1 /* $NetBSD: kern_proc.c,v 1.146 2008/12/17 20:51:36 cegger Exp $ */ 2 3 /*- 4 * Copyright (c) 1999, 2006, 2007, 2008 The NetBSD Foundation, Inc. 5 * All rights reserved. 6 * 7 * This code is derived from software contributed to The NetBSD Foundation 8 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility, 9 * NASA Ames Research Center, and by Andrew Doran. 10 * 11 * Redistribution and use in source and binary forms, with or without 12 * modification, are permitted provided that the following conditions 13 * are met: 14 * 1. Redistributions of source code must retain the above copyright 15 * notice, this list of conditions and the following disclaimer. 16 * 2. Redistributions in binary form must reproduce the above copyright 17 * notice, this list of conditions and the following disclaimer in the 18 * documentation and/or other materials provided with the distribution. 19 * 20 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS 21 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 22 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 23 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 24 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 25 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 26 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 27 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 28 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 29 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 30 * POSSIBILITY OF SUCH DAMAGE. 31 */ 32 33 /* 34 * Copyright (c) 1982, 1986, 1989, 1991, 1993 35 * The Regents of the University of California. All rights reserved. 36 * 37 * Redistribution and use in source and binary forms, with or without 38 * modification, are permitted provided that the following conditions 39 * are met: 40 * 1. Redistributions of source code must retain the above copyright 41 * notice, this list of conditions and the following disclaimer. 42 * 2. Redistributions in binary form must reproduce the above copyright 43 * notice, this list of conditions and the following disclaimer in the 44 * documentation and/or other materials provided with the distribution. 45 * 3. Neither the name of the University nor the names of its contributors 46 * may be used to endorse or promote products derived from this software 47 * without specific prior written permission. 48 * 49 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 50 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 51 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 52 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 53 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 54 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 55 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 56 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 57 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 58 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 59 * SUCH DAMAGE. 60 * 61 * @(#)kern_proc.c 8.7 (Berkeley) 2/14/95 62 */ 63 64 #include <sys/cdefs.h> 65 __KERNEL_RCSID(0, "$NetBSD: kern_proc.c,v 1.146 2008/12/17 20:51:36 cegger Exp $"); 66 67 #include "opt_kstack.h" 68 #include "opt_maxuprc.h" 69 70 #include <sys/param.h> 71 #include <sys/systm.h> 72 #include <sys/kernel.h> 73 #include <sys/proc.h> 74 #include <sys/resourcevar.h> 75 #include <sys/buf.h> 76 #include <sys/acct.h> 77 #include <sys/wait.h> 78 #include <sys/file.h> 79 #include <ufs/ufs/quota.h> 80 #include <sys/uio.h> 81 #include <sys/malloc.h> 82 #include <sys/pool.h> 83 #include <sys/mbuf.h> 84 #include <sys/ioctl.h> 85 #include <sys/tty.h> 86 #include <sys/signalvar.h> 87 #include <sys/ras.h> 88 #include <sys/sa.h> 89 #include <sys/savar.h> 90 #include <sys/filedesc.h> 91 #include "sys/syscall_stats.h" 92 #include <sys/kauth.h> 93 #include <sys/sleepq.h> 94 #include <sys/atomic.h> 95 #include <sys/kmem.h> 96 97 #include <uvm/uvm.h> 98 #include <uvm/uvm_extern.h> 99 100 /* 101 * Other process lists 102 */ 103 104 struct proclist allproc; 105 struct proclist zombproc; /* resources have been freed */ 106 107 kmutex_t *proc_lock; 108 109 /* 110 * pid to proc lookup is done by indexing the pid_table array. 111 * Since pid numbers are only allocated when an empty slot 112 * has been found, there is no need to search any lists ever. 113 * (an orphaned pgrp will lock the slot, a session will lock 114 * the pgrp with the same number.) 115 * If the table is too small it is reallocated with twice the 116 * previous size and the entries 'unzipped' into the two halves. 117 * A linked list of free entries is passed through the pt_proc 118 * field of 'free' items - set odd to be an invalid ptr. 119 */ 120 121 struct pid_table { 122 struct proc *pt_proc; 123 struct pgrp *pt_pgrp; 124 }; 125 #if 1 /* strongly typed cast - should be a noop */ 126 static inline uint p2u(struct proc *p) { return (uint)(uintptr_t)p; } 127 #else 128 #define p2u(p) ((uint)p) 129 #endif 130 #define P_VALID(p) (!(p2u(p) & 1)) 131 #define P_NEXT(p) (p2u(p) >> 1) 132 #define P_FREE(pid) ((struct proc *)(uintptr_t)((pid) << 1 | 1)) 133 134 #define INITIAL_PID_TABLE_SIZE (1 << 5) 135 static struct pid_table *pid_table; 136 static uint pid_tbl_mask = INITIAL_PID_TABLE_SIZE - 1; 137 static uint pid_alloc_lim; /* max we allocate before growing table */ 138 static uint pid_alloc_cnt; /* number of allocated pids */ 139 140 /* links through free slots - never empty! */ 141 static uint next_free_pt, last_free_pt; 142 static pid_t pid_max = PID_MAX; /* largest value we allocate */ 143 144 /* Components of the first process -- never freed. */ 145 146 extern struct emul emul_netbsd; /* defined in kern_exec.c */ 147 148 struct session session0 = { 149 .s_count = 1, 150 .s_sid = 0, 151 }; 152 struct pgrp pgrp0 = { 153 .pg_members = LIST_HEAD_INITIALIZER(&pgrp0.pg_members), 154 .pg_session = &session0, 155 }; 156 filedesc_t filedesc0; 157 struct cwdinfo cwdi0 = { 158 .cwdi_cmask = CMASK, /* see cmask below */ 159 .cwdi_refcnt = 1, 160 }; 161 struct plimit limit0; 162 struct pstats pstat0; 163 struct vmspace vmspace0; 164 struct sigacts sigacts0; 165 struct turnstile turnstile0; 166 struct proc proc0 = { 167 .p_lwps = LIST_HEAD_INITIALIZER(&proc0.p_lwps), 168 .p_sigwaiters = LIST_HEAD_INITIALIZER(&proc0.p_sigwaiters), 169 .p_nlwps = 1, 170 .p_nrlwps = 1, 171 .p_nlwpid = 1, /* must match lwp0.l_lid */ 172 .p_pgrp = &pgrp0, 173 .p_comm = "system", 174 /* 175 * Set P_NOCLDWAIT so that kernel threads are reparented to init(8) 176 * when they exit. init(8) can easily wait them out for us. 177 */ 178 .p_flag = PK_SYSTEM | PK_NOCLDWAIT, 179 .p_stat = SACTIVE, 180 .p_nice = NZERO, 181 .p_emul = &emul_netbsd, 182 .p_cwdi = &cwdi0, 183 .p_limit = &limit0, 184 .p_fd = &filedesc0, 185 .p_vmspace = &vmspace0, 186 .p_stats = &pstat0, 187 .p_sigacts = &sigacts0, 188 }; 189 struct lwp lwp0 __aligned(MIN_LWP_ALIGNMENT) = { 190 #ifdef LWP0_CPU_INFO 191 .l_cpu = LWP0_CPU_INFO, 192 #endif 193 .l_proc = &proc0, 194 .l_lid = 1, 195 .l_flag = LW_INMEM | LW_SYSTEM, 196 .l_stat = LSONPROC, 197 .l_ts = &turnstile0, 198 .l_syncobj = &sched_syncobj, 199 .l_refcnt = 1, 200 .l_priority = PRI_USER + NPRI_USER - 1, 201 .l_inheritedprio = -1, 202 .l_class = SCHED_OTHER, 203 .l_pi_lenders = SLIST_HEAD_INITIALIZER(&lwp0.l_pi_lenders), 204 .l_name = __UNCONST("swapper"), 205 }; 206 kauth_cred_t cred0; 207 208 extern struct user *proc0paddr; 209 210 int nofile = NOFILE; 211 int maxuprc = MAXUPRC; 212 int cmask = CMASK; 213 214 MALLOC_DEFINE(M_EMULDATA, "emuldata", "Per-process emulation data"); 215 MALLOC_DEFINE(M_PROC, "proc", "Proc structures"); 216 MALLOC_DEFINE(M_SUBPROC, "subproc", "Proc sub-structures"); 217 218 /* 219 * The process list descriptors, used during pid allocation and 220 * by sysctl. No locking on this data structure is needed since 221 * it is completely static. 222 */ 223 const struct proclist_desc proclists[] = { 224 { &allproc }, 225 { &zombproc }, 226 { NULL }, 227 }; 228 229 static void orphanpg(struct pgrp *); 230 static void pg_delete(pid_t); 231 232 static specificdata_domain_t proc_specificdata_domain; 233 234 static pool_cache_t proc_cache; 235 236 /* 237 * Initialize global process hashing structures. 238 */ 239 void 240 procinit(void) 241 { 242 const struct proclist_desc *pd; 243 int i; 244 #define LINK_EMPTY ((PID_MAX + INITIAL_PID_TABLE_SIZE) & ~(INITIAL_PID_TABLE_SIZE - 1)) 245 246 for (pd = proclists; pd->pd_list != NULL; pd++) 247 LIST_INIT(pd->pd_list); 248 249 proc_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE); 250 251 pid_table = malloc(INITIAL_PID_TABLE_SIZE * sizeof *pid_table, 252 M_PROC, M_WAITOK); 253 /* Set free list running through table... 254 Preset 'use count' above PID_MAX so we allocate pid 1 next. */ 255 for (i = 0; i <= pid_tbl_mask; i++) { 256 pid_table[i].pt_proc = P_FREE(LINK_EMPTY + i + 1); 257 pid_table[i].pt_pgrp = 0; 258 } 259 /* slot 0 is just grabbed */ 260 next_free_pt = 1; 261 /* Need to fix last entry. */ 262 last_free_pt = pid_tbl_mask; 263 pid_table[last_free_pt].pt_proc = P_FREE(LINK_EMPTY); 264 /* point at which we grow table - to avoid reusing pids too often */ 265 pid_alloc_lim = pid_tbl_mask - 1; 266 #undef LINK_EMPTY 267 268 proc_specificdata_domain = specificdata_domain_create(); 269 KASSERT(proc_specificdata_domain != NULL); 270 271 proc_cache = pool_cache_init(sizeof(struct proc), 0, 0, 0, 272 "procpl", NULL, IPL_NONE, NULL, NULL, NULL); 273 } 274 275 /* 276 * Initialize process 0. 277 */ 278 void 279 proc0_init(void) 280 { 281 struct proc *p; 282 struct pgrp *pg; 283 struct session *sess; 284 struct lwp *l; 285 rlim_t lim; 286 int i; 287 288 p = &proc0; 289 pg = &pgrp0; 290 sess = &session0; 291 l = &lwp0; 292 293 KASSERT(l->l_lid == p->p_nlwpid); 294 295 mutex_init(&p->p_stmutex, MUTEX_DEFAULT, IPL_HIGH); 296 mutex_init(&p->p_auxlock, MUTEX_DEFAULT, IPL_NONE); 297 mutex_init(&l->l_swaplock, MUTEX_DEFAULT, IPL_NONE); 298 p->p_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE); 299 300 rw_init(&p->p_reflock); 301 cv_init(&p->p_waitcv, "wait"); 302 cv_init(&p->p_lwpcv, "lwpwait"); 303 304 LIST_INSERT_HEAD(&p->p_lwps, l, l_sibling); 305 306 pid_table[0].pt_proc = p; 307 LIST_INSERT_HEAD(&allproc, p, p_list); 308 LIST_INSERT_HEAD(&alllwp, l, l_list); 309 310 pid_table[0].pt_pgrp = pg; 311 LIST_INSERT_HEAD(&pg->pg_members, p, p_pglist); 312 313 #ifdef __HAVE_SYSCALL_INTERN 314 (*p->p_emul->e_syscall_intern)(p); 315 #endif 316 317 callout_init(&l->l_timeout_ch, CALLOUT_MPSAFE); 318 callout_setfunc(&l->l_timeout_ch, sleepq_timeout, l); 319 cv_init(&l->l_sigcv, "sigwait"); 320 321 /* Create credentials. */ 322 cred0 = kauth_cred_alloc(); 323 p->p_cred = cred0; 324 kauth_cred_hold(cred0); 325 l->l_cred = cred0; 326 327 /* Create the CWD info. */ 328 rw_init(&cwdi0.cwdi_lock); 329 330 /* Create the limits structures. */ 331 mutex_init(&limit0.pl_lock, MUTEX_DEFAULT, IPL_NONE); 332 for (i = 0; i < __arraycount(limit0.pl_rlimit); i++) 333 limit0.pl_rlimit[i].rlim_cur = 334 limit0.pl_rlimit[i].rlim_max = RLIM_INFINITY; 335 336 limit0.pl_rlimit[RLIMIT_NOFILE].rlim_max = maxfiles; 337 limit0.pl_rlimit[RLIMIT_NOFILE].rlim_cur = 338 maxfiles < nofile ? maxfiles : nofile; 339 340 limit0.pl_rlimit[RLIMIT_NPROC].rlim_max = maxproc; 341 limit0.pl_rlimit[RLIMIT_NPROC].rlim_cur = 342 maxproc < maxuprc ? maxproc : maxuprc; 343 344 lim = ptoa(uvmexp.free); 345 limit0.pl_rlimit[RLIMIT_RSS].rlim_max = lim; 346 limit0.pl_rlimit[RLIMIT_MEMLOCK].rlim_max = lim; 347 limit0.pl_rlimit[RLIMIT_MEMLOCK].rlim_cur = lim / 3; 348 limit0.pl_corename = defcorename; 349 limit0.pl_refcnt = 1; 350 limit0.pl_sv_limit = NULL; 351 352 /* Configure virtual memory system, set vm rlimits. */ 353 uvm_init_limits(p); 354 355 /* Initialize file descriptor table for proc0. */ 356 fd_init(&filedesc0); 357 358 /* 359 * Initialize proc0's vmspace, which uses the kernel pmap. 360 * All kernel processes (which never have user space mappings) 361 * share proc0's vmspace, and thus, the kernel pmap. 362 */ 363 uvmspace_init(&vmspace0, pmap_kernel(), round_page(VM_MIN_ADDRESS), 364 trunc_page(VM_MAX_ADDRESS)); 365 366 l->l_addr = proc0paddr; /* XXX */ 367 368 /* Initialize signal state for proc0. XXX IPL_SCHED */ 369 mutex_init(&p->p_sigacts->sa_mutex, MUTEX_DEFAULT, IPL_SCHED); 370 siginit(p); 371 372 proc_initspecific(p); 373 lwp_initspecific(l); 374 375 SYSCALL_TIME_LWP_INIT(l); 376 } 377 378 /* 379 * Check that the specified process group is in the session of the 380 * specified process. 381 * Treats -ve ids as process ids. 382 * Used to validate TIOCSPGRP requests. 383 */ 384 int 385 pgid_in_session(struct proc *p, pid_t pg_id) 386 { 387 struct pgrp *pgrp; 388 struct session *session; 389 int error; 390 391 mutex_enter(proc_lock); 392 if (pg_id < 0) { 393 struct proc *p1 = p_find(-pg_id, PFIND_LOCKED | PFIND_UNLOCK_FAIL); 394 if (p1 == NULL) 395 return EINVAL; 396 pgrp = p1->p_pgrp; 397 } else { 398 pgrp = pg_find(pg_id, PFIND_LOCKED | PFIND_UNLOCK_FAIL); 399 if (pgrp == NULL) 400 return EINVAL; 401 } 402 session = pgrp->pg_session; 403 if (session != p->p_pgrp->pg_session) 404 error = EPERM; 405 else 406 error = 0; 407 mutex_exit(proc_lock); 408 409 return error; 410 } 411 412 /* 413 * Is p an inferior of q? 414 * 415 * Call with the proc_lock held. 416 */ 417 int 418 inferior(struct proc *p, struct proc *q) 419 { 420 421 for (; p != q; p = p->p_pptr) 422 if (p->p_pid == 0) 423 return 0; 424 return 1; 425 } 426 427 /* 428 * Locate a process by number 429 */ 430 struct proc * 431 p_find(pid_t pid, uint flags) 432 { 433 struct proc *p; 434 char stat; 435 436 if (!(flags & PFIND_LOCKED)) 437 mutex_enter(proc_lock); 438 439 p = pid_table[pid & pid_tbl_mask].pt_proc; 440 441 /* Only allow live processes to be found by pid. */ 442 /* XXXSMP p_stat */ 443 if (P_VALID(p) && p->p_pid == pid && ((stat = p->p_stat) == SACTIVE || 444 stat == SSTOP || ((flags & PFIND_ZOMBIE) && 445 (stat == SZOMB || stat == SDEAD || stat == SDYING)))) { 446 if (flags & PFIND_UNLOCK_OK) 447 mutex_exit(proc_lock); 448 return p; 449 } 450 if (flags & PFIND_UNLOCK_FAIL) 451 mutex_exit(proc_lock); 452 return NULL; 453 } 454 455 456 /* 457 * Locate a process group by number 458 */ 459 struct pgrp * 460 pg_find(pid_t pgid, uint flags) 461 { 462 struct pgrp *pg; 463 464 if (!(flags & PFIND_LOCKED)) 465 mutex_enter(proc_lock); 466 pg = pid_table[pgid & pid_tbl_mask].pt_pgrp; 467 /* 468 * Can't look up a pgrp that only exists because the session 469 * hasn't died yet (traditional) 470 */ 471 if (pg == NULL || pg->pg_id != pgid || LIST_EMPTY(&pg->pg_members)) { 472 if (flags & PFIND_UNLOCK_FAIL) 473 mutex_exit(proc_lock); 474 return NULL; 475 } 476 477 if (flags & PFIND_UNLOCK_OK) 478 mutex_exit(proc_lock); 479 return pg; 480 } 481 482 static void 483 expand_pid_table(void) 484 { 485 uint pt_size = pid_tbl_mask + 1; 486 struct pid_table *n_pt, *new_pt; 487 struct proc *proc; 488 struct pgrp *pgrp; 489 int i; 490 pid_t pid; 491 492 new_pt = malloc(pt_size * 2 * sizeof *new_pt, M_PROC, M_WAITOK); 493 494 mutex_enter(proc_lock); 495 if (pt_size != pid_tbl_mask + 1) { 496 /* Another process beat us to it... */ 497 mutex_exit(proc_lock); 498 free(new_pt, M_PROC); 499 return; 500 } 501 502 /* 503 * Copy entries from old table into new one. 504 * If 'pid' is 'odd' we need to place in the upper half, 505 * even pid's to the lower half. 506 * Free items stay in the low half so we don't have to 507 * fixup the reference to them. 508 * We stuff free items on the front of the freelist 509 * because we can't write to unmodified entries. 510 * Processing the table backwards maintains a semblance 511 * of issueing pid numbers that increase with time. 512 */ 513 i = pt_size - 1; 514 n_pt = new_pt + i; 515 for (; ; i--, n_pt--) { 516 proc = pid_table[i].pt_proc; 517 pgrp = pid_table[i].pt_pgrp; 518 if (!P_VALID(proc)) { 519 /* Up 'use count' so that link is valid */ 520 pid = (P_NEXT(proc) + pt_size) & ~pt_size; 521 proc = P_FREE(pid); 522 if (pgrp) 523 pid = pgrp->pg_id; 524 } else 525 pid = proc->p_pid; 526 527 /* Save entry in appropriate half of table */ 528 n_pt[pid & pt_size].pt_proc = proc; 529 n_pt[pid & pt_size].pt_pgrp = pgrp; 530 531 /* Put other piece on start of free list */ 532 pid = (pid ^ pt_size) & ~pid_tbl_mask; 533 n_pt[pid & pt_size].pt_proc = 534 P_FREE((pid & ~pt_size) | next_free_pt); 535 n_pt[pid & pt_size].pt_pgrp = 0; 536 next_free_pt = i | (pid & pt_size); 537 if (i == 0) 538 break; 539 } 540 541 /* Switch tables */ 542 n_pt = pid_table; 543 pid_table = new_pt; 544 pid_tbl_mask = pt_size * 2 - 1; 545 546 /* 547 * pid_max starts as PID_MAX (= 30000), once we have 16384 548 * allocated pids we need it to be larger! 549 */ 550 if (pid_tbl_mask > PID_MAX) { 551 pid_max = pid_tbl_mask * 2 + 1; 552 pid_alloc_lim |= pid_alloc_lim << 1; 553 } else 554 pid_alloc_lim <<= 1; /* doubles number of free slots... */ 555 556 mutex_exit(proc_lock); 557 free(n_pt, M_PROC); 558 } 559 560 struct proc * 561 proc_alloc(void) 562 { 563 struct proc *p; 564 int nxt; 565 pid_t pid; 566 struct pid_table *pt; 567 568 p = pool_cache_get(proc_cache, PR_WAITOK); 569 p->p_stat = SIDL; /* protect against others */ 570 571 proc_initspecific(p); 572 /* allocate next free pid */ 573 574 for (;;expand_pid_table()) { 575 if (__predict_false(pid_alloc_cnt >= pid_alloc_lim)) 576 /* ensure pids cycle through 2000+ values */ 577 continue; 578 mutex_enter(proc_lock); 579 pt = &pid_table[next_free_pt]; 580 #ifdef DIAGNOSTIC 581 if (__predict_false(P_VALID(pt->pt_proc) || pt->pt_pgrp)) 582 panic("proc_alloc: slot busy"); 583 #endif 584 nxt = P_NEXT(pt->pt_proc); 585 if (nxt & pid_tbl_mask) 586 break; 587 /* Table full - expand (NB last entry not used....) */ 588 mutex_exit(proc_lock); 589 } 590 591 /* pid is 'saved use count' + 'size' + entry */ 592 pid = (nxt & ~pid_tbl_mask) + pid_tbl_mask + 1 + next_free_pt; 593 if ((uint)pid > (uint)pid_max) 594 pid &= pid_tbl_mask; 595 p->p_pid = pid; 596 next_free_pt = nxt & pid_tbl_mask; 597 598 /* Grab table slot */ 599 pt->pt_proc = p; 600 pid_alloc_cnt++; 601 602 mutex_exit(proc_lock); 603 604 return p; 605 } 606 607 /* 608 * Free a process id - called from proc_free (in kern_exit.c) 609 * 610 * Called with the proc_lock held. 611 */ 612 void 613 proc_free_pid(struct proc *p) 614 { 615 pid_t pid = p->p_pid; 616 struct pid_table *pt; 617 618 KASSERT(mutex_owned(proc_lock)); 619 620 pt = &pid_table[pid & pid_tbl_mask]; 621 #ifdef DIAGNOSTIC 622 if (__predict_false(pt->pt_proc != p)) 623 panic("proc_free: pid_table mismatch, pid %x, proc %p", 624 pid, p); 625 #endif 626 /* save pid use count in slot */ 627 pt->pt_proc = P_FREE(pid & ~pid_tbl_mask); 628 629 if (pt->pt_pgrp == NULL) { 630 /* link last freed entry onto ours */ 631 pid &= pid_tbl_mask; 632 pt = &pid_table[last_free_pt]; 633 pt->pt_proc = P_FREE(P_NEXT(pt->pt_proc) | pid); 634 last_free_pt = pid; 635 pid_alloc_cnt--; 636 } 637 638 atomic_dec_uint(&nprocs); 639 } 640 641 void 642 proc_free_mem(struct proc *p) 643 { 644 645 pool_cache_put(proc_cache, p); 646 } 647 648 /* 649 * Move p to a new or existing process group (and session) 650 * 651 * If we are creating a new pgrp, the pgid should equal 652 * the calling process' pid. 653 * If is only valid to enter a process group that is in the session 654 * of the process. 655 * Also mksess should only be set if we are creating a process group 656 * 657 * Only called from sys_setsid and sys_setpgid. 658 */ 659 int 660 enterpgrp(struct proc *curp, pid_t pid, pid_t pgid, int mksess) 661 { 662 struct pgrp *new_pgrp, *pgrp; 663 struct session *sess; 664 struct proc *p; 665 int rval; 666 pid_t pg_id = NO_PGID; 667 668 if (mksess) 669 sess = kmem_alloc(sizeof(*sess), KM_SLEEP); 670 else 671 sess = NULL; 672 673 /* Allocate data areas we might need before doing any validity checks */ 674 mutex_enter(proc_lock); /* Because pid_table might change */ 675 if (pid_table[pgid & pid_tbl_mask].pt_pgrp == 0) { 676 mutex_exit(proc_lock); 677 new_pgrp = kmem_alloc(sizeof(*new_pgrp), KM_SLEEP); 678 mutex_enter(proc_lock); 679 } else 680 new_pgrp = NULL; 681 rval = EPERM; /* most common error (to save typing) */ 682 683 /* Check pgrp exists or can be created */ 684 pgrp = pid_table[pgid & pid_tbl_mask].pt_pgrp; 685 if (pgrp != NULL && pgrp->pg_id != pgid) 686 goto done; 687 688 /* Can only set another process under restricted circumstances. */ 689 if (pid != curp->p_pid) { 690 /* must exist and be one of our children... */ 691 if ((p = p_find(pid, PFIND_LOCKED)) == NULL || 692 !inferior(p, curp)) { 693 rval = ESRCH; 694 goto done; 695 } 696 /* ... in the same session... */ 697 if (sess != NULL || p->p_session != curp->p_session) 698 goto done; 699 /* ... existing pgid must be in same session ... */ 700 if (pgrp != NULL && pgrp->pg_session != p->p_session) 701 goto done; 702 /* ... and not done an exec. */ 703 if (p->p_flag & PK_EXEC) { 704 rval = EACCES; 705 goto done; 706 } 707 } else { 708 /* ... setsid() cannot re-enter a pgrp */ 709 if (mksess && (curp->p_pgid == curp->p_pid || 710 pg_find(curp->p_pid, PFIND_LOCKED))) 711 goto done; 712 p = curp; 713 } 714 715 /* Changing the process group/session of a session 716 leader is definitely off limits. */ 717 if (SESS_LEADER(p)) { 718 if (sess == NULL && p->p_pgrp == pgrp) 719 /* unless it's a definite noop */ 720 rval = 0; 721 goto done; 722 } 723 724 /* Can only create a process group with id of process */ 725 if (pgrp == NULL && pgid != pid) 726 goto done; 727 728 /* Can only create a session if creating pgrp */ 729 if (sess != NULL && pgrp != NULL) 730 goto done; 731 732 /* Check we allocated memory for a pgrp... */ 733 if (pgrp == NULL && new_pgrp == NULL) 734 goto done; 735 736 /* Don't attach to 'zombie' pgrp */ 737 if (pgrp != NULL && LIST_EMPTY(&pgrp->pg_members)) 738 goto done; 739 740 /* Expect to succeed now */ 741 rval = 0; 742 743 if (pgrp == p->p_pgrp) 744 /* nothing to do */ 745 goto done; 746 747 /* Ok all setup, link up required structures */ 748 749 if (pgrp == NULL) { 750 pgrp = new_pgrp; 751 new_pgrp = NULL; 752 if (sess != NULL) { 753 sess->s_sid = p->p_pid; 754 sess->s_leader = p; 755 sess->s_count = 1; 756 sess->s_ttyvp = NULL; 757 sess->s_ttyp = NULL; 758 sess->s_flags = p->p_session->s_flags & ~S_LOGIN_SET; 759 memcpy(sess->s_login, p->p_session->s_login, 760 sizeof(sess->s_login)); 761 p->p_lflag &= ~PL_CONTROLT; 762 } else { 763 sess = p->p_pgrp->pg_session; 764 SESSHOLD(sess); 765 } 766 pgrp->pg_session = sess; 767 sess = NULL; 768 769 pgrp->pg_id = pgid; 770 LIST_INIT(&pgrp->pg_members); 771 #ifdef DIAGNOSTIC 772 if (__predict_false(pid_table[pgid & pid_tbl_mask].pt_pgrp)) 773 panic("enterpgrp: pgrp table slot in use"); 774 if (__predict_false(mksess && p != curp)) 775 panic("enterpgrp: mksession and p != curproc"); 776 #endif 777 pid_table[pgid & pid_tbl_mask].pt_pgrp = pgrp; 778 pgrp->pg_jobc = 0; 779 } 780 781 /* 782 * Adjust eligibility of affected pgrps to participate in job control. 783 * Increment eligibility counts before decrementing, otherwise we 784 * could reach 0 spuriously during the first call. 785 */ 786 fixjobc(p, pgrp, 1); 787 fixjobc(p, p->p_pgrp, 0); 788 789 /* Interlock with ttread(). */ 790 mutex_spin_enter(&tty_lock); 791 792 /* Move process to requested group. */ 793 LIST_REMOVE(p, p_pglist); 794 if (LIST_EMPTY(&p->p_pgrp->pg_members)) 795 /* defer delete until we've dumped the lock */ 796 pg_id = p->p_pgrp->pg_id; 797 p->p_pgrp = pgrp; 798 LIST_INSERT_HEAD(&pgrp->pg_members, p, p_pglist); 799 800 /* Done with the swap; we can release the tty mutex. */ 801 mutex_spin_exit(&tty_lock); 802 803 done: 804 if (pg_id != NO_PGID) 805 pg_delete(pg_id); 806 mutex_exit(proc_lock); 807 if (sess != NULL) 808 kmem_free(sess, sizeof(*sess)); 809 if (new_pgrp != NULL) 810 kmem_free(new_pgrp, sizeof(*new_pgrp)); 811 #ifdef DEBUG_PGRP 812 if (__predict_false(rval)) 813 printf("enterpgrp(%d,%d,%d), curproc %d, rval %d\n", 814 pid, pgid, mksess, curp->p_pid, rval); 815 #endif 816 return rval; 817 } 818 819 /* 820 * Remove a process from its process group. Must be called with the 821 * proc_lock held. 822 */ 823 void 824 leavepgrp(struct proc *p) 825 { 826 struct pgrp *pgrp; 827 828 KASSERT(mutex_owned(proc_lock)); 829 830 /* Interlock with ttread() */ 831 mutex_spin_enter(&tty_lock); 832 pgrp = p->p_pgrp; 833 LIST_REMOVE(p, p_pglist); 834 p->p_pgrp = NULL; 835 mutex_spin_exit(&tty_lock); 836 837 if (LIST_EMPTY(&pgrp->pg_members)) 838 pg_delete(pgrp->pg_id); 839 } 840 841 /* 842 * Free a process group. Must be called with the proc_lock held. 843 */ 844 static void 845 pg_free(pid_t pg_id) 846 { 847 struct pgrp *pgrp; 848 struct pid_table *pt; 849 850 KASSERT(mutex_owned(proc_lock)); 851 852 pt = &pid_table[pg_id & pid_tbl_mask]; 853 pgrp = pt->pt_pgrp; 854 #ifdef DIAGNOSTIC 855 if (__predict_false(!pgrp || pgrp->pg_id != pg_id 856 || !LIST_EMPTY(&pgrp->pg_members))) 857 panic("pg_free: process group absent or has members"); 858 #endif 859 pt->pt_pgrp = 0; 860 861 if (!P_VALID(pt->pt_proc)) { 862 /* orphaned pgrp, put slot onto free list */ 863 #ifdef DIAGNOSTIC 864 if (__predict_false(P_NEXT(pt->pt_proc) & pid_tbl_mask)) 865 panic("pg_free: process slot on free list"); 866 #endif 867 pg_id &= pid_tbl_mask; 868 pt = &pid_table[last_free_pt]; 869 pt->pt_proc = P_FREE(P_NEXT(pt->pt_proc) | pg_id); 870 last_free_pt = pg_id; 871 pid_alloc_cnt--; 872 } 873 kmem_free(pgrp, sizeof(*pgrp)); 874 } 875 876 /* 877 * Delete a process group. Must be called with the proc_lock held. 878 */ 879 static void 880 pg_delete(pid_t pg_id) 881 { 882 struct pgrp *pgrp; 883 struct tty *ttyp; 884 struct session *ss; 885 int is_pgrp_leader; 886 887 KASSERT(mutex_owned(proc_lock)); 888 889 pgrp = pid_table[pg_id & pid_tbl_mask].pt_pgrp; 890 if (pgrp == NULL || pgrp->pg_id != pg_id || 891 !LIST_EMPTY(&pgrp->pg_members)) 892 return; 893 894 ss = pgrp->pg_session; 895 896 /* Remove reference (if any) from tty to this process group */ 897 mutex_spin_enter(&tty_lock); 898 ttyp = ss->s_ttyp; 899 if (ttyp != NULL && ttyp->t_pgrp == pgrp) { 900 ttyp->t_pgrp = NULL; 901 #ifdef DIAGNOSTIC 902 if (ttyp->t_session != ss) 903 panic("pg_delete: wrong session on terminal"); 904 #endif 905 } 906 mutex_spin_exit(&tty_lock); 907 908 /* 909 * The leading process group in a session is freed 910 * by sessdelete() if last reference. 911 */ 912 is_pgrp_leader = (ss->s_sid == pgrp->pg_id); 913 SESSRELE(ss); 914 915 if (is_pgrp_leader) 916 return; 917 918 pg_free(pg_id); 919 } 920 921 /* 922 * Delete session - called from SESSRELE when s_count becomes zero. 923 * Must be called with the proc_lock held. 924 */ 925 void 926 sessdelete(struct session *ss) 927 { 928 929 KASSERT(mutex_owned(proc_lock)); 930 931 /* 932 * We keep the pgrp with the same id as the session in 933 * order to stop a process being given the same pid. 934 * Since the pgrp holds a reference to the session, it 935 * must be a 'zombie' pgrp by now. 936 */ 937 pg_free(ss->s_sid); 938 kmem_free(ss, sizeof(*ss)); 939 } 940 941 /* 942 * Adjust pgrp jobc counters when specified process changes process group. 943 * We count the number of processes in each process group that "qualify" 944 * the group for terminal job control (those with a parent in a different 945 * process group of the same session). If that count reaches zero, the 946 * process group becomes orphaned. Check both the specified process' 947 * process group and that of its children. 948 * entering == 0 => p is leaving specified group. 949 * entering == 1 => p is entering specified group. 950 * 951 * Call with proc_lock held. 952 */ 953 void 954 fixjobc(struct proc *p, struct pgrp *pgrp, int entering) 955 { 956 struct pgrp *hispgrp; 957 struct session *mysession = pgrp->pg_session; 958 struct proc *child; 959 960 KASSERT(mutex_owned(proc_lock)); 961 962 /* 963 * Check p's parent to see whether p qualifies its own process 964 * group; if so, adjust count for p's process group. 965 */ 966 hispgrp = p->p_pptr->p_pgrp; 967 if (hispgrp != pgrp && hispgrp->pg_session == mysession) { 968 if (entering) { 969 pgrp->pg_jobc++; 970 p->p_lflag &= ~PL_ORPHANPG; 971 } else if (--pgrp->pg_jobc == 0) 972 orphanpg(pgrp); 973 } 974 975 /* 976 * Check this process' children to see whether they qualify 977 * their process groups; if so, adjust counts for children's 978 * process groups. 979 */ 980 LIST_FOREACH(child, &p->p_children, p_sibling) { 981 hispgrp = child->p_pgrp; 982 if (hispgrp != pgrp && hispgrp->pg_session == mysession && 983 !P_ZOMBIE(child)) { 984 if (entering) { 985 child->p_lflag &= ~PL_ORPHANPG; 986 hispgrp->pg_jobc++; 987 } else if (--hispgrp->pg_jobc == 0) 988 orphanpg(hispgrp); 989 } 990 } 991 } 992 993 /* 994 * A process group has become orphaned; 995 * if there are any stopped processes in the group, 996 * hang-up all process in that group. 997 * 998 * Call with proc_lock held. 999 */ 1000 static void 1001 orphanpg(struct pgrp *pg) 1002 { 1003 struct proc *p; 1004 int doit; 1005 1006 KASSERT(mutex_owned(proc_lock)); 1007 1008 doit = 0; 1009 1010 LIST_FOREACH(p, &pg->pg_members, p_pglist) { 1011 if (p->p_stat == SSTOP) { 1012 p->p_lflag |= PL_ORPHANPG; 1013 psignal(p, SIGHUP); 1014 psignal(p, SIGCONT); 1015 } 1016 } 1017 } 1018 1019 #ifdef DDB 1020 #include <ddb/db_output.h> 1021 void pidtbl_dump(void); 1022 void 1023 pidtbl_dump(void) 1024 { 1025 struct pid_table *pt; 1026 struct proc *p; 1027 struct pgrp *pgrp; 1028 int id; 1029 1030 db_printf("pid table %p size %x, next %x, last %x\n", 1031 pid_table, pid_tbl_mask+1, 1032 next_free_pt, last_free_pt); 1033 for (pt = pid_table, id = 0; id <= pid_tbl_mask; id++, pt++) { 1034 p = pt->pt_proc; 1035 if (!P_VALID(p) && !pt->pt_pgrp) 1036 continue; 1037 db_printf(" id %x: ", id); 1038 if (P_VALID(p)) 1039 db_printf("proc %p id %d (0x%x) %s\n", 1040 p, p->p_pid, p->p_pid, p->p_comm); 1041 else 1042 db_printf("next %x use %x\n", 1043 P_NEXT(p) & pid_tbl_mask, 1044 P_NEXT(p) & ~pid_tbl_mask); 1045 if ((pgrp = pt->pt_pgrp)) { 1046 db_printf("\tsession %p, sid %d, count %d, login %s\n", 1047 pgrp->pg_session, pgrp->pg_session->s_sid, 1048 pgrp->pg_session->s_count, 1049 pgrp->pg_session->s_login); 1050 db_printf("\tpgrp %p, pg_id %d, pg_jobc %d, members %p\n", 1051 pgrp, pgrp->pg_id, pgrp->pg_jobc, 1052 LIST_FIRST(&pgrp->pg_members)); 1053 LIST_FOREACH(p, &pgrp->pg_members, p_pglist) { 1054 db_printf("\t\tpid %d addr %p pgrp %p %s\n", 1055 p->p_pid, p, p->p_pgrp, p->p_comm); 1056 } 1057 } 1058 } 1059 } 1060 #endif /* DDB */ 1061 1062 #ifdef KSTACK_CHECK_MAGIC 1063 #include <sys/user.h> 1064 1065 #define KSTACK_MAGIC 0xdeadbeaf 1066 1067 /* XXX should be per process basis? */ 1068 int kstackleftmin = KSTACK_SIZE; 1069 int kstackleftthres = KSTACK_SIZE / 8; /* warn if remaining stack is 1070 less than this */ 1071 1072 void 1073 kstack_setup_magic(const struct lwp *l) 1074 { 1075 uint32_t *ip; 1076 uint32_t const *end; 1077 1078 KASSERT(l != NULL); 1079 KASSERT(l != &lwp0); 1080 1081 /* 1082 * fill all the stack with magic number 1083 * so that later modification on it can be detected. 1084 */ 1085 ip = (uint32_t *)KSTACK_LOWEST_ADDR(l); 1086 end = (uint32_t *)((char *)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE); 1087 for (; ip < end; ip++) { 1088 *ip = KSTACK_MAGIC; 1089 } 1090 } 1091 1092 void 1093 kstack_check_magic(const struct lwp *l) 1094 { 1095 uint32_t const *ip, *end; 1096 int stackleft; 1097 1098 KASSERT(l != NULL); 1099 1100 /* don't check proc0 */ /*XXX*/ 1101 if (l == &lwp0) 1102 return; 1103 1104 #ifdef __MACHINE_STACK_GROWS_UP 1105 /* stack grows upwards (eg. hppa) */ 1106 ip = (uint32_t *)((void *)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE); 1107 end = (uint32_t *)KSTACK_LOWEST_ADDR(l); 1108 for (ip--; ip >= end; ip--) 1109 if (*ip != KSTACK_MAGIC) 1110 break; 1111 1112 stackleft = (void *)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE - (void *)ip; 1113 #else /* __MACHINE_STACK_GROWS_UP */ 1114 /* stack grows downwards (eg. i386) */ 1115 ip = (uint32_t *)KSTACK_LOWEST_ADDR(l); 1116 end = (uint32_t *)((char *)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE); 1117 for (; ip < end; ip++) 1118 if (*ip != KSTACK_MAGIC) 1119 break; 1120 1121 stackleft = ((const char *)ip) - (const char *)KSTACK_LOWEST_ADDR(l); 1122 #endif /* __MACHINE_STACK_GROWS_UP */ 1123 1124 if (kstackleftmin > stackleft) { 1125 kstackleftmin = stackleft; 1126 if (stackleft < kstackleftthres) 1127 printf("warning: kernel stack left %d bytes" 1128 "(pid %u:lid %u)\n", stackleft, 1129 (u_int)l->l_proc->p_pid, (u_int)l->l_lid); 1130 } 1131 1132 if (stackleft <= 0) { 1133 panic("magic on the top of kernel stack changed for " 1134 "pid %u, lid %u: maybe kernel stack overflow", 1135 (u_int)l->l_proc->p_pid, (u_int)l->l_lid); 1136 } 1137 } 1138 #endif /* KSTACK_CHECK_MAGIC */ 1139 1140 int 1141 proclist_foreach_call(struct proclist *list, 1142 int (*callback)(struct proc *, void *arg), void *arg) 1143 { 1144 struct proc marker; 1145 struct proc *p; 1146 struct lwp * const l = curlwp; 1147 int ret = 0; 1148 1149 marker.p_flag = PK_MARKER; 1150 uvm_lwp_hold(l); 1151 mutex_enter(proc_lock); 1152 for (p = LIST_FIRST(list); ret == 0 && p != NULL;) { 1153 if (p->p_flag & PK_MARKER) { 1154 p = LIST_NEXT(p, p_list); 1155 continue; 1156 } 1157 LIST_INSERT_AFTER(p, &marker, p_list); 1158 ret = (*callback)(p, arg); 1159 KASSERT(mutex_owned(proc_lock)); 1160 p = LIST_NEXT(&marker, p_list); 1161 LIST_REMOVE(&marker, p_list); 1162 } 1163 mutex_exit(proc_lock); 1164 uvm_lwp_rele(l); 1165 1166 return ret; 1167 } 1168 1169 int 1170 proc_vmspace_getref(struct proc *p, struct vmspace **vm) 1171 { 1172 1173 /* XXXCDC: how should locking work here? */ 1174 1175 /* curproc exception is for coredump. */ 1176 1177 if ((p != curproc && (p->p_sflag & PS_WEXIT) != 0) || 1178 (p->p_vmspace->vm_refcnt < 1)) { /* XXX */ 1179 return EFAULT; 1180 } 1181 1182 uvmspace_addref(p->p_vmspace); 1183 *vm = p->p_vmspace; 1184 1185 return 0; 1186 } 1187 1188 /* 1189 * Acquire a write lock on the process credential. 1190 */ 1191 void 1192 proc_crmod_enter(void) 1193 { 1194 struct lwp *l = curlwp; 1195 struct proc *p = l->l_proc; 1196 struct plimit *lim; 1197 kauth_cred_t oc; 1198 char *cn; 1199 1200 /* Reset what needs to be reset in plimit. */ 1201 if (p->p_limit->pl_corename != defcorename) { 1202 lim_privatise(p, false); 1203 lim = p->p_limit; 1204 mutex_enter(&lim->pl_lock); 1205 cn = lim->pl_corename; 1206 lim->pl_corename = defcorename; 1207 mutex_exit(&lim->pl_lock); 1208 if (cn != defcorename) 1209 free(cn, M_TEMP); 1210 } 1211 1212 mutex_enter(p->p_lock); 1213 1214 /* Ensure the LWP cached credentials are up to date. */ 1215 if ((oc = l->l_cred) != p->p_cred) { 1216 kauth_cred_hold(p->p_cred); 1217 l->l_cred = p->p_cred; 1218 kauth_cred_free(oc); 1219 } 1220 1221 } 1222 1223 /* 1224 * Set in a new process credential, and drop the write lock. The credential 1225 * must have a reference already. Optionally, free a no-longer required 1226 * credential. The scheduler also needs to inspect p_cred, so we also 1227 * briefly acquire the sched state mutex. 1228 */ 1229 void 1230 proc_crmod_leave(kauth_cred_t scred, kauth_cred_t fcred, bool sugid) 1231 { 1232 struct lwp *l = curlwp, *l2; 1233 struct proc *p = l->l_proc; 1234 kauth_cred_t oc; 1235 1236 KASSERT(mutex_owned(p->p_lock)); 1237 1238 /* Is there a new credential to set in? */ 1239 if (scred != NULL) { 1240 p->p_cred = scred; 1241 LIST_FOREACH(l2, &p->p_lwps, l_sibling) { 1242 if (l2 != l) 1243 l2->l_prflag |= LPR_CRMOD; 1244 } 1245 1246 /* Ensure the LWP cached credentials are up to date. */ 1247 if ((oc = l->l_cred) != scred) { 1248 kauth_cred_hold(scred); 1249 l->l_cred = scred; 1250 } 1251 } else 1252 oc = NULL; /* XXXgcc */ 1253 1254 if (sugid) { 1255 /* 1256 * Mark process as having changed credentials, stops 1257 * tracing etc. 1258 */ 1259 p->p_flag |= PK_SUGID; 1260 } 1261 1262 mutex_exit(p->p_lock); 1263 1264 /* If there is a credential to be released, free it now. */ 1265 if (fcred != NULL) { 1266 KASSERT(scred != NULL); 1267 kauth_cred_free(fcred); 1268 if (oc != scred) 1269 kauth_cred_free(oc); 1270 } 1271 } 1272 1273 /* 1274 * proc_specific_key_create -- 1275 * Create a key for subsystem proc-specific data. 1276 */ 1277 int 1278 proc_specific_key_create(specificdata_key_t *keyp, specificdata_dtor_t dtor) 1279 { 1280 1281 return (specificdata_key_create(proc_specificdata_domain, keyp, dtor)); 1282 } 1283 1284 /* 1285 * proc_specific_key_delete -- 1286 * Delete a key for subsystem proc-specific data. 1287 */ 1288 void 1289 proc_specific_key_delete(specificdata_key_t key) 1290 { 1291 1292 specificdata_key_delete(proc_specificdata_domain, key); 1293 } 1294 1295 /* 1296 * proc_initspecific -- 1297 * Initialize a proc's specificdata container. 1298 */ 1299 void 1300 proc_initspecific(struct proc *p) 1301 { 1302 int error; 1303 1304 error = specificdata_init(proc_specificdata_domain, &p->p_specdataref); 1305 KASSERT(error == 0); 1306 } 1307 1308 /* 1309 * proc_finispecific -- 1310 * Finalize a proc's specificdata container. 1311 */ 1312 void 1313 proc_finispecific(struct proc *p) 1314 { 1315 1316 specificdata_fini(proc_specificdata_domain, &p->p_specdataref); 1317 } 1318 1319 /* 1320 * proc_getspecific -- 1321 * Return proc-specific data corresponding to the specified key. 1322 */ 1323 void * 1324 proc_getspecific(struct proc *p, specificdata_key_t key) 1325 { 1326 1327 return (specificdata_getspecific(proc_specificdata_domain, 1328 &p->p_specdataref, key)); 1329 } 1330 1331 /* 1332 * proc_setspecific -- 1333 * Set proc-specific data corresponding to the specified key. 1334 */ 1335 void 1336 proc_setspecific(struct proc *p, specificdata_key_t key, void *data) 1337 { 1338 1339 specificdata_setspecific(proc_specificdata_domain, 1340 &p->p_specdataref, key, data); 1341 } 1342