xref: /netbsd-src/sys/kern/kern_ntptime.c (revision ce2c90c7c172d95d2402a5b3d96d8f8e6d138a21)
1 /*	$NetBSD: kern_ntptime.c,v 1.39 2006/10/13 16:53:36 dogcow Exp $	*/
2 #include <sys/types.h> 	/* XXX to get __HAVE_TIMECOUNTER, remove
3 			   after all ports are converted. */
4 #ifdef __HAVE_TIMECOUNTER
5 
6 /*-
7  ***********************************************************************
8  *								       *
9  * Copyright (c) David L. Mills 1993-2001			       *
10  *								       *
11  * Permission to use, copy, modify, and distribute this software and   *
12  * its documentation for any purpose and without fee is hereby	       *
13  * granted, provided that the above copyright notice appears in all    *
14  * copies and that both the copyright notice and this permission       *
15  * notice appear in supporting documentation, and that the name	       *
16  * University of Delaware not be used in advertising or publicity      *
17  * pertaining to distribution of the software without specific,	       *
18  * written prior permission. The University of Delaware makes no       *
19  * representations about the suitability this software for any	       *
20  * purpose. It is provided "as is" without express or implied	       *
21  * warranty.							       *
22  *								       *
23  **********************************************************************/
24 
25 /*
26  * Adapted from the original sources for FreeBSD and timecounters by:
27  * Poul-Henning Kamp <phk@FreeBSD.org>.
28  *
29  * The 32bit version of the "LP" macros seems a bit past its "sell by"
30  * date so I have retained only the 64bit version and included it directly
31  * in this file.
32  *
33  * Only minor changes done to interface with the timecounters over in
34  * sys/kern/kern_clock.c.   Some of the comments below may be (even more)
35  * confusing and/or plain wrong in that context.
36  */
37 
38 #include <sys/cdefs.h>
39 /* __FBSDID("$FreeBSD: src/sys/kern/kern_ntptime.c,v 1.59 2005/05/28 14:34:41 rwatson Exp $"); */
40 __KERNEL_RCSID(0, "$NetBSD: kern_ntptime.c,v 1.39 2006/10/13 16:53:36 dogcow Exp $");
41 
42 #include "opt_ntp.h"
43 #include "opt_compat_netbsd.h"
44 
45 #include <sys/param.h>
46 #include <sys/resourcevar.h>
47 #include <sys/systm.h>
48 #include <sys/kernel.h>
49 #include <sys/proc.h>
50 #include <sys/sysctl.h>
51 #include <sys/timex.h>
52 #ifdef COMPAT_30
53 #include <compat/sys/timex.h>
54 #endif
55 #include <sys/vnode.h>
56 #include <sys/kauth.h>
57 
58 #include <sys/mount.h>
59 #include <sys/sa.h>
60 #include <sys/syscallargs.h>
61 
62 #include <machine/cpu.h>
63 
64 /*
65  * Single-precision macros for 64-bit machines
66  */
67 typedef int64_t l_fp;
68 #define L_ADD(v, u)	((v) += (u))
69 #define L_SUB(v, u)	((v) -= (u))
70 #define L_ADDHI(v, a)	((v) += (int64_t)(a) << 32)
71 #define L_NEG(v)	((v) = -(v))
72 #define L_RSHIFT(v, n) \
73 	do { \
74 		if ((v) < 0) \
75 			(v) = -(-(v) >> (n)); \
76 		else \
77 			(v) = (v) >> (n); \
78 	} while (0)
79 #define L_MPY(v, a)	((v) *= (a))
80 #define L_CLR(v)	((v) = 0)
81 #define L_ISNEG(v)	((v) < 0)
82 #define L_LINT(v, a)	((v) = (int64_t)(a) << 32)
83 #define L_GINT(v)	((v) < 0 ? -(-(v) >> 32) : (v) >> 32)
84 
85 #ifdef NTP
86 /*
87  * Generic NTP kernel interface
88  *
89  * These routines constitute the Network Time Protocol (NTP) interfaces
90  * for user and daemon application programs. The ntp_gettime() routine
91  * provides the time, maximum error (synch distance) and estimated error
92  * (dispersion) to client user application programs. The ntp_adjtime()
93  * routine is used by the NTP daemon to adjust the system clock to an
94  * externally derived time. The time offset and related variables set by
95  * this routine are used by other routines in this module to adjust the
96  * phase and frequency of the clock discipline loop which controls the
97  * system clock.
98  *
99  * When the kernel time is reckoned directly in nanoseconds (NTP_NANO
100  * defined), the time at each tick interrupt is derived directly from
101  * the kernel time variable. When the kernel time is reckoned in
102  * microseconds, (NTP_NANO undefined), the time is derived from the
103  * kernel time variable together with a variable representing the
104  * leftover nanoseconds at the last tick interrupt. In either case, the
105  * current nanosecond time is reckoned from these values plus an
106  * interpolated value derived by the clock routines in another
107  * architecture-specific module. The interpolation can use either a
108  * dedicated counter or a processor cycle counter (PCC) implemented in
109  * some architectures.
110  *
111  * Note that all routines must run at priority splclock or higher.
112  */
113 /*
114  * Phase/frequency-lock loop (PLL/FLL) definitions
115  *
116  * The nanosecond clock discipline uses two variable types, time
117  * variables and frequency variables. Both types are represented as 64-
118  * bit fixed-point quantities with the decimal point between two 32-bit
119  * halves. On a 32-bit machine, each half is represented as a single
120  * word and mathematical operations are done using multiple-precision
121  * arithmetic. On a 64-bit machine, ordinary computer arithmetic is
122  * used.
123  *
124  * A time variable is a signed 64-bit fixed-point number in ns and
125  * fraction. It represents the remaining time offset to be amortized
126  * over succeeding tick interrupts. The maximum time offset is about
127  * 0.5 s and the resolution is about 2.3e-10 ns.
128  *
129  *			1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3
130  *  0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
131  * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
132  * |s s s|			 ns				   |
133  * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
134  * |			    fraction				   |
135  * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
136  *
137  * A frequency variable is a signed 64-bit fixed-point number in ns/s
138  * and fraction. It represents the ns and fraction to be added to the
139  * kernel time variable at each second. The maximum frequency offset is
140  * about +-500000 ns/s and the resolution is about 2.3e-10 ns/s.
141  *
142  *			1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3
143  *  0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
144  * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
145  * |s s s s s s s s s s s s s|	          ns/s			   |
146  * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
147  * |			    fraction				   |
148  * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
149  */
150 /*
151  * The following variables establish the state of the PLL/FLL and the
152  * residual time and frequency offset of the local clock.
153  */
154 #define SHIFT_PLL	4		/* PLL loop gain (shift) */
155 #define SHIFT_FLL	2		/* FLL loop gain (shift) */
156 
157 static int time_state = TIME_OK;	/* clock state */
158 static int time_status = STA_UNSYNC;	/* clock status bits */
159 static long time_tai;			/* TAI offset (s) */
160 static long time_monitor;		/* last time offset scaled (ns) */
161 static long time_constant;		/* poll interval (shift) (s) */
162 static long time_precision = 1;		/* clock precision (ns) */
163 static long time_maxerror = MAXPHASE / 1000; /* maximum error (us) */
164 static long time_esterror = MAXPHASE / 1000; /* estimated error (us) */
165 static long time_reftime;		/* time at last adjustment (s) */
166 static l_fp time_offset;		/* time offset (ns) */
167 static l_fp time_freq;			/* frequency offset (ns/s) */
168 #endif /* NTP */
169 
170 static l_fp time_adj;			/* tick adjust (ns/s) */
171 int64_t time_adjtime;		/* correction from adjtime(2) (usec) */
172 
173 extern int time_adjusted;	/* ntp might have changed the system time */
174 
175 #ifdef NTP
176 #ifdef PPS_SYNC
177 /*
178  * The following variables are used when a pulse-per-second (PPS) signal
179  * is available and connected via a modem control lead. They establish
180  * the engineering parameters of the clock discipline loop when
181  * controlled by the PPS signal.
182  */
183 #define PPS_FAVG	2		/* min freq avg interval (s) (shift) */
184 #define PPS_FAVGDEF	8		/* default freq avg int (s) (shift) */
185 #define PPS_FAVGMAX	15		/* max freq avg interval (s) (shift) */
186 #define PPS_PAVG	4		/* phase avg interval (s) (shift) */
187 #define PPS_VALID	120		/* PPS signal watchdog max (s) */
188 #define PPS_MAXWANDER	100000		/* max PPS wander (ns/s) */
189 #define PPS_POPCORN	2		/* popcorn spike threshold (shift) */
190 
191 static struct timespec pps_tf[3];	/* phase median filter */
192 static l_fp pps_freq;			/* scaled frequency offset (ns/s) */
193 static long pps_fcount;			/* frequency accumulator */
194 static long pps_jitter;			/* nominal jitter (ns) */
195 static long pps_stabil;			/* nominal stability (scaled ns/s) */
196 static long pps_lastsec;		/* time at last calibration (s) */
197 static int pps_valid;			/* signal watchdog counter */
198 static int pps_shift = PPS_FAVG;	/* interval duration (s) (shift) */
199 static int pps_shiftmax = PPS_FAVGDEF;	/* max interval duration (s) (shift) */
200 static int pps_intcnt;			/* wander counter */
201 
202 /*
203  * PPS signal quality monitors
204  */
205 static long pps_calcnt;			/* calibration intervals */
206 static long pps_jitcnt;			/* jitter limit exceeded */
207 static long pps_stbcnt;			/* stability limit exceeded */
208 static long pps_errcnt;			/* calibration errors */
209 #endif /* PPS_SYNC */
210 /*
211  * End of phase/frequency-lock loop (PLL/FLL) definitions
212  */
213 
214 static void hardupdate(long offset);
215 
216 /*
217  * ntp_gettime() - NTP user application interface
218  */
219 void
220 ntp_gettime(ntv)
221 	struct ntptimeval *ntv;
222 {
223 	nanotime(&ntv->time);
224 	ntv->maxerror = time_maxerror;
225 	ntv->esterror = time_esterror;
226 	ntv->tai = time_tai;
227 	ntv->time_state = time_state;
228 }
229 
230 /* ARGSUSED */
231 /*
232  * ntp_adjtime() - NTP daemon application interface
233  */
234 int
235 sys_ntp_adjtime(l, v, retval)
236 	struct lwp *l;
237 	void *v;
238 	register_t *retval;
239 {
240 	struct sys_ntp_adjtime_args /* {
241 		syscallarg(struct timex *) tp;
242 	} */ *uap = v;
243 	struct timex ntv;
244 	int error = 0;
245 
246 	error = copyin((caddr_t)SCARG(uap, tp), (caddr_t)&ntv, sizeof(ntv));
247 	if (error != 0)
248 		return (error);
249 
250 	if (ntv.modes != 0 && (error = kauth_authorize_system(l->l_cred,
251 	    KAUTH_SYSTEM_TIME, KAUTH_REQ_SYSTEM_TIME_NTPADJTIME, NULL,
252 	    NULL, NULL)) != 0)
253 		return (error);
254 
255 	ntp_adjtime1(&ntv);
256 
257 	error = copyout((caddr_t)&ntv, (caddr_t)SCARG(uap, tp), sizeof(ntv));
258 	if (!error)
259 		*retval = ntp_timestatus();
260 
261 	return error;
262 }
263 
264 void
265 ntp_adjtime1(ntv)
266 	struct timex *ntv;
267 {
268 	long freq;
269 	int modes;
270 	int s;
271 
272 	/*
273 	 * Update selected clock variables - only the superuser can
274 	 * change anything. Note that there is no error checking here on
275 	 * the assumption the superuser should know what it is doing.
276 	 * Note that either the time constant or TAI offset are loaded
277 	 * from the ntv.constant member, depending on the mode bits. If
278 	 * the STA_PLL bit in the status word is cleared, the state and
279 	 * status words are reset to the initial values at boot.
280 	 */
281 	modes = ntv->modes;
282 	if (modes != 0)
283 		/* We need to save the system time during shutdown */
284 		time_adjusted |= 2;
285 	s = splclock();
286 	if (modes & MOD_MAXERROR)
287 		time_maxerror = ntv->maxerror;
288 	if (modes & MOD_ESTERROR)
289 		time_esterror = ntv->esterror;
290 	if (modes & MOD_STATUS) {
291 		if (time_status & STA_PLL && !(ntv->status & STA_PLL)) {
292 			time_state = TIME_OK;
293 			time_status = STA_UNSYNC;
294 #ifdef PPS_SYNC
295 			pps_shift = PPS_FAVG;
296 #endif /* PPS_SYNC */
297 		}
298 		time_status &= STA_RONLY;
299 		time_status |= ntv->status & ~STA_RONLY;
300 	}
301 	if (modes & MOD_TIMECONST) {
302 		if (ntv->constant < 0)
303 			time_constant = 0;
304 		else if (ntv->constant > MAXTC)
305 			time_constant = MAXTC;
306 		else
307 			time_constant = ntv->constant;
308 	}
309 	if (modes & MOD_TAI) {
310 		if (ntv->constant > 0)	/* XXX zero & negative numbers ? */
311 			time_tai = ntv->constant;
312 	}
313 #ifdef PPS_SYNC
314 	if (modes & MOD_PPSMAX) {
315 		if (ntv->shift < PPS_FAVG)
316 			pps_shiftmax = PPS_FAVG;
317 		else if (ntv->shift > PPS_FAVGMAX)
318 			pps_shiftmax = PPS_FAVGMAX;
319 		else
320 			pps_shiftmax = ntv->shift;
321 	}
322 #endif /* PPS_SYNC */
323 	if (modes & MOD_NANO)
324 		time_status |= STA_NANO;
325 	if (modes & MOD_MICRO)
326 		time_status &= ~STA_NANO;
327 	if (modes & MOD_CLKB)
328 		time_status |= STA_CLK;
329 	if (modes & MOD_CLKA)
330 		time_status &= ~STA_CLK;
331 	if (modes & MOD_FREQUENCY) {
332 		freq = (ntv->freq * 1000LL) >> 16;
333 		if (freq > MAXFREQ)
334 			L_LINT(time_freq, MAXFREQ);
335 		else if (freq < -MAXFREQ)
336 			L_LINT(time_freq, -MAXFREQ);
337 		else {
338 			/*
339 			 * ntv.freq is [PPM * 2^16] = [us/s * 2^16]
340 			 * time_freq is [ns/s * 2^32]
341 			 */
342 			time_freq = ntv->freq * 1000LL * 65536LL;
343 		}
344 #ifdef PPS_SYNC
345 		pps_freq = time_freq;
346 #endif /* PPS_SYNC */
347 	}
348 	if (modes & MOD_OFFSET) {
349 		if (time_status & STA_NANO)
350 			hardupdate(ntv->offset);
351 		else
352 			hardupdate(ntv->offset * 1000);
353 	}
354 
355 	/*
356 	 * Retrieve all clock variables. Note that the TAI offset is
357 	 * returned only by ntp_gettime();
358 	 */
359 	if (time_status & STA_NANO)
360 		ntv->offset = L_GINT(time_offset);
361 	else
362 		ntv->offset = L_GINT(time_offset) / 1000; /* XXX rounding ? */
363 	ntv->freq = L_GINT((time_freq / 1000LL) << 16);
364 	ntv->maxerror = time_maxerror;
365 	ntv->esterror = time_esterror;
366 	ntv->status = time_status;
367 	ntv->constant = time_constant;
368 	if (time_status & STA_NANO)
369 		ntv->precision = time_precision;
370 	else
371 		ntv->precision = time_precision / 1000;
372 	ntv->tolerance = MAXFREQ * SCALE_PPM;
373 #ifdef PPS_SYNC
374 	ntv->shift = pps_shift;
375 	ntv->ppsfreq = L_GINT((pps_freq / 1000LL) << 16);
376 	if (time_status & STA_NANO)
377 		ntv->jitter = pps_jitter;
378 	else
379 		ntv->jitter = pps_jitter / 1000;
380 	ntv->stabil = pps_stabil;
381 	ntv->calcnt = pps_calcnt;
382 	ntv->errcnt = pps_errcnt;
383 	ntv->jitcnt = pps_jitcnt;
384 	ntv->stbcnt = pps_stbcnt;
385 #endif /* PPS_SYNC */
386 	splx(s);
387 }
388 #endif /* NTP */
389 
390 /*
391  * second_overflow() - called after ntp_tick_adjust()
392  *
393  * This routine is ordinarily called immediately following the above
394  * routine ntp_tick_adjust(). While these two routines are normally
395  * combined, they are separated here only for the purposes of
396  * simulation.
397  */
398 void
399 ntp_update_second(int64_t *adjustment, time_t *newsec)
400 {
401 	int tickrate;
402 	l_fp ftemp;		/* 32/64-bit temporary */
403 
404 #ifdef NTP
405 
406 	/*
407 	 * On rollover of the second both the nanosecond and microsecond
408 	 * clocks are updated and the state machine cranked as
409 	 * necessary. The phase adjustment to be used for the next
410 	 * second is calculated and the maximum error is increased by
411 	 * the tolerance.
412 	 */
413 	time_maxerror += MAXFREQ / 1000;
414 
415 	/*
416 	 * Leap second processing. If in leap-insert state at
417 	 * the end of the day, the system clock is set back one
418 	 * second; if in leap-delete state, the system clock is
419 	 * set ahead one second. The nano_time() routine or
420 	 * external clock driver will insure that reported time
421 	 * is always monotonic.
422 	 */
423 	switch (time_state) {
424 
425 		/*
426 		 * No warning.
427 		 */
428 		case TIME_OK:
429 		if (time_status & STA_INS)
430 			time_state = TIME_INS;
431 		else if (time_status & STA_DEL)
432 			time_state = TIME_DEL;
433 		break;
434 
435 		/*
436 		 * Insert second 23:59:60 following second
437 		 * 23:59:59.
438 		 */
439 		case TIME_INS:
440 		if (!(time_status & STA_INS))
441 			time_state = TIME_OK;
442 		else if ((*newsec) % 86400 == 0) {
443 			(*newsec)--;
444 			time_state = TIME_OOP;
445 			time_tai++;
446 		}
447 		break;
448 
449 		/*
450 		 * Delete second 23:59:59.
451 		 */
452 		case TIME_DEL:
453 		if (!(time_status & STA_DEL))
454 			time_state = TIME_OK;
455 		else if (((*newsec) + 1) % 86400 == 0) {
456 			(*newsec)++;
457 			time_tai--;
458 			time_state = TIME_WAIT;
459 		}
460 		break;
461 
462 		/*
463 		 * Insert second in progress.
464 		 */
465 		case TIME_OOP:
466 			time_state = TIME_WAIT;
467 		break;
468 
469 		/*
470 		 * Wait for status bits to clear.
471 		 */
472 		case TIME_WAIT:
473 		if (!(time_status & (STA_INS | STA_DEL)))
474 			time_state = TIME_OK;
475 	}
476 
477 	/*
478 	 * Compute the total time adjustment for the next second
479 	 * in ns. The offset is reduced by a factor depending on
480 	 * whether the PPS signal is operating. Note that the
481 	 * value is in effect scaled by the clock frequency,
482 	 * since the adjustment is added at each tick interrupt.
483 	 */
484 	ftemp = time_offset;
485 #ifdef PPS_SYNC
486 	/* XXX even if PPS signal dies we should finish adjustment ? */
487 	if (time_status & STA_PPSTIME && time_status &
488 	    STA_PPSSIGNAL)
489 		L_RSHIFT(ftemp, pps_shift);
490 	else
491 		L_RSHIFT(ftemp, SHIFT_PLL + time_constant);
492 #else
493 		L_RSHIFT(ftemp, SHIFT_PLL + time_constant);
494 #endif /* PPS_SYNC */
495 	time_adj = ftemp;
496 	L_SUB(time_offset, ftemp);
497 	L_ADD(time_adj, time_freq);
498 
499 #ifdef PPS_SYNC
500 	if (pps_valid > 0)
501 		pps_valid--;
502 	else
503 		time_status &= ~STA_PPSSIGNAL;
504 #endif /* PPS_SYNC */
505 #else  /* !NTP */
506 	do { if (&newsec) {} } while (/* CONSTCOND */ 0); /* quiet -Wunused */
507 	L_CLR(time_adj);
508 #endif /* !NTP */
509 
510 	/*
511 	 * Apply any correction from adjtime(2).  If more than one second
512 	 * off we slew at a rate of 5ms/s (5000 PPM) else 500us/s (500PPM)
513 	 * until the last second is slewed the final < 500 usecs.
514 	 */
515 	if (time_adjtime != 0) {
516 		if (time_adjtime > 1000000)
517 			tickrate = 5000;
518 		else if (time_adjtime < -1000000)
519 			tickrate = -5000;
520 		else if (time_adjtime > 500)
521 			tickrate = 500;
522 		else if (time_adjtime < -500)
523 			tickrate = -500;
524 		else
525 			tickrate = time_adjtime;
526 		time_adjtime -= tickrate;
527 		L_LINT(ftemp, tickrate * 1000);
528 		L_ADD(time_adj, ftemp);
529 	}
530 	*adjustment = time_adj;
531 }
532 
533 /*
534  * ntp_init() - initialize variables and structures
535  *
536  * This routine must be called after the kernel variables hz and tick
537  * are set or changed and before the next tick interrupt. In this
538  * particular implementation, these values are assumed set elsewhere in
539  * the kernel. The design allows the clock frequency and tick interval
540  * to be changed while the system is running. So, this routine should
541  * probably be integrated with the code that does that.
542  */
543 void
544 ntp_init(void)
545 {
546 
547 	/*
548 	 * The following variables are initialized only at startup. Only
549 	 * those structures not cleared by the compiler need to be
550 	 * initialized, and these only in the simulator. In the actual
551 	 * kernel, any nonzero values here will quickly evaporate.
552 	 */
553 	L_CLR(time_adj);
554 #ifdef NTP
555 	L_CLR(time_offset);
556 	L_CLR(time_freq);
557 #ifdef PPS_SYNC
558 	pps_tf[0].tv_sec = pps_tf[0].tv_nsec = 0;
559 	pps_tf[1].tv_sec = pps_tf[1].tv_nsec = 0;
560 	pps_tf[2].tv_sec = pps_tf[2].tv_nsec = 0;
561 	pps_fcount = 0;
562 	L_CLR(pps_freq);
563 #endif /* PPS_SYNC */
564 #endif
565 }
566 
567 #ifdef NTP
568 /*
569  * hardupdate() - local clock update
570  *
571  * This routine is called by ntp_adjtime() to update the local clock
572  * phase and frequency. The implementation is of an adaptive-parameter,
573  * hybrid phase/frequency-lock loop (PLL/FLL). The routine computes new
574  * time and frequency offset estimates for each call. If the kernel PPS
575  * discipline code is configured (PPS_SYNC), the PPS signal itself
576  * determines the new time offset, instead of the calling argument.
577  * Presumably, calls to ntp_adjtime() occur only when the caller
578  * believes the local clock is valid within some bound (+-128 ms with
579  * NTP). If the caller's time is far different than the PPS time, an
580  * argument will ensue, and it's not clear who will lose.
581  *
582  * For uncompensated quartz crystal oscillators and nominal update
583  * intervals less than 256 s, operation should be in phase-lock mode,
584  * where the loop is disciplined to phase. For update intervals greater
585  * than 1024 s, operation should be in frequency-lock mode, where the
586  * loop is disciplined to frequency. Between 256 s and 1024 s, the mode
587  * is selected by the STA_MODE status bit.
588  *
589  * Note: splclock() is in effect.
590  */
591 void
592 hardupdate(long offset)
593 {
594 	long mtemp;
595 	l_fp ftemp;
596 
597 	/*
598 	 * Select how the phase is to be controlled and from which
599 	 * source. If the PPS signal is present and enabled to
600 	 * discipline the time, the PPS offset is used; otherwise, the
601 	 * argument offset is used.
602 	 */
603 	if (!(time_status & STA_PLL))
604 		return;
605 	if (!(time_status & STA_PPSTIME && time_status &
606 	    STA_PPSSIGNAL)) {
607 		if (offset > MAXPHASE)
608 			time_monitor = MAXPHASE;
609 		else if (offset < -MAXPHASE)
610 			time_monitor = -MAXPHASE;
611 		else
612 			time_monitor = offset;
613 		L_LINT(time_offset, time_monitor);
614 	}
615 
616 	/*
617 	 * Select how the frequency is to be controlled and in which
618 	 * mode (PLL or FLL). If the PPS signal is present and enabled
619 	 * to discipline the frequency, the PPS frequency is used;
620 	 * otherwise, the argument offset is used to compute it.
621 	 */
622 	if (time_status & STA_PPSFREQ && time_status & STA_PPSSIGNAL) {
623 		time_reftime = time_second;
624 		return;
625 	}
626 	if (time_status & STA_FREQHOLD || time_reftime == 0)
627 		time_reftime = time_second;
628 	mtemp = time_second - time_reftime;
629 	L_LINT(ftemp, time_monitor);
630 	L_RSHIFT(ftemp, (SHIFT_PLL + 2 + time_constant) << 1);
631 	L_MPY(ftemp, mtemp);
632 	L_ADD(time_freq, ftemp);
633 	time_status &= ~STA_MODE;
634 	if (mtemp >= MINSEC && (time_status & STA_FLL || mtemp >
635 	    MAXSEC)) {
636 		L_LINT(ftemp, (time_monitor << 4) / mtemp);
637 		L_RSHIFT(ftemp, SHIFT_FLL + 4);
638 		L_ADD(time_freq, ftemp);
639 		time_status |= STA_MODE;
640 	}
641 	time_reftime = time_second;
642 	if (L_GINT(time_freq) > MAXFREQ)
643 		L_LINT(time_freq, MAXFREQ);
644 	else if (L_GINT(time_freq) < -MAXFREQ)
645 		L_LINT(time_freq, -MAXFREQ);
646 }
647 
648 #ifdef PPS_SYNC
649 /*
650  * hardpps() - discipline CPU clock oscillator to external PPS signal
651  *
652  * This routine is called at each PPS interrupt in order to discipline
653  * the CPU clock oscillator to the PPS signal. It measures the PPS phase
654  * and leaves it in a handy spot for the hardclock() routine. It
655  * integrates successive PPS phase differences and calculates the
656  * frequency offset. This is used in hardclock() to discipline the CPU
657  * clock oscillator so that intrinsic frequency error is cancelled out.
658  * The code requires the caller to capture the time and hardware counter
659  * value at the on-time PPS signal transition.
660  *
661  * Note that, on some Unix systems, this routine runs at an interrupt
662  * priority level higher than the timer interrupt routine hardclock().
663  * Therefore, the variables used are distinct from the hardclock()
664  * variables, except for certain exceptions: The PPS frequency pps_freq
665  * and phase pps_offset variables are determined by this routine and
666  * updated atomically. The time_tolerance variable can be considered a
667  * constant, since it is infrequently changed, and then only when the
668  * PPS signal is disabled. The watchdog counter pps_valid is updated
669  * once per second by hardclock() and is atomically cleared in this
670  * routine.
671  */
672 void
673 hardpps(struct timespec *tsp,		/* time at PPS */
674 	long nsec			/* hardware counter at PPS */)
675 {
676 	long u_sec, u_nsec, v_nsec; /* temps */
677 	l_fp ftemp;
678 
679 	/*
680 	 * The signal is first processed by a range gate and frequency
681 	 * discriminator. The range gate rejects noise spikes outside
682 	 * the range +-500 us. The frequency discriminator rejects input
683 	 * signals with apparent frequency outside the range 1 +-500
684 	 * PPM. If two hits occur in the same second, we ignore the
685 	 * later hit; if not and a hit occurs outside the range gate,
686 	 * keep the later hit for later comparison, but do not process
687 	 * it.
688 	 */
689 	time_status |= STA_PPSSIGNAL | STA_PPSJITTER;
690 	time_status &= ~(STA_PPSWANDER | STA_PPSERROR);
691 	pps_valid = PPS_VALID;
692 	u_sec = tsp->tv_sec;
693 	u_nsec = tsp->tv_nsec;
694 	if (u_nsec >= (NANOSECOND >> 1)) {
695 		u_nsec -= NANOSECOND;
696 		u_sec++;
697 	}
698 	v_nsec = u_nsec - pps_tf[0].tv_nsec;
699 	if (u_sec == pps_tf[0].tv_sec && v_nsec < NANOSECOND -
700 	    MAXFREQ)
701 		return;
702 	pps_tf[2] = pps_tf[1];
703 	pps_tf[1] = pps_tf[0];
704 	pps_tf[0].tv_sec = u_sec;
705 	pps_tf[0].tv_nsec = u_nsec;
706 
707 	/*
708 	 * Compute the difference between the current and previous
709 	 * counter values. If the difference exceeds 0.5 s, assume it
710 	 * has wrapped around, so correct 1.0 s. If the result exceeds
711 	 * the tick interval, the sample point has crossed a tick
712 	 * boundary during the last second, so correct the tick. Very
713 	 * intricate.
714 	 */
715 	u_nsec = nsec;
716 	if (u_nsec > (NANOSECOND >> 1))
717 		u_nsec -= NANOSECOND;
718 	else if (u_nsec < -(NANOSECOND >> 1))
719 		u_nsec += NANOSECOND;
720 	pps_fcount += u_nsec;
721 	if (v_nsec > MAXFREQ || v_nsec < -MAXFREQ)
722 		return;
723 	time_status &= ~STA_PPSJITTER;
724 
725 	/*
726 	 * A three-stage median filter is used to help denoise the PPS
727 	 * time. The median sample becomes the time offset estimate; the
728 	 * difference between the other two samples becomes the time
729 	 * dispersion (jitter) estimate.
730 	 */
731 	if (pps_tf[0].tv_nsec > pps_tf[1].tv_nsec) {
732 		if (pps_tf[1].tv_nsec > pps_tf[2].tv_nsec) {
733 			v_nsec = pps_tf[1].tv_nsec;	/* 0 1 2 */
734 			u_nsec = pps_tf[0].tv_nsec - pps_tf[2].tv_nsec;
735 		} else if (pps_tf[2].tv_nsec > pps_tf[0].tv_nsec) {
736 			v_nsec = pps_tf[0].tv_nsec;	/* 2 0 1 */
737 			u_nsec = pps_tf[2].tv_nsec - pps_tf[1].tv_nsec;
738 		} else {
739 			v_nsec = pps_tf[2].tv_nsec;	/* 0 2 1 */
740 			u_nsec = pps_tf[0].tv_nsec - pps_tf[1].tv_nsec;
741 		}
742 	} else {
743 		if (pps_tf[1].tv_nsec < pps_tf[2].tv_nsec) {
744 			v_nsec = pps_tf[1].tv_nsec;	/* 2 1 0 */
745 			u_nsec = pps_tf[2].tv_nsec - pps_tf[0].tv_nsec;
746 		} else if (pps_tf[2].tv_nsec < pps_tf[0].tv_nsec) {
747 			v_nsec = pps_tf[0].tv_nsec;	/* 1 0 2 */
748 			u_nsec = pps_tf[1].tv_nsec - pps_tf[2].tv_nsec;
749 		} else {
750 			v_nsec = pps_tf[2].tv_nsec;	/* 1 2 0 */
751 			u_nsec = pps_tf[1].tv_nsec - pps_tf[0].tv_nsec;
752 		}
753 	}
754 
755 	/*
756 	 * Nominal jitter is due to PPS signal noise and interrupt
757 	 * latency. If it exceeds the popcorn threshold, the sample is
758 	 * discarded. otherwise, if so enabled, the time offset is
759 	 * updated. We can tolerate a modest loss of data here without
760 	 * much degrading time accuracy.
761 	 */
762 	if (u_nsec > (pps_jitter << PPS_POPCORN)) {
763 		time_status |= STA_PPSJITTER;
764 		pps_jitcnt++;
765 	} else if (time_status & STA_PPSTIME) {
766 		time_monitor = -v_nsec;
767 		L_LINT(time_offset, time_monitor);
768 	}
769 	pps_jitter += (u_nsec - pps_jitter) >> PPS_FAVG;
770 	u_sec = pps_tf[0].tv_sec - pps_lastsec;
771 	if (u_sec < (1 << pps_shift))
772 		return;
773 
774 	/*
775 	 * At the end of the calibration interval the difference between
776 	 * the first and last counter values becomes the scaled
777 	 * frequency. It will later be divided by the length of the
778 	 * interval to determine the frequency update. If the frequency
779 	 * exceeds a sanity threshold, or if the actual calibration
780 	 * interval is not equal to the expected length, the data are
781 	 * discarded. We can tolerate a modest loss of data here without
782 	 * much degrading frequency accuracy.
783 	 */
784 	pps_calcnt++;
785 	v_nsec = -pps_fcount;
786 	pps_lastsec = pps_tf[0].tv_sec;
787 	pps_fcount = 0;
788 	u_nsec = MAXFREQ << pps_shift;
789 	if (v_nsec > u_nsec || v_nsec < -u_nsec || u_sec != (1 <<
790 	    pps_shift)) {
791 		time_status |= STA_PPSERROR;
792 		pps_errcnt++;
793 		return;
794 	}
795 
796 	/*
797 	 * Here the raw frequency offset and wander (stability) is
798 	 * calculated. If the wander is less than the wander threshold
799 	 * for four consecutive averaging intervals, the interval is
800 	 * doubled; if it is greater than the threshold for four
801 	 * consecutive intervals, the interval is halved. The scaled
802 	 * frequency offset is converted to frequency offset. The
803 	 * stability metric is calculated as the average of recent
804 	 * frequency changes, but is used only for performance
805 	 * monitoring.
806 	 */
807 	L_LINT(ftemp, v_nsec);
808 	L_RSHIFT(ftemp, pps_shift);
809 	L_SUB(ftemp, pps_freq);
810 	u_nsec = L_GINT(ftemp);
811 	if (u_nsec > PPS_MAXWANDER) {
812 		L_LINT(ftemp, PPS_MAXWANDER);
813 		pps_intcnt--;
814 		time_status |= STA_PPSWANDER;
815 		pps_stbcnt++;
816 	} else if (u_nsec < -PPS_MAXWANDER) {
817 		L_LINT(ftemp, -PPS_MAXWANDER);
818 		pps_intcnt--;
819 		time_status |= STA_PPSWANDER;
820 		pps_stbcnt++;
821 	} else {
822 		pps_intcnt++;
823 	}
824 	if (pps_intcnt >= 4) {
825 		pps_intcnt = 4;
826 		if (pps_shift < pps_shiftmax) {
827 			pps_shift++;
828 			pps_intcnt = 0;
829 		}
830 	} else if (pps_intcnt <= -4 || pps_shift > pps_shiftmax) {
831 		pps_intcnt = -4;
832 		if (pps_shift > PPS_FAVG) {
833 			pps_shift--;
834 			pps_intcnt = 0;
835 		}
836 	}
837 	if (u_nsec < 0)
838 		u_nsec = -u_nsec;
839 	pps_stabil += (u_nsec * SCALE_PPM - pps_stabil) >> PPS_FAVG;
840 
841 	/*
842 	 * The PPS frequency is recalculated and clamped to the maximum
843 	 * MAXFREQ. If enabled, the system clock frequency is updated as
844 	 * well.
845 	 */
846 	L_ADD(pps_freq, ftemp);
847 	u_nsec = L_GINT(pps_freq);
848 	if (u_nsec > MAXFREQ)
849 		L_LINT(pps_freq, MAXFREQ);
850 	else if (u_nsec < -MAXFREQ)
851 		L_LINT(pps_freq, -MAXFREQ);
852 	if (time_status & STA_PPSFREQ)
853 		time_freq = pps_freq;
854 }
855 #endif /* PPS_SYNC */
856 #endif /* NTP */
857 #else /* !__HAVE_TIMECOUNTER */
858 /******************************************************************************
859  *                                                                            *
860  * Copyright (c) David L. Mills 1993, 1994                                    *
861  *                                                                            *
862  * Permission to use, copy, modify, and distribute this software and its      *
863  * documentation for any purpose and without fee is hereby granted, provided  *
864  * that the above copyright notice appears in all copies and that both the    *
865  * copyright notice and this permission notice appear in supporting           *
866  * documentation, and that the name University of Delaware not be used in     *
867  * advertising or publicity pertaining to distribution of the software        *
868  * without specific, written prior permission.  The University of Delaware    *
869  * makes no representations about the suitability this software for any       *
870  * purpose.  It is provided "as is" without express or implied warranty.      *
871  *                                                                            *
872  ******************************************************************************/
873 
874 /*
875  * Modification history kern_ntptime.c
876  *
877  * 24 Sep 94	David L. Mills
878  *	Tightened code at exits.
879  *
880  * 24 Mar 94	David L. Mills
881  *	Revised syscall interface to include new variables for PPS
882  *	time discipline.
883  *
884  * 14 Feb 94	David L. Mills
885  *	Added code for external clock
886  *
887  * 28 Nov 93	David L. Mills
888  *	Revised frequency scaling to conform with adjusted parameters
889  *
890  * 17 Sep 93	David L. Mills
891  *	Created file
892  */
893 /*
894  * ntp_gettime(), ntp_adjtime() - precision time interface for SunOS
895  * V4.1.1 and V4.1.3
896  *
897  * These routines consitute the Network Time Protocol (NTP) interfaces
898  * for user and daemon application programs. The ntp_gettime() routine
899  * provides the time, maximum error (synch distance) and estimated error
900  * (dispersion) to client user application programs. The ntp_adjtime()
901  * routine is used by the NTP daemon to adjust the system clock to an
902  * externally derived time. The time offset and related variables set by
903  * this routine are used by hardclock() to adjust the phase and
904  * frequency of the phase-lock loop which controls the system clock.
905  */
906 
907 #include <sys/cdefs.h>
908 __KERNEL_RCSID(0, "$NetBSD: kern_ntptime.c,v 1.39 2006/10/13 16:53:36 dogcow Exp $");
909 
910 #include "opt_ntp.h"
911 #include "opt_compat_netbsd.h"
912 
913 #include <sys/param.h>
914 #include <sys/resourcevar.h>
915 #include <sys/systm.h>
916 #include <sys/kernel.h>
917 #include <sys/proc.h>
918 #include <sys/sysctl.h>
919 #include <sys/timex.h>
920 #ifdef COMPAT_30
921 #include <compat/sys/timex.h>
922 #endif
923 #include <sys/vnode.h>
924 #include <sys/kauth.h>
925 
926 #include <sys/mount.h>
927 #include <sys/sa.h>
928 #include <sys/syscallargs.h>
929 
930 #include <machine/cpu.h>
931 
932 #ifdef NTP
933 /*
934  * The following variables are used by the hardclock() routine in the
935  * kern_clock.c module and are described in that module.
936  */
937 extern int time_state;		/* clock state */
938 extern int time_status;		/* clock status bits */
939 extern long time_offset;	/* time adjustment (us) */
940 extern long time_freq;		/* frequency offset (scaled ppm) */
941 extern long time_maxerror;	/* maximum error (us) */
942 extern long time_esterror;	/* estimated error (us) */
943 extern long time_constant;	/* pll time constant */
944 extern long time_precision;	/* clock precision (us) */
945 extern long time_tolerance;	/* frequency tolerance (scaled ppm) */
946 extern int time_adjusted;	/* ntp might have changed the system time */
947 
948 #ifdef PPS_SYNC
949 /*
950  * The following variables are used only if the PPS signal discipline
951  * is configured in the kernel.
952  */
953 extern int pps_shift;		/* interval duration (s) (shift) */
954 extern long pps_freq;		/* pps frequency offset (scaled ppm) */
955 extern long pps_jitter;		/* pps jitter (us) */
956 extern long pps_stabil;		/* pps stability (scaled ppm) */
957 extern long pps_jitcnt;		/* jitter limit exceeded */
958 extern long pps_calcnt;		/* calibration intervals */
959 extern long pps_errcnt;		/* calibration errors */
960 extern long pps_stbcnt;		/* stability limit exceeded */
961 #endif /* PPS_SYNC */
962 
963 /*ARGSUSED*/
964 /*
965  * ntp_gettime() - NTP user application interface
966  */
967 void
968 ntp_gettime(ntvp)
969 	struct ntptimeval *ntvp;
970 {
971 	struct timeval atv;
972 	int s;
973 
974 	memset(ntvp, 0, sizeof(struct ntptimeval));
975 
976 	s = splclock();
977 #ifdef EXT_CLOCK
978 	/*
979 	 * The microtime() external clock routine returns a
980 	 * status code. If less than zero, we declare an error
981 	 * in the clock status word and return the kernel
982 	 * (software) time variable. While there are other
983 	 * places that call microtime(), this is the only place
984 	 * that matters from an application point of view.
985 	 */
986 	if (microtime(&atv) < 0) {
987 		time_status |= STA_CLOCKERR;
988 		ntvp->time = time;
989 	} else
990 		time_status &= ~STA_CLOCKERR;
991 #else /* EXT_CLOCK */
992 	microtime(&atv);
993 #endif /* EXT_CLOCK */
994 	ntvp->maxerror = time_maxerror;
995 	ntvp->esterror = time_esterror;
996 	(void) splx(s);
997 	TIMEVAL_TO_TIMESPEC(&atv, &ntvp->time);
998 }
999 
1000 
1001 /* ARGSUSED */
1002 /*
1003  * ntp_adjtime() - NTP daemon application interface
1004  */
1005 int
1006 sys_ntp_adjtime(l, v, retval)
1007 	struct lwp *l;
1008 	void *v;
1009 	register_t *retval;
1010 {
1011 	struct sys_ntp_adjtime_args /* {
1012 		syscallarg(struct timex *) tp;
1013 	} */ *uap = v;
1014 	struct timex ntv;
1015 	int error = 0;
1016 
1017 	error = copyin((caddr_t)SCARG(uap, tp), (caddr_t)&ntv, sizeof(ntv));
1018 	if (error != 0)
1019 		return (error);
1020 
1021 	if (ntv.modes != 0 && (error = kauth_authorize_system(l->l_cred,
1022 	    KAUTH_SYSTEM_TIME, KAUTH_REQ_SYSTEM_TIME_NTPADJTIME, NULL,
1023 	    NULL, NULL)) != 0)
1024 		return (error);
1025 
1026 	ntp_adjtime1(&ntv);
1027 
1028 	error = copyout((caddr_t)&ntv, (caddr_t)SCARG(uap, tp), sizeof(ntv));
1029 	if (error == 0)
1030 		*retval = ntp_timestatus();
1031 
1032 	return error;
1033 }
1034 
1035 void
1036 ntp_adjtime1(ntv)
1037 	struct timex *ntv;
1038 {
1039 	int modes;
1040 	int s;
1041 
1042 	/*
1043 	 * Update selected clock variables. Note that there is no error
1044 	 * checking here on the assumption the superuser should know
1045 	 * what it is doing.
1046 	 */
1047 	modes = ntv->modes;
1048 	if (modes != 0)
1049 		/* We need to save the system time during shutdown */
1050 		time_adjusted |= 2;
1051 	s = splclock();
1052 	if (modes & MOD_FREQUENCY)
1053 #ifdef PPS_SYNC
1054 		time_freq = ntv->freq - pps_freq;
1055 #else /* PPS_SYNC */
1056 		time_freq = ntv->freq;
1057 #endif /* PPS_SYNC */
1058 	if (modes & MOD_MAXERROR)
1059 		time_maxerror = ntv->maxerror;
1060 	if (modes & MOD_ESTERROR)
1061 		time_esterror = ntv->esterror;
1062 	if (modes & MOD_STATUS) {
1063 		time_status &= STA_RONLY;
1064 		time_status |= ntv->status & ~STA_RONLY;
1065 	}
1066 	if (modes & MOD_TIMECONST)
1067 		time_constant = ntv->constant;
1068 	if (modes & MOD_OFFSET)
1069 		hardupdate(ntv->offset);
1070 
1071 	/*
1072 	 * Retrieve all clock variables
1073 	 */
1074 	if (time_offset < 0)
1075 		ntv->offset = -(-time_offset >> SHIFT_UPDATE);
1076 	else
1077 		ntv->offset = time_offset >> SHIFT_UPDATE;
1078 #ifdef PPS_SYNC
1079 	ntv->freq = time_freq + pps_freq;
1080 #else /* PPS_SYNC */
1081 	ntv->freq = time_freq;
1082 #endif /* PPS_SYNC */
1083 	ntv->maxerror = time_maxerror;
1084 	ntv->esterror = time_esterror;
1085 	ntv->status = time_status;
1086 	ntv->constant = time_constant;
1087 	ntv->precision = time_precision;
1088 	ntv->tolerance = time_tolerance;
1089 #ifdef PPS_SYNC
1090 	ntv->shift = pps_shift;
1091 	ntv->ppsfreq = pps_freq;
1092 	ntv->jitter = pps_jitter >> PPS_AVG;
1093 	ntv->stabil = pps_stabil;
1094 	ntv->calcnt = pps_calcnt;
1095 	ntv->errcnt = pps_errcnt;
1096 	ntv->jitcnt = pps_jitcnt;
1097 	ntv->stbcnt = pps_stbcnt;
1098 #endif /* PPS_SYNC */
1099 	(void)splx(s);
1100 }
1101 #endif /* NTP */
1102 #endif /* !__HAVE_TIMECOUNTER */
1103 
1104 #ifdef NTP
1105 int
1106 ntp_timestatus()
1107 {
1108 	/*
1109 	 * Status word error decode. If any of these conditions
1110 	 * occur, an error is returned, instead of the status
1111 	 * word. Most applications will care only about the fact
1112 	 * the system clock may not be trusted, not about the
1113 	 * details.
1114 	 *
1115 	 * Hardware or software error
1116 	 */
1117 	if ((time_status & (STA_UNSYNC | STA_CLOCKERR)) ||
1118 
1119 	/*
1120 	 * PPS signal lost when either time or frequency
1121 	 * synchronization requested
1122 	 */
1123 	    (time_status & (STA_PPSFREQ | STA_PPSTIME) &&
1124 	     !(time_status & STA_PPSSIGNAL)) ||
1125 
1126 	/*
1127 	 * PPS jitter exceeded when time synchronization
1128 	 * requested
1129 	 */
1130 	    (time_status & STA_PPSTIME &&
1131 	     time_status & STA_PPSJITTER) ||
1132 
1133 	/*
1134 	 * PPS wander exceeded or calibration error when
1135 	 * frequency synchronization requested
1136 	 */
1137 	    (time_status & STA_PPSFREQ &&
1138 	     time_status & (STA_PPSWANDER | STA_PPSERROR)))
1139 		return (TIME_ERROR);
1140 	else
1141 		return (time_state);
1142 }
1143 
1144 /*ARGSUSED*/
1145 /*
1146  * ntp_gettime() - NTP user application interface
1147  */
1148 int
1149 sys___ntp_gettime30(struct lwp *l __unused, void *v, register_t *retval)
1150 {
1151 	struct sys___ntp_gettime30_args /* {
1152 		syscallarg(struct ntptimeval *) ntvp;
1153 	} */ *uap = v;
1154 	struct ntptimeval ntv;
1155 	int error = 0;
1156 
1157 	if (SCARG(uap, ntvp)) {
1158 		ntp_gettime(&ntv);
1159 
1160 		error = copyout((caddr_t)&ntv, (caddr_t)SCARG(uap, ntvp),
1161 				sizeof(ntv));
1162 	}
1163 	if (!error) {
1164 		*retval = ntp_timestatus();
1165 	}
1166 	return(error);
1167 }
1168 
1169 #ifdef COMPAT_30
1170 int
1171 compat_30_sys_ntp_gettime(struct lwp *l __unused, void *v, register_t *retval)
1172 {
1173 	struct compat_30_sys_ntp_gettime_args /* {
1174 		syscallarg(struct ntptimeval30 *) ontvp;
1175 	} */ *uap = v;
1176 	struct ntptimeval ntv;
1177 	struct ntptimeval30 ontv;
1178 	int error = 0;
1179 
1180 	if (SCARG(uap, ntvp)) {
1181 		ntp_gettime(&ntv);
1182 		TIMESPEC_TO_TIMEVAL(&ontv.time, &ntv.time);
1183 		ontv.maxerror = ntv.maxerror;
1184 		ontv.esterror = ntv.esterror;
1185 
1186 		error = copyout((caddr_t)&ontv, (caddr_t)SCARG(uap, ntvp),
1187 				sizeof(ontv));
1188  	}
1189 	if (!error)
1190 		*retval = ntp_timestatus();
1191 
1192 	return (error);
1193 }
1194 #endif
1195 
1196 /*
1197  * return information about kernel precision timekeeping
1198  */
1199 static int
1200 sysctl_kern_ntptime(SYSCTLFN_ARGS)
1201 {
1202 	struct sysctlnode node;
1203 	struct ntptimeval ntv;
1204 
1205 	ntp_gettime(&ntv);
1206 
1207 	node = *rnode;
1208 	node.sysctl_data = &ntv;
1209 	node.sysctl_size = sizeof(ntv);
1210 	return (sysctl_lookup(SYSCTLFN_CALL(&node)));
1211 }
1212 
1213 SYSCTL_SETUP(sysctl_kern_ntptime_setup, "sysctl kern.ntptime node setup")
1214 {
1215 
1216 	sysctl_createv(clog, 0, NULL, NULL,
1217 		       CTLFLAG_PERMANENT,
1218 		       CTLTYPE_NODE, "kern", NULL,
1219 		       NULL, 0, NULL, 0,
1220 		       CTL_KERN, CTL_EOL);
1221 
1222 	sysctl_createv(clog, 0, NULL, NULL,
1223 		       CTLFLAG_PERMANENT,
1224 		       CTLTYPE_STRUCT, "ntptime",
1225 		       SYSCTL_DESCR("Kernel clock values for NTP"),
1226 		       sysctl_kern_ntptime, 0, NULL,
1227 		       sizeof(struct ntptimeval),
1228 		       CTL_KERN, KERN_NTPTIME, CTL_EOL);
1229 }
1230 #else /* !NTP */
1231 /* For some reason, raising SIGSYS (as sys_nosys would) is problematic. */
1232 
1233 int
1234 sys___ntp_gettime30(l, v, retval)
1235 	struct lwp *l __unused;
1236 	void *v __unused;
1237 	register_t *retval __unused;
1238 {
1239 
1240 	return(ENOSYS);
1241 }
1242 
1243 #ifdef COMPAT_30
1244 int
1245 compat_30_sys_ntp_gettime(l, v, retval)
1246  	struct lwp *l __unused;
1247  	void *v __unused;
1248  	register_t *retval __unused;
1249 {
1250 
1251  	return(ENOSYS);
1252 }
1253 #endif
1254 #endif /* !NTP */
1255