xref: /netbsd-src/sys/kern/kern_ntptime.c (revision 8b0f9554ff8762542c4defc4f70e1eb76fb508fa)
1 /*	$NetBSD: kern_ntptime.c,v 1.44 2007/10/19 12:16:43 ad Exp $	*/
2 #include <sys/types.h> 	/* XXX to get __HAVE_TIMECOUNTER, remove
3 			   after all ports are converted. */
4 #ifdef __HAVE_TIMECOUNTER
5 
6 /*-
7  ***********************************************************************
8  *								       *
9  * Copyright (c) David L. Mills 1993-2001			       *
10  *								       *
11  * Permission to use, copy, modify, and distribute this software and   *
12  * its documentation for any purpose and without fee is hereby	       *
13  * granted, provided that the above copyright notice appears in all    *
14  * copies and that both the copyright notice and this permission       *
15  * notice appear in supporting documentation, and that the name	       *
16  * University of Delaware not be used in advertising or publicity      *
17  * pertaining to distribution of the software without specific,	       *
18  * written prior permission. The University of Delaware makes no       *
19  * representations about the suitability this software for any	       *
20  * purpose. It is provided "as is" without express or implied	       *
21  * warranty.							       *
22  *								       *
23  **********************************************************************/
24 
25 /*
26  * Adapted from the original sources for FreeBSD and timecounters by:
27  * Poul-Henning Kamp <phk@FreeBSD.org>.
28  *
29  * The 32bit version of the "LP" macros seems a bit past its "sell by"
30  * date so I have retained only the 64bit version and included it directly
31  * in this file.
32  *
33  * Only minor changes done to interface with the timecounters over in
34  * sys/kern/kern_clock.c.   Some of the comments below may be (even more)
35  * confusing and/or plain wrong in that context.
36  */
37 
38 #include <sys/cdefs.h>
39 /* __FBSDID("$FreeBSD: src/sys/kern/kern_ntptime.c,v 1.59 2005/05/28 14:34:41 rwatson Exp $"); */
40 __KERNEL_RCSID(0, "$NetBSD: kern_ntptime.c,v 1.44 2007/10/19 12:16:43 ad Exp $");
41 
42 #include "opt_ntp.h"
43 #include "opt_compat_netbsd.h"
44 
45 #include <sys/param.h>
46 #include <sys/resourcevar.h>
47 #include <sys/systm.h>
48 #include <sys/kernel.h>
49 #include <sys/proc.h>
50 #include <sys/sysctl.h>
51 #include <sys/timex.h>
52 #ifdef COMPAT_30
53 #include <compat/sys/timex.h>
54 #endif
55 #include <sys/vnode.h>
56 #include <sys/kauth.h>
57 
58 #include <sys/mount.h>
59 #include <sys/syscallargs.h>
60 
61 #include <sys/cpu.h>
62 
63 /*
64  * Single-precision macros for 64-bit machines
65  */
66 typedef int64_t l_fp;
67 #define L_ADD(v, u)	((v) += (u))
68 #define L_SUB(v, u)	((v) -= (u))
69 #define L_ADDHI(v, a)	((v) += (int64_t)(a) << 32)
70 #define L_NEG(v)	((v) = -(v))
71 #define L_RSHIFT(v, n) \
72 	do { \
73 		if ((v) < 0) \
74 			(v) = -(-(v) >> (n)); \
75 		else \
76 			(v) = (v) >> (n); \
77 	} while (0)
78 #define L_MPY(v, a)	((v) *= (a))
79 #define L_CLR(v)	((v) = 0)
80 #define L_ISNEG(v)	((v) < 0)
81 #define L_LINT(v, a)	((v) = (int64_t)(a) << 32)
82 #define L_GINT(v)	((v) < 0 ? -(-(v) >> 32) : (v) >> 32)
83 
84 #ifdef NTP
85 /*
86  * Generic NTP kernel interface
87  *
88  * These routines constitute the Network Time Protocol (NTP) interfaces
89  * for user and daemon application programs. The ntp_gettime() routine
90  * provides the time, maximum error (synch distance) and estimated error
91  * (dispersion) to client user application programs. The ntp_adjtime()
92  * routine is used by the NTP daemon to adjust the system clock to an
93  * externally derived time. The time offset and related variables set by
94  * this routine are used by other routines in this module to adjust the
95  * phase and frequency of the clock discipline loop which controls the
96  * system clock.
97  *
98  * When the kernel time is reckoned directly in nanoseconds (NTP_NANO
99  * defined), the time at each tick interrupt is derived directly from
100  * the kernel time variable. When the kernel time is reckoned in
101  * microseconds, (NTP_NANO undefined), the time is derived from the
102  * kernel time variable together with a variable representing the
103  * leftover nanoseconds at the last tick interrupt. In either case, the
104  * current nanosecond time is reckoned from these values plus an
105  * interpolated value derived by the clock routines in another
106  * architecture-specific module. The interpolation can use either a
107  * dedicated counter or a processor cycle counter (PCC) implemented in
108  * some architectures.
109  *
110  * Note that all routines must run at priority splclock or higher.
111  */
112 /*
113  * Phase/frequency-lock loop (PLL/FLL) definitions
114  *
115  * The nanosecond clock discipline uses two variable types, time
116  * variables and frequency variables. Both types are represented as 64-
117  * bit fixed-point quantities with the decimal point between two 32-bit
118  * halves. On a 32-bit machine, each half is represented as a single
119  * word and mathematical operations are done using multiple-precision
120  * arithmetic. On a 64-bit machine, ordinary computer arithmetic is
121  * used.
122  *
123  * A time variable is a signed 64-bit fixed-point number in ns and
124  * fraction. It represents the remaining time offset to be amortized
125  * over succeeding tick interrupts. The maximum time offset is about
126  * 0.5 s and the resolution is about 2.3e-10 ns.
127  *
128  *			1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3
129  *  0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
130  * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
131  * |s s s|			 ns				   |
132  * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
133  * |			    fraction				   |
134  * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
135  *
136  * A frequency variable is a signed 64-bit fixed-point number in ns/s
137  * and fraction. It represents the ns and fraction to be added to the
138  * kernel time variable at each second. The maximum frequency offset is
139  * about +-500000 ns/s and the resolution is about 2.3e-10 ns/s.
140  *
141  *			1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3
142  *  0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
143  * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
144  * |s s s s s s s s s s s s s|	          ns/s			   |
145  * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
146  * |			    fraction				   |
147  * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
148  */
149 /*
150  * The following variables establish the state of the PLL/FLL and the
151  * residual time and frequency offset of the local clock.
152  */
153 #define SHIFT_PLL	4		/* PLL loop gain (shift) */
154 #define SHIFT_FLL	2		/* FLL loop gain (shift) */
155 
156 static int time_state = TIME_OK;	/* clock state */
157 static int time_status = STA_UNSYNC;	/* clock status bits */
158 static long time_tai;			/* TAI offset (s) */
159 static long time_monitor;		/* last time offset scaled (ns) */
160 static long time_constant;		/* poll interval (shift) (s) */
161 static long time_precision = 1;		/* clock precision (ns) */
162 static long time_maxerror = MAXPHASE / 1000; /* maximum error (us) */
163 static long time_esterror = MAXPHASE / 1000; /* estimated error (us) */
164 static long time_reftime;		/* time at last adjustment (s) */
165 static l_fp time_offset;		/* time offset (ns) */
166 static l_fp time_freq;			/* frequency offset (ns/s) */
167 #endif /* NTP */
168 
169 static l_fp time_adj;			/* tick adjust (ns/s) */
170 int64_t time_adjtime;		/* correction from adjtime(2) (usec) */
171 
172 extern int time_adjusted;	/* ntp might have changed the system time */
173 
174 #ifdef NTP
175 #ifdef PPS_SYNC
176 /*
177  * The following variables are used when a pulse-per-second (PPS) signal
178  * is available and connected via a modem control lead. They establish
179  * the engineering parameters of the clock discipline loop when
180  * controlled by the PPS signal.
181  */
182 #define PPS_FAVG	2		/* min freq avg interval (s) (shift) */
183 #define PPS_FAVGDEF	8		/* default freq avg int (s) (shift) */
184 #define PPS_FAVGMAX	15		/* max freq avg interval (s) (shift) */
185 #define PPS_PAVG	4		/* phase avg interval (s) (shift) */
186 #define PPS_VALID	120		/* PPS signal watchdog max (s) */
187 #define PPS_MAXWANDER	100000		/* max PPS wander (ns/s) */
188 #define PPS_POPCORN	2		/* popcorn spike threshold (shift) */
189 
190 static struct timespec pps_tf[3];	/* phase median filter */
191 static l_fp pps_freq;			/* scaled frequency offset (ns/s) */
192 static long pps_fcount;			/* frequency accumulator */
193 static long pps_jitter;			/* nominal jitter (ns) */
194 static long pps_stabil;			/* nominal stability (scaled ns/s) */
195 static long pps_lastsec;		/* time at last calibration (s) */
196 static int pps_valid;			/* signal watchdog counter */
197 static int pps_shift = PPS_FAVG;	/* interval duration (s) (shift) */
198 static int pps_shiftmax = PPS_FAVGDEF;	/* max interval duration (s) (shift) */
199 static int pps_intcnt;			/* wander counter */
200 
201 /*
202  * PPS signal quality monitors
203  */
204 static long pps_calcnt;			/* calibration intervals */
205 static long pps_jitcnt;			/* jitter limit exceeded */
206 static long pps_stbcnt;			/* stability limit exceeded */
207 static long pps_errcnt;			/* calibration errors */
208 #endif /* PPS_SYNC */
209 /*
210  * End of phase/frequency-lock loop (PLL/FLL) definitions
211  */
212 
213 static void hardupdate(long offset);
214 
215 /*
216  * ntp_gettime() - NTP user application interface
217  */
218 void
219 ntp_gettime(ntv)
220 	struct ntptimeval *ntv;
221 {
222 	nanotime(&ntv->time);
223 	ntv->maxerror = time_maxerror;
224 	ntv->esterror = time_esterror;
225 	ntv->tai = time_tai;
226 	ntv->time_state = time_state;
227 }
228 
229 /* ARGSUSED */
230 /*
231  * ntp_adjtime() - NTP daemon application interface
232  */
233 int
234 sys_ntp_adjtime(l, v, retval)
235 	struct lwp *l;
236 	void *v;
237 	register_t *retval;
238 {
239 	struct sys_ntp_adjtime_args /* {
240 		syscallarg(struct timex *) tp;
241 	} */ *uap = v;
242 	struct timex ntv;
243 	int error = 0;
244 
245 	error = copyin((void *)SCARG(uap, tp), (void *)&ntv, sizeof(ntv));
246 	if (error != 0)
247 		return (error);
248 
249 	if (ntv.modes != 0 && (error = kauth_authorize_system(l->l_cred,
250 	    KAUTH_SYSTEM_TIME, KAUTH_REQ_SYSTEM_TIME_NTPADJTIME, NULL,
251 	    NULL, NULL)) != 0)
252 		return (error);
253 
254 	ntp_adjtime1(&ntv);
255 
256 	error = copyout((void *)&ntv, (void *)SCARG(uap, tp), sizeof(ntv));
257 	if (!error)
258 		*retval = ntp_timestatus();
259 
260 	return error;
261 }
262 
263 void
264 ntp_adjtime1(ntv)
265 	struct timex *ntv;
266 {
267 	long freq;
268 	int modes;
269 	int s;
270 
271 	/*
272 	 * Update selected clock variables - only the superuser can
273 	 * change anything. Note that there is no error checking here on
274 	 * the assumption the superuser should know what it is doing.
275 	 * Note that either the time constant or TAI offset are loaded
276 	 * from the ntv.constant member, depending on the mode bits. If
277 	 * the STA_PLL bit in the status word is cleared, the state and
278 	 * status words are reset to the initial values at boot.
279 	 */
280 	modes = ntv->modes;
281 	if (modes != 0)
282 		/* We need to save the system time during shutdown */
283 		time_adjusted |= 2;
284 	s = splclock();
285 	if (modes & MOD_MAXERROR)
286 		time_maxerror = ntv->maxerror;
287 	if (modes & MOD_ESTERROR)
288 		time_esterror = ntv->esterror;
289 	if (modes & MOD_STATUS) {
290 		if (time_status & STA_PLL && !(ntv->status & STA_PLL)) {
291 			time_state = TIME_OK;
292 			time_status = STA_UNSYNC;
293 #ifdef PPS_SYNC
294 			pps_shift = PPS_FAVG;
295 #endif /* PPS_SYNC */
296 		}
297 		time_status &= STA_RONLY;
298 		time_status |= ntv->status & ~STA_RONLY;
299 	}
300 	if (modes & MOD_TIMECONST) {
301 		if (ntv->constant < 0)
302 			time_constant = 0;
303 		else if (ntv->constant > MAXTC)
304 			time_constant = MAXTC;
305 		else
306 			time_constant = ntv->constant;
307 	}
308 	if (modes & MOD_TAI) {
309 		if (ntv->constant > 0)	/* XXX zero & negative numbers ? */
310 			time_tai = ntv->constant;
311 	}
312 #ifdef PPS_SYNC
313 	if (modes & MOD_PPSMAX) {
314 		if (ntv->shift < PPS_FAVG)
315 			pps_shiftmax = PPS_FAVG;
316 		else if (ntv->shift > PPS_FAVGMAX)
317 			pps_shiftmax = PPS_FAVGMAX;
318 		else
319 			pps_shiftmax = ntv->shift;
320 	}
321 #endif /* PPS_SYNC */
322 	if (modes & MOD_NANO)
323 		time_status |= STA_NANO;
324 	if (modes & MOD_MICRO)
325 		time_status &= ~STA_NANO;
326 	if (modes & MOD_CLKB)
327 		time_status |= STA_CLK;
328 	if (modes & MOD_CLKA)
329 		time_status &= ~STA_CLK;
330 	if (modes & MOD_FREQUENCY) {
331 		freq = (ntv->freq * 1000LL) >> 16;
332 		if (freq > MAXFREQ)
333 			L_LINT(time_freq, MAXFREQ);
334 		else if (freq < -MAXFREQ)
335 			L_LINT(time_freq, -MAXFREQ);
336 		else {
337 			/*
338 			 * ntv.freq is [PPM * 2^16] = [us/s * 2^16]
339 			 * time_freq is [ns/s * 2^32]
340 			 */
341 			time_freq = ntv->freq * 1000LL * 65536LL;
342 		}
343 #ifdef PPS_SYNC
344 		pps_freq = time_freq;
345 #endif /* PPS_SYNC */
346 	}
347 	if (modes & MOD_OFFSET) {
348 		if (time_status & STA_NANO)
349 			hardupdate(ntv->offset);
350 		else
351 			hardupdate(ntv->offset * 1000);
352 	}
353 
354 	/*
355 	 * Retrieve all clock variables. Note that the TAI offset is
356 	 * returned only by ntp_gettime();
357 	 */
358 	if (time_status & STA_NANO)
359 		ntv->offset = L_GINT(time_offset);
360 	else
361 		ntv->offset = L_GINT(time_offset) / 1000; /* XXX rounding ? */
362 	ntv->freq = L_GINT((time_freq / 1000LL) << 16);
363 	ntv->maxerror = time_maxerror;
364 	ntv->esterror = time_esterror;
365 	ntv->status = time_status;
366 	ntv->constant = time_constant;
367 	if (time_status & STA_NANO)
368 		ntv->precision = time_precision;
369 	else
370 		ntv->precision = time_precision / 1000;
371 	ntv->tolerance = MAXFREQ * SCALE_PPM;
372 #ifdef PPS_SYNC
373 	ntv->shift = pps_shift;
374 	ntv->ppsfreq = L_GINT((pps_freq / 1000LL) << 16);
375 	if (time_status & STA_NANO)
376 		ntv->jitter = pps_jitter;
377 	else
378 		ntv->jitter = pps_jitter / 1000;
379 	ntv->stabil = pps_stabil;
380 	ntv->calcnt = pps_calcnt;
381 	ntv->errcnt = pps_errcnt;
382 	ntv->jitcnt = pps_jitcnt;
383 	ntv->stbcnt = pps_stbcnt;
384 #endif /* PPS_SYNC */
385 	splx(s);
386 }
387 #endif /* NTP */
388 
389 /*
390  * second_overflow() - called after ntp_tick_adjust()
391  *
392  * This routine is ordinarily called immediately following the above
393  * routine ntp_tick_adjust(). While these two routines are normally
394  * combined, they are separated here only for the purposes of
395  * simulation.
396  */
397 void
398 ntp_update_second(int64_t *adjustment, time_t *newsec)
399 {
400 	int tickrate;
401 	l_fp ftemp;		/* 32/64-bit temporary */
402 
403 #ifdef NTP
404 
405 	/*
406 	 * On rollover of the second both the nanosecond and microsecond
407 	 * clocks are updated and the state machine cranked as
408 	 * necessary. The phase adjustment to be used for the next
409 	 * second is calculated and the maximum error is increased by
410 	 * the tolerance.
411 	 */
412 	time_maxerror += MAXFREQ / 1000;
413 
414 	/*
415 	 * Leap second processing. If in leap-insert state at
416 	 * the end of the day, the system clock is set back one
417 	 * second; if in leap-delete state, the system clock is
418 	 * set ahead one second. The nano_time() routine or
419 	 * external clock driver will insure that reported time
420 	 * is always monotonic.
421 	 */
422 	switch (time_state) {
423 
424 		/*
425 		 * No warning.
426 		 */
427 		case TIME_OK:
428 		if (time_status & STA_INS)
429 			time_state = TIME_INS;
430 		else if (time_status & STA_DEL)
431 			time_state = TIME_DEL;
432 		break;
433 
434 		/*
435 		 * Insert second 23:59:60 following second
436 		 * 23:59:59.
437 		 */
438 		case TIME_INS:
439 		if (!(time_status & STA_INS))
440 			time_state = TIME_OK;
441 		else if ((*newsec) % 86400 == 0) {
442 			(*newsec)--;
443 			time_state = TIME_OOP;
444 			time_tai++;
445 		}
446 		break;
447 
448 		/*
449 		 * Delete second 23:59:59.
450 		 */
451 		case TIME_DEL:
452 		if (!(time_status & STA_DEL))
453 			time_state = TIME_OK;
454 		else if (((*newsec) + 1) % 86400 == 0) {
455 			(*newsec)++;
456 			time_tai--;
457 			time_state = TIME_WAIT;
458 		}
459 		break;
460 
461 		/*
462 		 * Insert second in progress.
463 		 */
464 		case TIME_OOP:
465 			time_state = TIME_WAIT;
466 		break;
467 
468 		/*
469 		 * Wait for status bits to clear.
470 		 */
471 		case TIME_WAIT:
472 		if (!(time_status & (STA_INS | STA_DEL)))
473 			time_state = TIME_OK;
474 	}
475 
476 	/*
477 	 * Compute the total time adjustment for the next second
478 	 * in ns. The offset is reduced by a factor depending on
479 	 * whether the PPS signal is operating. Note that the
480 	 * value is in effect scaled by the clock frequency,
481 	 * since the adjustment is added at each tick interrupt.
482 	 */
483 	ftemp = time_offset;
484 #ifdef PPS_SYNC
485 	/* XXX even if PPS signal dies we should finish adjustment ? */
486 	if (time_status & STA_PPSTIME && time_status &
487 	    STA_PPSSIGNAL)
488 		L_RSHIFT(ftemp, pps_shift);
489 	else
490 		L_RSHIFT(ftemp, SHIFT_PLL + time_constant);
491 #else
492 		L_RSHIFT(ftemp, SHIFT_PLL + time_constant);
493 #endif /* PPS_SYNC */
494 	time_adj = ftemp;
495 	L_SUB(time_offset, ftemp);
496 	L_ADD(time_adj, time_freq);
497 
498 #ifdef PPS_SYNC
499 	if (pps_valid > 0)
500 		pps_valid--;
501 	else
502 		time_status &= ~STA_PPSSIGNAL;
503 #endif /* PPS_SYNC */
504 #else  /* !NTP */
505 	L_CLR(time_adj);
506 #endif /* !NTP */
507 
508 	/*
509 	 * Apply any correction from adjtime(2).  If more than one second
510 	 * off we slew at a rate of 5ms/s (5000 PPM) else 500us/s (500PPM)
511 	 * until the last second is slewed the final < 500 usecs.
512 	 */
513 	if (time_adjtime != 0) {
514 		if (time_adjtime > 1000000)
515 			tickrate = 5000;
516 		else if (time_adjtime < -1000000)
517 			tickrate = -5000;
518 		else if (time_adjtime > 500)
519 			tickrate = 500;
520 		else if (time_adjtime < -500)
521 			tickrate = -500;
522 		else
523 			tickrate = time_adjtime;
524 		time_adjtime -= tickrate;
525 		L_LINT(ftemp, tickrate * 1000);
526 		L_ADD(time_adj, ftemp);
527 	}
528 	*adjustment = time_adj;
529 }
530 
531 /*
532  * ntp_init() - initialize variables and structures
533  *
534  * This routine must be called after the kernel variables hz and tick
535  * are set or changed and before the next tick interrupt. In this
536  * particular implementation, these values are assumed set elsewhere in
537  * the kernel. The design allows the clock frequency and tick interval
538  * to be changed while the system is running. So, this routine should
539  * probably be integrated with the code that does that.
540  */
541 void
542 ntp_init(void)
543 {
544 
545 	/*
546 	 * The following variables are initialized only at startup. Only
547 	 * those structures not cleared by the compiler need to be
548 	 * initialized, and these only in the simulator. In the actual
549 	 * kernel, any nonzero values here will quickly evaporate.
550 	 */
551 	L_CLR(time_adj);
552 #ifdef NTP
553 	L_CLR(time_offset);
554 	L_CLR(time_freq);
555 #ifdef PPS_SYNC
556 	pps_tf[0].tv_sec = pps_tf[0].tv_nsec = 0;
557 	pps_tf[1].tv_sec = pps_tf[1].tv_nsec = 0;
558 	pps_tf[2].tv_sec = pps_tf[2].tv_nsec = 0;
559 	pps_fcount = 0;
560 	L_CLR(pps_freq);
561 #endif /* PPS_SYNC */
562 #endif
563 }
564 
565 #ifdef NTP
566 /*
567  * hardupdate() - local clock update
568  *
569  * This routine is called by ntp_adjtime() to update the local clock
570  * phase and frequency. The implementation is of an adaptive-parameter,
571  * hybrid phase/frequency-lock loop (PLL/FLL). The routine computes new
572  * time and frequency offset estimates for each call. If the kernel PPS
573  * discipline code is configured (PPS_SYNC), the PPS signal itself
574  * determines the new time offset, instead of the calling argument.
575  * Presumably, calls to ntp_adjtime() occur only when the caller
576  * believes the local clock is valid within some bound (+-128 ms with
577  * NTP). If the caller's time is far different than the PPS time, an
578  * argument will ensue, and it's not clear who will lose.
579  *
580  * For uncompensated quartz crystal oscillators and nominal update
581  * intervals less than 256 s, operation should be in phase-lock mode,
582  * where the loop is disciplined to phase. For update intervals greater
583  * than 1024 s, operation should be in frequency-lock mode, where the
584  * loop is disciplined to frequency. Between 256 s and 1024 s, the mode
585  * is selected by the STA_MODE status bit.
586  *
587  * Note: splclock() is in effect.
588  */
589 void
590 hardupdate(long offset)
591 {
592 	long mtemp;
593 	l_fp ftemp;
594 
595 	/*
596 	 * Select how the phase is to be controlled and from which
597 	 * source. If the PPS signal is present and enabled to
598 	 * discipline the time, the PPS offset is used; otherwise, the
599 	 * argument offset is used.
600 	 */
601 	if (!(time_status & STA_PLL))
602 		return;
603 	if (!(time_status & STA_PPSTIME && time_status &
604 	    STA_PPSSIGNAL)) {
605 		if (offset > MAXPHASE)
606 			time_monitor = MAXPHASE;
607 		else if (offset < -MAXPHASE)
608 			time_monitor = -MAXPHASE;
609 		else
610 			time_monitor = offset;
611 		L_LINT(time_offset, time_monitor);
612 	}
613 
614 	/*
615 	 * Select how the frequency is to be controlled and in which
616 	 * mode (PLL or FLL). If the PPS signal is present and enabled
617 	 * to discipline the frequency, the PPS frequency is used;
618 	 * otherwise, the argument offset is used to compute it.
619 	 */
620 	if (time_status & STA_PPSFREQ && time_status & STA_PPSSIGNAL) {
621 		time_reftime = time_second;
622 		return;
623 	}
624 	if (time_status & STA_FREQHOLD || time_reftime == 0)
625 		time_reftime = time_second;
626 	mtemp = time_second - time_reftime;
627 	L_LINT(ftemp, time_monitor);
628 	L_RSHIFT(ftemp, (SHIFT_PLL + 2 + time_constant) << 1);
629 	L_MPY(ftemp, mtemp);
630 	L_ADD(time_freq, ftemp);
631 	time_status &= ~STA_MODE;
632 	if (mtemp >= MINSEC && (time_status & STA_FLL || mtemp >
633 	    MAXSEC)) {
634 		L_LINT(ftemp, (time_monitor << 4) / mtemp);
635 		L_RSHIFT(ftemp, SHIFT_FLL + 4);
636 		L_ADD(time_freq, ftemp);
637 		time_status |= STA_MODE;
638 	}
639 	time_reftime = time_second;
640 	if (L_GINT(time_freq) > MAXFREQ)
641 		L_LINT(time_freq, MAXFREQ);
642 	else if (L_GINT(time_freq) < -MAXFREQ)
643 		L_LINT(time_freq, -MAXFREQ);
644 }
645 
646 #ifdef PPS_SYNC
647 /*
648  * hardpps() - discipline CPU clock oscillator to external PPS signal
649  *
650  * This routine is called at each PPS interrupt in order to discipline
651  * the CPU clock oscillator to the PPS signal. It measures the PPS phase
652  * and leaves it in a handy spot for the hardclock() routine. It
653  * integrates successive PPS phase differences and calculates the
654  * frequency offset. This is used in hardclock() to discipline the CPU
655  * clock oscillator so that intrinsic frequency error is cancelled out.
656  * The code requires the caller to capture the time and hardware counter
657  * value at the on-time PPS signal transition.
658  *
659  * Note that, on some Unix systems, this routine runs at an interrupt
660  * priority level higher than the timer interrupt routine hardclock().
661  * Therefore, the variables used are distinct from the hardclock()
662  * variables, except for certain exceptions: The PPS frequency pps_freq
663  * and phase pps_offset variables are determined by this routine and
664  * updated atomically. The time_tolerance variable can be considered a
665  * constant, since it is infrequently changed, and then only when the
666  * PPS signal is disabled. The watchdog counter pps_valid is updated
667  * once per second by hardclock() and is atomically cleared in this
668  * routine.
669  */
670 void
671 hardpps(struct timespec *tsp,		/* time at PPS */
672 	long nsec			/* hardware counter at PPS */)
673 {
674 	long u_sec, u_nsec, v_nsec; /* temps */
675 	l_fp ftemp;
676 
677 	/*
678 	 * The signal is first processed by a range gate and frequency
679 	 * discriminator. The range gate rejects noise spikes outside
680 	 * the range +-500 us. The frequency discriminator rejects input
681 	 * signals with apparent frequency outside the range 1 +-500
682 	 * PPM. If two hits occur in the same second, we ignore the
683 	 * later hit; if not and a hit occurs outside the range gate,
684 	 * keep the later hit for later comparison, but do not process
685 	 * it.
686 	 */
687 	time_status |= STA_PPSSIGNAL | STA_PPSJITTER;
688 	time_status &= ~(STA_PPSWANDER | STA_PPSERROR);
689 	pps_valid = PPS_VALID;
690 	u_sec = tsp->tv_sec;
691 	u_nsec = tsp->tv_nsec;
692 	if (u_nsec >= (NANOSECOND >> 1)) {
693 		u_nsec -= NANOSECOND;
694 		u_sec++;
695 	}
696 	v_nsec = u_nsec - pps_tf[0].tv_nsec;
697 	if (u_sec == pps_tf[0].tv_sec && v_nsec < NANOSECOND -
698 	    MAXFREQ)
699 		return;
700 	pps_tf[2] = pps_tf[1];
701 	pps_tf[1] = pps_tf[0];
702 	pps_tf[0].tv_sec = u_sec;
703 	pps_tf[0].tv_nsec = u_nsec;
704 
705 	/*
706 	 * Compute the difference between the current and previous
707 	 * counter values. If the difference exceeds 0.5 s, assume it
708 	 * has wrapped around, so correct 1.0 s. If the result exceeds
709 	 * the tick interval, the sample point has crossed a tick
710 	 * boundary during the last second, so correct the tick. Very
711 	 * intricate.
712 	 */
713 	u_nsec = nsec;
714 	if (u_nsec > (NANOSECOND >> 1))
715 		u_nsec -= NANOSECOND;
716 	else if (u_nsec < -(NANOSECOND >> 1))
717 		u_nsec += NANOSECOND;
718 	pps_fcount += u_nsec;
719 	if (v_nsec > MAXFREQ || v_nsec < -MAXFREQ)
720 		return;
721 	time_status &= ~STA_PPSJITTER;
722 
723 	/*
724 	 * A three-stage median filter is used to help denoise the PPS
725 	 * time. The median sample becomes the time offset estimate; the
726 	 * difference between the other two samples becomes the time
727 	 * dispersion (jitter) estimate.
728 	 */
729 	if (pps_tf[0].tv_nsec > pps_tf[1].tv_nsec) {
730 		if (pps_tf[1].tv_nsec > pps_tf[2].tv_nsec) {
731 			v_nsec = pps_tf[1].tv_nsec;	/* 0 1 2 */
732 			u_nsec = pps_tf[0].tv_nsec - pps_tf[2].tv_nsec;
733 		} else if (pps_tf[2].tv_nsec > pps_tf[0].tv_nsec) {
734 			v_nsec = pps_tf[0].tv_nsec;	/* 2 0 1 */
735 			u_nsec = pps_tf[2].tv_nsec - pps_tf[1].tv_nsec;
736 		} else {
737 			v_nsec = pps_tf[2].tv_nsec;	/* 0 2 1 */
738 			u_nsec = pps_tf[0].tv_nsec - pps_tf[1].tv_nsec;
739 		}
740 	} else {
741 		if (pps_tf[1].tv_nsec < pps_tf[2].tv_nsec) {
742 			v_nsec = pps_tf[1].tv_nsec;	/* 2 1 0 */
743 			u_nsec = pps_tf[2].tv_nsec - pps_tf[0].tv_nsec;
744 		} else if (pps_tf[2].tv_nsec < pps_tf[0].tv_nsec) {
745 			v_nsec = pps_tf[0].tv_nsec;	/* 1 0 2 */
746 			u_nsec = pps_tf[1].tv_nsec - pps_tf[2].tv_nsec;
747 		} else {
748 			v_nsec = pps_tf[2].tv_nsec;	/* 1 2 0 */
749 			u_nsec = pps_tf[1].tv_nsec - pps_tf[0].tv_nsec;
750 		}
751 	}
752 
753 	/*
754 	 * Nominal jitter is due to PPS signal noise and interrupt
755 	 * latency. If it exceeds the popcorn threshold, the sample is
756 	 * discarded. otherwise, if so enabled, the time offset is
757 	 * updated. We can tolerate a modest loss of data here without
758 	 * much degrading time accuracy.
759 	 */
760 	if (u_nsec > (pps_jitter << PPS_POPCORN)) {
761 		time_status |= STA_PPSJITTER;
762 		pps_jitcnt++;
763 	} else if (time_status & STA_PPSTIME) {
764 		time_monitor = -v_nsec;
765 		L_LINT(time_offset, time_monitor);
766 	}
767 	pps_jitter += (u_nsec - pps_jitter) >> PPS_FAVG;
768 	u_sec = pps_tf[0].tv_sec - pps_lastsec;
769 	if (u_sec < (1 << pps_shift))
770 		return;
771 
772 	/*
773 	 * At the end of the calibration interval the difference between
774 	 * the first and last counter values becomes the scaled
775 	 * frequency. It will later be divided by the length of the
776 	 * interval to determine the frequency update. If the frequency
777 	 * exceeds a sanity threshold, or if the actual calibration
778 	 * interval is not equal to the expected length, the data are
779 	 * discarded. We can tolerate a modest loss of data here without
780 	 * much degrading frequency accuracy.
781 	 */
782 	pps_calcnt++;
783 	v_nsec = -pps_fcount;
784 	pps_lastsec = pps_tf[0].tv_sec;
785 	pps_fcount = 0;
786 	u_nsec = MAXFREQ << pps_shift;
787 	if (v_nsec > u_nsec || v_nsec < -u_nsec || u_sec != (1 <<
788 	    pps_shift)) {
789 		time_status |= STA_PPSERROR;
790 		pps_errcnt++;
791 		return;
792 	}
793 
794 	/*
795 	 * Here the raw frequency offset and wander (stability) is
796 	 * calculated. If the wander is less than the wander threshold
797 	 * for four consecutive averaging intervals, the interval is
798 	 * doubled; if it is greater than the threshold for four
799 	 * consecutive intervals, the interval is halved. The scaled
800 	 * frequency offset is converted to frequency offset. The
801 	 * stability metric is calculated as the average of recent
802 	 * frequency changes, but is used only for performance
803 	 * monitoring.
804 	 */
805 	L_LINT(ftemp, v_nsec);
806 	L_RSHIFT(ftemp, pps_shift);
807 	L_SUB(ftemp, pps_freq);
808 	u_nsec = L_GINT(ftemp);
809 	if (u_nsec > PPS_MAXWANDER) {
810 		L_LINT(ftemp, PPS_MAXWANDER);
811 		pps_intcnt--;
812 		time_status |= STA_PPSWANDER;
813 		pps_stbcnt++;
814 	} else if (u_nsec < -PPS_MAXWANDER) {
815 		L_LINT(ftemp, -PPS_MAXWANDER);
816 		pps_intcnt--;
817 		time_status |= STA_PPSWANDER;
818 		pps_stbcnt++;
819 	} else {
820 		pps_intcnt++;
821 	}
822 	if (pps_intcnt >= 4) {
823 		pps_intcnt = 4;
824 		if (pps_shift < pps_shiftmax) {
825 			pps_shift++;
826 			pps_intcnt = 0;
827 		}
828 	} else if (pps_intcnt <= -4 || pps_shift > pps_shiftmax) {
829 		pps_intcnt = -4;
830 		if (pps_shift > PPS_FAVG) {
831 			pps_shift--;
832 			pps_intcnt = 0;
833 		}
834 	}
835 	if (u_nsec < 0)
836 		u_nsec = -u_nsec;
837 	pps_stabil += (u_nsec * SCALE_PPM - pps_stabil) >> PPS_FAVG;
838 
839 	/*
840 	 * The PPS frequency is recalculated and clamped to the maximum
841 	 * MAXFREQ. If enabled, the system clock frequency is updated as
842 	 * well.
843 	 */
844 	L_ADD(pps_freq, ftemp);
845 	u_nsec = L_GINT(pps_freq);
846 	if (u_nsec > MAXFREQ)
847 		L_LINT(pps_freq, MAXFREQ);
848 	else if (u_nsec < -MAXFREQ)
849 		L_LINT(pps_freq, -MAXFREQ);
850 	if (time_status & STA_PPSFREQ)
851 		time_freq = pps_freq;
852 }
853 #endif /* PPS_SYNC */
854 #endif /* NTP */
855 #else /* !__HAVE_TIMECOUNTER */
856 /******************************************************************************
857  *                                                                            *
858  * Copyright (c) David L. Mills 1993, 1994                                    *
859  *                                                                            *
860  * Permission to use, copy, modify, and distribute this software and its      *
861  * documentation for any purpose and without fee is hereby granted, provided  *
862  * that the above copyright notice appears in all copies and that both the    *
863  * copyright notice and this permission notice appear in supporting           *
864  * documentation, and that the name University of Delaware not be used in     *
865  * advertising or publicity pertaining to distribution of the software        *
866  * without specific, written prior permission.  The University of Delaware    *
867  * makes no representations about the suitability this software for any       *
868  * purpose.  It is provided "as is" without express or implied warranty.      *
869  *                                                                            *
870  ******************************************************************************/
871 
872 /*
873  * Modification history kern_ntptime.c
874  *
875  * 24 Sep 94	David L. Mills
876  *	Tightened code at exits.
877  *
878  * 24 Mar 94	David L. Mills
879  *	Revised syscall interface to include new variables for PPS
880  *	time discipline.
881  *
882  * 14 Feb 94	David L. Mills
883  *	Added code for external clock
884  *
885  * 28 Nov 93	David L. Mills
886  *	Revised frequency scaling to conform with adjusted parameters
887  *
888  * 17 Sep 93	David L. Mills
889  *	Created file
890  */
891 /*
892  * ntp_gettime(), ntp_adjtime() - precision time interface for SunOS
893  * V4.1.1 and V4.1.3
894  *
895  * These routines consitute the Network Time Protocol (NTP) interfaces
896  * for user and daemon application programs. The ntp_gettime() routine
897  * provides the time, maximum error (synch distance) and estimated error
898  * (dispersion) to client user application programs. The ntp_adjtime()
899  * routine is used by the NTP daemon to adjust the system clock to an
900  * externally derived time. The time offset and related variables set by
901  * this routine are used by hardclock() to adjust the phase and
902  * frequency of the phase-lock loop which controls the system clock.
903  */
904 
905 #include <sys/cdefs.h>
906 __KERNEL_RCSID(0, "$NetBSD: kern_ntptime.c,v 1.44 2007/10/19 12:16:43 ad Exp $");
907 
908 #include "opt_ntp.h"
909 #include "opt_compat_netbsd.h"
910 
911 #include <sys/param.h>
912 #include <sys/resourcevar.h>
913 #include <sys/systm.h>
914 #include <sys/kernel.h>
915 #include <sys/proc.h>
916 #include <sys/sysctl.h>
917 #include <sys/timex.h>
918 #ifdef COMPAT_30
919 #include <compat/sys/timex.h>
920 #endif
921 #include <sys/vnode.h>
922 #include <sys/kauth.h>
923 
924 #include <sys/mount.h>
925 #include <sys/syscallargs.h>
926 
927 #include <sys/cpu.h>
928 
929 #ifdef NTP
930 /*
931  * The following variables are used by the hardclock() routine in the
932  * kern_clock.c module and are described in that module.
933  */
934 extern int time_state;		/* clock state */
935 extern int time_status;		/* clock status bits */
936 extern long time_offset;	/* time adjustment (us) */
937 extern long time_freq;		/* frequency offset (scaled ppm) */
938 extern long time_maxerror;	/* maximum error (us) */
939 extern long time_esterror;	/* estimated error (us) */
940 extern long time_constant;	/* pll time constant */
941 extern long time_precision;	/* clock precision (us) */
942 extern long time_tolerance;	/* frequency tolerance (scaled ppm) */
943 extern int time_adjusted;	/* ntp might have changed the system time */
944 
945 #ifdef PPS_SYNC
946 /*
947  * The following variables are used only if the PPS signal discipline
948  * is configured in the kernel.
949  */
950 extern int pps_shift;		/* interval duration (s) (shift) */
951 extern long pps_freq;		/* pps frequency offset (scaled ppm) */
952 extern long pps_jitter;		/* pps jitter (us) */
953 extern long pps_stabil;		/* pps stability (scaled ppm) */
954 extern long pps_jitcnt;		/* jitter limit exceeded */
955 extern long pps_calcnt;		/* calibration intervals */
956 extern long pps_errcnt;		/* calibration errors */
957 extern long pps_stbcnt;		/* stability limit exceeded */
958 #endif /* PPS_SYNC */
959 
960 /*ARGSUSED*/
961 /*
962  * ntp_gettime() - NTP user application interface
963  */
964 void
965 ntp_gettime(ntvp)
966 	struct ntptimeval *ntvp;
967 {
968 	struct timeval atv;
969 	int s;
970 
971 	memset(ntvp, 0, sizeof(struct ntptimeval));
972 
973 	s = splclock();
974 #ifdef EXT_CLOCK
975 	/*
976 	 * The microtime() external clock routine returns a
977 	 * status code. If less than zero, we declare an error
978 	 * in the clock status word and return the kernel
979 	 * (software) time variable. While there are other
980 	 * places that call microtime(), this is the only place
981 	 * that matters from an application point of view.
982 	 */
983 	if (microtime(&atv) < 0) {
984 		time_status |= STA_CLOCKERR;
985 		ntvp->time = time;
986 	} else
987 		time_status &= ~STA_CLOCKERR;
988 #else /* EXT_CLOCK */
989 	microtime(&atv);
990 #endif /* EXT_CLOCK */
991 	ntvp->maxerror = time_maxerror;
992 	ntvp->esterror = time_esterror;
993 	(void) splx(s);
994 	TIMEVAL_TO_TIMESPEC(&atv, &ntvp->time);
995 }
996 
997 
998 /* ARGSUSED */
999 /*
1000  * ntp_adjtime() - NTP daemon application interface
1001  */
1002 int
1003 sys_ntp_adjtime(l, v, retval)
1004 	struct lwp *l;
1005 	void *v;
1006 	register_t *retval;
1007 {
1008 	struct sys_ntp_adjtime_args /* {
1009 		syscallarg(struct timex *) tp;
1010 	} */ *uap = v;
1011 	struct timex ntv;
1012 	int error = 0;
1013 
1014 	error = copyin((void *)SCARG(uap, tp), (void *)&ntv, sizeof(ntv));
1015 	if (error != 0)
1016 		return (error);
1017 
1018 	if (ntv.modes != 0 && (error = kauth_authorize_system(l->l_cred,
1019 	    KAUTH_SYSTEM_TIME, KAUTH_REQ_SYSTEM_TIME_NTPADJTIME, NULL,
1020 	    NULL, NULL)) != 0)
1021 		return (error);
1022 
1023 	ntp_adjtime1(&ntv);
1024 
1025 	error = copyout((void *)&ntv, (void *)SCARG(uap, tp), sizeof(ntv));
1026 	if (error == 0)
1027 		*retval = ntp_timestatus();
1028 
1029 	return error;
1030 }
1031 
1032 void
1033 ntp_adjtime1(ntv)
1034 	struct timex *ntv;
1035 {
1036 	int modes;
1037 	int s;
1038 
1039 	/*
1040 	 * Update selected clock variables. Note that there is no error
1041 	 * checking here on the assumption the superuser should know
1042 	 * what it is doing.
1043 	 */
1044 	modes = ntv->modes;
1045 	if (modes != 0)
1046 		/* We need to save the system time during shutdown */
1047 		time_adjusted |= 2;
1048 	s = splclock();
1049 	if (modes & MOD_FREQUENCY)
1050 #ifdef PPS_SYNC
1051 		time_freq = ntv->freq - pps_freq;
1052 #else /* PPS_SYNC */
1053 		time_freq = ntv->freq;
1054 #endif /* PPS_SYNC */
1055 	if (modes & MOD_MAXERROR)
1056 		time_maxerror = ntv->maxerror;
1057 	if (modes & MOD_ESTERROR)
1058 		time_esterror = ntv->esterror;
1059 	if (modes & MOD_STATUS) {
1060 		time_status &= STA_RONLY;
1061 		time_status |= ntv->status & ~STA_RONLY;
1062 	}
1063 	if (modes & MOD_TIMECONST)
1064 		time_constant = ntv->constant;
1065 	if (modes & MOD_OFFSET)
1066 		hardupdate(ntv->offset);
1067 
1068 	/*
1069 	 * Retrieve all clock variables
1070 	 */
1071 	if (time_offset < 0)
1072 		ntv->offset = -(-time_offset >> SHIFT_UPDATE);
1073 	else
1074 		ntv->offset = time_offset >> SHIFT_UPDATE;
1075 #ifdef PPS_SYNC
1076 	ntv->freq = time_freq + pps_freq;
1077 #else /* PPS_SYNC */
1078 	ntv->freq = time_freq;
1079 #endif /* PPS_SYNC */
1080 	ntv->maxerror = time_maxerror;
1081 	ntv->esterror = time_esterror;
1082 	ntv->status = time_status;
1083 	ntv->constant = time_constant;
1084 	ntv->precision = time_precision;
1085 	ntv->tolerance = time_tolerance;
1086 #ifdef PPS_SYNC
1087 	ntv->shift = pps_shift;
1088 	ntv->ppsfreq = pps_freq;
1089 	ntv->jitter = pps_jitter >> PPS_AVG;
1090 	ntv->stabil = pps_stabil;
1091 	ntv->calcnt = pps_calcnt;
1092 	ntv->errcnt = pps_errcnt;
1093 	ntv->jitcnt = pps_jitcnt;
1094 	ntv->stbcnt = pps_stbcnt;
1095 #endif /* PPS_SYNC */
1096 	(void)splx(s);
1097 }
1098 #endif /* NTP */
1099 #endif /* !__HAVE_TIMECOUNTER */
1100 
1101 #ifdef NTP
1102 int
1103 ntp_timestatus()
1104 {
1105 	/*
1106 	 * Status word error decode. If any of these conditions
1107 	 * occur, an error is returned, instead of the status
1108 	 * word. Most applications will care only about the fact
1109 	 * the system clock may not be trusted, not about the
1110 	 * details.
1111 	 *
1112 	 * Hardware or software error
1113 	 */
1114 	if ((time_status & (STA_UNSYNC | STA_CLOCKERR)) ||
1115 
1116 	/*
1117 	 * PPS signal lost when either time or frequency
1118 	 * synchronization requested
1119 	 */
1120 	    (time_status & (STA_PPSFREQ | STA_PPSTIME) &&
1121 	     !(time_status & STA_PPSSIGNAL)) ||
1122 
1123 	/*
1124 	 * PPS jitter exceeded when time synchronization
1125 	 * requested
1126 	 */
1127 	    (time_status & STA_PPSTIME &&
1128 	     time_status & STA_PPSJITTER) ||
1129 
1130 	/*
1131 	 * PPS wander exceeded or calibration error when
1132 	 * frequency synchronization requested
1133 	 */
1134 	    (time_status & STA_PPSFREQ &&
1135 	     time_status & (STA_PPSWANDER | STA_PPSERROR)))
1136 		return (TIME_ERROR);
1137 	else
1138 		return (time_state);
1139 }
1140 
1141 /*ARGSUSED*/
1142 /*
1143  * ntp_gettime() - NTP user application interface
1144  */
1145 int
1146 sys___ntp_gettime30(struct lwp *l, void *v, register_t *retval)
1147 {
1148 	struct sys___ntp_gettime30_args /* {
1149 		syscallarg(struct ntptimeval *) ntvp;
1150 	} */ *uap = v;
1151 	struct ntptimeval ntv;
1152 	int error = 0;
1153 
1154 	if (SCARG(uap, ntvp)) {
1155 		ntp_gettime(&ntv);
1156 
1157 		error = copyout((void *)&ntv, (void *)SCARG(uap, ntvp),
1158 				sizeof(ntv));
1159 	}
1160 	if (!error) {
1161 		*retval = ntp_timestatus();
1162 	}
1163 	return(error);
1164 }
1165 
1166 #ifdef COMPAT_30
1167 int
1168 compat_30_sys_ntp_gettime(struct lwp *l, void *v, register_t *retval)
1169 {
1170 	struct compat_30_sys_ntp_gettime_args /* {
1171 		syscallarg(struct ntptimeval30 *) ontvp;
1172 	} */ *uap = v;
1173 	struct ntptimeval ntv;
1174 	struct ntptimeval30 ontv;
1175 	int error = 0;
1176 
1177 	if (SCARG(uap, ntvp)) {
1178 		ntp_gettime(&ntv);
1179 		TIMESPEC_TO_TIMEVAL(&ontv.time, &ntv.time);
1180 		ontv.maxerror = ntv.maxerror;
1181 		ontv.esterror = ntv.esterror;
1182 
1183 		error = copyout((void *)&ontv, (void *)SCARG(uap, ntvp),
1184 				sizeof(ontv));
1185  	}
1186 	if (!error)
1187 		*retval = ntp_timestatus();
1188 
1189 	return (error);
1190 }
1191 #endif
1192 
1193 /*
1194  * return information about kernel precision timekeeping
1195  */
1196 static int
1197 sysctl_kern_ntptime(SYSCTLFN_ARGS)
1198 {
1199 	struct sysctlnode node;
1200 	struct ntptimeval ntv;
1201 
1202 	ntp_gettime(&ntv);
1203 
1204 	node = *rnode;
1205 	node.sysctl_data = &ntv;
1206 	node.sysctl_size = sizeof(ntv);
1207 	return (sysctl_lookup(SYSCTLFN_CALL(&node)));
1208 }
1209 
1210 SYSCTL_SETUP(sysctl_kern_ntptime_setup, "sysctl kern.ntptime node setup")
1211 {
1212 
1213 	sysctl_createv(clog, 0, NULL, NULL,
1214 		       CTLFLAG_PERMANENT,
1215 		       CTLTYPE_NODE, "kern", NULL,
1216 		       NULL, 0, NULL, 0,
1217 		       CTL_KERN, CTL_EOL);
1218 
1219 	sysctl_createv(clog, 0, NULL, NULL,
1220 		       CTLFLAG_PERMANENT,
1221 		       CTLTYPE_STRUCT, "ntptime",
1222 		       SYSCTL_DESCR("Kernel clock values for NTP"),
1223 		       sysctl_kern_ntptime, 0, NULL,
1224 		       sizeof(struct ntptimeval),
1225 		       CTL_KERN, KERN_NTPTIME, CTL_EOL);
1226 }
1227 #else /* !NTP */
1228 /* For some reason, raising SIGSYS (as sys_nosys would) is problematic. */
1229 
1230 int
1231 sys___ntp_gettime30(struct lwp *l, void *v, register_t *retval)
1232 {
1233 
1234 	return(ENOSYS);
1235 }
1236 
1237 #ifdef COMPAT_30
1238 int
1239 compat_30_sys_ntp_gettime(struct lwp *l, void *v, register_t *retval)
1240 {
1241 
1242  	return(ENOSYS);
1243 }
1244 #endif
1245 #endif /* !NTP */
1246