1 /* $NetBSD: kern_proc.c,v 1.179 2011/05/01 01:15:18 rmind Exp $ */ 2 3 /*- 4 * Copyright (c) 1999, 2006, 2007, 2008 The NetBSD Foundation, Inc. 5 * All rights reserved. 6 * 7 * This code is derived from software contributed to The NetBSD Foundation 8 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility, 9 * NASA Ames Research Center, and by Andrew Doran. 10 * 11 * Redistribution and use in source and binary forms, with or without 12 * modification, are permitted provided that the following conditions 13 * are met: 14 * 1. Redistributions of source code must retain the above copyright 15 * notice, this list of conditions and the following disclaimer. 16 * 2. Redistributions in binary form must reproduce the above copyright 17 * notice, this list of conditions and the following disclaimer in the 18 * documentation and/or other materials provided with the distribution. 19 * 20 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS 21 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 22 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 23 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 24 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 25 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 26 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 27 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 28 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 29 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 30 * POSSIBILITY OF SUCH DAMAGE. 31 */ 32 33 /* 34 * Copyright (c) 1982, 1986, 1989, 1991, 1993 35 * The Regents of the University of California. All rights reserved. 36 * 37 * Redistribution and use in source and binary forms, with or without 38 * modification, are permitted provided that the following conditions 39 * are met: 40 * 1. Redistributions of source code must retain the above copyright 41 * notice, this list of conditions and the following disclaimer. 42 * 2. Redistributions in binary form must reproduce the above copyright 43 * notice, this list of conditions and the following disclaimer in the 44 * documentation and/or other materials provided with the distribution. 45 * 3. Neither the name of the University nor the names of its contributors 46 * may be used to endorse or promote products derived from this software 47 * without specific prior written permission. 48 * 49 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 50 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 51 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 52 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 53 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 54 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 55 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 56 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 57 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 58 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 59 * SUCH DAMAGE. 60 * 61 * @(#)kern_proc.c 8.7 (Berkeley) 2/14/95 62 */ 63 64 #include <sys/cdefs.h> 65 __KERNEL_RCSID(0, "$NetBSD: kern_proc.c,v 1.179 2011/05/01 01:15:18 rmind Exp $"); 66 67 #ifdef _KERNEL_OPT 68 #include "opt_kstack.h" 69 #include "opt_maxuprc.h" 70 #include "opt_dtrace.h" 71 #include "opt_compat_netbsd32.h" 72 #endif 73 74 #include <sys/param.h> 75 #include <sys/systm.h> 76 #include <sys/kernel.h> 77 #include <sys/proc.h> 78 #include <sys/resourcevar.h> 79 #include <sys/buf.h> 80 #include <sys/acct.h> 81 #include <sys/wait.h> 82 #include <sys/file.h> 83 #include <ufs/ufs/quota.h> 84 #include <sys/uio.h> 85 #include <sys/pool.h> 86 #include <sys/pset.h> 87 #include <sys/mbuf.h> 88 #include <sys/ioctl.h> 89 #include <sys/tty.h> 90 #include <sys/signalvar.h> 91 #include <sys/ras.h> 92 #include <sys/sa.h> 93 #include <sys/savar.h> 94 #include <sys/filedesc.h> 95 #include "sys/syscall_stats.h" 96 #include <sys/kauth.h> 97 #include <sys/sleepq.h> 98 #include <sys/atomic.h> 99 #include <sys/kmem.h> 100 #include <sys/dtrace_bsd.h> 101 #include <sys/sysctl.h> 102 #include <sys/exec.h> 103 #include <sys/cpu.h> 104 105 #include <uvm/uvm_extern.h> 106 #include <uvm/uvm_extern.h> 107 108 #ifdef COMPAT_NETBSD32 109 #include <compat/netbsd32/netbsd32.h> 110 #endif 111 112 /* 113 * Other process lists 114 */ 115 116 struct proclist allproc; 117 struct proclist zombproc; /* resources have been freed */ 118 119 kmutex_t *proc_lock; 120 121 /* 122 * pid to proc lookup is done by indexing the pid_table array. 123 * Since pid numbers are only allocated when an empty slot 124 * has been found, there is no need to search any lists ever. 125 * (an orphaned pgrp will lock the slot, a session will lock 126 * the pgrp with the same number.) 127 * If the table is too small it is reallocated with twice the 128 * previous size and the entries 'unzipped' into the two halves. 129 * A linked list of free entries is passed through the pt_proc 130 * field of 'free' items - set odd to be an invalid ptr. 131 */ 132 133 struct pid_table { 134 struct proc *pt_proc; 135 struct pgrp *pt_pgrp; 136 pid_t pt_pid; 137 }; 138 #if 1 /* strongly typed cast - should be a noop */ 139 static inline uint p2u(struct proc *p) { return (uint)(uintptr_t)p; } 140 #else 141 #define p2u(p) ((uint)p) 142 #endif 143 #define P_VALID(p) (!(p2u(p) & 1)) 144 #define P_NEXT(p) (p2u(p) >> 1) 145 #define P_FREE(pid) ((struct proc *)(uintptr_t)((pid) << 1 | 1)) 146 147 #define INITIAL_PID_TABLE_SIZE (1 << 5) 148 static struct pid_table *pid_table; 149 static uint pid_tbl_mask = INITIAL_PID_TABLE_SIZE - 1; 150 static uint pid_alloc_lim; /* max we allocate before growing table */ 151 static uint pid_alloc_cnt; /* number of allocated pids */ 152 153 /* links through free slots - never empty! */ 154 static uint next_free_pt, last_free_pt; 155 static pid_t pid_max = PID_MAX; /* largest value we allocate */ 156 157 /* Components of the first process -- never freed. */ 158 159 extern struct emul emul_netbsd; /* defined in kern_exec.c */ 160 161 struct session session0 = { 162 .s_count = 1, 163 .s_sid = 0, 164 }; 165 struct pgrp pgrp0 = { 166 .pg_members = LIST_HEAD_INITIALIZER(&pgrp0.pg_members), 167 .pg_session = &session0, 168 }; 169 filedesc_t filedesc0; 170 struct cwdinfo cwdi0 = { 171 .cwdi_cmask = CMASK, /* see cmask below */ 172 .cwdi_refcnt = 1, 173 }; 174 struct plimit limit0; 175 struct pstats pstat0; 176 struct vmspace vmspace0; 177 struct sigacts sigacts0; 178 struct proc proc0 = { 179 .p_lwps = LIST_HEAD_INITIALIZER(&proc0.p_lwps), 180 .p_sigwaiters = LIST_HEAD_INITIALIZER(&proc0.p_sigwaiters), 181 .p_nlwps = 1, 182 .p_nrlwps = 1, 183 .p_nlwpid = 1, /* must match lwp0.l_lid */ 184 .p_pgrp = &pgrp0, 185 .p_comm = "system", 186 /* 187 * Set P_NOCLDWAIT so that kernel threads are reparented to init(8) 188 * when they exit. init(8) can easily wait them out for us. 189 */ 190 .p_flag = PK_SYSTEM | PK_NOCLDWAIT, 191 .p_stat = SACTIVE, 192 .p_nice = NZERO, 193 .p_emul = &emul_netbsd, 194 .p_cwdi = &cwdi0, 195 .p_limit = &limit0, 196 .p_fd = &filedesc0, 197 .p_vmspace = &vmspace0, 198 .p_stats = &pstat0, 199 .p_sigacts = &sigacts0, 200 }; 201 kauth_cred_t cred0; 202 203 int nofile = NOFILE; 204 int maxuprc = MAXUPRC; 205 int cmask = CMASK; 206 207 static int sysctl_doeproc(SYSCTLFN_PROTO); 208 static int sysctl_kern_proc_args(SYSCTLFN_PROTO); 209 static void fill_kproc2(struct proc *, struct kinfo_proc2 *, bool); 210 211 /* 212 * The process list descriptors, used during pid allocation and 213 * by sysctl. No locking on this data structure is needed since 214 * it is completely static. 215 */ 216 const struct proclist_desc proclists[] = { 217 { &allproc }, 218 { &zombproc }, 219 { NULL }, 220 }; 221 222 static struct pgrp * pg_remove(pid_t); 223 static void pg_delete(pid_t); 224 static void orphanpg(struct pgrp *); 225 226 static specificdata_domain_t proc_specificdata_domain; 227 228 static pool_cache_t proc_cache; 229 230 static kauth_listener_t proc_listener; 231 232 static int 233 proc_listener_cb(kauth_cred_t cred, kauth_action_t action, void *cookie, 234 void *arg0, void *arg1, void *arg2, void *arg3) 235 { 236 struct proc *p; 237 int result; 238 239 result = KAUTH_RESULT_DEFER; 240 p = arg0; 241 242 switch (action) { 243 case KAUTH_PROCESS_CANSEE: { 244 enum kauth_process_req req; 245 246 req = (enum kauth_process_req)arg1; 247 248 switch (req) { 249 case KAUTH_REQ_PROCESS_CANSEE_ARGS: 250 case KAUTH_REQ_PROCESS_CANSEE_ENTRY: 251 case KAUTH_REQ_PROCESS_CANSEE_OPENFILES: 252 result = KAUTH_RESULT_ALLOW; 253 254 break; 255 256 case KAUTH_REQ_PROCESS_CANSEE_ENV: 257 if (kauth_cred_getuid(cred) != 258 kauth_cred_getuid(p->p_cred) || 259 kauth_cred_getuid(cred) != 260 kauth_cred_getsvuid(p->p_cred)) 261 break; 262 263 result = KAUTH_RESULT_ALLOW; 264 265 break; 266 267 default: 268 break; 269 } 270 271 break; 272 } 273 274 case KAUTH_PROCESS_FORK: { 275 int lnprocs = (int)(unsigned long)arg2; 276 277 /* 278 * Don't allow a nonprivileged user to use the last few 279 * processes. The variable lnprocs is the current number of 280 * processes, maxproc is the limit. 281 */ 282 if (__predict_false((lnprocs >= maxproc - 5))) 283 break; 284 285 result = KAUTH_RESULT_ALLOW; 286 287 break; 288 } 289 290 case KAUTH_PROCESS_CORENAME: 291 case KAUTH_PROCESS_STOPFLAG: 292 if (proc_uidmatch(cred, p->p_cred) == 0) 293 result = KAUTH_RESULT_ALLOW; 294 295 break; 296 297 default: 298 break; 299 } 300 301 return result; 302 } 303 304 /* 305 * Initialize global process hashing structures. 306 */ 307 void 308 procinit(void) 309 { 310 const struct proclist_desc *pd; 311 u_int i; 312 #define LINK_EMPTY ((PID_MAX + INITIAL_PID_TABLE_SIZE) & ~(INITIAL_PID_TABLE_SIZE - 1)) 313 314 for (pd = proclists; pd->pd_list != NULL; pd++) 315 LIST_INIT(pd->pd_list); 316 317 proc_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE); 318 pid_table = kmem_alloc(INITIAL_PID_TABLE_SIZE 319 * sizeof(struct pid_table), KM_SLEEP); 320 321 /* Set free list running through table... 322 Preset 'use count' above PID_MAX so we allocate pid 1 next. */ 323 for (i = 0; i <= pid_tbl_mask; i++) { 324 pid_table[i].pt_proc = P_FREE(LINK_EMPTY + i + 1); 325 pid_table[i].pt_pgrp = 0; 326 pid_table[i].pt_pid = 0; 327 } 328 /* slot 0 is just grabbed */ 329 next_free_pt = 1; 330 /* Need to fix last entry. */ 331 last_free_pt = pid_tbl_mask; 332 pid_table[last_free_pt].pt_proc = P_FREE(LINK_EMPTY); 333 /* point at which we grow table - to avoid reusing pids too often */ 334 pid_alloc_lim = pid_tbl_mask - 1; 335 #undef LINK_EMPTY 336 337 proc_specificdata_domain = specificdata_domain_create(); 338 KASSERT(proc_specificdata_domain != NULL); 339 340 proc_cache = pool_cache_init(sizeof(struct proc), 0, 0, 0, 341 "procpl", NULL, IPL_NONE, NULL, NULL, NULL); 342 343 proc_listener = kauth_listen_scope(KAUTH_SCOPE_PROCESS, 344 proc_listener_cb, NULL); 345 } 346 347 void 348 procinit_sysctl(void) 349 { 350 static struct sysctllog *clog; 351 352 sysctl_createv(&clog, 0, NULL, NULL, 353 CTLFLAG_PERMANENT, 354 CTLTYPE_NODE, "kern", NULL, 355 NULL, 0, NULL, 0, 356 CTL_KERN, CTL_EOL); 357 358 sysctl_createv(&clog, 0, NULL, NULL, 359 CTLFLAG_PERMANENT, 360 CTLTYPE_NODE, "proc", 361 SYSCTL_DESCR("System-wide process information"), 362 sysctl_doeproc, 0, NULL, 0, 363 CTL_KERN, KERN_PROC, CTL_EOL); 364 sysctl_createv(&clog, 0, NULL, NULL, 365 CTLFLAG_PERMANENT, 366 CTLTYPE_NODE, "proc2", 367 SYSCTL_DESCR("Machine-independent process information"), 368 sysctl_doeproc, 0, NULL, 0, 369 CTL_KERN, KERN_PROC2, CTL_EOL); 370 sysctl_createv(&clog, 0, NULL, NULL, 371 CTLFLAG_PERMANENT, 372 CTLTYPE_NODE, "proc_args", 373 SYSCTL_DESCR("Process argument information"), 374 sysctl_kern_proc_args, 0, NULL, 0, 375 CTL_KERN, KERN_PROC_ARGS, CTL_EOL); 376 377 /* 378 "nodes" under these: 379 380 KERN_PROC_ALL 381 KERN_PROC_PID pid 382 KERN_PROC_PGRP pgrp 383 KERN_PROC_SESSION sess 384 KERN_PROC_TTY tty 385 KERN_PROC_UID uid 386 KERN_PROC_RUID uid 387 KERN_PROC_GID gid 388 KERN_PROC_RGID gid 389 390 all in all, probably not worth the effort... 391 */ 392 } 393 394 /* 395 * Initialize process 0. 396 */ 397 void 398 proc0_init(void) 399 { 400 struct proc *p; 401 struct pgrp *pg; 402 struct rlimit *rlim; 403 rlim_t lim; 404 int i; 405 406 p = &proc0; 407 pg = &pgrp0; 408 409 mutex_init(&p->p_stmutex, MUTEX_DEFAULT, IPL_HIGH); 410 mutex_init(&p->p_auxlock, MUTEX_DEFAULT, IPL_NONE); 411 p->p_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE); 412 413 rw_init(&p->p_reflock); 414 cv_init(&p->p_waitcv, "wait"); 415 cv_init(&p->p_lwpcv, "lwpwait"); 416 417 LIST_INSERT_HEAD(&p->p_lwps, &lwp0, l_sibling); 418 419 pid_table[0].pt_proc = p; 420 LIST_INSERT_HEAD(&allproc, p, p_list); 421 422 pid_table[0].pt_pgrp = pg; 423 LIST_INSERT_HEAD(&pg->pg_members, p, p_pglist); 424 425 #ifdef __HAVE_SYSCALL_INTERN 426 (*p->p_emul->e_syscall_intern)(p); 427 #endif 428 429 /* Create credentials. */ 430 cred0 = kauth_cred_alloc(); 431 p->p_cred = cred0; 432 433 /* Create the CWD info. */ 434 rw_init(&cwdi0.cwdi_lock); 435 436 /* Create the limits structures. */ 437 mutex_init(&limit0.pl_lock, MUTEX_DEFAULT, IPL_NONE); 438 439 rlim = limit0.pl_rlimit; 440 for (i = 0; i < __arraycount(limit0.pl_rlimit); i++) { 441 rlim[i].rlim_cur = RLIM_INFINITY; 442 rlim[i].rlim_max = RLIM_INFINITY; 443 } 444 445 rlim[RLIMIT_NOFILE].rlim_max = maxfiles; 446 rlim[RLIMIT_NOFILE].rlim_cur = maxfiles < nofile ? maxfiles : nofile; 447 448 rlim[RLIMIT_NPROC].rlim_max = maxproc; 449 rlim[RLIMIT_NPROC].rlim_cur = maxproc < maxuprc ? maxproc : maxuprc; 450 451 lim = MIN(VM_MAXUSER_ADDRESS, ctob((rlim_t)uvmexp.free)); 452 rlim[RLIMIT_RSS].rlim_max = lim; 453 rlim[RLIMIT_MEMLOCK].rlim_max = lim; 454 rlim[RLIMIT_MEMLOCK].rlim_cur = lim / 3; 455 456 /* Note that default core name has zero length. */ 457 limit0.pl_corename = defcorename; 458 limit0.pl_cnlen = 0; 459 limit0.pl_refcnt = 1; 460 limit0.pl_writeable = false; 461 limit0.pl_sv_limit = NULL; 462 463 /* Configure virtual memory system, set vm rlimits. */ 464 uvm_init_limits(p); 465 466 /* Initialize file descriptor table for proc0. */ 467 fd_init(&filedesc0); 468 469 /* 470 * Initialize proc0's vmspace, which uses the kernel pmap. 471 * All kernel processes (which never have user space mappings) 472 * share proc0's vmspace, and thus, the kernel pmap. 473 */ 474 uvmspace_init(&vmspace0, pmap_kernel(), round_page(VM_MIN_ADDRESS), 475 trunc_page(VM_MAX_ADDRESS)); 476 477 /* Initialize signal state for proc0. XXX IPL_SCHED */ 478 mutex_init(&p->p_sigacts->sa_mutex, MUTEX_DEFAULT, IPL_SCHED); 479 siginit(p); 480 481 proc_initspecific(p); 482 kdtrace_proc_ctor(NULL, p); 483 } 484 485 /* 486 * Session reference counting. 487 */ 488 489 void 490 proc_sesshold(struct session *ss) 491 { 492 493 KASSERT(mutex_owned(proc_lock)); 494 ss->s_count++; 495 } 496 497 void 498 proc_sessrele(struct session *ss) 499 { 500 501 KASSERT(mutex_owned(proc_lock)); 502 /* 503 * We keep the pgrp with the same id as the session in order to 504 * stop a process being given the same pid. Since the pgrp holds 505 * a reference to the session, it must be a 'zombie' pgrp by now. 506 */ 507 if (--ss->s_count == 0) { 508 struct pgrp *pg; 509 510 pg = pg_remove(ss->s_sid); 511 mutex_exit(proc_lock); 512 513 kmem_free(pg, sizeof(struct pgrp)); 514 kmem_free(ss, sizeof(struct session)); 515 } else { 516 mutex_exit(proc_lock); 517 } 518 } 519 520 /* 521 * Check that the specified process group is in the session of the 522 * specified process. 523 * Treats -ve ids as process ids. 524 * Used to validate TIOCSPGRP requests. 525 */ 526 int 527 pgid_in_session(struct proc *p, pid_t pg_id) 528 { 529 struct pgrp *pgrp; 530 struct session *session; 531 int error; 532 533 mutex_enter(proc_lock); 534 if (pg_id < 0) { 535 struct proc *p1 = proc_find(-pg_id); 536 if (p1 == NULL) { 537 error = EINVAL; 538 goto fail; 539 } 540 pgrp = p1->p_pgrp; 541 } else { 542 pgrp = pgrp_find(pg_id); 543 if (pgrp == NULL) { 544 error = EINVAL; 545 goto fail; 546 } 547 } 548 session = pgrp->pg_session; 549 error = (session != p->p_pgrp->pg_session) ? EPERM : 0; 550 fail: 551 mutex_exit(proc_lock); 552 return error; 553 } 554 555 /* 556 * p_inferior: is p an inferior of q? 557 */ 558 static inline bool 559 p_inferior(struct proc *p, struct proc *q) 560 { 561 562 KASSERT(mutex_owned(proc_lock)); 563 564 for (; p != q; p = p->p_pptr) 565 if (p->p_pid == 0) 566 return false; 567 return true; 568 } 569 570 /* 571 * proc_find: locate a process by the ID. 572 * 573 * => Must be called with proc_lock held. 574 */ 575 proc_t * 576 proc_find_raw(pid_t pid) 577 { 578 struct pid_table *pt; 579 proc_t *p; 580 581 KASSERT(mutex_owned(proc_lock)); 582 pt = &pid_table[pid & pid_tbl_mask]; 583 p = pt->pt_proc; 584 if (__predict_false(!P_VALID(p) || pt->pt_pid != pid)) { 585 return NULL; 586 } 587 return p; 588 } 589 590 proc_t * 591 proc_find(pid_t pid) 592 { 593 proc_t *p; 594 595 p = proc_find_raw(pid); 596 if (__predict_false(p == NULL)) { 597 return NULL; 598 } 599 600 /* 601 * Only allow live processes to be found by PID. 602 * XXX: p_stat might change, since unlocked. 603 */ 604 if (__predict_true(p->p_stat == SACTIVE || p->p_stat == SSTOP)) { 605 return p; 606 } 607 return NULL; 608 } 609 610 /* 611 * pgrp_find: locate a process group by the ID. 612 * 613 * => Must be called with proc_lock held. 614 */ 615 struct pgrp * 616 pgrp_find(pid_t pgid) 617 { 618 struct pgrp *pg; 619 620 KASSERT(mutex_owned(proc_lock)); 621 622 pg = pid_table[pgid & pid_tbl_mask].pt_pgrp; 623 624 /* 625 * Cannot look up a process group that only exists because the 626 * session has not died yet (traditional). 627 */ 628 if (pg == NULL || pg->pg_id != pgid || LIST_EMPTY(&pg->pg_members)) { 629 return NULL; 630 } 631 return pg; 632 } 633 634 static void 635 expand_pid_table(void) 636 { 637 size_t pt_size, tsz; 638 struct pid_table *n_pt, *new_pt; 639 struct proc *proc; 640 struct pgrp *pgrp; 641 pid_t pid, rpid; 642 u_int i; 643 uint new_pt_mask; 644 645 pt_size = pid_tbl_mask + 1; 646 tsz = pt_size * 2 * sizeof(struct pid_table); 647 new_pt = kmem_alloc(tsz, KM_SLEEP); 648 new_pt_mask = pt_size * 2 - 1; 649 650 mutex_enter(proc_lock); 651 if (pt_size != pid_tbl_mask + 1) { 652 /* Another process beat us to it... */ 653 mutex_exit(proc_lock); 654 kmem_free(new_pt, tsz); 655 return; 656 } 657 658 /* 659 * Copy entries from old table into new one. 660 * If 'pid' is 'odd' we need to place in the upper half, 661 * even pid's to the lower half. 662 * Free items stay in the low half so we don't have to 663 * fixup the reference to them. 664 * We stuff free items on the front of the freelist 665 * because we can't write to unmodified entries. 666 * Processing the table backwards maintains a semblance 667 * of issuing pid numbers that increase with time. 668 */ 669 i = pt_size - 1; 670 n_pt = new_pt + i; 671 for (; ; i--, n_pt--) { 672 proc = pid_table[i].pt_proc; 673 pgrp = pid_table[i].pt_pgrp; 674 if (!P_VALID(proc)) { 675 /* Up 'use count' so that link is valid */ 676 pid = (P_NEXT(proc) + pt_size) & ~pt_size; 677 rpid = 0; 678 proc = P_FREE(pid); 679 if (pgrp) 680 pid = pgrp->pg_id; 681 } else { 682 pid = pid_table[i].pt_pid; 683 rpid = pid; 684 } 685 686 /* Save entry in appropriate half of table */ 687 n_pt[pid & pt_size].pt_proc = proc; 688 n_pt[pid & pt_size].pt_pgrp = pgrp; 689 n_pt[pid & pt_size].pt_pid = rpid; 690 691 /* Put other piece on start of free list */ 692 pid = (pid ^ pt_size) & ~pid_tbl_mask; 693 n_pt[pid & pt_size].pt_proc = 694 P_FREE((pid & ~pt_size) | next_free_pt); 695 n_pt[pid & pt_size].pt_pgrp = 0; 696 n_pt[pid & pt_size].pt_pid = 0; 697 698 next_free_pt = i | (pid & pt_size); 699 if (i == 0) 700 break; 701 } 702 703 /* Save old table size and switch tables */ 704 tsz = pt_size * sizeof(struct pid_table); 705 n_pt = pid_table; 706 pid_table = new_pt; 707 pid_tbl_mask = new_pt_mask; 708 709 /* 710 * pid_max starts as PID_MAX (= 30000), once we have 16384 711 * allocated pids we need it to be larger! 712 */ 713 if (pid_tbl_mask > PID_MAX) { 714 pid_max = pid_tbl_mask * 2 + 1; 715 pid_alloc_lim |= pid_alloc_lim << 1; 716 } else 717 pid_alloc_lim <<= 1; /* doubles number of free slots... */ 718 719 mutex_exit(proc_lock); 720 kmem_free(n_pt, tsz); 721 } 722 723 struct proc * 724 proc_alloc(void) 725 { 726 struct proc *p; 727 728 p = pool_cache_get(proc_cache, PR_WAITOK); 729 p->p_stat = SIDL; /* protect against others */ 730 proc_initspecific(p); 731 kdtrace_proc_ctor(NULL, p); 732 p->p_pid = -1; 733 proc_alloc_pid(p); 734 return p; 735 } 736 737 pid_t 738 proc_alloc_pid(struct proc *p) 739 { 740 struct pid_table *pt; 741 pid_t pid; 742 int nxt; 743 744 for (;;expand_pid_table()) { 745 if (__predict_false(pid_alloc_cnt >= pid_alloc_lim)) 746 /* ensure pids cycle through 2000+ values */ 747 continue; 748 mutex_enter(proc_lock); 749 pt = &pid_table[next_free_pt]; 750 #ifdef DIAGNOSTIC 751 if (__predict_false(P_VALID(pt->pt_proc) || pt->pt_pgrp)) 752 panic("proc_alloc: slot busy"); 753 #endif 754 nxt = P_NEXT(pt->pt_proc); 755 if (nxt & pid_tbl_mask) 756 break; 757 /* Table full - expand (NB last entry not used....) */ 758 mutex_exit(proc_lock); 759 } 760 761 /* pid is 'saved use count' + 'size' + entry */ 762 pid = (nxt & ~pid_tbl_mask) + pid_tbl_mask + 1 + next_free_pt; 763 if ((uint)pid > (uint)pid_max) 764 pid &= pid_tbl_mask; 765 next_free_pt = nxt & pid_tbl_mask; 766 767 /* Grab table slot */ 768 pt->pt_proc = p; 769 770 KASSERT(pt->pt_pid == 0); 771 pt->pt_pid = pid; 772 if (p->p_pid == -1) { 773 p->p_pid = pid; 774 } 775 pid_alloc_cnt++; 776 mutex_exit(proc_lock); 777 778 return pid; 779 } 780 781 /* 782 * Free a process id - called from proc_free (in kern_exit.c) 783 * 784 * Called with the proc_lock held. 785 */ 786 void 787 proc_free_pid(pid_t pid) 788 { 789 struct pid_table *pt; 790 791 KASSERT(mutex_owned(proc_lock)); 792 793 pt = &pid_table[pid & pid_tbl_mask]; 794 795 /* save pid use count in slot */ 796 pt->pt_proc = P_FREE(pid & ~pid_tbl_mask); 797 KASSERT(pt->pt_pid == pid); 798 pt->pt_pid = 0; 799 800 if (pt->pt_pgrp == NULL) { 801 /* link last freed entry onto ours */ 802 pid &= pid_tbl_mask; 803 pt = &pid_table[last_free_pt]; 804 pt->pt_proc = P_FREE(P_NEXT(pt->pt_proc) | pid); 805 pt->pt_pid = 0; 806 last_free_pt = pid; 807 pid_alloc_cnt--; 808 } 809 810 atomic_dec_uint(&nprocs); 811 } 812 813 void 814 proc_free_mem(struct proc *p) 815 { 816 817 kdtrace_proc_dtor(NULL, p); 818 pool_cache_put(proc_cache, p); 819 } 820 821 /* 822 * proc_enterpgrp: move p to a new or existing process group (and session). 823 * 824 * If we are creating a new pgrp, the pgid should equal 825 * the calling process' pid. 826 * If is only valid to enter a process group that is in the session 827 * of the process. 828 * Also mksess should only be set if we are creating a process group 829 * 830 * Only called from sys_setsid and sys_setpgid. 831 */ 832 int 833 proc_enterpgrp(struct proc *curp, pid_t pid, pid_t pgid, bool mksess) 834 { 835 struct pgrp *new_pgrp, *pgrp; 836 struct session *sess; 837 struct proc *p; 838 int rval; 839 pid_t pg_id = NO_PGID; 840 841 sess = mksess ? kmem_alloc(sizeof(*sess), KM_SLEEP) : NULL; 842 843 /* Allocate data areas we might need before doing any validity checks */ 844 mutex_enter(proc_lock); /* Because pid_table might change */ 845 if (pid_table[pgid & pid_tbl_mask].pt_pgrp == 0) { 846 mutex_exit(proc_lock); 847 new_pgrp = kmem_alloc(sizeof(*new_pgrp), KM_SLEEP); 848 mutex_enter(proc_lock); 849 } else 850 new_pgrp = NULL; 851 rval = EPERM; /* most common error (to save typing) */ 852 853 /* Check pgrp exists or can be created */ 854 pgrp = pid_table[pgid & pid_tbl_mask].pt_pgrp; 855 if (pgrp != NULL && pgrp->pg_id != pgid) 856 goto done; 857 858 /* Can only set another process under restricted circumstances. */ 859 if (pid != curp->p_pid) { 860 /* Must exist and be one of our children... */ 861 p = proc_find(pid); 862 if (p == NULL || !p_inferior(p, curp)) { 863 rval = ESRCH; 864 goto done; 865 } 866 /* ... in the same session... */ 867 if (sess != NULL || p->p_session != curp->p_session) 868 goto done; 869 /* ... existing pgid must be in same session ... */ 870 if (pgrp != NULL && pgrp->pg_session != p->p_session) 871 goto done; 872 /* ... and not done an exec. */ 873 if (p->p_flag & PK_EXEC) { 874 rval = EACCES; 875 goto done; 876 } 877 } else { 878 /* ... setsid() cannot re-enter a pgrp */ 879 if (mksess && (curp->p_pgid == curp->p_pid || 880 pgrp_find(curp->p_pid))) 881 goto done; 882 p = curp; 883 } 884 885 /* Changing the process group/session of a session 886 leader is definitely off limits. */ 887 if (SESS_LEADER(p)) { 888 if (sess == NULL && p->p_pgrp == pgrp) 889 /* unless it's a definite noop */ 890 rval = 0; 891 goto done; 892 } 893 894 /* Can only create a process group with id of process */ 895 if (pgrp == NULL && pgid != pid) 896 goto done; 897 898 /* Can only create a session if creating pgrp */ 899 if (sess != NULL && pgrp != NULL) 900 goto done; 901 902 /* Check we allocated memory for a pgrp... */ 903 if (pgrp == NULL && new_pgrp == NULL) 904 goto done; 905 906 /* Don't attach to 'zombie' pgrp */ 907 if (pgrp != NULL && LIST_EMPTY(&pgrp->pg_members)) 908 goto done; 909 910 /* Expect to succeed now */ 911 rval = 0; 912 913 if (pgrp == p->p_pgrp) 914 /* nothing to do */ 915 goto done; 916 917 /* Ok all setup, link up required structures */ 918 919 if (pgrp == NULL) { 920 pgrp = new_pgrp; 921 new_pgrp = NULL; 922 if (sess != NULL) { 923 sess->s_sid = p->p_pid; 924 sess->s_leader = p; 925 sess->s_count = 1; 926 sess->s_ttyvp = NULL; 927 sess->s_ttyp = NULL; 928 sess->s_flags = p->p_session->s_flags & ~S_LOGIN_SET; 929 memcpy(sess->s_login, p->p_session->s_login, 930 sizeof(sess->s_login)); 931 p->p_lflag &= ~PL_CONTROLT; 932 } else { 933 sess = p->p_pgrp->pg_session; 934 proc_sesshold(sess); 935 } 936 pgrp->pg_session = sess; 937 sess = NULL; 938 939 pgrp->pg_id = pgid; 940 LIST_INIT(&pgrp->pg_members); 941 #ifdef DIAGNOSTIC 942 if (__predict_false(pid_table[pgid & pid_tbl_mask].pt_pgrp)) 943 panic("enterpgrp: pgrp table slot in use"); 944 if (__predict_false(mksess && p != curp)) 945 panic("enterpgrp: mksession and p != curproc"); 946 #endif 947 pid_table[pgid & pid_tbl_mask].pt_pgrp = pgrp; 948 pgrp->pg_jobc = 0; 949 } 950 951 /* 952 * Adjust eligibility of affected pgrps to participate in job control. 953 * Increment eligibility counts before decrementing, otherwise we 954 * could reach 0 spuriously during the first call. 955 */ 956 fixjobc(p, pgrp, 1); 957 fixjobc(p, p->p_pgrp, 0); 958 959 /* Interlock with ttread(). */ 960 mutex_spin_enter(&tty_lock); 961 962 /* Move process to requested group. */ 963 LIST_REMOVE(p, p_pglist); 964 if (LIST_EMPTY(&p->p_pgrp->pg_members)) 965 /* defer delete until we've dumped the lock */ 966 pg_id = p->p_pgrp->pg_id; 967 p->p_pgrp = pgrp; 968 LIST_INSERT_HEAD(&pgrp->pg_members, p, p_pglist); 969 970 /* Done with the swap; we can release the tty mutex. */ 971 mutex_spin_exit(&tty_lock); 972 973 done: 974 if (pg_id != NO_PGID) { 975 /* Releases proc_lock. */ 976 pg_delete(pg_id); 977 } else { 978 mutex_exit(proc_lock); 979 } 980 if (sess != NULL) 981 kmem_free(sess, sizeof(*sess)); 982 if (new_pgrp != NULL) 983 kmem_free(new_pgrp, sizeof(*new_pgrp)); 984 #ifdef DEBUG_PGRP 985 if (__predict_false(rval)) 986 printf("enterpgrp(%d,%d,%d), curproc %d, rval %d\n", 987 pid, pgid, mksess, curp->p_pid, rval); 988 #endif 989 return rval; 990 } 991 992 /* 993 * proc_leavepgrp: remove a process from its process group. 994 * => must be called with the proc_lock held, which will be released; 995 */ 996 void 997 proc_leavepgrp(struct proc *p) 998 { 999 struct pgrp *pgrp; 1000 1001 KASSERT(mutex_owned(proc_lock)); 1002 1003 /* Interlock with ttread() */ 1004 mutex_spin_enter(&tty_lock); 1005 pgrp = p->p_pgrp; 1006 LIST_REMOVE(p, p_pglist); 1007 p->p_pgrp = NULL; 1008 mutex_spin_exit(&tty_lock); 1009 1010 if (LIST_EMPTY(&pgrp->pg_members)) { 1011 /* Releases proc_lock. */ 1012 pg_delete(pgrp->pg_id); 1013 } else { 1014 mutex_exit(proc_lock); 1015 } 1016 } 1017 1018 /* 1019 * pg_remove: remove a process group from the table. 1020 * => must be called with the proc_lock held; 1021 * => returns process group to free; 1022 */ 1023 static struct pgrp * 1024 pg_remove(pid_t pg_id) 1025 { 1026 struct pgrp *pgrp; 1027 struct pid_table *pt; 1028 1029 KASSERT(mutex_owned(proc_lock)); 1030 1031 pt = &pid_table[pg_id & pid_tbl_mask]; 1032 pgrp = pt->pt_pgrp; 1033 1034 KASSERT(pgrp != NULL); 1035 KASSERT(pgrp->pg_id == pg_id); 1036 KASSERT(LIST_EMPTY(&pgrp->pg_members)); 1037 1038 pt->pt_pgrp = NULL; 1039 1040 if (!P_VALID(pt->pt_proc)) { 1041 /* Orphaned pgrp, put slot onto free list. */ 1042 KASSERT((P_NEXT(pt->pt_proc) & pid_tbl_mask) == 0); 1043 pg_id &= pid_tbl_mask; 1044 pt = &pid_table[last_free_pt]; 1045 pt->pt_proc = P_FREE(P_NEXT(pt->pt_proc) | pg_id); 1046 KASSERT(pt->pt_pid == 0); 1047 last_free_pt = pg_id; 1048 pid_alloc_cnt--; 1049 } 1050 return pgrp; 1051 } 1052 1053 /* 1054 * pg_delete: delete and free a process group. 1055 * => must be called with the proc_lock held, which will be released. 1056 */ 1057 static void 1058 pg_delete(pid_t pg_id) 1059 { 1060 struct pgrp *pg; 1061 struct tty *ttyp; 1062 struct session *ss; 1063 1064 KASSERT(mutex_owned(proc_lock)); 1065 1066 pg = pid_table[pg_id & pid_tbl_mask].pt_pgrp; 1067 if (pg == NULL || pg->pg_id != pg_id || !LIST_EMPTY(&pg->pg_members)) { 1068 mutex_exit(proc_lock); 1069 return; 1070 } 1071 1072 ss = pg->pg_session; 1073 1074 /* Remove reference (if any) from tty to this process group */ 1075 mutex_spin_enter(&tty_lock); 1076 ttyp = ss->s_ttyp; 1077 if (ttyp != NULL && ttyp->t_pgrp == pg) { 1078 ttyp->t_pgrp = NULL; 1079 KASSERT(ttyp->t_session == ss); 1080 } 1081 mutex_spin_exit(&tty_lock); 1082 1083 /* 1084 * The leading process group in a session is freed by proc_sessrele(), 1085 * if last reference. Note: proc_sessrele() releases proc_lock. 1086 */ 1087 pg = (ss->s_sid != pg->pg_id) ? pg_remove(pg_id) : NULL; 1088 proc_sessrele(ss); 1089 1090 if (pg != NULL) { 1091 /* Free it, if was not done by proc_sessrele(). */ 1092 kmem_free(pg, sizeof(struct pgrp)); 1093 } 1094 } 1095 1096 /* 1097 * Adjust pgrp jobc counters when specified process changes process group. 1098 * We count the number of processes in each process group that "qualify" 1099 * the group for terminal job control (those with a parent in a different 1100 * process group of the same session). If that count reaches zero, the 1101 * process group becomes orphaned. Check both the specified process' 1102 * process group and that of its children. 1103 * entering == 0 => p is leaving specified group. 1104 * entering == 1 => p is entering specified group. 1105 * 1106 * Call with proc_lock held. 1107 */ 1108 void 1109 fixjobc(struct proc *p, struct pgrp *pgrp, int entering) 1110 { 1111 struct pgrp *hispgrp; 1112 struct session *mysession = pgrp->pg_session; 1113 struct proc *child; 1114 1115 KASSERT(mutex_owned(proc_lock)); 1116 1117 /* 1118 * Check p's parent to see whether p qualifies its own process 1119 * group; if so, adjust count for p's process group. 1120 */ 1121 hispgrp = p->p_pptr->p_pgrp; 1122 if (hispgrp != pgrp && hispgrp->pg_session == mysession) { 1123 if (entering) { 1124 pgrp->pg_jobc++; 1125 p->p_lflag &= ~PL_ORPHANPG; 1126 } else if (--pgrp->pg_jobc == 0) 1127 orphanpg(pgrp); 1128 } 1129 1130 /* 1131 * Check this process' children to see whether they qualify 1132 * their process groups; if so, adjust counts for children's 1133 * process groups. 1134 */ 1135 LIST_FOREACH(child, &p->p_children, p_sibling) { 1136 hispgrp = child->p_pgrp; 1137 if (hispgrp != pgrp && hispgrp->pg_session == mysession && 1138 !P_ZOMBIE(child)) { 1139 if (entering) { 1140 child->p_lflag &= ~PL_ORPHANPG; 1141 hispgrp->pg_jobc++; 1142 } else if (--hispgrp->pg_jobc == 0) 1143 orphanpg(hispgrp); 1144 } 1145 } 1146 } 1147 1148 /* 1149 * A process group has become orphaned; 1150 * if there are any stopped processes in the group, 1151 * hang-up all process in that group. 1152 * 1153 * Call with proc_lock held. 1154 */ 1155 static void 1156 orphanpg(struct pgrp *pg) 1157 { 1158 struct proc *p; 1159 1160 KASSERT(mutex_owned(proc_lock)); 1161 1162 LIST_FOREACH(p, &pg->pg_members, p_pglist) { 1163 if (p->p_stat == SSTOP) { 1164 p->p_lflag |= PL_ORPHANPG; 1165 psignal(p, SIGHUP); 1166 psignal(p, SIGCONT); 1167 } 1168 } 1169 } 1170 1171 #ifdef DDB 1172 #include <ddb/db_output.h> 1173 void pidtbl_dump(void); 1174 void 1175 pidtbl_dump(void) 1176 { 1177 struct pid_table *pt; 1178 struct proc *p; 1179 struct pgrp *pgrp; 1180 int id; 1181 1182 db_printf("pid table %p size %x, next %x, last %x\n", 1183 pid_table, pid_tbl_mask+1, 1184 next_free_pt, last_free_pt); 1185 for (pt = pid_table, id = 0; id <= pid_tbl_mask; id++, pt++) { 1186 p = pt->pt_proc; 1187 if (!P_VALID(p) && !pt->pt_pgrp) 1188 continue; 1189 db_printf(" id %x: ", id); 1190 if (P_VALID(p)) 1191 db_printf("slotpid %d proc %p id %d (0x%x) %s\n", 1192 pt->pt_pid, p, p->p_pid, p->p_pid, p->p_comm); 1193 else 1194 db_printf("next %x use %x\n", 1195 P_NEXT(p) & pid_tbl_mask, 1196 P_NEXT(p) & ~pid_tbl_mask); 1197 if ((pgrp = pt->pt_pgrp)) { 1198 db_printf("\tsession %p, sid %d, count %d, login %s\n", 1199 pgrp->pg_session, pgrp->pg_session->s_sid, 1200 pgrp->pg_session->s_count, 1201 pgrp->pg_session->s_login); 1202 db_printf("\tpgrp %p, pg_id %d, pg_jobc %d, members %p\n", 1203 pgrp, pgrp->pg_id, pgrp->pg_jobc, 1204 LIST_FIRST(&pgrp->pg_members)); 1205 LIST_FOREACH(p, &pgrp->pg_members, p_pglist) { 1206 db_printf("\t\tpid %d addr %p pgrp %p %s\n", 1207 p->p_pid, p, p->p_pgrp, p->p_comm); 1208 } 1209 } 1210 } 1211 } 1212 #endif /* DDB */ 1213 1214 #ifdef KSTACK_CHECK_MAGIC 1215 1216 #define KSTACK_MAGIC 0xdeadbeaf 1217 1218 /* XXX should be per process basis? */ 1219 static int kstackleftmin = KSTACK_SIZE; 1220 static int kstackleftthres = KSTACK_SIZE / 8; 1221 1222 void 1223 kstack_setup_magic(const struct lwp *l) 1224 { 1225 uint32_t *ip; 1226 uint32_t const *end; 1227 1228 KASSERT(l != NULL); 1229 KASSERT(l != &lwp0); 1230 1231 /* 1232 * fill all the stack with magic number 1233 * so that later modification on it can be detected. 1234 */ 1235 ip = (uint32_t *)KSTACK_LOWEST_ADDR(l); 1236 end = (uint32_t *)((char *)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE); 1237 for (; ip < end; ip++) { 1238 *ip = KSTACK_MAGIC; 1239 } 1240 } 1241 1242 void 1243 kstack_check_magic(const struct lwp *l) 1244 { 1245 uint32_t const *ip, *end; 1246 int stackleft; 1247 1248 KASSERT(l != NULL); 1249 1250 /* don't check proc0 */ /*XXX*/ 1251 if (l == &lwp0) 1252 return; 1253 1254 #ifdef __MACHINE_STACK_GROWS_UP 1255 /* stack grows upwards (eg. hppa) */ 1256 ip = (uint32_t *)((void *)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE); 1257 end = (uint32_t *)KSTACK_LOWEST_ADDR(l); 1258 for (ip--; ip >= end; ip--) 1259 if (*ip != KSTACK_MAGIC) 1260 break; 1261 1262 stackleft = (void *)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE - (void *)ip; 1263 #else /* __MACHINE_STACK_GROWS_UP */ 1264 /* stack grows downwards (eg. i386) */ 1265 ip = (uint32_t *)KSTACK_LOWEST_ADDR(l); 1266 end = (uint32_t *)((char *)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE); 1267 for (; ip < end; ip++) 1268 if (*ip != KSTACK_MAGIC) 1269 break; 1270 1271 stackleft = ((const char *)ip) - (const char *)KSTACK_LOWEST_ADDR(l); 1272 #endif /* __MACHINE_STACK_GROWS_UP */ 1273 1274 if (kstackleftmin > stackleft) { 1275 kstackleftmin = stackleft; 1276 if (stackleft < kstackleftthres) 1277 printf("warning: kernel stack left %d bytes" 1278 "(pid %u:lid %u)\n", stackleft, 1279 (u_int)l->l_proc->p_pid, (u_int)l->l_lid); 1280 } 1281 1282 if (stackleft <= 0) { 1283 panic("magic on the top of kernel stack changed for " 1284 "pid %u, lid %u: maybe kernel stack overflow", 1285 (u_int)l->l_proc->p_pid, (u_int)l->l_lid); 1286 } 1287 } 1288 #endif /* KSTACK_CHECK_MAGIC */ 1289 1290 int 1291 proclist_foreach_call(struct proclist *list, 1292 int (*callback)(struct proc *, void *arg), void *arg) 1293 { 1294 struct proc marker; 1295 struct proc *p; 1296 int ret = 0; 1297 1298 marker.p_flag = PK_MARKER; 1299 mutex_enter(proc_lock); 1300 for (p = LIST_FIRST(list); ret == 0 && p != NULL;) { 1301 if (p->p_flag & PK_MARKER) { 1302 p = LIST_NEXT(p, p_list); 1303 continue; 1304 } 1305 LIST_INSERT_AFTER(p, &marker, p_list); 1306 ret = (*callback)(p, arg); 1307 KASSERT(mutex_owned(proc_lock)); 1308 p = LIST_NEXT(&marker, p_list); 1309 LIST_REMOVE(&marker, p_list); 1310 } 1311 mutex_exit(proc_lock); 1312 1313 return ret; 1314 } 1315 1316 int 1317 proc_vmspace_getref(struct proc *p, struct vmspace **vm) 1318 { 1319 1320 /* XXXCDC: how should locking work here? */ 1321 1322 /* curproc exception is for coredump. */ 1323 1324 if ((p != curproc && (p->p_sflag & PS_WEXIT) != 0) || 1325 (p->p_vmspace->vm_refcnt < 1)) { /* XXX */ 1326 return EFAULT; 1327 } 1328 1329 uvmspace_addref(p->p_vmspace); 1330 *vm = p->p_vmspace; 1331 1332 return 0; 1333 } 1334 1335 /* 1336 * Acquire a write lock on the process credential. 1337 */ 1338 void 1339 proc_crmod_enter(void) 1340 { 1341 struct lwp *l = curlwp; 1342 struct proc *p = l->l_proc; 1343 kauth_cred_t oc; 1344 1345 /* Reset what needs to be reset in plimit. */ 1346 if (p->p_limit->pl_corename != defcorename) { 1347 lim_setcorename(p, defcorename, 0); 1348 } 1349 1350 mutex_enter(p->p_lock); 1351 1352 /* Ensure the LWP cached credentials are up to date. */ 1353 if ((oc = l->l_cred) != p->p_cred) { 1354 kauth_cred_hold(p->p_cred); 1355 l->l_cred = p->p_cred; 1356 kauth_cred_free(oc); 1357 } 1358 } 1359 1360 /* 1361 * Set in a new process credential, and drop the write lock. The credential 1362 * must have a reference already. Optionally, free a no-longer required 1363 * credential. The scheduler also needs to inspect p_cred, so we also 1364 * briefly acquire the sched state mutex. 1365 */ 1366 void 1367 proc_crmod_leave(kauth_cred_t scred, kauth_cred_t fcred, bool sugid) 1368 { 1369 struct lwp *l = curlwp, *l2; 1370 struct proc *p = l->l_proc; 1371 kauth_cred_t oc; 1372 1373 KASSERT(mutex_owned(p->p_lock)); 1374 1375 /* Is there a new credential to set in? */ 1376 if (scred != NULL) { 1377 p->p_cred = scred; 1378 LIST_FOREACH(l2, &p->p_lwps, l_sibling) { 1379 if (l2 != l) 1380 l2->l_prflag |= LPR_CRMOD; 1381 } 1382 1383 /* Ensure the LWP cached credentials are up to date. */ 1384 if ((oc = l->l_cred) != scred) { 1385 kauth_cred_hold(scred); 1386 l->l_cred = scred; 1387 } 1388 } else 1389 oc = NULL; /* XXXgcc */ 1390 1391 if (sugid) { 1392 /* 1393 * Mark process as having changed credentials, stops 1394 * tracing etc. 1395 */ 1396 p->p_flag |= PK_SUGID; 1397 } 1398 1399 mutex_exit(p->p_lock); 1400 1401 /* If there is a credential to be released, free it now. */ 1402 if (fcred != NULL) { 1403 KASSERT(scred != NULL); 1404 kauth_cred_free(fcred); 1405 if (oc != scred) 1406 kauth_cred_free(oc); 1407 } 1408 } 1409 1410 /* 1411 * proc_specific_key_create -- 1412 * Create a key for subsystem proc-specific data. 1413 */ 1414 int 1415 proc_specific_key_create(specificdata_key_t *keyp, specificdata_dtor_t dtor) 1416 { 1417 1418 return (specificdata_key_create(proc_specificdata_domain, keyp, dtor)); 1419 } 1420 1421 /* 1422 * proc_specific_key_delete -- 1423 * Delete a key for subsystem proc-specific data. 1424 */ 1425 void 1426 proc_specific_key_delete(specificdata_key_t key) 1427 { 1428 1429 specificdata_key_delete(proc_specificdata_domain, key); 1430 } 1431 1432 /* 1433 * proc_initspecific -- 1434 * Initialize a proc's specificdata container. 1435 */ 1436 void 1437 proc_initspecific(struct proc *p) 1438 { 1439 int error; 1440 1441 error = specificdata_init(proc_specificdata_domain, &p->p_specdataref); 1442 KASSERT(error == 0); 1443 } 1444 1445 /* 1446 * proc_finispecific -- 1447 * Finalize a proc's specificdata container. 1448 */ 1449 void 1450 proc_finispecific(struct proc *p) 1451 { 1452 1453 specificdata_fini(proc_specificdata_domain, &p->p_specdataref); 1454 } 1455 1456 /* 1457 * proc_getspecific -- 1458 * Return proc-specific data corresponding to the specified key. 1459 */ 1460 void * 1461 proc_getspecific(struct proc *p, specificdata_key_t key) 1462 { 1463 1464 return (specificdata_getspecific(proc_specificdata_domain, 1465 &p->p_specdataref, key)); 1466 } 1467 1468 /* 1469 * proc_setspecific -- 1470 * Set proc-specific data corresponding to the specified key. 1471 */ 1472 void 1473 proc_setspecific(struct proc *p, specificdata_key_t key, void *data) 1474 { 1475 1476 specificdata_setspecific(proc_specificdata_domain, 1477 &p->p_specdataref, key, data); 1478 } 1479 1480 int 1481 proc_uidmatch(kauth_cred_t cred, kauth_cred_t target) 1482 { 1483 int r = 0; 1484 1485 if (kauth_cred_getuid(cred) != kauth_cred_getuid(target) || 1486 kauth_cred_getuid(cred) != kauth_cred_getsvuid(target)) { 1487 /* 1488 * suid proc of ours or proc not ours 1489 */ 1490 r = EPERM; 1491 } else if (kauth_cred_getgid(target) != kauth_cred_getsvgid(target)) { 1492 /* 1493 * sgid proc has sgid back to us temporarily 1494 */ 1495 r = EPERM; 1496 } else { 1497 /* 1498 * our rgid must be in target's group list (ie, 1499 * sub-processes started by a sgid process) 1500 */ 1501 int ismember = 0; 1502 1503 if (kauth_cred_ismember_gid(cred, 1504 kauth_cred_getgid(target), &ismember) != 0 || 1505 !ismember) 1506 r = EPERM; 1507 } 1508 1509 return (r); 1510 } 1511 1512 /* 1513 * sysctl stuff 1514 */ 1515 1516 #define KERN_PROCSLOP (5 * sizeof(struct kinfo_proc)) 1517 1518 static const u_int sysctl_flagmap[] = { 1519 PK_ADVLOCK, P_ADVLOCK, 1520 PK_EXEC, P_EXEC, 1521 PK_NOCLDWAIT, P_NOCLDWAIT, 1522 PK_32, P_32, 1523 PK_CLDSIGIGN, P_CLDSIGIGN, 1524 PK_SUGID, P_SUGID, 1525 0 1526 }; 1527 1528 static const u_int sysctl_sflagmap[] = { 1529 PS_NOCLDSTOP, P_NOCLDSTOP, 1530 PS_WEXIT, P_WEXIT, 1531 PS_STOPFORK, P_STOPFORK, 1532 PS_STOPEXEC, P_STOPEXEC, 1533 PS_STOPEXIT, P_STOPEXIT, 1534 0 1535 }; 1536 1537 static const u_int sysctl_slflagmap[] = { 1538 PSL_TRACED, P_TRACED, 1539 PSL_FSTRACE, P_FSTRACE, 1540 PSL_CHTRACED, P_CHTRACED, 1541 PSL_SYSCALL, P_SYSCALL, 1542 0 1543 }; 1544 1545 static const u_int sysctl_lflagmap[] = { 1546 PL_CONTROLT, P_CONTROLT, 1547 PL_PPWAIT, P_PPWAIT, 1548 0 1549 }; 1550 1551 static const u_int sysctl_stflagmap[] = { 1552 PST_PROFIL, P_PROFIL, 1553 0 1554 1555 }; 1556 1557 /* used by kern_lwp also */ 1558 const u_int sysctl_lwpflagmap[] = { 1559 LW_SINTR, L_SINTR, 1560 LW_SYSTEM, L_SYSTEM, 1561 LW_SA, L_SA, /* WRS ??? */ 1562 0 1563 }; 1564 1565 /* 1566 * Find the most ``active'' lwp of a process and return it for ps display 1567 * purposes 1568 */ 1569 static struct lwp * 1570 proc_active_lwp(struct proc *p) 1571 { 1572 static const int ostat[] = { 1573 0, 1574 2, /* LSIDL */ 1575 6, /* LSRUN */ 1576 5, /* LSSLEEP */ 1577 4, /* LSSTOP */ 1578 0, /* LSZOMB */ 1579 1, /* LSDEAD */ 1580 7, /* LSONPROC */ 1581 3 /* LSSUSPENDED */ 1582 }; 1583 1584 struct lwp *l, *lp = NULL; 1585 LIST_FOREACH(l, &p->p_lwps, l_sibling) { 1586 KASSERT(l->l_stat >= 0 && l->l_stat < __arraycount(ostat)); 1587 if (lp == NULL || 1588 ostat[l->l_stat] > ostat[lp->l_stat] || 1589 (ostat[l->l_stat] == ostat[lp->l_stat] && 1590 l->l_cpticks > lp->l_cpticks)) { 1591 lp = l; 1592 continue; 1593 } 1594 } 1595 return lp; 1596 } 1597 1598 static int 1599 sysctl_doeproc(SYSCTLFN_ARGS) 1600 { 1601 union { 1602 struct kinfo_proc kproc; 1603 struct kinfo_proc2 kproc2; 1604 } *kbuf; 1605 struct proc *p, *next, *marker; 1606 char *where, *dp; 1607 int type, op, arg, error; 1608 u_int elem_size, kelem_size, elem_count; 1609 size_t buflen, needed; 1610 bool match, zombie, mmmbrains; 1611 1612 if (namelen == 1 && name[0] == CTL_QUERY) 1613 return (sysctl_query(SYSCTLFN_CALL(rnode))); 1614 1615 dp = where = oldp; 1616 buflen = where != NULL ? *oldlenp : 0; 1617 error = 0; 1618 needed = 0; 1619 type = rnode->sysctl_num; 1620 1621 if (type == KERN_PROC) { 1622 if (namelen != 2 && !(namelen == 1 && name[0] == KERN_PROC_ALL)) 1623 return (EINVAL); 1624 op = name[0]; 1625 if (op != KERN_PROC_ALL) 1626 arg = name[1]; 1627 else 1628 arg = 0; /* Quell compiler warning */ 1629 elem_count = 0; /* Ditto */ 1630 kelem_size = elem_size = sizeof(kbuf->kproc); 1631 } else { 1632 if (namelen != 4) 1633 return (EINVAL); 1634 op = name[0]; 1635 arg = name[1]; 1636 elem_size = name[2]; 1637 elem_count = name[3]; 1638 kelem_size = sizeof(kbuf->kproc2); 1639 } 1640 1641 sysctl_unlock(); 1642 1643 kbuf = kmem_alloc(sizeof(*kbuf), KM_SLEEP); 1644 marker = kmem_alloc(sizeof(*marker), KM_SLEEP); 1645 marker->p_flag = PK_MARKER; 1646 1647 mutex_enter(proc_lock); 1648 mmmbrains = false; 1649 for (p = LIST_FIRST(&allproc);; p = next) { 1650 if (p == NULL) { 1651 if (!mmmbrains) { 1652 p = LIST_FIRST(&zombproc); 1653 mmmbrains = true; 1654 } 1655 if (p == NULL) 1656 break; 1657 } 1658 next = LIST_NEXT(p, p_list); 1659 if ((p->p_flag & PK_MARKER) != 0) 1660 continue; 1661 1662 /* 1663 * Skip embryonic processes. 1664 */ 1665 if (p->p_stat == SIDL) 1666 continue; 1667 1668 mutex_enter(p->p_lock); 1669 error = kauth_authorize_process(l->l_cred, 1670 KAUTH_PROCESS_CANSEE, p, 1671 KAUTH_ARG(KAUTH_REQ_PROCESS_CANSEE_ENTRY), NULL, NULL); 1672 if (error != 0) { 1673 mutex_exit(p->p_lock); 1674 continue; 1675 } 1676 1677 /* 1678 * TODO - make more efficient (see notes below). 1679 * do by session. 1680 */ 1681 switch (op) { 1682 case KERN_PROC_PID: 1683 /* could do this with just a lookup */ 1684 match = (p->p_pid == (pid_t)arg); 1685 break; 1686 1687 case KERN_PROC_PGRP: 1688 /* could do this by traversing pgrp */ 1689 match = (p->p_pgrp->pg_id == (pid_t)arg); 1690 break; 1691 1692 case KERN_PROC_SESSION: 1693 match = (p->p_session->s_sid == (pid_t)arg); 1694 break; 1695 1696 case KERN_PROC_TTY: 1697 match = true; 1698 if (arg == (int) KERN_PROC_TTY_REVOKE) { 1699 if ((p->p_lflag & PL_CONTROLT) == 0 || 1700 p->p_session->s_ttyp == NULL || 1701 p->p_session->s_ttyvp != NULL) { 1702 match = false; 1703 } 1704 } else if ((p->p_lflag & PL_CONTROLT) == 0 || 1705 p->p_session->s_ttyp == NULL) { 1706 if ((dev_t)arg != KERN_PROC_TTY_NODEV) { 1707 match = false; 1708 } 1709 } else if (p->p_session->s_ttyp->t_dev != (dev_t)arg) { 1710 match = false; 1711 } 1712 break; 1713 1714 case KERN_PROC_UID: 1715 match = (kauth_cred_geteuid(p->p_cred) == (uid_t)arg); 1716 break; 1717 1718 case KERN_PROC_RUID: 1719 match = (kauth_cred_getuid(p->p_cred) == (uid_t)arg); 1720 break; 1721 1722 case KERN_PROC_GID: 1723 match = (kauth_cred_getegid(p->p_cred) == (uid_t)arg); 1724 break; 1725 1726 case KERN_PROC_RGID: 1727 match = (kauth_cred_getgid(p->p_cred) == (uid_t)arg); 1728 break; 1729 1730 case KERN_PROC_ALL: 1731 match = true; 1732 /* allow everything */ 1733 break; 1734 1735 default: 1736 error = EINVAL; 1737 mutex_exit(p->p_lock); 1738 goto cleanup; 1739 } 1740 if (!match) { 1741 mutex_exit(p->p_lock); 1742 continue; 1743 } 1744 1745 /* 1746 * Grab a hold on the process. 1747 */ 1748 if (mmmbrains) { 1749 zombie = true; 1750 } else { 1751 zombie = !rw_tryenter(&p->p_reflock, RW_READER); 1752 } 1753 if (zombie) { 1754 LIST_INSERT_AFTER(p, marker, p_list); 1755 } 1756 1757 if (buflen >= elem_size && 1758 (type == KERN_PROC || elem_count > 0)) { 1759 if (type == KERN_PROC) { 1760 kbuf->kproc.kp_proc = *p; 1761 fill_eproc(p, &kbuf->kproc.kp_eproc, zombie); 1762 } else { 1763 fill_kproc2(p, &kbuf->kproc2, zombie); 1764 elem_count--; 1765 } 1766 mutex_exit(p->p_lock); 1767 mutex_exit(proc_lock); 1768 /* 1769 * Copy out elem_size, but not larger than kelem_size 1770 */ 1771 error = sysctl_copyout(l, kbuf, dp, 1772 min(kelem_size, elem_size)); 1773 mutex_enter(proc_lock); 1774 if (error) { 1775 goto bah; 1776 } 1777 dp += elem_size; 1778 buflen -= elem_size; 1779 } else { 1780 mutex_exit(p->p_lock); 1781 } 1782 needed += elem_size; 1783 1784 /* 1785 * Release reference to process. 1786 */ 1787 if (zombie) { 1788 next = LIST_NEXT(marker, p_list); 1789 LIST_REMOVE(marker, p_list); 1790 } else { 1791 rw_exit(&p->p_reflock); 1792 next = LIST_NEXT(p, p_list); 1793 } 1794 } 1795 mutex_exit(proc_lock); 1796 1797 if (where != NULL) { 1798 *oldlenp = dp - where; 1799 if (needed > *oldlenp) { 1800 error = ENOMEM; 1801 goto out; 1802 } 1803 } else { 1804 needed += KERN_PROCSLOP; 1805 *oldlenp = needed; 1806 } 1807 if (kbuf) 1808 kmem_free(kbuf, sizeof(*kbuf)); 1809 if (marker) 1810 kmem_free(marker, sizeof(*marker)); 1811 sysctl_relock(); 1812 return 0; 1813 bah: 1814 if (zombie) 1815 LIST_REMOVE(marker, p_list); 1816 else 1817 rw_exit(&p->p_reflock); 1818 cleanup: 1819 mutex_exit(proc_lock); 1820 out: 1821 if (kbuf) 1822 kmem_free(kbuf, sizeof(*kbuf)); 1823 if (marker) 1824 kmem_free(marker, sizeof(*marker)); 1825 sysctl_relock(); 1826 return error; 1827 } 1828 1829 int 1830 copyin_psstrings(struct proc *p, struct ps_strings *arginfo) 1831 { 1832 1833 #ifdef COMPAT_NETBSD32 1834 if (p->p_flag & PK_32) { 1835 struct ps_strings32 arginfo32; 1836 1837 int error = copyin_proc(p, (void *)p->p_psstrp, &arginfo32, 1838 sizeof(arginfo32)); 1839 if (error) 1840 return error; 1841 arginfo->ps_argvstr = (void *)(uintptr_t)arginfo32.ps_argvstr; 1842 arginfo->ps_nargvstr = arginfo32.ps_nargvstr; 1843 arginfo->ps_envstr = (void *)(uintptr_t)arginfo32.ps_envstr; 1844 arginfo->ps_nenvstr = arginfo32.ps_nenvstr; 1845 return 0; 1846 } 1847 #endif 1848 return copyin_proc(p, (void *)p->p_psstrp, arginfo, sizeof(*arginfo)); 1849 } 1850 1851 static int 1852 copy_procargs_sysctl_cb(void *cookie_, const void *src, size_t off, size_t len) 1853 { 1854 void **cookie = cookie_; 1855 struct lwp *l = cookie[0]; 1856 char *dst = cookie[1]; 1857 1858 return sysctl_copyout(l, src, dst + off, len); 1859 } 1860 1861 /* 1862 * sysctl helper routine for kern.proc_args pseudo-subtree. 1863 */ 1864 static int 1865 sysctl_kern_proc_args(SYSCTLFN_ARGS) 1866 { 1867 struct ps_strings pss; 1868 struct proc *p; 1869 pid_t pid; 1870 int type, error; 1871 void *cookie[2]; 1872 1873 if (namelen == 1 && name[0] == CTL_QUERY) 1874 return (sysctl_query(SYSCTLFN_CALL(rnode))); 1875 1876 if (newp != NULL || namelen != 2) 1877 return (EINVAL); 1878 pid = name[0]; 1879 type = name[1]; 1880 1881 switch (type) { 1882 case KERN_PROC_ARGV: 1883 case KERN_PROC_NARGV: 1884 case KERN_PROC_ENV: 1885 case KERN_PROC_NENV: 1886 /* ok */ 1887 break; 1888 default: 1889 return (EINVAL); 1890 } 1891 1892 sysctl_unlock(); 1893 1894 /* check pid */ 1895 mutex_enter(proc_lock); 1896 if ((p = proc_find(pid)) == NULL) { 1897 error = EINVAL; 1898 goto out_locked; 1899 } 1900 mutex_enter(p->p_lock); 1901 1902 /* Check permission. */ 1903 if (type == KERN_PROC_ARGV || type == KERN_PROC_NARGV) 1904 error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_CANSEE, 1905 p, KAUTH_ARG(KAUTH_REQ_PROCESS_CANSEE_ARGS), NULL, NULL); 1906 else if (type == KERN_PROC_ENV || type == KERN_PROC_NENV) 1907 error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_CANSEE, 1908 p, KAUTH_ARG(KAUTH_REQ_PROCESS_CANSEE_ENV), NULL, NULL); 1909 else 1910 error = EINVAL; /* XXXGCC */ 1911 if (error) { 1912 mutex_exit(p->p_lock); 1913 goto out_locked; 1914 } 1915 1916 if (oldp == NULL) { 1917 if (type == KERN_PROC_NARGV || type == KERN_PROC_NENV) 1918 *oldlenp = sizeof (int); 1919 else 1920 *oldlenp = ARG_MAX; /* XXX XXX XXX */ 1921 error = 0; 1922 mutex_exit(p->p_lock); 1923 goto out_locked; 1924 } 1925 1926 /* 1927 * Zombies don't have a stack, so we can't read their psstrings. 1928 * System processes also don't have a user stack. 1929 */ 1930 if (P_ZOMBIE(p) || (p->p_flag & PK_SYSTEM) != 0) { 1931 error = EINVAL; 1932 mutex_exit(p->p_lock); 1933 goto out_locked; 1934 } 1935 1936 error = rw_tryenter(&p->p_reflock, RW_READER) ? 0 : EBUSY; 1937 mutex_exit(p->p_lock); 1938 if (error) { 1939 goto out_locked; 1940 } 1941 mutex_exit(proc_lock); 1942 1943 if (type == KERN_PROC_NARGV || type == KERN_PROC_NENV) { 1944 int value; 1945 if ((error = copyin_psstrings(p, &pss)) == 0) { 1946 if (type == KERN_PROC_NARGV) 1947 value = pss.ps_nargvstr; 1948 else 1949 value = pss.ps_nenvstr; 1950 error = sysctl_copyout(l, &value, oldp, sizeof(value)); 1951 *oldlenp = sizeof(value); 1952 } 1953 } else { 1954 cookie[0] = l; 1955 cookie[1] = oldp; 1956 error = copy_procargs(p, type, oldlenp, 1957 copy_procargs_sysctl_cb, cookie); 1958 } 1959 rw_exit(&p->p_reflock); 1960 sysctl_relock(); 1961 return error; 1962 1963 out_locked: 1964 mutex_exit(proc_lock); 1965 sysctl_relock(); 1966 return error; 1967 } 1968 1969 int 1970 copy_procargs(struct proc *p, int oid, size_t *limit, 1971 int (*cb)(void *, const void *, size_t, size_t), void *cookie) 1972 { 1973 struct ps_strings pss; 1974 size_t len, i, loaded, entry_len; 1975 struct uio auio; 1976 struct iovec aiov; 1977 int error, argvlen; 1978 char *arg; 1979 char **argv; 1980 vaddr_t user_argv; 1981 struct vmspace *vmspace; 1982 1983 /* 1984 * Allocate a temporary buffer to hold the argument vector and 1985 * the arguments themselve. 1986 */ 1987 arg = kmem_alloc(PAGE_SIZE, KM_SLEEP); 1988 argv = kmem_alloc(PAGE_SIZE, KM_SLEEP); 1989 1990 /* 1991 * Lock the process down in memory. 1992 */ 1993 vmspace = p->p_vmspace; 1994 uvmspace_addref(vmspace); 1995 1996 /* 1997 * Read in the ps_strings structure. 1998 */ 1999 if ((error = copyin_psstrings(p, &pss)) != 0) 2000 goto done; 2001 2002 /* 2003 * Now read the address of the argument vector. 2004 */ 2005 switch (oid) { 2006 case KERN_PROC_ARGV: 2007 user_argv = (uintptr_t)pss.ps_argvstr; 2008 argvlen = pss.ps_nargvstr; 2009 break; 2010 case KERN_PROC_ENV: 2011 user_argv = (uintptr_t)pss.ps_envstr; 2012 argvlen = pss.ps_nenvstr; 2013 break; 2014 default: 2015 error = EINVAL; 2016 goto done; 2017 } 2018 2019 if (argvlen < 0) { 2020 error = EIO; 2021 goto done; 2022 } 2023 2024 #ifdef COMPAT_NETBSD32 2025 if (p->p_flag & PK_32) 2026 entry_len = sizeof(netbsd32_charp); 2027 else 2028 #endif 2029 entry_len = sizeof(char *); 2030 2031 /* 2032 * Now copy each string. 2033 */ 2034 len = 0; /* bytes written to user buffer */ 2035 loaded = 0; /* bytes from argv already processed */ 2036 i = 0; /* To make compiler happy */ 2037 2038 for (; argvlen; --argvlen) { 2039 int finished = 0; 2040 vaddr_t base; 2041 size_t xlen; 2042 int j; 2043 2044 if (loaded == 0) { 2045 size_t rem = entry_len * argvlen; 2046 loaded = MIN(rem, PAGE_SIZE); 2047 error = copyin_vmspace(vmspace, 2048 (const void *)user_argv, argv, loaded); 2049 if (error) 2050 break; 2051 user_argv += loaded; 2052 i = 0; 2053 } 2054 2055 #ifdef COMPAT_NETBSD32 2056 if (p->p_flag & PK_32) { 2057 netbsd32_charp *argv32; 2058 2059 argv32 = (netbsd32_charp *)argv; 2060 base = (vaddr_t)NETBSD32PTR64(argv32[i++]); 2061 } else 2062 #endif 2063 base = (vaddr_t)argv[i++]; 2064 loaded -= entry_len; 2065 2066 /* 2067 * The program has messed around with its arguments, 2068 * possibly deleting some, and replacing them with 2069 * NULL's. Treat this as the last argument and not 2070 * a failure. 2071 */ 2072 if (base == 0) 2073 break; 2074 2075 while (!finished) { 2076 xlen = PAGE_SIZE - (base & PAGE_MASK); 2077 2078 aiov.iov_base = arg; 2079 aiov.iov_len = PAGE_SIZE; 2080 auio.uio_iov = &aiov; 2081 auio.uio_iovcnt = 1; 2082 auio.uio_offset = base; 2083 auio.uio_resid = xlen; 2084 auio.uio_rw = UIO_READ; 2085 UIO_SETUP_SYSSPACE(&auio); 2086 error = uvm_io(&vmspace->vm_map, &auio); 2087 if (error) 2088 goto done; 2089 2090 /* Look for the end of the string */ 2091 for (j = 0; j < xlen; j++) { 2092 if (arg[j] == '\0') { 2093 xlen = j + 1; 2094 finished = 1; 2095 break; 2096 } 2097 } 2098 2099 /* Check for user buffer overflow */ 2100 if (len + xlen > *limit) { 2101 finished = 1; 2102 if (len > *limit) 2103 xlen = 0; 2104 else 2105 xlen = *limit - len; 2106 } 2107 2108 /* Copyout the page */ 2109 error = (*cb)(cookie, arg, len, xlen); 2110 if (error) 2111 goto done; 2112 2113 len += xlen; 2114 base += xlen; 2115 } 2116 } 2117 *limit = len; 2118 2119 done: 2120 kmem_free(argv, PAGE_SIZE); 2121 kmem_free(arg, PAGE_SIZE); 2122 uvmspace_free(vmspace); 2123 return error; 2124 } 2125 2126 /* 2127 * Fill in an eproc structure for the specified process. 2128 */ 2129 void 2130 fill_eproc(struct proc *p, struct eproc *ep, bool zombie) 2131 { 2132 struct tty *tp; 2133 struct lwp *l; 2134 2135 KASSERT(mutex_owned(proc_lock)); 2136 KASSERT(mutex_owned(p->p_lock)); 2137 2138 memset(ep, 0, sizeof(*ep)); 2139 2140 ep->e_paddr = p; 2141 ep->e_sess = p->p_session; 2142 if (p->p_cred) { 2143 kauth_cred_topcred(p->p_cred, &ep->e_pcred); 2144 kauth_cred_toucred(p->p_cred, &ep->e_ucred); 2145 } 2146 if (p->p_stat != SIDL && !P_ZOMBIE(p) && !zombie) { 2147 struct vmspace *vm = p->p_vmspace; 2148 2149 ep->e_vm.vm_rssize = vm_resident_count(vm); 2150 ep->e_vm.vm_tsize = vm->vm_tsize; 2151 ep->e_vm.vm_dsize = vm->vm_dsize; 2152 ep->e_vm.vm_ssize = vm->vm_ssize; 2153 ep->e_vm.vm_map.size = vm->vm_map.size; 2154 2155 /* Pick the primary (first) LWP */ 2156 l = proc_active_lwp(p); 2157 KASSERT(l != NULL); 2158 lwp_lock(l); 2159 if (l->l_wchan) 2160 strncpy(ep->e_wmesg, l->l_wmesg, WMESGLEN); 2161 lwp_unlock(l); 2162 } 2163 if (p->p_pptr) 2164 ep->e_ppid = p->p_pptr->p_pid; 2165 if (p->p_pgrp && p->p_session) { 2166 ep->e_pgid = p->p_pgrp->pg_id; 2167 ep->e_jobc = p->p_pgrp->pg_jobc; 2168 ep->e_sid = p->p_session->s_sid; 2169 if ((p->p_lflag & PL_CONTROLT) && 2170 (tp = ep->e_sess->s_ttyp)) { 2171 ep->e_tdev = tp->t_dev; 2172 ep->e_tpgid = tp->t_pgrp ? tp->t_pgrp->pg_id : NO_PGID; 2173 ep->e_tsess = tp->t_session; 2174 } else 2175 ep->e_tdev = (uint32_t)NODEV; 2176 ep->e_flag = ep->e_sess->s_ttyvp ? EPROC_CTTY : 0; 2177 if (SESS_LEADER(p)) 2178 ep->e_flag |= EPROC_SLEADER; 2179 strncpy(ep->e_login, ep->e_sess->s_login, MAXLOGNAME); 2180 } 2181 ep->e_xsize = ep->e_xrssize = 0; 2182 ep->e_xccount = ep->e_xswrss = 0; 2183 } 2184 2185 /* 2186 * Fill in a kinfo_proc2 structure for the specified process. 2187 */ 2188 static void 2189 fill_kproc2(struct proc *p, struct kinfo_proc2 *ki, bool zombie) 2190 { 2191 struct tty *tp; 2192 struct lwp *l, *l2; 2193 struct timeval ut, st, rt; 2194 sigset_t ss1, ss2; 2195 struct rusage ru; 2196 struct vmspace *vm; 2197 2198 KASSERT(mutex_owned(proc_lock)); 2199 KASSERT(mutex_owned(p->p_lock)); 2200 2201 sigemptyset(&ss1); 2202 sigemptyset(&ss2); 2203 memset(ki, 0, sizeof(*ki)); 2204 2205 ki->p_paddr = PTRTOUINT64(p); 2206 ki->p_fd = PTRTOUINT64(p->p_fd); 2207 ki->p_cwdi = PTRTOUINT64(p->p_cwdi); 2208 ki->p_stats = PTRTOUINT64(p->p_stats); 2209 ki->p_limit = PTRTOUINT64(p->p_limit); 2210 ki->p_vmspace = PTRTOUINT64(p->p_vmspace); 2211 ki->p_sigacts = PTRTOUINT64(p->p_sigacts); 2212 ki->p_sess = PTRTOUINT64(p->p_session); 2213 ki->p_tsess = 0; /* may be changed if controlling tty below */ 2214 ki->p_ru = PTRTOUINT64(&p->p_stats->p_ru); 2215 ki->p_eflag = 0; 2216 ki->p_exitsig = p->p_exitsig; 2217 ki->p_flag = L_INMEM; /* Process never swapped out */ 2218 ki->p_flag |= sysctl_map_flags(sysctl_flagmap, p->p_flag); 2219 ki->p_flag |= sysctl_map_flags(sysctl_sflagmap, p->p_sflag); 2220 ki->p_flag |= sysctl_map_flags(sysctl_slflagmap, p->p_slflag); 2221 ki->p_flag |= sysctl_map_flags(sysctl_lflagmap, p->p_lflag); 2222 ki->p_flag |= sysctl_map_flags(sysctl_stflagmap, p->p_stflag); 2223 ki->p_pid = p->p_pid; 2224 if (p->p_pptr) 2225 ki->p_ppid = p->p_pptr->p_pid; 2226 else 2227 ki->p_ppid = 0; 2228 ki->p_uid = kauth_cred_geteuid(p->p_cred); 2229 ki->p_ruid = kauth_cred_getuid(p->p_cred); 2230 ki->p_gid = kauth_cred_getegid(p->p_cred); 2231 ki->p_rgid = kauth_cred_getgid(p->p_cred); 2232 ki->p_svuid = kauth_cred_getsvuid(p->p_cred); 2233 ki->p_svgid = kauth_cred_getsvgid(p->p_cred); 2234 ki->p_ngroups = kauth_cred_ngroups(p->p_cred); 2235 kauth_cred_getgroups(p->p_cred, ki->p_groups, 2236 min(ki->p_ngroups, sizeof(ki->p_groups) / sizeof(ki->p_groups[0])), 2237 UIO_SYSSPACE); 2238 2239 ki->p_uticks = p->p_uticks; 2240 ki->p_sticks = p->p_sticks; 2241 ki->p_iticks = p->p_iticks; 2242 ki->p_tpgid = NO_PGID; /* may be changed if controlling tty below */ 2243 ki->p_tracep = PTRTOUINT64(p->p_tracep); 2244 ki->p_traceflag = p->p_traceflag; 2245 2246 memcpy(&ki->p_sigignore, &p->p_sigctx.ps_sigignore,sizeof(ki_sigset_t)); 2247 memcpy(&ki->p_sigcatch, &p->p_sigctx.ps_sigcatch, sizeof(ki_sigset_t)); 2248 2249 ki->p_cpticks = 0; 2250 ki->p_pctcpu = p->p_pctcpu; 2251 ki->p_estcpu = 0; 2252 ki->p_stat = p->p_stat; /* Will likely be overridden by LWP status */ 2253 ki->p_realstat = p->p_stat; 2254 ki->p_nice = p->p_nice; 2255 ki->p_xstat = p->p_xstat; 2256 ki->p_acflag = p->p_acflag; 2257 2258 strncpy(ki->p_comm, p->p_comm, 2259 min(sizeof(ki->p_comm), sizeof(p->p_comm))); 2260 strncpy(ki->p_ename, p->p_emul->e_name, sizeof(ki->p_ename)); 2261 2262 ki->p_nlwps = p->p_nlwps; 2263 ki->p_realflag = ki->p_flag; 2264 2265 if (p->p_stat != SIDL && !P_ZOMBIE(p) && !zombie) { 2266 vm = p->p_vmspace; 2267 ki->p_vm_rssize = vm_resident_count(vm); 2268 ki->p_vm_tsize = vm->vm_tsize; 2269 ki->p_vm_dsize = vm->vm_dsize; 2270 ki->p_vm_ssize = vm->vm_ssize; 2271 ki->p_vm_vsize = vm->vm_map.size; 2272 /* 2273 * Since the stack is initially mapped mostly with 2274 * PROT_NONE and grown as needed, adjust the "mapped size" 2275 * to skip the unused stack portion. 2276 */ 2277 ki->p_vm_msize = 2278 atop(vm->vm_map.size) - vm->vm_issize + vm->vm_ssize; 2279 2280 /* Pick the primary (first) LWP */ 2281 l = proc_active_lwp(p); 2282 KASSERT(l != NULL); 2283 lwp_lock(l); 2284 ki->p_nrlwps = p->p_nrlwps; 2285 ki->p_forw = 0; 2286 ki->p_back = 0; 2287 ki->p_addr = PTRTOUINT64(l->l_addr); 2288 ki->p_stat = l->l_stat; 2289 ki->p_flag |= sysctl_map_flags(sysctl_lwpflagmap, l->l_flag); 2290 ki->p_swtime = l->l_swtime; 2291 ki->p_slptime = l->l_slptime; 2292 if (l->l_stat == LSONPROC) 2293 ki->p_schedflags = l->l_cpu->ci_schedstate.spc_flags; 2294 else 2295 ki->p_schedflags = 0; 2296 ki->p_priority = lwp_eprio(l); 2297 ki->p_usrpri = l->l_priority; 2298 if (l->l_wchan) 2299 strncpy(ki->p_wmesg, l->l_wmesg, sizeof(ki->p_wmesg)); 2300 ki->p_wchan = PTRTOUINT64(l->l_wchan); 2301 ki->p_cpuid = cpu_index(l->l_cpu); 2302 lwp_unlock(l); 2303 LIST_FOREACH(l, &p->p_lwps, l_sibling) { 2304 /* This is hardly correct, but... */ 2305 sigplusset(&l->l_sigpend.sp_set, &ss1); 2306 sigplusset(&l->l_sigmask, &ss2); 2307 ki->p_cpticks += l->l_cpticks; 2308 ki->p_pctcpu += l->l_pctcpu; 2309 ki->p_estcpu += l->l_estcpu; 2310 } 2311 } 2312 sigplusset(&p->p_sigpend.sp_set, &ss2); 2313 memcpy(&ki->p_siglist, &ss1, sizeof(ki_sigset_t)); 2314 memcpy(&ki->p_sigmask, &ss2, sizeof(ki_sigset_t)); 2315 2316 if (p->p_session != NULL) { 2317 ki->p_sid = p->p_session->s_sid; 2318 ki->p__pgid = p->p_pgrp->pg_id; 2319 if (p->p_session->s_ttyvp) 2320 ki->p_eflag |= EPROC_CTTY; 2321 if (SESS_LEADER(p)) 2322 ki->p_eflag |= EPROC_SLEADER; 2323 strncpy(ki->p_login, p->p_session->s_login, 2324 min(sizeof ki->p_login - 1, sizeof p->p_session->s_login)); 2325 ki->p_jobc = p->p_pgrp->pg_jobc; 2326 if ((p->p_lflag & PL_CONTROLT) && (tp = p->p_session->s_ttyp)) { 2327 ki->p_tdev = tp->t_dev; 2328 ki->p_tpgid = tp->t_pgrp ? tp->t_pgrp->pg_id : NO_PGID; 2329 ki->p_tsess = PTRTOUINT64(tp->t_session); 2330 } else { 2331 ki->p_tdev = (int32_t)NODEV; 2332 } 2333 } 2334 2335 if (!P_ZOMBIE(p) && !zombie) { 2336 ki->p_uvalid = 1; 2337 ki->p_ustart_sec = p->p_stats->p_start.tv_sec; 2338 ki->p_ustart_usec = p->p_stats->p_start.tv_usec; 2339 2340 calcru(p, &ut, &st, NULL, &rt); 2341 ki->p_rtime_sec = rt.tv_sec; 2342 ki->p_rtime_usec = rt.tv_usec; 2343 ki->p_uutime_sec = ut.tv_sec; 2344 ki->p_uutime_usec = ut.tv_usec; 2345 ki->p_ustime_sec = st.tv_sec; 2346 ki->p_ustime_usec = st.tv_usec; 2347 2348 memcpy(&ru, &p->p_stats->p_ru, sizeof(ru)); 2349 ki->p_uru_nvcsw = 0; 2350 ki->p_uru_nivcsw = 0; 2351 LIST_FOREACH(l2, &p->p_lwps, l_sibling) { 2352 ki->p_uru_nvcsw += (l2->l_ncsw - l2->l_nivcsw); 2353 ki->p_uru_nivcsw += l2->l_nivcsw; 2354 ruadd(&ru, &l2->l_ru); 2355 } 2356 ki->p_uru_maxrss = ru.ru_maxrss; 2357 ki->p_uru_ixrss = ru.ru_ixrss; 2358 ki->p_uru_idrss = ru.ru_idrss; 2359 ki->p_uru_isrss = ru.ru_isrss; 2360 ki->p_uru_minflt = ru.ru_minflt; 2361 ki->p_uru_majflt = ru.ru_majflt; 2362 ki->p_uru_nswap = ru.ru_nswap; 2363 ki->p_uru_inblock = ru.ru_inblock; 2364 ki->p_uru_oublock = ru.ru_oublock; 2365 ki->p_uru_msgsnd = ru.ru_msgsnd; 2366 ki->p_uru_msgrcv = ru.ru_msgrcv; 2367 ki->p_uru_nsignals = ru.ru_nsignals; 2368 2369 timeradd(&p->p_stats->p_cru.ru_utime, 2370 &p->p_stats->p_cru.ru_stime, &ut); 2371 ki->p_uctime_sec = ut.tv_sec; 2372 ki->p_uctime_usec = ut.tv_usec; 2373 } 2374 } 2375