xref: /netbsd-src/sys/kern/kern_ntptime.c (revision 7330f729ccf0bd976a06f95fad452fe774fc7fd1)
1 /*	$NetBSD: kern_ntptime.c,v 1.60 2018/10/29 22:02:25 christos Exp $	*/
2 
3 /*-
4  * Copyright (c) 2008 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
17  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
18  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
19  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
20  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
21  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
22  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
23  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
24  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
25  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
26  * POSSIBILITY OF SUCH DAMAGE.
27  */
28 
29 /*-
30  ***********************************************************************
31  *								       *
32  * Copyright (c) David L. Mills 1993-2001			       *
33  *								       *
34  * Permission to use, copy, modify, and distribute this software and   *
35  * its documentation for any purpose and without fee is hereby	       *
36  * granted, provided that the above copyright notice appears in all    *
37  * copies and that both the copyright notice and this permission       *
38  * notice appear in supporting documentation, and that the name	       *
39  * University of Delaware not be used in advertising or publicity      *
40  * pertaining to distribution of the software without specific,	       *
41  * written prior permission. The University of Delaware makes no       *
42  * representations about the suitability this software for any	       *
43  * purpose. It is provided "as is" without express or implied	       *
44  * warranty.							       *
45  *								       *
46  **********************************************************************/
47 
48 /*
49  * Adapted from the original sources for FreeBSD and timecounters by:
50  * Poul-Henning Kamp <phk@FreeBSD.org>.
51  *
52  * The 32bit version of the "LP" macros seems a bit past its "sell by"
53  * date so I have retained only the 64bit version and included it directly
54  * in this file.
55  *
56  * Only minor changes done to interface with the timecounters over in
57  * sys/kern/kern_clock.c.   Some of the comments below may be (even more)
58  * confusing and/or plain wrong in that context.
59  */
60 
61 #include <sys/cdefs.h>
62 /* __FBSDID("$FreeBSD: src/sys/kern/kern_ntptime.c,v 1.59 2005/05/28 14:34:41 rwatson Exp $"); */
63 __KERNEL_RCSID(0, "$NetBSD: kern_ntptime.c,v 1.60 2018/10/29 22:02:25 christos Exp $");
64 
65 #ifdef _KERNEL_OPT
66 #include "opt_ntp.h"
67 #endif
68 
69 #include <sys/param.h>
70 #include <sys/resourcevar.h>
71 #include <sys/systm.h>
72 #include <sys/kernel.h>
73 #include <sys/proc.h>
74 #include <sys/sysctl.h>
75 #include <sys/timex.h>
76 #include <sys/vnode.h>
77 #include <sys/kauth.h>
78 #include <sys/mount.h>
79 #include <sys/syscallargs.h>
80 #include <sys/cpu.h>
81 
82 #include <compat/sys/timex.h>
83 
84 /*
85  * Single-precision macros for 64-bit machines
86  */
87 typedef int64_t l_fp;
88 #define L_ADD(v, u)	((v) += (u))
89 #define L_SUB(v, u)	((v) -= (u))
90 #define L_ADDHI(v, a)	((v) += (int64_t)(a) << 32)
91 #define L_NEG(v)	((v) = -(v))
92 #define L_RSHIFT(v, n) \
93 	do { \
94 		if ((v) < 0) \
95 			(v) = -(-(v) >> (n)); \
96 		else \
97 			(v) = (v) >> (n); \
98 	} while (0)
99 #define L_MPY(v, a)	((v) *= (a))
100 #define L_CLR(v)	((v) = 0)
101 #define L_ISNEG(v)	((v) < 0)
102 #define L_LINT(v, a)	((v) = (int64_t)((uint64_t)(a) << 32))
103 #define L_GINT(v)	((v) < 0 ? -(-(v) >> 32) : (v) >> 32)
104 
105 #ifdef NTP
106 /*
107  * Generic NTP kernel interface
108  *
109  * These routines constitute the Network Time Protocol (NTP) interfaces
110  * for user and daemon application programs. The ntp_gettime() routine
111  * provides the time, maximum error (synch distance) and estimated error
112  * (dispersion) to client user application programs. The ntp_adjtime()
113  * routine is used by the NTP daemon to adjust the system clock to an
114  * externally derived time. The time offset and related variables set by
115  * this routine are used by other routines in this module to adjust the
116  * phase and frequency of the clock discipline loop which controls the
117  * system clock.
118  *
119  * When the kernel time is reckoned directly in nanoseconds (NTP_NANO
120  * defined), the time at each tick interrupt is derived directly from
121  * the kernel time variable. When the kernel time is reckoned in
122  * microseconds, (NTP_NANO undefined), the time is derived from the
123  * kernel time variable together with a variable representing the
124  * leftover nanoseconds at the last tick interrupt. In either case, the
125  * current nanosecond time is reckoned from these values plus an
126  * interpolated value derived by the clock routines in another
127  * architecture-specific module. The interpolation can use either a
128  * dedicated counter or a processor cycle counter (PCC) implemented in
129  * some architectures.
130  *
131  * Note that all routines must run at priority splclock or higher.
132  */
133 /*
134  * Phase/frequency-lock loop (PLL/FLL) definitions
135  *
136  * The nanosecond clock discipline uses two variable types, time
137  * variables and frequency variables. Both types are represented as 64-
138  * bit fixed-point quantities with the decimal point between two 32-bit
139  * halves. On a 32-bit machine, each half is represented as a single
140  * word and mathematical operations are done using multiple-precision
141  * arithmetic. On a 64-bit machine, ordinary computer arithmetic is
142  * used.
143  *
144  * A time variable is a signed 64-bit fixed-point number in ns and
145  * fraction. It represents the remaining time offset to be amortized
146  * over succeeding tick interrupts. The maximum time offset is about
147  * 0.5 s and the resolution is about 2.3e-10 ns.
148  *
149  *			1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3
150  *  0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
151  * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
152  * |s s s|			 ns				   |
153  * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
154  * |			    fraction				   |
155  * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
156  *
157  * A frequency variable is a signed 64-bit fixed-point number in ns/s
158  * and fraction. It represents the ns and fraction to be added to the
159  * kernel time variable at each second. The maximum frequency offset is
160  * about +-500000 ns/s and the resolution is about 2.3e-10 ns/s.
161  *
162  *			1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3
163  *  0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
164  * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
165  * |s s s s s s s s s s s s s|	          ns/s			   |
166  * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
167  * |			    fraction				   |
168  * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
169  */
170 /*
171  * The following variables establish the state of the PLL/FLL and the
172  * residual time and frequency offset of the local clock.
173  */
174 #define SHIFT_PLL	4		/* PLL loop gain (shift) */
175 #define SHIFT_FLL	2		/* FLL loop gain (shift) */
176 
177 static int time_state = TIME_OK;	/* clock state */
178 static int time_status = STA_UNSYNC;	/* clock status bits */
179 static long time_tai;			/* TAI offset (s) */
180 static long time_monitor;		/* last time offset scaled (ns) */
181 static long time_constant;		/* poll interval (shift) (s) */
182 static long time_precision = 1;		/* clock precision (ns) */
183 static long time_maxerror = MAXPHASE / 1000; /* maximum error (us) */
184 static long time_esterror = MAXPHASE / 1000; /* estimated error (us) */
185 static time_t time_reftime;		/* time at last adjustment (s) */
186 static l_fp time_offset;		/* time offset (ns) */
187 static l_fp time_freq;			/* frequency offset (ns/s) */
188 #endif /* NTP */
189 
190 static l_fp time_adj;			/* tick adjust (ns/s) */
191 int64_t time_adjtime;		/* correction from adjtime(2) (usec) */
192 
193 extern int time_adjusted;	/* ntp might have changed the system time */
194 
195 #ifdef NTP
196 #ifdef PPS_SYNC
197 /*
198  * The following variables are used when a pulse-per-second (PPS) signal
199  * is available and connected via a modem control lead. They establish
200  * the engineering parameters of the clock discipline loop when
201  * controlled by the PPS signal.
202  */
203 #define PPS_FAVG	2		/* min freq avg interval (s) (shift) */
204 #define PPS_FAVGDEF	8		/* default freq avg int (s) (shift) */
205 #define PPS_FAVGMAX	15		/* max freq avg interval (s) (shift) */
206 #define PPS_PAVG	4		/* phase avg interval (s) (shift) */
207 #define PPS_VALID	120		/* PPS signal watchdog max (s) */
208 #define PPS_MAXWANDER	100000		/* max PPS wander (ns/s) */
209 #define PPS_POPCORN	2		/* popcorn spike threshold (shift) */
210 
211 static struct timespec pps_tf[3];	/* phase median filter */
212 static l_fp pps_freq;			/* scaled frequency offset (ns/s) */
213 static long pps_fcount;			/* frequency accumulator */
214 static long pps_jitter;			/* nominal jitter (ns) */
215 static long pps_stabil;			/* nominal stability (scaled ns/s) */
216 static long pps_lastsec;		/* time at last calibration (s) */
217 static int pps_valid;			/* signal watchdog counter */
218 static int pps_shift = PPS_FAVG;	/* interval duration (s) (shift) */
219 static int pps_shiftmax = PPS_FAVGDEF;	/* max interval duration (s) (shift) */
220 static int pps_intcnt;			/* wander counter */
221 
222 /*
223  * PPS signal quality monitors
224  */
225 static long pps_calcnt;			/* calibration intervals */
226 static long pps_jitcnt;			/* jitter limit exceeded */
227 static long pps_stbcnt;			/* stability limit exceeded */
228 static long pps_errcnt;			/* calibration errors */
229 #endif /* PPS_SYNC */
230 /*
231  * End of phase/frequency-lock loop (PLL/FLL) definitions
232  */
233 
234 static void hardupdate(long offset);
235 
236 /*
237  * ntp_gettime() - NTP user application interface
238  */
239 void
240 ntp_gettime(struct ntptimeval *ntv)
241 {
242 	memset(ntv, 0, sizeof(*ntv));
243 
244 	mutex_spin_enter(&timecounter_lock);
245 	nanotime(&ntv->time);
246 	ntv->maxerror = time_maxerror;
247 	ntv->esterror = time_esterror;
248 	ntv->tai = time_tai;
249 	ntv->time_state = time_state;
250 	mutex_spin_exit(&timecounter_lock);
251 }
252 
253 /* ARGSUSED */
254 /*
255  * ntp_adjtime() - NTP daemon application interface
256  */
257 int
258 sys_ntp_adjtime(struct lwp *l, const struct sys_ntp_adjtime_args *uap, register_t *retval)
259 {
260 	/* {
261 		syscallarg(struct timex *) tp;
262 	} */
263 	struct timex ntv;
264 	int error;
265 
266 	error = copyin((void *)SCARG(uap, tp), (void *)&ntv, sizeof(ntv));
267 	if (error != 0)
268 		return (error);
269 
270 	if (ntv.modes != 0 && (error = kauth_authorize_system(l->l_cred,
271 	    KAUTH_SYSTEM_TIME, KAUTH_REQ_SYSTEM_TIME_NTPADJTIME, NULL,
272 	    NULL, NULL)) != 0)
273 		return (error);
274 
275 	ntp_adjtime1(&ntv);
276 
277 	error = copyout((void *)&ntv, (void *)SCARG(uap, tp), sizeof(ntv));
278 	if (!error)
279 		*retval = ntp_timestatus();
280 
281 	return error;
282 }
283 
284 void
285 ntp_adjtime1(struct timex *ntv)
286 {
287 	long freq;
288 	int modes;
289 
290 	/*
291 	 * Update selected clock variables - only the superuser can
292 	 * change anything. Note that there is no error checking here on
293 	 * the assumption the superuser should know what it is doing.
294 	 * Note that either the time constant or TAI offset are loaded
295 	 * from the ntv.constant member, depending on the mode bits. If
296 	 * the STA_PLL bit in the status word is cleared, the state and
297 	 * status words are reset to the initial values at boot.
298 	 */
299 	mutex_spin_enter(&timecounter_lock);
300 	modes = ntv->modes;
301 	if (modes != 0)
302 		/* We need to save the system time during shutdown */
303 		time_adjusted |= 2;
304 	if (modes & MOD_MAXERROR)
305 		time_maxerror = ntv->maxerror;
306 	if (modes & MOD_ESTERROR)
307 		time_esterror = ntv->esterror;
308 	if (modes & MOD_STATUS) {
309 		if (time_status & STA_PLL && !(ntv->status & STA_PLL)) {
310 			time_state = TIME_OK;
311 			time_status = STA_UNSYNC;
312 #ifdef PPS_SYNC
313 			pps_shift = PPS_FAVG;
314 #endif /* PPS_SYNC */
315 		}
316 		time_status &= STA_RONLY;
317 		time_status |= ntv->status & ~STA_RONLY;
318 	}
319 	if (modes & MOD_TIMECONST) {
320 		if (ntv->constant < 0)
321 			time_constant = 0;
322 		else if (ntv->constant > MAXTC)
323 			time_constant = MAXTC;
324 		else
325 			time_constant = ntv->constant;
326 	}
327 	if (modes & MOD_TAI) {
328 		if (ntv->constant > 0)	/* XXX zero & negative numbers ? */
329 			time_tai = ntv->constant;
330 	}
331 #ifdef PPS_SYNC
332 	if (modes & MOD_PPSMAX) {
333 		if (ntv->shift < PPS_FAVG)
334 			pps_shiftmax = PPS_FAVG;
335 		else if (ntv->shift > PPS_FAVGMAX)
336 			pps_shiftmax = PPS_FAVGMAX;
337 		else
338 			pps_shiftmax = ntv->shift;
339 	}
340 #endif /* PPS_SYNC */
341 	if (modes & MOD_NANO)
342 		time_status |= STA_NANO;
343 	if (modes & MOD_MICRO)
344 		time_status &= ~STA_NANO;
345 	if (modes & MOD_CLKB)
346 		time_status |= STA_CLK;
347 	if (modes & MOD_CLKA)
348 		time_status &= ~STA_CLK;
349 	if (modes & MOD_FREQUENCY) {
350 		freq = (ntv->freq * 1000LL) >> 16;
351 		if (freq > MAXFREQ)
352 			L_LINT(time_freq, MAXFREQ);
353 		else if (freq < -MAXFREQ)
354 			L_LINT(time_freq, -MAXFREQ);
355 		else {
356 			/*
357 			 * ntv.freq is [PPM * 2^16] = [us/s * 2^16]
358 			 * time_freq is [ns/s * 2^32]
359 			 */
360 			time_freq = ntv->freq * 1000LL * 65536LL;
361 		}
362 #ifdef PPS_SYNC
363 		pps_freq = time_freq;
364 #endif /* PPS_SYNC */
365 	}
366 	if (modes & MOD_OFFSET) {
367 		if (time_status & STA_NANO)
368 			hardupdate(ntv->offset);
369 		else
370 			hardupdate(ntv->offset * 1000);
371 	}
372 
373 	/*
374 	 * Retrieve all clock variables. Note that the TAI offset is
375 	 * returned only by ntp_gettime();
376 	 */
377 	if (time_status & STA_NANO)
378 		ntv->offset = L_GINT(time_offset);
379 	else
380 		ntv->offset = L_GINT(time_offset) / 1000; /* XXX rounding ? */
381 	ntv->freq = L_GINT((time_freq / 1000LL) << 16);
382 	ntv->maxerror = time_maxerror;
383 	ntv->esterror = time_esterror;
384 	ntv->status = time_status;
385 	ntv->constant = time_constant;
386 	if (time_status & STA_NANO)
387 		ntv->precision = time_precision;
388 	else
389 		ntv->precision = time_precision / 1000;
390 	ntv->tolerance = MAXFREQ * SCALE_PPM;
391 #ifdef PPS_SYNC
392 	ntv->shift = pps_shift;
393 	ntv->ppsfreq = L_GINT((pps_freq / 1000LL) << 16);
394 	if (time_status & STA_NANO)
395 		ntv->jitter = pps_jitter;
396 	else
397 		ntv->jitter = pps_jitter / 1000;
398 	ntv->stabil = pps_stabil;
399 	ntv->calcnt = pps_calcnt;
400 	ntv->errcnt = pps_errcnt;
401 	ntv->jitcnt = pps_jitcnt;
402 	ntv->stbcnt = pps_stbcnt;
403 #endif /* PPS_SYNC */
404 	mutex_spin_exit(&timecounter_lock);
405 }
406 #endif /* NTP */
407 
408 /*
409  * second_overflow() - called after ntp_tick_adjust()
410  *
411  * This routine is ordinarily called immediately following the above
412  * routine ntp_tick_adjust(). While these two routines are normally
413  * combined, they are separated here only for the purposes of
414  * simulation.
415  */
416 void
417 ntp_update_second(int64_t *adjustment, time_t *newsec)
418 {
419 	int tickrate;
420 	l_fp ftemp;		/* 32/64-bit temporary */
421 
422 	KASSERT(mutex_owned(&timecounter_lock));
423 
424 #ifdef NTP
425 
426 	/*
427 	 * On rollover of the second both the nanosecond and microsecond
428 	 * clocks are updated and the state machine cranked as
429 	 * necessary. The phase adjustment to be used for the next
430 	 * second is calculated and the maximum error is increased by
431 	 * the tolerance.
432 	 */
433 	time_maxerror += MAXFREQ / 1000;
434 
435 	/*
436 	 * Leap second processing. If in leap-insert state at
437 	 * the end of the day, the system clock is set back one
438 	 * second; if in leap-delete state, the system clock is
439 	 * set ahead one second. The nano_time() routine or
440 	 * external clock driver will insure that reported time
441 	 * is always monotonic.
442 	 */
443 	switch (time_state) {
444 
445 		/*
446 		 * No warning.
447 		 */
448 		case TIME_OK:
449 		if (time_status & STA_INS)
450 			time_state = TIME_INS;
451 		else if (time_status & STA_DEL)
452 			time_state = TIME_DEL;
453 		break;
454 
455 		/*
456 		 * Insert second 23:59:60 following second
457 		 * 23:59:59.
458 		 */
459 		case TIME_INS:
460 		if (!(time_status & STA_INS))
461 			time_state = TIME_OK;
462 		else if ((*newsec) % 86400 == 0) {
463 			(*newsec)--;
464 			time_state = TIME_OOP;
465 			time_tai++;
466 		}
467 		break;
468 
469 		/*
470 		 * Delete second 23:59:59.
471 		 */
472 		case TIME_DEL:
473 		if (!(time_status & STA_DEL))
474 			time_state = TIME_OK;
475 		else if (((*newsec) + 1) % 86400 == 0) {
476 			(*newsec)++;
477 			time_tai--;
478 			time_state = TIME_WAIT;
479 		}
480 		break;
481 
482 		/*
483 		 * Insert second in progress.
484 		 */
485 		case TIME_OOP:
486 			time_state = TIME_WAIT;
487 		break;
488 
489 		/*
490 		 * Wait for status bits to clear.
491 		 */
492 		case TIME_WAIT:
493 		if (!(time_status & (STA_INS | STA_DEL)))
494 			time_state = TIME_OK;
495 	}
496 
497 	/*
498 	 * Compute the total time adjustment for the next second
499 	 * in ns. The offset is reduced by a factor depending on
500 	 * whether the PPS signal is operating. Note that the
501 	 * value is in effect scaled by the clock frequency,
502 	 * since the adjustment is added at each tick interrupt.
503 	 */
504 	ftemp = time_offset;
505 #ifdef PPS_SYNC
506 	/* XXX even if PPS signal dies we should finish adjustment ? */
507 	if (time_status & STA_PPSTIME && time_status &
508 	    STA_PPSSIGNAL)
509 		L_RSHIFT(ftemp, pps_shift);
510 	else
511 		L_RSHIFT(ftemp, SHIFT_PLL + time_constant);
512 #else
513 		L_RSHIFT(ftemp, SHIFT_PLL + time_constant);
514 #endif /* PPS_SYNC */
515 	time_adj = ftemp;
516 	L_SUB(time_offset, ftemp);
517 	L_ADD(time_adj, time_freq);
518 
519 #ifdef PPS_SYNC
520 	if (pps_valid > 0)
521 		pps_valid--;
522 	else
523 		time_status &= ~STA_PPSSIGNAL;
524 #endif /* PPS_SYNC */
525 #else  /* !NTP */
526 	L_CLR(time_adj);
527 #endif /* !NTP */
528 
529 	/*
530 	 * Apply any correction from adjtime(2).  If more than one second
531 	 * off we slew at a rate of 5ms/s (5000 PPM) else 500us/s (500PPM)
532 	 * until the last second is slewed the final < 500 usecs.
533 	 */
534 	if (time_adjtime != 0) {
535 		if (time_adjtime > 1000000)
536 			tickrate = 5000;
537 		else if (time_adjtime < -1000000)
538 			tickrate = -5000;
539 		else if (time_adjtime > 500)
540 			tickrate = 500;
541 		else if (time_adjtime < -500)
542 			tickrate = -500;
543 		else
544 			tickrate = time_adjtime;
545 		time_adjtime -= tickrate;
546 		L_LINT(ftemp, tickrate * 1000);
547 		L_ADD(time_adj, ftemp);
548 	}
549 	*adjustment = time_adj;
550 }
551 
552 /*
553  * ntp_init() - initialize variables and structures
554  *
555  * This routine must be called after the kernel variables hz and tick
556  * are set or changed and before the next tick interrupt. In this
557  * particular implementation, these values are assumed set elsewhere in
558  * the kernel. The design allows the clock frequency and tick interval
559  * to be changed while the system is running. So, this routine should
560  * probably be integrated with the code that does that.
561  */
562 void
563 ntp_init(void)
564 {
565 
566 	/*
567 	 * The following variables are initialized only at startup. Only
568 	 * those structures not cleared by the compiler need to be
569 	 * initialized, and these only in the simulator. In the actual
570 	 * kernel, any nonzero values here will quickly evaporate.
571 	 */
572 	L_CLR(time_adj);
573 #ifdef NTP
574 	L_CLR(time_offset);
575 	L_CLR(time_freq);
576 #ifdef PPS_SYNC
577 	pps_tf[0].tv_sec = pps_tf[0].tv_nsec = 0;
578 	pps_tf[1].tv_sec = pps_tf[1].tv_nsec = 0;
579 	pps_tf[2].tv_sec = pps_tf[2].tv_nsec = 0;
580 	pps_fcount = 0;
581 	L_CLR(pps_freq);
582 #endif /* PPS_SYNC */
583 #endif
584 }
585 
586 #ifdef NTP
587 /*
588  * hardupdate() - local clock update
589  *
590  * This routine is called by ntp_adjtime() to update the local clock
591  * phase and frequency. The implementation is of an adaptive-parameter,
592  * hybrid phase/frequency-lock loop (PLL/FLL). The routine computes new
593  * time and frequency offset estimates for each call. If the kernel PPS
594  * discipline code is configured (PPS_SYNC), the PPS signal itself
595  * determines the new time offset, instead of the calling argument.
596  * Presumably, calls to ntp_adjtime() occur only when the caller
597  * believes the local clock is valid within some bound (+-128 ms with
598  * NTP). If the caller's time is far different than the PPS time, an
599  * argument will ensue, and it's not clear who will lose.
600  *
601  * For uncompensated quartz crystal oscillators and nominal update
602  * intervals less than 256 s, operation should be in phase-lock mode,
603  * where the loop is disciplined to phase. For update intervals greater
604  * than 1024 s, operation should be in frequency-lock mode, where the
605  * loop is disciplined to frequency. Between 256 s and 1024 s, the mode
606  * is selected by the STA_MODE status bit.
607  *
608  * Note: splclock() is in effect.
609  */
610 void
611 hardupdate(long offset)
612 {
613 	long mtemp;
614 	l_fp ftemp;
615 
616 	KASSERT(mutex_owned(&timecounter_lock));
617 
618 	/*
619 	 * Select how the phase is to be controlled and from which
620 	 * source. If the PPS signal is present and enabled to
621 	 * discipline the time, the PPS offset is used; otherwise, the
622 	 * argument offset is used.
623 	 */
624 	if (!(time_status & STA_PLL))
625 		return;
626 	if (!(time_status & STA_PPSTIME && time_status &
627 	    STA_PPSSIGNAL)) {
628 		if (offset > MAXPHASE)
629 			time_monitor = MAXPHASE;
630 		else if (offset < -MAXPHASE)
631 			time_monitor = -MAXPHASE;
632 		else
633 			time_monitor = offset;
634 		L_LINT(time_offset, time_monitor);
635 	}
636 
637 	/*
638 	 * Select how the frequency is to be controlled and in which
639 	 * mode (PLL or FLL). If the PPS signal is present and enabled
640 	 * to discipline the frequency, the PPS frequency is used;
641 	 * otherwise, the argument offset is used to compute it.
642 	 */
643 	if (time_status & STA_PPSFREQ && time_status & STA_PPSSIGNAL) {
644 		time_reftime = time_second;
645 		return;
646 	}
647 	if (time_status & STA_FREQHOLD || time_reftime == 0)
648 		time_reftime = time_second;
649 	mtemp = time_second - time_reftime;
650 	L_LINT(ftemp, time_monitor);
651 	L_RSHIFT(ftemp, (SHIFT_PLL + 2 + time_constant) << 1);
652 	L_MPY(ftemp, mtemp);
653 	L_ADD(time_freq, ftemp);
654 	time_status &= ~STA_MODE;
655 	if (mtemp >= MINSEC && (time_status & STA_FLL || mtemp >
656 	    MAXSEC)) {
657 		L_LINT(ftemp, (time_monitor << 4) / mtemp);
658 		L_RSHIFT(ftemp, SHIFT_FLL + 4);
659 		L_ADD(time_freq, ftemp);
660 		time_status |= STA_MODE;
661 	}
662 	time_reftime = time_second;
663 	if (L_GINT(time_freq) > MAXFREQ)
664 		L_LINT(time_freq, MAXFREQ);
665 	else if (L_GINT(time_freq) < -MAXFREQ)
666 		L_LINT(time_freq, -MAXFREQ);
667 }
668 
669 #ifdef PPS_SYNC
670 /*
671  * hardpps() - discipline CPU clock oscillator to external PPS signal
672  *
673  * This routine is called at each PPS interrupt in order to discipline
674  * the CPU clock oscillator to the PPS signal. It measures the PPS phase
675  * and leaves it in a handy spot for the hardclock() routine. It
676  * integrates successive PPS phase differences and calculates the
677  * frequency offset. This is used in hardclock() to discipline the CPU
678  * clock oscillator so that intrinsic frequency error is cancelled out.
679  * The code requires the caller to capture the time and hardware counter
680  * value at the on-time PPS signal transition.
681  *
682  * Note that, on some Unix systems, this routine runs at an interrupt
683  * priority level higher than the timer interrupt routine hardclock().
684  * Therefore, the variables used are distinct from the hardclock()
685  * variables, except for certain exceptions: The PPS frequency pps_freq
686  * and phase pps_offset variables are determined by this routine and
687  * updated atomically. The time_tolerance variable can be considered a
688  * constant, since it is infrequently changed, and then only when the
689  * PPS signal is disabled. The watchdog counter pps_valid is updated
690  * once per second by hardclock() and is atomically cleared in this
691  * routine.
692  */
693 void
694 hardpps(struct timespec *tsp,		/* time at PPS */
695 	long nsec			/* hardware counter at PPS */)
696 {
697 	long u_sec, u_nsec, v_nsec; /* temps */
698 	l_fp ftemp;
699 
700 	KASSERT(mutex_owned(&timecounter_lock));
701 
702 	/*
703 	 * The signal is first processed by a range gate and frequency
704 	 * discriminator. The range gate rejects noise spikes outside
705 	 * the range +-500 us. The frequency discriminator rejects input
706 	 * signals with apparent frequency outside the range 1 +-500
707 	 * PPM. If two hits occur in the same second, we ignore the
708 	 * later hit; if not and a hit occurs outside the range gate,
709 	 * keep the later hit for later comparison, but do not process
710 	 * it.
711 	 */
712 	time_status |= STA_PPSSIGNAL | STA_PPSJITTER;
713 	time_status &= ~(STA_PPSWANDER | STA_PPSERROR);
714 	pps_valid = PPS_VALID;
715 	u_sec = tsp->tv_sec;
716 	u_nsec = tsp->tv_nsec;
717 	if (u_nsec >= (NANOSECOND >> 1)) {
718 		u_nsec -= NANOSECOND;
719 		u_sec++;
720 	}
721 	v_nsec = u_nsec - pps_tf[0].tv_nsec;
722 	if (u_sec == pps_tf[0].tv_sec && v_nsec < NANOSECOND -
723 	    MAXFREQ)
724 		return;
725 	pps_tf[2] = pps_tf[1];
726 	pps_tf[1] = pps_tf[0];
727 	pps_tf[0].tv_sec = u_sec;
728 	pps_tf[0].tv_nsec = u_nsec;
729 
730 	/*
731 	 * Compute the difference between the current and previous
732 	 * counter values. If the difference exceeds 0.5 s, assume it
733 	 * has wrapped around, so correct 1.0 s. If the result exceeds
734 	 * the tick interval, the sample point has crossed a tick
735 	 * boundary during the last second, so correct the tick. Very
736 	 * intricate.
737 	 */
738 	u_nsec = nsec;
739 	if (u_nsec > (NANOSECOND >> 1))
740 		u_nsec -= NANOSECOND;
741 	else if (u_nsec < -(NANOSECOND >> 1))
742 		u_nsec += NANOSECOND;
743 	pps_fcount += u_nsec;
744 	if (v_nsec > MAXFREQ || v_nsec < -MAXFREQ)
745 		return;
746 	time_status &= ~STA_PPSJITTER;
747 
748 	/*
749 	 * A three-stage median filter is used to help denoise the PPS
750 	 * time. The median sample becomes the time offset estimate; the
751 	 * difference between the other two samples becomes the time
752 	 * dispersion (jitter) estimate.
753 	 */
754 	if (pps_tf[0].tv_nsec > pps_tf[1].tv_nsec) {
755 		if (pps_tf[1].tv_nsec > pps_tf[2].tv_nsec) {
756 			v_nsec = pps_tf[1].tv_nsec;	/* 0 1 2 */
757 			u_nsec = pps_tf[0].tv_nsec - pps_tf[2].tv_nsec;
758 		} else if (pps_tf[2].tv_nsec > pps_tf[0].tv_nsec) {
759 			v_nsec = pps_tf[0].tv_nsec;	/* 2 0 1 */
760 			u_nsec = pps_tf[2].tv_nsec - pps_tf[1].tv_nsec;
761 		} else {
762 			v_nsec = pps_tf[2].tv_nsec;	/* 0 2 1 */
763 			u_nsec = pps_tf[0].tv_nsec - pps_tf[1].tv_nsec;
764 		}
765 	} else {
766 		if (pps_tf[1].tv_nsec < pps_tf[2].tv_nsec) {
767 			v_nsec = pps_tf[1].tv_nsec;	/* 2 1 0 */
768 			u_nsec = pps_tf[2].tv_nsec - pps_tf[0].tv_nsec;
769 		} else if (pps_tf[2].tv_nsec < pps_tf[0].tv_nsec) {
770 			v_nsec = pps_tf[0].tv_nsec;	/* 1 0 2 */
771 			u_nsec = pps_tf[1].tv_nsec - pps_tf[2].tv_nsec;
772 		} else {
773 			v_nsec = pps_tf[2].tv_nsec;	/* 1 2 0 */
774 			u_nsec = pps_tf[1].tv_nsec - pps_tf[0].tv_nsec;
775 		}
776 	}
777 
778 	/*
779 	 * Nominal jitter is due to PPS signal noise and interrupt
780 	 * latency. If it exceeds the popcorn threshold, the sample is
781 	 * discarded. otherwise, if so enabled, the time offset is
782 	 * updated. We can tolerate a modest loss of data here without
783 	 * much degrading time accuracy.
784 	 */
785 	if (u_nsec > (pps_jitter << PPS_POPCORN)) {
786 		time_status |= STA_PPSJITTER;
787 		pps_jitcnt++;
788 	} else if (time_status & STA_PPSTIME) {
789 		time_monitor = -v_nsec;
790 		L_LINT(time_offset, time_monitor);
791 	}
792 	pps_jitter += (u_nsec - pps_jitter) >> PPS_FAVG;
793 	u_sec = pps_tf[0].tv_sec - pps_lastsec;
794 	if (u_sec < (1 << pps_shift))
795 		return;
796 
797 	/*
798 	 * At the end of the calibration interval the difference between
799 	 * the first and last counter values becomes the scaled
800 	 * frequency. It will later be divided by the length of the
801 	 * interval to determine the frequency update. If the frequency
802 	 * exceeds a sanity threshold, or if the actual calibration
803 	 * interval is not equal to the expected length, the data are
804 	 * discarded. We can tolerate a modest loss of data here without
805 	 * much degrading frequency accuracy.
806 	 */
807 	pps_calcnt++;
808 	v_nsec = -pps_fcount;
809 	pps_lastsec = pps_tf[0].tv_sec;
810 	pps_fcount = 0;
811 	u_nsec = MAXFREQ << pps_shift;
812 	if (v_nsec > u_nsec || v_nsec < -u_nsec || u_sec != (1 <<
813 	    pps_shift)) {
814 		time_status |= STA_PPSERROR;
815 		pps_errcnt++;
816 		return;
817 	}
818 
819 	/*
820 	 * Here the raw frequency offset and wander (stability) is
821 	 * calculated. If the wander is less than the wander threshold
822 	 * for four consecutive averaging intervals, the interval is
823 	 * doubled; if it is greater than the threshold for four
824 	 * consecutive intervals, the interval is halved. The scaled
825 	 * frequency offset is converted to frequency offset. The
826 	 * stability metric is calculated as the average of recent
827 	 * frequency changes, but is used only for performance
828 	 * monitoring.
829 	 */
830 	L_LINT(ftemp, v_nsec);
831 	L_RSHIFT(ftemp, pps_shift);
832 	L_SUB(ftemp, pps_freq);
833 	u_nsec = L_GINT(ftemp);
834 	if (u_nsec > PPS_MAXWANDER) {
835 		L_LINT(ftemp, PPS_MAXWANDER);
836 		pps_intcnt--;
837 		time_status |= STA_PPSWANDER;
838 		pps_stbcnt++;
839 	} else if (u_nsec < -PPS_MAXWANDER) {
840 		L_LINT(ftemp, -PPS_MAXWANDER);
841 		pps_intcnt--;
842 		time_status |= STA_PPSWANDER;
843 		pps_stbcnt++;
844 	} else {
845 		pps_intcnt++;
846 	}
847 	if (pps_intcnt >= 4) {
848 		pps_intcnt = 4;
849 		if (pps_shift < pps_shiftmax) {
850 			pps_shift++;
851 			pps_intcnt = 0;
852 		}
853 	} else if (pps_intcnt <= -4 || pps_shift > pps_shiftmax) {
854 		pps_intcnt = -4;
855 		if (pps_shift > PPS_FAVG) {
856 			pps_shift--;
857 			pps_intcnt = 0;
858 		}
859 	}
860 	if (u_nsec < 0)
861 		u_nsec = -u_nsec;
862 	pps_stabil += (u_nsec * SCALE_PPM - pps_stabil) >> PPS_FAVG;
863 
864 	/*
865 	 * The PPS frequency is recalculated and clamped to the maximum
866 	 * MAXFREQ. If enabled, the system clock frequency is updated as
867 	 * well.
868 	 */
869 	L_ADD(pps_freq, ftemp);
870 	u_nsec = L_GINT(pps_freq);
871 	if (u_nsec > MAXFREQ)
872 		L_LINT(pps_freq, MAXFREQ);
873 	else if (u_nsec < -MAXFREQ)
874 		L_LINT(pps_freq, -MAXFREQ);
875 	if (time_status & STA_PPSFREQ)
876 		time_freq = pps_freq;
877 }
878 #endif /* PPS_SYNC */
879 #endif /* NTP */
880 
881 #ifdef NTP
882 int
883 ntp_timestatus(void)
884 {
885 	int rv;
886 
887 	/*
888 	 * Status word error decode. If any of these conditions
889 	 * occur, an error is returned, instead of the status
890 	 * word. Most applications will care only about the fact
891 	 * the system clock may not be trusted, not about the
892 	 * details.
893 	 *
894 	 * Hardware or software error
895 	 */
896 	mutex_spin_enter(&timecounter_lock);
897 	if ((time_status & (STA_UNSYNC | STA_CLOCKERR)) ||
898 
899 	/*
900 	 * PPS signal lost when either time or frequency
901 	 * synchronization requested
902 	 */
903 	    (time_status & (STA_PPSFREQ | STA_PPSTIME) &&
904 	     !(time_status & STA_PPSSIGNAL)) ||
905 
906 	/*
907 	 * PPS jitter exceeded when time synchronization
908 	 * requested
909 	 */
910 	    (time_status & STA_PPSTIME &&
911 	     time_status & STA_PPSJITTER) ||
912 
913 	/*
914 	 * PPS wander exceeded or calibration error when
915 	 * frequency synchronization requested
916 	 */
917 	    (time_status & STA_PPSFREQ &&
918 	     time_status & (STA_PPSWANDER | STA_PPSERROR)))
919 		rv = TIME_ERROR;
920 	else
921 		rv = time_state;
922 	mutex_spin_exit(&timecounter_lock);
923 
924 	return rv;
925 }
926 
927 /*ARGSUSED*/
928 /*
929  * ntp_gettime() - NTP user application interface
930  */
931 int
932 sys___ntp_gettime50(struct lwp *l, const struct sys___ntp_gettime50_args *uap, register_t *retval)
933 {
934 	/* {
935 		syscallarg(struct ntptimeval *) ntvp;
936 	} */
937 	struct ntptimeval ntv;
938 	int error = 0;
939 
940 	if (SCARG(uap, ntvp)) {
941 		ntp_gettime(&ntv);
942 
943 		error = copyout((void *)&ntv, (void *)SCARG(uap, ntvp),
944 				sizeof(ntv));
945 	}
946 	if (!error) {
947 		*retval = ntp_timestatus();
948 	}
949 	return(error);
950 }
951 
952 /*
953  * return information about kernel precision timekeeping
954  */
955 static int
956 sysctl_kern_ntptime(SYSCTLFN_ARGS)
957 {
958 	struct sysctlnode node;
959 	struct ntptimeval ntv;
960 
961 	ntp_gettime(&ntv);
962 
963 	node = *rnode;
964 	node.sysctl_data = &ntv;
965 	node.sysctl_size = sizeof(ntv);
966 	return (sysctl_lookup(SYSCTLFN_CALL(&node)));
967 }
968 
969 SYSCTL_SETUP(sysctl_kern_ntptime_setup, "sysctl kern.ntptime node setup")
970 {
971 
972 	sysctl_createv(clog, 0, NULL, NULL,
973 		       CTLFLAG_PERMANENT,
974 		       CTLTYPE_STRUCT, "ntptime",
975 		       SYSCTL_DESCR("Kernel clock values for NTP"),
976 		       sysctl_kern_ntptime, 0, NULL,
977 		       sizeof(struct ntptimeval),
978 		       CTL_KERN, KERN_NTPTIME, CTL_EOL);
979 }
980 #endif /* !NTP */
981