix last entry. */ 320 last_free_pt = pid_tbl_mask; 321 pid_table[last_free_pt].pt_proc = P_FREE(LINK_EMPTY); 322 /* point at which we grow table - to avoid reusing pids too often */ 323 pid_alloc_lim = pid_tbl_mask - 1; 324 #undef LINK_EMPTY 325 326 proc_specificdata_domain = specificdata_domain_create(); 327 KASSERT(proc_specificdata_domain != NULL); 328 329 proc_cache = pool_cache_init(sizeof(struct proc), 0, 0, 0, 330 "procpl", NULL, IPL_NONE, NULL, NULL, NULL); 331 332 proc_listener = kauth_listen_scope(KAUTH_SCOPE_PROCESS, 333 proc_listener_cb, NULL); 334 } 335 336 /* 337 * Initialize process 0. 338 */ 339 void 340 proc0_init(void) 341 { 342 struct proc *p; 343 struct pgrp *pg; 344 rlim_t lim; 345 int i; 346 347 p = &proc0; 348 pg = &pgrp0; 349 350 mutex_init(&p->p_stmutex, MUTEX_DEFAULT, IPL_HIGH); 351 mutex_init(&p->p_auxlock, MUTEX_DEFAULT, IPL_NONE); 352 p->p_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE); 353 354 rw_init(&p->p_reflock); 355 cv_init(&p->p_waitcv, "wait"); 356 cv_init(&p->p_lwpcv, "lwpwait"); 357 358 LIST_INSERT_HEAD(&p->p_lwps, &lwp0, l_sibling); 359 360 pid_table[0].pt_proc = p; 361 LIST_INSERT_HEAD(&allproc, p, p_list); 362 363 pid_table[0].pt_pgrp = pg; 364 LIST_INSERT_HEAD(&pg->pg_members, p, p_pglist); 365 366 #ifdef __HAVE_SYSCALL_INTERN 367 (*p->p_emul->e_syscall_intern)(p); 368 #endif 369 370 /* Create credentials. */ 371 cred0 = kauth_cred_alloc(); 372 p->p_cred = cred0; 373 374 /* Create the CWD info. */ 375 rw_init(&cwdi0.cwdi_lock); 376 377 /* Create the limits structures. */ 378 mutex_init(&limit0.pl_lock, MUTEX_DEFAULT, IPL_NONE); 379 for (i = 0; i < __arraycount(limit0.pl_rlimit); i++) 380 limit0.pl_rlimit[i].rlim_cur = 381 limit0.pl_rlimit[i].rlim_max = RLIM_INFINITY; 382 383 limit0.pl_rlimit[RLIMIT_NOFILE].rlim_max = maxfiles; 384 limit0.pl_rlimit[RLIMIT_NOFILE].rlim_cur = 385 maxfiles < nofile ? maxfiles : nofile; 386 387 limit0.pl_rlimit[RLIMIT_NPROC].rlim_max = maxproc; 388 limit0.pl_rlimit[RLIMIT_NPROC].rlim_cur = 389 maxproc < maxuprc ? maxproc : maxuprc; 390 391 lim = MIN(VM_MAXUSER_ADDRESS, ctob((rlim_t)uvmexp.free)); 392 limit0.pl_rlimit[RLIMIT_RSS].rlim_max = lim; 393 limit0.pl_rlimit[RLIMIT_MEMLOCK].rlim_max = lim; 394 limit0.pl_rlimit[RLIMIT_MEMLOCK].rlim_cur = lim / 3; 395 limit0.pl_corename = defcorename; 396 limit0.pl_refcnt = 1; 397 limit0.pl_sv_limit = NULL; 398 399 /* Configure virtual memory system, set vm rlimits. */ 400 uvm_init_limits(p); 401 402 /* Initialize file descriptor table for proc0. */ 403 fd_init(&filedesc0); 404 405 /* 406 * Initialize proc0's vmspace, which uses the kernel pmap. 407 * All kernel processes (which never have user space mappings) 408 * share proc0's vmspace, and thus, the kernel pmap. 409 */ 410 uvmspace_init(&vmspace0, pmap_kernel(), round_page(VM_MIN_ADDRESS), 411 trunc_page(VM_MAX_ADDRESS)); 412 413 /* Initialize signal state for proc0. XXX IPL_SCHED */ 414 mutex_init(&p->p_sigacts->sa_mutex, MUTEX_DEFAULT, IPL_SCHED); 415 siginit(p); 416 417 proc_initspecific(p); 418 kdtrace_proc_ctor(NULL, p); 419 } 420 421 /* 422 * Session reference counting. 423 */ 424 425 void 426 proc_sesshold(struct session *ss) 427 { 428 429 KASSERT(mutex_owned(proc_lock)); 430 ss->s_count++; 431 } 432 433 void 434 proc_sessrele(struct session *ss) 435 { 436 437 KASSERT(mutex_owned(proc_lock)); 438 /* 439 * We keep the pgrp with the same id as the session in order to 440 * stop a process being given the same pid. Since the pgrp holds 441 * a reference to the session, it must be a 'zombie' pgrp by now. 442 */ 443 if (--ss->s_count == 0) { 444 struct pgrp *pg; 445 446 pg = pg_remove(ss->s_sid); 447 mutex_exit(proc_lock); 448 449 kmem_free(pg, sizeof(struct pgrp)); 450 kmem_free(ss, sizeof(struct session)); 451 } else { 452 mutex_exit(proc_lock); 453 } 454 } 455 456 /* 457 * Check that the specified process group is in the session of the 458 * specified process. 459 * Treats -ve ids as process ids. 460 * Used to validate TIOCSPGRP requests. 461 */ 462 int 463 pgid_in_session(struct proc *p, pid_t pg_id) 464 { 465 struct pgrp *pgrp; 466 struct session *session; 467 int error; 468 469 mutex_enter(proc_lock); 470 if (pg_id < 0) { 471 struct proc *p1 = proc_find(-pg_id); 472 if (p1 == NULL) { 473 error = EINVAL; 474 goto fail; 475 } 476 pgrp = p1->p_pgrp; 477 } else { 478 pgrp = pgrp_find(pg_id); 479 if (pgrp == NULL) { 480 error = EINVAL; 481 goto fail; 482 } 483 } 484 session = pgrp->pg_session; 485 error = (session != p->p_pgrp->pg_session) ? EPERM : 0; 486 fail: 487 mutex_exit(proc_lock); 488 return error; 489 } 490 491 /* 492 * p_inferior: is p an inferior of q? 493 */ 494 static inline bool 495 p_inferior(struct proc *p, struct proc *q) 496 { 497 498 KASSERT(mutex_owned(proc_lock)); 499 500 for (; p != q; p = p->p_pptr) 501 if (p->p_pid == 0) 502 return false; 503 return true; 504 } 505 506 /* 507 * proc_find: locate a process by the ID. 508 * 509 * => Must be called with proc_lock held. 510 */ 511 proc_t * 512 proc_find_raw(pid_t pid) 513 { 514 proc_t *p = pid_table[pid & pid_tbl_mask].pt_proc; 515 516 if (__predict_false(!P_VALID(p) || p->p_pid != pid)) { 517 return NULL; 518 } 519 return p; 520 } 521 522 proc_t * 523 proc_find(pid_t pid) 524 { 525 proc_t *p; 526 527 KASSERT(mutex_owned(proc_lock)); 528 529 p = proc_find_raw(pid); 530 if (__predict_false(p == NULL)) { 531 return NULL; 532 } 533 /* 534 * Only allow live processes to be found by PID. 535 * XXX: p_stat might change, since unlocked. 536 */ 537 if (__predict_true(p->p_stat == SACTIVE || p->p_stat == SSTOP)) { 538 return p; 539 } 540 return NULL; 541 } 542 543 /* 544 * pgrp_find: locate a process group by the ID. 545 * 546 * => Must be called with proc_lock held. 547 */ 548 struct pgrp * 549 pgrp_find(pid_t pgid) 550 { 551 struct pgrp *pg; 552 553 KASSERT(mutex_owned(proc_lock)); 554 555 pg = pid_table[pgid & pid_tbl_mask].pt_pgrp; 556 /* 557 * Cannot look up a process group that only exists because the 558 * session has not died yet (traditional). 559 */ 560 if (pg == NULL || pg->pg_id != pgid || LIST_EMPTY(&pg->pg_members)) { 561 return NULL; 562 } 563 return pg; 564 } 565 566 static void 567 expand_pid_table(void) 568 { 569 size_t pt_size, tsz; 570 struct pid_table *n_pt, *new_pt; 571 struct proc *proc; 572 struct pgrp *pgrp; 573 pid_t pid; 574 u_int i; 575 576 pt_size = pid_tbl_mask + 1; 577 tsz = pt_size * 2 * sizeof(struct pid_table); 578 new_pt = kmem_alloc(tsz, KM_SLEEP); 579 580 mutex_enter(proc_lock); 581 if (pt_size != pid_tbl_mask + 1) { 582 /* Another process beat us to it... */ 583 mutex_exit(proc_lock); 584 kmem_free(new_pt, tsz); 585 return; 586 } 587 588 /* 589 * Copy entries from old table into new one. 590 * If 'pid' is 'odd' we need to place in the upper half, 591 * even pid's to the lower half. 592 * Free items stay in the low half so we don't have to 593 * fixup the reference to them. 594 * We stuff free items on the front of the freelist 595 * because we can't write to unmodified entries. 596 * Processing the table backwards maintains a semblance 597 * of issueing pid numbers that increase with time. 598 */ 599 i = pt_size - 1; 600 n_pt = new_pt + i; 601 for (; ; i--, n_pt--) { 602 proc = pid_table[i].pt_proc; 603 pgrp = pid_table[i].pt_pgrp; 604 if (!P_VALID(proc)) { 605 /* Up 'use count' so that link is valid */ 606 pid = (P_NEXT(proc) + pt_size) & ~pt_size; 607 proc = P_FREE(pid); 608 if (pgrp) 609 pid = pgrp->pg_id; 610 } else 611 pid = proc->p_pid; 612 613 /* Save entry in appropriate half of table */ 614 n_pt[pid & pt_size].pt_proc = proc; 615 n_pt[pid & pt_size].pt_pgrp = pgrp; 616 617 /* Put other piece on start of free list */ 618 pid = (pid ^ pt_size) & ~pid_tbl_mask; 619 n_pt[pid & pt_size].pt_proc = 620 P_FREE((pid & ~pt_size) | next_free_pt); 621 n_pt[pid & pt_size].pt_pgrp = 0; 622 next_free_pt = i | (pid & pt_size); 623 if (i == 0) 624 break; 625 } 626 627 /* Save old table size and switch tables */ 628 tsz = pt_size * sizeof(struct pid_table); 629 n_pt = pid_table; 630 pid_table = new_pt; 631 pid_tbl_mask = pt_size * 2 - 1; 632 633 /* 634 * pid_max starts as PID_MAX (= 30000), once we have 16384 635 * allocated pids we need it to be larger! 636 */ 637 if (pid_tbl_mask > PID_MAX) { 638 pid_max = pid_tbl_mask * 2 + 1; 639 pid_alloc_lim |= pid_alloc_lim << 1; 640 } else 641 pid_alloc_lim <<= 1; /* doubles number of free slots... */ 642 643 mutex_exit(proc_lock); 644 kmem_free(n_pt, tsz); 645 } 646 647 struct proc * 648 proc_alloc(void) 649 { 650 struct proc *p; 651 int nxt; 652 pid_t pid; 653 struct pid_table *pt; 654 655 p = pool_cache_get(proc_cache, PR_WAITOK); 656 p->p_stat = SIDL; /* protect against others */ 657 658 proc_initspecific(p); 659 kdtrace_proc_ctor(NULL, p); 660 661 for (;;expand_pid_table()) { 662 if (__predict_false(pid_alloc_cnt >= pid_alloc_lim)) 663 /* ensure pids cycle through 2000+ values */ 664 continue; 665 mutex_enter(proc_lock); 666 pt = &pid_table[next_free_pt]; 667 #ifdef DIAGNOSTIC 668 if (__predict_false(P_VALID(pt->pt_proc) || pt->pt_pgrp)) 669 panic("proc_alloc: slot busy"); 670 #endif 671 nxt = P_NEXT(pt->pt_proc); 672 if (nxt & pid_tbl_mask) 673 break; 674 /* Table full - expand (NB last entry not used....) */ 675 mutex_exit(proc_lock); 676 } 677 678 /* pid is 'saved use count' + 'size' + entry */ 679 pid = (nxt & ~pid_tbl_mask) + pid_tbl_mask + 1 + next_free_pt; 680 if ((uint)pid > (uint)pid_max) 681 pid &= pid_tbl_mask; 682 p->p_pid = pid; 683 next_free_pt = nxt & pid_tbl_mask; 684 685 /* Grab table slot */ 686 pt->pt_proc = p; 687 pid_alloc_cnt++; 688 mutex_exit(proc_lock); 689 690 return p; 691 } 692 693 /* 694 * Free a process id - called from proc_free (in kern_exit.c) 695 * 696 * Called with the proc_lock held. 697 */ 698 void 699 proc_free_pid(struct proc *p) 700 { 701 pid_t pid = p->p_pid; 702 struct pid_table *pt; 703 704 KASSERT(mutex_owned(proc_lock)); 705 706 pt = &pid_table[pid & pid_tbl_mask]; 707 #ifdef DIAGNOSTIC 708 if (__predict_false(pt->pt_proc != p)) 709 panic("proc_free: pid_table mismatch, pid %x, proc %p", 710 pid, p); 711 #endif 712 /* save pid use count in slot */ 713 pt->pt_proc = P_FREE(pid & ~pid_tbl_mask); 714 715 if (pt->pt_pgrp == NULL) { 716 /* link last freed entry onto ours */ 717 pid &= pid_tbl_mask; 718 pt = &pid_table[last_free_pt]; 719 pt->pt_proc = P_FREE(P_NEXT(pt->pt_proc) | pid); 720 last_free_pt = pid; 721 pid_alloc_cnt--; 722 } 723 724 atomic_dec_uint(&nprocs); 725 } 726 727 void 728 proc_free_mem(struct proc *p) 729 { 730 731 kdtrace_proc_dtor(NULL, p); 732 pool_cache_put(proc_cache, p); 733 } 734 735 /* 736 * proc_enterpgrp: move p to a new or existing process group (and session). 737 * 738 * If we are creating a new pgrp, the pgid should equal 739 * the calling process' pid. 740 * If is only valid to enter a process group that is in the session 741 * of the process. 742 * Also mksess should only be set if we are creating a process group 743 * 744 * Only called from sys_setsid and sys_setpgid. 745 */ 746 int 747 proc_enterpgrp(struct proc *curp, pid_t pid, pid_t pgid, bool mksess) 748 { 749 struct pgrp *new_pgrp, *pgrp; 750 struct session *sess; 751 struct proc *p; 752 int rval; 753 pid_t pg_id = NO_PGID; 754 755 sess = mksess ? kmem_alloc(sizeof(*sess), KM_SLEEP) : NULL; 756 757 /* Allocate data areas we might need before doing any validity checks */ 758 mutex_enter(proc_lock); /* Because pid_table might change */ 759 if (pid_table[pgid & pid_tbl_mask].pt_pgrp == 0) { 760 mutex_exit(proc_lock); 761 new_pgrp = kmem_alloc(sizeof(*new_pgrp), KM_SLEEP); 762 mutex_enter(proc_lock); 763 } else 764 new_pgrp = NULL; 765 rval = EPERM; /* most common error (to save typing) */ 766 767 /* Check pgrp exists or can be created */ 768 pgrp = pid_table[pgid & pid_tbl_mask].pt_pgrp; 769 if (pgrp != NULL && pgrp->pg_id != pgid) 770 goto done; 771 772 /* Can only set another process under restricted circumstances. */ 773 if (pid != curp->p_pid) { 774 /* Must exist and be one of our children... */ 775 p = proc_find(pid); 776 if (p == NULL || !p_inferior(p, curp)) { 777 rval = ESRCH; 778 goto done; 779 } 780 /* ... in the same session... */ 781 if (sess != NULL || p->p_session != curp->p_session) 782 goto done; 783 /* ... existing pgid must be in same session ... */ 784 if (pgrp != NULL && pgrp->pg_session != p->p_session) 785 goto done; 786 /* ... and not done an exec. */ 787 if (p->p_flag & PK_EXEC) { 788 rval = EACCES; 789 goto done; 790 } 791 } else { 792 /* ... setsid() cannot re-enter a pgrp */ 793 if (mksess && (curp->p_pgid == curp->p_pid || 794 pgrp_find(curp->p_pid))) 795 goto done; 796 p = curp; 797 } 798 799 /* Changing the process group/session of a session 800 leader is definitely off limits. */ 801 if (SESS_LEADER(p)) { 802 if (sess == NULL && p->p_pgrp == pgrp) 803 /* unless it's a definite noop */ 804 rval = 0; 805 goto done; 806 } 807 808 /* Can only create a process group with id of process */ 809 if (pgrp == NULL && pgid != pid) 810 goto done; 811 812 /* Can only create a session if creating pgrp */ 813 if (sess != NULL && pgrp != NULL) 814 goto done; 815 816 /* Check we allocated memory for a pgrp... */ 817 if (pgrp == NULL && new_pgrp == NULL) 818 goto done; 819 820 /* Don't attach to 'zombie' pgrp */ 821 if (pgrp != NULL && LIST_EMPTY(&pgrp->pg_members)) 822 goto done; 823 824 /* Expect to succeed now */ 825 rval = 0; 826 827 if (pgrp == p->p_pgrp) 828 /* nothing to do */ 829 goto done; 830 831 /* Ok all setup, link up required structures */ 832 833 if (pgrp == NULL) { 834 pgrp = new_pgrp; 835 new_pgrp = NULL; 836 if (sess != NULL) { 837 sess->s_sid = p->p_pid; 838 sess->s_leader = p; 839 sess->s_count = 1; 840 sess->s_ttyvp = NULL; 841 sess->s_ttyp = NULL; 842 sess->s_flags = p->p_session->s_flags & ~S_LOGIN_SET; 843 memcpy(sess->s_login, p->p_session->s_login, 844 sizeof(sess->s_login)); 845 p->p_lflag &= ~PL_CONTROLT; 846 } else { 847 sess = p->p_pgrp->pg_session; 848 proc_sesshold(sess); 849 } 850 pgrp->pg_session = sess; 851 sess = NULL; 852 853 pgrp->pg_id = pgid; 854 LIST_INIT(&pgrp->pg_members); 855 #ifdef DIAGNOSTIC 856 if (__predict_false(pid_table[pgid & pid_tbl_mask].pt_pgrp)) 857 panic("enterpgrp: pgrp table slot in use"); 858 if (__predict_false(mksess && p != curp)) 859 panic("enterpgrp: mksession and p != curproc"); 860 #endif 861 pid_table[pgid & pid_tbl_mask].pt_pgrp = pgrp; 862 pgrp->pg_jobc = 0; 863 } 864 865 /* 866 * Adjust eligibility of affected pgrps to participate in job control. 867 * Increment eligibility counts before decrementing, otherwise we 868 * could reach 0 spuriously during the first call. 869 */ 870 fixjobc(p, pgrp, 1); 871 fixjobc(p, p->p_pgrp, 0); 872 873 /* Interlock with ttread(). */ 874 mutex_spin_enter(&tty_lock); 875 876 /* Move process to requested group. */ 877 LIST_REMOVE(p, p_pglist); 878 if (LIST_EMPTY(&p->p_pgrp->pg_members)) 879 /* defer delete until we've dumped the lock */ 880 pg_id = p->p_pgrp->pg_id; 881 p->p_pgrp = pgrp; 882 LIST_INSERT_HEAD(&pgrp->pg_members, p, p_pglist); 883 884 /* Done with the swap; we can release the tty mutex. */ 885 mutex_spin_exit(&tty_lock); 886 887 done: 888 if (pg_id != NO_PGID) { 889 /* Releases proc_lock. */ 890 pg_delete(pg_id); 891 } else { 892 mutex_exit(proc_lock); 893 } 894 if (sess != NULL) 895 kmem_free(sess, sizeof(*sess)); 896 if (new_pgrp != NULL) 897 kmem_free(new_pgrp, sizeof(*new_pgrp)); 898 #ifdef DEBUG_PGRP 899 if (__predict_false(rval)) 900 printf("enterpgrp(%d,%d,%d), curproc %d, rval %d\n", 901 pid, pgid, mksess, curp->p_pid, rval); 902 #endif 903 return rval; 904 } 905 906 /* 907 * proc_leavepgrp: remove a process from its process group. 908 * => must be called with the proc_lock held, which will be released; 909 */ 910 void 911 proc_leavepgrp(struct proc *p) 912 { 913 struct pgrp *pgrp; 914 915 KASSERT(mutex_owned(proc_lock)); 916 917 /* Interlock with ttread() */ 918 mutex_spin_enter(&tty_lock); 919 pgrp = p->p_pgrp; 920 LIST_REMOVE(p, p_pglist); 921 p->p_pgrp = NULL; 922 mutex_spin_exit(&tty_lock); 923 924 if (LIST_EMPTY(&pgrp->pg_members)) { 925 /* Releases proc_lock. */ 926 pg_delete(pgrp->pg_id); 927 } else { 928 mutex_exit(proc_lock); 929 } 930 } 931 932 /* 933 * pg_remove: remove a process group from the table. 934 * => must be called with the proc_lock held; 935 * => returns process group to free; 936 */ 937 static struct pgrp * 938 pg_remove(pid_t pg_id) 939 { 940 struct pgrp *pgrp; 941 struct pid_table *pt; 942 943 KASSERT(mutex_owned(proc_lock)); 944 945 pt = &pid_table[pg_id & pid_tbl_mask]; 946 pgrp = pt->pt_pgrp; 947 948 KASSERT(pgrp != NULL); 949 KASSERT(pgrp->pg_id == pg_id); 950 KASSERT(LIST_EMPTY(&pgrp->pg_members)); 951 952 pt->pt_pgrp = NULL; 953 954 if (!P_VALID(pt->pt_proc)) { 955 /* Orphaned pgrp, put slot onto free list. */ 956 KASSERT((P_NEXT(pt->pt_proc) & pid_tbl_mask) == 0); 957 pg_id &= pid_tbl_mask; 958 pt = &pid_table[last_free_pt]; 959 pt->pt_proc = P_FREE(P_NEXT(pt->pt_proc) | pg_id); 960 last_free_pt = pg_id; 961 pid_alloc_cnt--; 962 } 963 return pgrp; 964 } 965 966 /* 967 * pg_delete: delete and free a process group. 968 * => must be called with the proc_lock held, which will be released. 969 */ 970 static void 971 pg_delete(pid_t pg_id) 972 { 973 struct pgrp *pg; 974 struct tty *ttyp; 975 struct session *ss; 976 977 KASSERT(mutex_owned(proc_lock)); 978 979 pg = pid_table[pg_id & pid_tbl_mask].pt_pgrp; 980 if (pg == NULL || pg->pg_id != pg_id || !LIST_EMPTY(&pg->pg_members)) { 981 mutex_exit(proc_lock); 982 return; 983 } 984 985 ss = pg->pg_session; 986 987 /* Remove reference (if any) from tty to this process group */ 988 mutex_spin_enter(&tty_lock); 989 ttyp = ss->s_ttyp; 990 if (ttyp != NULL && ttyp->t_pgrp == pg) { 991 ttyp->t_pgrp = NULL; 992 KASSERT(ttyp->t_session == ss); 993 } 994 mutex_spin_exit(&tty_lock); 995 996 /* 997 * The leading process group in a session is freed by proc_sessrele(), 998 * if last reference. Note: proc_sessrele() releases proc_lock. 999 */ 1000 pg = (ss->s_sid != pg->pg_id) ? pg_remove(pg_id) : NULL; 1001 proc_sessrele(ss); 1002 1003 if (pg != NULL) { 1004 /* Free it, if was not done by proc_sessrele(). */ 1005 kmem_free(pg, sizeof(struct pgrp)); 1006 } 1007 } 1008 1009 /* 1010 * Adjust pgrp jobc counters when specified process changes process group. 1011 * We count the number of processes in each process group that "qualify" 1012 * the group for terminal job control (those with a parent in a different 1013 * process group of the same session). If that count reaches zero, the 1014 * process group becomes orphaned. Check both the specified process' 1015 * process group and that of its children. 1016 * entering == 0 => p is leaving specified group. 1017 * entering == 1 => p is entering specified group. 1018 * 1019 * Call with proc_lock held. 1020 */ 1021 void 1022 fixjobc(struct proc *p, struct pgrp *pgrp, int entering) 1023 { 1024 struct pgrp *hispgrp; 1025 struct session *mysession = pgrp->pg_session; 1026 struct proc *child; 1027 1028 KASSERT(mutex_owned(proc_lock)); 1029 1030 /* 1031 * Check p's parent to see whether p qualifies its own process 1032 * group; if so, adjust count for p's process group. 1033 */ 1034 hispgrp = p->p_pptr->p_pgrp; 1035 if (hispgrp != pgrp && hispgrp->pg_session == mysession) { 1036 if (entering) { 1037 pgrp->pg_jobc++; 1038 p->p_lflag &= ~PL_ORPHANPG; 1039 } else if (--pgrp->pg_jobc == 0) 1040 orphanpg(pgrp); 1041 } 1042 1043 /* 1044 * Check this process' children to see whether they qualify 1045 * their process groups; if so, adjust counts for children's 1046 * process groups. 1047 */ 1048 LIST_FOREACH(child, &p->p_children, p_sibling) { 1049 hispgrp = child->p_pgrp; 1050 if (hispgrp != pgrp && hispgrp->pg_session == mysession && 1051 !P_ZOMBIE(child)) { 1052 if (entering) { 1053 child->p_lflag &= ~PL_ORPHANPG; 1054 hispgrp->pg_jobc++; 1055 } else if (--hispgrp->pg_jobc == 0) 1056 orphanpg(hispgrp); 1057 } 1058 } 1059 } 1060 1061 /* 1062 * A process group has become orphaned; 1063 * if there are any stopped processes in the group, 1064 * hang-up all process in that group. 1065 * 1066 * Call with proc_lock held. 1067 */ 1068 static void 1069 orphanpg(struct pgrp *pg) 1070 { 1071 struct proc *p; 1072 1073 KASSERT(mutex_owned(proc_lock)); 1074 1075 LIST_FOREACH(p, &pg->pg_members, p_pglist) { 1076 if (p->p_stat == SSTOP) { 1077 p->p_lflag |= PL_ORPHANPG; 1078 psignal(p, SIGHUP); 1079 psignal(p, SIGCONT); 1080 } 1081 } 1082 } 1083 1084 #ifdef DDB 1085 #include <ddb/db_output.h> 1086 void pidtbl_dump(void); 1087 void 1088 pidtbl_dump(void) 1089 { 1090 struct pid_table *pt; 1091 struct proc *p; 1092 struct pgrp *pgrp; 1093 int id; 1094 1095 db_printf("pid table %p size %x, next %x, last %x\n", 1096 pid_table, pid_tbl_mask+1, 1097 next_free_pt, last_free_pt); 1098 for (pt = pid_table, id = 0; id <= pid_tbl_mask; id++, pt++) { 1099 p = pt->pt_proc; 1100 if (!P_VALID(p) && !pt->pt_pgrp) 1101 continue; 1102 db_printf(" id %x: ", id); 1103 if (P_VALID(p)) 1104 db_printf("proc %p id %d (0x%x) %s\n", 1105 p, p->p_pid, p->p_pid, p->p_comm); 1106 else 1107 db_printf("next %x use %x\n", 1108 P_NEXT(p) & pid_tbl_mask, 1109 P_NEXT(p) & ~pid_tbl_mask); 1110 if ((pgrp = pt->pt_pgrp)) { 1111 db_printf("\tsession %p, sid %d, count %d, login %s\n", 1112 pgrp->pg_session, pgrp->pg_session->s_sid, 1113 pgrp->pg_session->s_count, 1114 pgrp->pg_session->s_login); 1115 db_printf("\tpgrp %p, pg_id %d, pg_jobc %d, members %p\n", 1116 pgrp, pgrp->pg_id, pgrp->pg_jobc, 1117 LIST_FIRST(&pgrp->pg_members)); 1118 LIST_FOREACH(p, &pgrp->pg_members, p_pglist) { 1119 db_printf("\t\tpid %d addr %p pgrp %p %s\n", 1120 p->p_pid, p, p->p_pgrp, p->p_comm); 1121 } 1122 } 1123 } 1124 } 1125 #endif /* DDB */ 1126 1127 #ifdef KSTACK_CHECK_MAGIC 1128 1129 #define KSTACK_MAGIC 0xdeadbeaf 1130 1131 /* XXX should be per process basis? */ 1132 static int kstackleftmin = KSTACK_SIZE; 1133 static int kstackleftthres = KSTACK_SIZE / 8; 1134 1135 void 1136 kstack_setup_magic(const struct lwp *l) 1137 { 1138 uint32_t *ip; 1139 uint32_t const *end; 1140 1141 KASSERT(l != NULL); 1142 KASSERT(l != &lwp0); 1143 1144 /* 1145 * fill all the stack with magic number 1146 * so that later modification on it can be detected. 1147 */ 1148 ip = (uint32_t *)KSTACK_LOWEST_ADDR(l); 1149 end = (uint32_t *)((char *)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE); 1150 for (; ip < end; ip++) { 1151 *ip = KSTACK_MAGIC; 1152 } 1153 } 1154 1155 void 1156 kstack_check_magic(const struct lwp *l) 1157 { 1158 uint32_t const *ip, *end; 1159 int stackleft; 1160 1161 KASSERT(l != NULL); 1162 1163 /* don't check proc0 */ /*XXX*/ 1164 if (l == &lwp0) 1165 return; 1166 1167 #ifdef __MACHINE_STACK_GROWS_UP 1168 /* stack grows upwards (eg. hppa) */ 1169 ip = (uint32_t *)((void *)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE); 1170 end = (uint32_t *)KSTACK_LOWEST_ADDR(l); 1171 for (ip--; ip >= end; ip--) 1172 if (*ip != KSTACK_MAGIC) 1173 break; 1174 1175 stackleft = (void *)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE - (void *)ip; 1176 #else /* __MACHINE_STACK_GROWS_UP */ 1177 /* stack grows downwards (eg. i386) */ 1178 ip = (uint32_t *)KSTACK_LOWEST_ADDR(l); 1179 end = (uint32_t *)((char *)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE); 1180 for (; ip < end; ip++) 1181 if (*ip != KSTACK_MAGIC) 1182 break; 1183 1184 stackleft = ((const char *)ip) - (const char *)KSTACK_LOWEST_ADDR(l); 1185 #endif /* __MACHINE_STACK_GROWS_UP */ 1186 1187 if (kstackleftmin > stackleft) { 1188 kstackleftmin = stackleft; 1189 if (stackleft < kstackleftthres) 1190 printf("warning: kernel stack left %d bytes" 1191 "(pid %u:lid %u)\n", stackleft, 1192 (u_int)l->l_proc->p_pid, (u_int)l->l_lid); 1193 } 1194 1195 if (stackleft <= 0) { 1196 panic("magic on the top of kernel stack changed for " 1197 "pid %u, lid %u: maybe kernel stack overflow", 1198 (u_int)l->l_proc->p_pid, (u_int)l->l_lid); 1199 } 1200 } 1201 #endif /* KSTACK_CHECK_MAGIC */ 1202 1203 int 1204 proclist_foreach_call(struct proclist *list, 1205 int (*callback)(struct proc *, void *arg), void *arg) 1206 { 1207 struct proc marker; 1208 struct proc *p; 1209 int ret = 0; 1210 1211 marker.p_flag = PK_MARKER; 1212 mutex_enter(proc_lock); 1213 for (p = LIST_FIRST(list); ret == 0 && p != NULL;) { 1214 if (p->p_flag & PK_MARKER) { 1215 p = LIST_NEXT(p, p_list); 1216 continue; 1217 } 1218 LIST_INSERT_AFTER(p, &marker, p_list); 1219 ret = (*callback)(p, arg); 1220 KASSERT(mutex_owned(proc_lock)); 1221 p = LIST_NEXT(&marker, p_list); 1222 LIST_REMOVE(&marker, p_list); 1223 } 1224 mutex_exit(proc_lock); 1225 1226 return ret; 1227 } 1228 1229 int 1230 proc_vmspace_getref(struct proc *p, struct vmspace **vm) 1231 { 1232 1233 /* XXXCDC: how should locking work here? */ 1234 1235 /* curproc exception is for coredump. */ 1236 1237 if ((p != curproc && (p->p_sflag & PS_WEXIT) != 0) || 1238 (p->p_vmspace->vm_refcnt < 1)) { /* XXX */ 1239 return EFAULT; 1240 } 1241 1242 uvmspace_addref(p->p_vmspace); 1243 *vm = p->p_vmspace; 1244 1245 return 0; 1246 } 1247 1248 /* 1249 * Acquire a write lock on the process credential. 1250 */ 1251 void 1252 proc_crmod_enter(void) 1253 { 1254 struct lwp *l = curlwp; 1255 struct proc *p = l->l_proc; 1256 struct plimit *lim; 1257 kauth_cred_t oc; 1258 char *cn; 1259 1260 /* Reset what needs to be reset in plimit. */ 1261 if (p->p_limit->pl_corename != defcorename) { 1262 lim_privatise(p, false); 1263 lim = p->p_limit; 1264 mutex_enter(&lim->pl_lock); 1265 cn = lim->pl_corename; 1266 lim->pl_corename = defcorename; 1267 mutex_exit(&lim->pl_lock); 1268 if (cn != defcorename) 1269 free(cn, M_TEMP); 1270 } 1271 1272 mutex_enter(p->p_lock); 1273 1274 /* Ensure the LWP cached credentials are up to date. */ 1275 if ((oc = l->l_cred) != p->p_cred) { 1276 kauth_cred_hold(p->p_cred); 1277 l->l_cred = p->p_cred; 1278 kauth_cred_free(oc); 1279 } 1280 1281 } 1282 1283 /* 1284 * Set in a new process credential, and drop the write lock. The credential 1285 * must have a reference already. Optionally, free a no-longer required 1286 * credential. The scheduler also needs to inspect p_cred, so we also 1287 * briefly acquire the sched state mutex. 1288 */ 1289 void 1290 proc_crmod_leave(kauth_cred_t scred, kauth_cred_t fcred, bool sugid) 1291 { 1292 struct lwp *l = curlwp, *l2; 1293 struct proc *p = l->l_proc; 1294 kauth_cred_t oc; 1295 1296 KASSERT(mutex_owned(p->p_lock)); 1297 1298 /* Is there a new credential to set in? */ 1299 if (scred != NULL) { 1300 p->p_cred = scred; 1301 LIST_FOREACH(l2, &p->p_lwps, l_sibling) { 1302 if (l2 != l) 1303 l2->l_prflag |= LPR_CRMOD; 1304 } 1305 1306 /* Ensure the LWP cached credentials are up to date. */ 1307 if ((oc = l->l_cred) != scred) { 1308 kauth_cred_hold(scred); 1309 l->l_cred = scred; 1310 } 1311 } else 1312 oc = NULL; /* XXXgcc */ 1313 1314 if (sugid) { 1315 /* 1316 * Mark process as having changed credentials, stops 1317 * tracing etc. 1318 */ 1319 p->p_flag |= PK_SUGID; 1320 } 1321 1322 mutex_exit(p->p_lock); 1323 1324 /* If there is a credential to be released, free it now. */ 1325 if (fcred != NULL) { 1326 KASSERT(scred != NULL); 1327 kauth_cred_free(fcred); 1328 if (oc != scred) 1329 kauth_cred_free(oc); 1330 } 1331 } 1332 1333 /* 1334 * proc_specific_key_create -- 1335 * Create a key for subsystem proc-specific data. 1336 */ 1337 int 1338 proc_specific_key_create(specificdata_key_t *keyp, specificdata_dtor_t dtor) 1339 { 1340 1341 return (specificdata_key_create(proc_specificdata_domain, keyp, dtor)); 1342 } 1343 1344 /* 1345 * proc_specific_key_delete -- 1346 * Delete a key for subsystem proc-specific data. 1347 */ 1348 void 1349 proc_specific_key_delete(specificdata_key_t key) 1350 { 1351 1352 specificdata_key_delete(proc_specificdata_domain, key); 1353 } 1354 1355 /* 1356 * proc_initspecific -- 1357 * Initialize a proc's specificdata container. 1358 */ 1359 void 1360 proc_initspecific(struct proc *p) 1361 { 1362 int error; 1363 1364 error = specificdata_init(proc_specificdata_domain, &p->p_specdataref); 1365 KASSERT(error == 0); 1366 } 1367 1368 /* 1369 * proc_finispecific -- 1370 * Finalize a proc's specificdata container. 1371 */ 1372 void 1373 proc_finispecific(struct proc *p) 1374 { 1375 1376 specificdata_fini(proc_specificdata_domain, &p->p_specdataref); 1377 } 1378 1379 /* 1380 * proc_getspecific -- 1381 * Return proc-specific data corresponding to the specified key. 1382 */ 1383 void * 1384 proc_getspecific(struct proc *p, specificdata_key_t key) 1385 { 1386 1387 return (specificdata_getspecific(proc_specificdata_domain, 1388 &p->p_specdataref, key)); 1389 } 1390 1391 /* 1392 * proc_setspecific -- 1393 * Set proc-specific data corresponding to the specified key. 1394 */ 1395 void 1396 proc_setspecific(struct proc *p, specificdata_key_t key, void *data) 1397 { 1398 1399 specificdata_setspecific(proc_specificdata_domain, 1400 &p->p_specdataref, key, data); 1401 } 1402 1403 int 1404 proc_uidmatch(kauth_cred_t cred, kauth_cred_t target) 1405 { 1406 int r = 0; 1407 1408 if (kauth_cred_getuid(cred) != kauth_cred_getuid(target) || 1409 kauth_cred_getuid(cred) != kauth_cred_getsvuid(target)) { 1410 /* 1411 * suid proc of ours or proc not ours 1412 */ 1413 r = EPERM; 1414 } else if (kauth_cred_getgid(target) != kauth_cred_getsvgid(target)) { 1415 /* 1416 * sgid proc has sgid back to us temporarily 1417 */ 1418 r = EPERM; 1419 } else { 1420 /* 1421 * our rgid must be in target's group list (ie, 1422 * sub-processes started by a sgid process) 1423 */ 1424 int ismember = 0; 1425 1426 if (kauth_cred_ismember_gid(cred, 1427 kauth_cred_getgid(target), &ismember) != 0 || 1428 !ismember) 1429 r = EPERM; 1430 } 1431 1432 return (r); 1433 } 1434 1435