xref: /netbsd-src/sys/kern/kern_ntptime.c (revision 404fbe5fb94ca1e054339640cabb2801ce52dd30)
1 /*	$NetBSD: kern_ntptime.c,v 1.51 2009/01/11 02:45:52 christos Exp $	*/
2 
3 /*-
4  * Copyright (c) 2008 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
17  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
18  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
19  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
20  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
21  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
22  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
23  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
24  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
25  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
26  * POSSIBILITY OF SUCH DAMAGE.
27  */
28 
29 /*-
30  ***********************************************************************
31  *								       *
32  * Copyright (c) David L. Mills 1993-2001			       *
33  *								       *
34  * Permission to use, copy, modify, and distribute this software and   *
35  * its documentation for any purpose and without fee is hereby	       *
36  * granted, provided that the above copyright notice appears in all    *
37  * copies and that both the copyright notice and this permission       *
38  * notice appear in supporting documentation, and that the name	       *
39  * University of Delaware not be used in advertising or publicity      *
40  * pertaining to distribution of the software without specific,	       *
41  * written prior permission. The University of Delaware makes no       *
42  * representations about the suitability this software for any	       *
43  * purpose. It is provided "as is" without express or implied	       *
44  * warranty.							       *
45  *								       *
46  **********************************************************************/
47 
48 /*
49  * Adapted from the original sources for FreeBSD and timecounters by:
50  * Poul-Henning Kamp <phk@FreeBSD.org>.
51  *
52  * The 32bit version of the "LP" macros seems a bit past its "sell by"
53  * date so I have retained only the 64bit version and included it directly
54  * in this file.
55  *
56  * Only minor changes done to interface with the timecounters over in
57  * sys/kern/kern_clock.c.   Some of the comments below may be (even more)
58  * confusing and/or plain wrong in that context.
59  */
60 
61 #include <sys/cdefs.h>
62 /* __FBSDID("$FreeBSD: src/sys/kern/kern_ntptime.c,v 1.59 2005/05/28 14:34:41 rwatson Exp $"); */
63 __KERNEL_RCSID(0, "$NetBSD: kern_ntptime.c,v 1.51 2009/01/11 02:45:52 christos Exp $");
64 
65 #include "opt_ntp.h"
66 
67 #include <sys/param.h>
68 #include <sys/resourcevar.h>
69 #include <sys/systm.h>
70 #include <sys/kernel.h>
71 #include <sys/proc.h>
72 #include <sys/sysctl.h>
73 #include <sys/timex.h>
74 #include <sys/vnode.h>
75 #include <sys/kauth.h>
76 #include <sys/mount.h>
77 #include <sys/syscallargs.h>
78 #include <sys/cpu.h>
79 
80 #include <compat/sys/timex.h>
81 
82 /*
83  * Single-precision macros for 64-bit machines
84  */
85 typedef int64_t l_fp;
86 #define L_ADD(v, u)	((v) += (u))
87 #define L_SUB(v, u)	((v) -= (u))
88 #define L_ADDHI(v, a)	((v) += (int64_t)(a) << 32)
89 #define L_NEG(v)	((v) = -(v))
90 #define L_RSHIFT(v, n) \
91 	do { \
92 		if ((v) < 0) \
93 			(v) = -(-(v) >> (n)); \
94 		else \
95 			(v) = (v) >> (n); \
96 	} while (0)
97 #define L_MPY(v, a)	((v) *= (a))
98 #define L_CLR(v)	((v) = 0)
99 #define L_ISNEG(v)	((v) < 0)
100 #define L_LINT(v, a)	((v) = (int64_t)(a) << 32)
101 #define L_GINT(v)	((v) < 0 ? -(-(v) >> 32) : (v) >> 32)
102 
103 #ifdef NTP
104 /*
105  * Generic NTP kernel interface
106  *
107  * These routines constitute the Network Time Protocol (NTP) interfaces
108  * for user and daemon application programs. The ntp_gettime() routine
109  * provides the time, maximum error (synch distance) and estimated error
110  * (dispersion) to client user application programs. The ntp_adjtime()
111  * routine is used by the NTP daemon to adjust the system clock to an
112  * externally derived time. The time offset and related variables set by
113  * this routine are used by other routines in this module to adjust the
114  * phase and frequency of the clock discipline loop which controls the
115  * system clock.
116  *
117  * When the kernel time is reckoned directly in nanoseconds (NTP_NANO
118  * defined), the time at each tick interrupt is derived directly from
119  * the kernel time variable. When the kernel time is reckoned in
120  * microseconds, (NTP_NANO undefined), the time is derived from the
121  * kernel time variable together with a variable representing the
122  * leftover nanoseconds at the last tick interrupt. In either case, the
123  * current nanosecond time is reckoned from these values plus an
124  * interpolated value derived by the clock routines in another
125  * architecture-specific module. The interpolation can use either a
126  * dedicated counter or a processor cycle counter (PCC) implemented in
127  * some architectures.
128  *
129  * Note that all routines must run at priority splclock or higher.
130  */
131 /*
132  * Phase/frequency-lock loop (PLL/FLL) definitions
133  *
134  * The nanosecond clock discipline uses two variable types, time
135  * variables and frequency variables. Both types are represented as 64-
136  * bit fixed-point quantities with the decimal point between two 32-bit
137  * halves. On a 32-bit machine, each half is represented as a single
138  * word and mathematical operations are done using multiple-precision
139  * arithmetic. On a 64-bit machine, ordinary computer arithmetic is
140  * used.
141  *
142  * A time variable is a signed 64-bit fixed-point number in ns and
143  * fraction. It represents the remaining time offset to be amortized
144  * over succeeding tick interrupts. The maximum time offset is about
145  * 0.5 s and the resolution is about 2.3e-10 ns.
146  *
147  *			1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3
148  *  0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
149  * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
150  * |s s s|			 ns				   |
151  * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
152  * |			    fraction				   |
153  * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
154  *
155  * A frequency variable is a signed 64-bit fixed-point number in ns/s
156  * and fraction. It represents the ns and fraction to be added to the
157  * kernel time variable at each second. The maximum frequency offset is
158  * about +-500000 ns/s and the resolution is about 2.3e-10 ns/s.
159  *
160  *			1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3
161  *  0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
162  * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
163  * |s s s s s s s s s s s s s|	          ns/s			   |
164  * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
165  * |			    fraction				   |
166  * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
167  */
168 /*
169  * The following variables establish the state of the PLL/FLL and the
170  * residual time and frequency offset of the local clock.
171  */
172 #define SHIFT_PLL	4		/* PLL loop gain (shift) */
173 #define SHIFT_FLL	2		/* FLL loop gain (shift) */
174 
175 static int time_state = TIME_OK;	/* clock state */
176 static int time_status = STA_UNSYNC;	/* clock status bits */
177 static long time_tai;			/* TAI offset (s) */
178 static long time_monitor;		/* last time offset scaled (ns) */
179 static long time_constant;		/* poll interval (shift) (s) */
180 static long time_precision = 1;		/* clock precision (ns) */
181 static long time_maxerror = MAXPHASE / 1000; /* maximum error (us) */
182 static long time_esterror = MAXPHASE / 1000; /* estimated error (us) */
183 static long time_reftime;		/* time at last adjustment (s) */
184 static l_fp time_offset;		/* time offset (ns) */
185 static l_fp time_freq;			/* frequency offset (ns/s) */
186 #endif /* NTP */
187 
188 static l_fp time_adj;			/* tick adjust (ns/s) */
189 int64_t time_adjtime;		/* correction from adjtime(2) (usec) */
190 
191 extern int time_adjusted;	/* ntp might have changed the system time */
192 
193 #ifdef NTP
194 #ifdef PPS_SYNC
195 /*
196  * The following variables are used when a pulse-per-second (PPS) signal
197  * is available and connected via a modem control lead. They establish
198  * the engineering parameters of the clock discipline loop when
199  * controlled by the PPS signal.
200  */
201 #define PPS_FAVG	2		/* min freq avg interval (s) (shift) */
202 #define PPS_FAVGDEF	8		/* default freq avg int (s) (shift) */
203 #define PPS_FAVGMAX	15		/* max freq avg interval (s) (shift) */
204 #define PPS_PAVG	4		/* phase avg interval (s) (shift) */
205 #define PPS_VALID	120		/* PPS signal watchdog max (s) */
206 #define PPS_MAXWANDER	100000		/* max PPS wander (ns/s) */
207 #define PPS_POPCORN	2		/* popcorn spike threshold (shift) */
208 
209 static struct timespec pps_tf[3];	/* phase median filter */
210 static l_fp pps_freq;			/* scaled frequency offset (ns/s) */
211 static long pps_fcount;			/* frequency accumulator */
212 static long pps_jitter;			/* nominal jitter (ns) */
213 static long pps_stabil;			/* nominal stability (scaled ns/s) */
214 static long pps_lastsec;		/* time at last calibration (s) */
215 static int pps_valid;			/* signal watchdog counter */
216 static int pps_shift = PPS_FAVG;	/* interval duration (s) (shift) */
217 static int pps_shiftmax = PPS_FAVGDEF;	/* max interval duration (s) (shift) */
218 static int pps_intcnt;			/* wander counter */
219 
220 /*
221  * PPS signal quality monitors
222  */
223 static long pps_calcnt;			/* calibration intervals */
224 static long pps_jitcnt;			/* jitter limit exceeded */
225 static long pps_stbcnt;			/* stability limit exceeded */
226 static long pps_errcnt;			/* calibration errors */
227 #endif /* PPS_SYNC */
228 /*
229  * End of phase/frequency-lock loop (PLL/FLL) definitions
230  */
231 
232 static void hardupdate(long offset);
233 
234 /*
235  * ntp_gettime() - NTP user application interface
236  */
237 void
238 ntp_gettime(struct ntptimeval *ntv)
239 {
240 
241 	mutex_spin_enter(&timecounter_lock);
242 	nanotime(&ntv->time);
243 	ntv->maxerror = time_maxerror;
244 	ntv->esterror = time_esterror;
245 	ntv->tai = time_tai;
246 	ntv->time_state = time_state;
247 	mutex_spin_exit(&timecounter_lock);
248 }
249 
250 /* ARGSUSED */
251 /*
252  * ntp_adjtime() - NTP daemon application interface
253  */
254 int
255 sys_ntp_adjtime(struct lwp *l, const struct sys_ntp_adjtime_args *uap, register_t *retval)
256 {
257 	/* {
258 		syscallarg(struct timex *) tp;
259 	} */
260 	struct timex ntv;
261 	int error = 0;
262 
263 	error = copyin((void *)SCARG(uap, tp), (void *)&ntv, sizeof(ntv));
264 	if (error != 0)
265 		return (error);
266 
267 	if (ntv.modes != 0 && (error = kauth_authorize_system(l->l_cred,
268 	    KAUTH_SYSTEM_TIME, KAUTH_REQ_SYSTEM_TIME_NTPADJTIME, NULL,
269 	    NULL, NULL)) != 0)
270 		return (error);
271 
272 	ntp_adjtime1(&ntv);
273 
274 	error = copyout((void *)&ntv, (void *)SCARG(uap, tp), sizeof(ntv));
275 	if (!error)
276 		*retval = ntp_timestatus();
277 
278 	return error;
279 }
280 
281 void
282 ntp_adjtime1(struct timex *ntv)
283 {
284 	long freq;
285 	int modes;
286 
287 	/*
288 	 * Update selected clock variables - only the superuser can
289 	 * change anything. Note that there is no error checking here on
290 	 * the assumption the superuser should know what it is doing.
291 	 * Note that either the time constant or TAI offset are loaded
292 	 * from the ntv.constant member, depending on the mode bits. If
293 	 * the STA_PLL bit in the status word is cleared, the state and
294 	 * status words are reset to the initial values at boot.
295 	 */
296 	mutex_spin_enter(&timecounter_lock);
297 	modes = ntv->modes;
298 	if (modes != 0)
299 		/* We need to save the system time during shutdown */
300 		time_adjusted |= 2;
301 	if (modes & MOD_MAXERROR)
302 		time_maxerror = ntv->maxerror;
303 	if (modes & MOD_ESTERROR)
304 		time_esterror = ntv->esterror;
305 	if (modes & MOD_STATUS) {
306 		if (time_status & STA_PLL && !(ntv->status & STA_PLL)) {
307 			time_state = TIME_OK;
308 			time_status = STA_UNSYNC;
309 #ifdef PPS_SYNC
310 			pps_shift = PPS_FAVG;
311 #endif /* PPS_SYNC */
312 		}
313 		time_status &= STA_RONLY;
314 		time_status |= ntv->status & ~STA_RONLY;
315 	}
316 	if (modes & MOD_TIMECONST) {
317 		if (ntv->constant < 0)
318 			time_constant = 0;
319 		else if (ntv->constant > MAXTC)
320 			time_constant = MAXTC;
321 		else
322 			time_constant = ntv->constant;
323 	}
324 	if (modes & MOD_TAI) {
325 		if (ntv->constant > 0)	/* XXX zero & negative numbers ? */
326 			time_tai = ntv->constant;
327 	}
328 #ifdef PPS_SYNC
329 	if (modes & MOD_PPSMAX) {
330 		if (ntv->shift < PPS_FAVG)
331 			pps_shiftmax = PPS_FAVG;
332 		else if (ntv->shift > PPS_FAVGMAX)
333 			pps_shiftmax = PPS_FAVGMAX;
334 		else
335 			pps_shiftmax = ntv->shift;
336 	}
337 #endif /* PPS_SYNC */
338 	if (modes & MOD_NANO)
339 		time_status |= STA_NANO;
340 	if (modes & MOD_MICRO)
341 		time_status &= ~STA_NANO;
342 	if (modes & MOD_CLKB)
343 		time_status |= STA_CLK;
344 	if (modes & MOD_CLKA)
345 		time_status &= ~STA_CLK;
346 	if (modes & MOD_FREQUENCY) {
347 		freq = (ntv->freq * 1000LL) >> 16;
348 		if (freq > MAXFREQ)
349 			L_LINT(time_freq, MAXFREQ);
350 		else if (freq < -MAXFREQ)
351 			L_LINT(time_freq, -MAXFREQ);
352 		else {
353 			/*
354 			 * ntv.freq is [PPM * 2^16] = [us/s * 2^16]
355 			 * time_freq is [ns/s * 2^32]
356 			 */
357 			time_freq = ntv->freq * 1000LL * 65536LL;
358 		}
359 #ifdef PPS_SYNC
360 		pps_freq = time_freq;
361 #endif /* PPS_SYNC */
362 	}
363 	if (modes & MOD_OFFSET) {
364 		if (time_status & STA_NANO)
365 			hardupdate(ntv->offset);
366 		else
367 			hardupdate(ntv->offset * 1000);
368 	}
369 
370 	/*
371 	 * Retrieve all clock variables. Note that the TAI offset is
372 	 * returned only by ntp_gettime();
373 	 */
374 	if (time_status & STA_NANO)
375 		ntv->offset = L_GINT(time_offset);
376 	else
377 		ntv->offset = L_GINT(time_offset) / 1000; /* XXX rounding ? */
378 	ntv->freq = L_GINT((time_freq / 1000LL) << 16);
379 	ntv->maxerror = time_maxerror;
380 	ntv->esterror = time_esterror;
381 	ntv->status = time_status;
382 	ntv->constant = time_constant;
383 	if (time_status & STA_NANO)
384 		ntv->precision = time_precision;
385 	else
386 		ntv->precision = time_precision / 1000;
387 	ntv->tolerance = MAXFREQ * SCALE_PPM;
388 #ifdef PPS_SYNC
389 	ntv->shift = pps_shift;
390 	ntv->ppsfreq = L_GINT((pps_freq / 1000LL) << 16);
391 	if (time_status & STA_NANO)
392 		ntv->jitter = pps_jitter;
393 	else
394 		ntv->jitter = pps_jitter / 1000;
395 	ntv->stabil = pps_stabil;
396 	ntv->calcnt = pps_calcnt;
397 	ntv->errcnt = pps_errcnt;
398 	ntv->jitcnt = pps_jitcnt;
399 	ntv->stbcnt = pps_stbcnt;
400 #endif /* PPS_SYNC */
401 	mutex_spin_exit(&timecounter_lock);
402 }
403 #endif /* NTP */
404 
405 /*
406  * second_overflow() - called after ntp_tick_adjust()
407  *
408  * This routine is ordinarily called immediately following the above
409  * routine ntp_tick_adjust(). While these two routines are normally
410  * combined, they are separated here only for the purposes of
411  * simulation.
412  */
413 void
414 ntp_update_second(int64_t *adjustment, time_t *newsec)
415 {
416 	int tickrate;
417 	l_fp ftemp;		/* 32/64-bit temporary */
418 
419 	KASSERT(mutex_owned(&timecounter_lock));
420 
421 #ifdef NTP
422 
423 	/*
424 	 * On rollover of the second both the nanosecond and microsecond
425 	 * clocks are updated and the state machine cranked as
426 	 * necessary. The phase adjustment to be used for the next
427 	 * second is calculated and the maximum error is increased by
428 	 * the tolerance.
429 	 */
430 	time_maxerror += MAXFREQ / 1000;
431 
432 	/*
433 	 * Leap second processing. If in leap-insert state at
434 	 * the end of the day, the system clock is set back one
435 	 * second; if in leap-delete state, the system clock is
436 	 * set ahead one second. The nano_time() routine or
437 	 * external clock driver will insure that reported time
438 	 * is always monotonic.
439 	 */
440 	switch (time_state) {
441 
442 		/*
443 		 * No warning.
444 		 */
445 		case TIME_OK:
446 		if (time_status & STA_INS)
447 			time_state = TIME_INS;
448 		else if (time_status & STA_DEL)
449 			time_state = TIME_DEL;
450 		break;
451 
452 		/*
453 		 * Insert second 23:59:60 following second
454 		 * 23:59:59.
455 		 */
456 		case TIME_INS:
457 		if (!(time_status & STA_INS))
458 			time_state = TIME_OK;
459 		else if ((*newsec) % 86400 == 0) {
460 			(*newsec)--;
461 			time_state = TIME_OOP;
462 			time_tai++;
463 		}
464 		break;
465 
466 		/*
467 		 * Delete second 23:59:59.
468 		 */
469 		case TIME_DEL:
470 		if (!(time_status & STA_DEL))
471 			time_state = TIME_OK;
472 		else if (((*newsec) + 1) % 86400 == 0) {
473 			(*newsec)++;
474 			time_tai--;
475 			time_state = TIME_WAIT;
476 		}
477 		break;
478 
479 		/*
480 		 * Insert second in progress.
481 		 */
482 		case TIME_OOP:
483 			time_state = TIME_WAIT;
484 		break;
485 
486 		/*
487 		 * Wait for status bits to clear.
488 		 */
489 		case TIME_WAIT:
490 		if (!(time_status & (STA_INS | STA_DEL)))
491 			time_state = TIME_OK;
492 	}
493 
494 	/*
495 	 * Compute the total time adjustment for the next second
496 	 * in ns. The offset is reduced by a factor depending on
497 	 * whether the PPS signal is operating. Note that the
498 	 * value is in effect scaled by the clock frequency,
499 	 * since the adjustment is added at each tick interrupt.
500 	 */
501 	ftemp = time_offset;
502 #ifdef PPS_SYNC
503 	/* XXX even if PPS signal dies we should finish adjustment ? */
504 	if (time_status & STA_PPSTIME && time_status &
505 	    STA_PPSSIGNAL)
506 		L_RSHIFT(ftemp, pps_shift);
507 	else
508 		L_RSHIFT(ftemp, SHIFT_PLL + time_constant);
509 #else
510 		L_RSHIFT(ftemp, SHIFT_PLL + time_constant);
511 #endif /* PPS_SYNC */
512 	time_adj = ftemp;
513 	L_SUB(time_offset, ftemp);
514 	L_ADD(time_adj, time_freq);
515 
516 #ifdef PPS_SYNC
517 	if (pps_valid > 0)
518 		pps_valid--;
519 	else
520 		time_status &= ~STA_PPSSIGNAL;
521 #endif /* PPS_SYNC */
522 #else  /* !NTP */
523 	L_CLR(time_adj);
524 #endif /* !NTP */
525 
526 	/*
527 	 * Apply any correction from adjtime(2).  If more than one second
528 	 * off we slew at a rate of 5ms/s (5000 PPM) else 500us/s (500PPM)
529 	 * until the last second is slewed the final < 500 usecs.
530 	 */
531 	if (time_adjtime != 0) {
532 		if (time_adjtime > 1000000)
533 			tickrate = 5000;
534 		else if (time_adjtime < -1000000)
535 			tickrate = -5000;
536 		else if (time_adjtime > 500)
537 			tickrate = 500;
538 		else if (time_adjtime < -500)
539 			tickrate = -500;
540 		else
541 			tickrate = time_adjtime;
542 		time_adjtime -= tickrate;
543 		L_LINT(ftemp, tickrate * 1000);
544 		L_ADD(time_adj, ftemp);
545 	}
546 	*adjustment = time_adj;
547 }
548 
549 /*
550  * ntp_init() - initialize variables and structures
551  *
552  * This routine must be called after the kernel variables hz and tick
553  * are set or changed and before the next tick interrupt. In this
554  * particular implementation, these values are assumed set elsewhere in
555  * the kernel. The design allows the clock frequency and tick interval
556  * to be changed while the system is running. So, this routine should
557  * probably be integrated with the code that does that.
558  */
559 void
560 ntp_init(void)
561 {
562 
563 	/*
564 	 * The following variables are initialized only at startup. Only
565 	 * those structures not cleared by the compiler need to be
566 	 * initialized, and these only in the simulator. In the actual
567 	 * kernel, any nonzero values here will quickly evaporate.
568 	 */
569 	L_CLR(time_adj);
570 #ifdef NTP
571 	L_CLR(time_offset);
572 	L_CLR(time_freq);
573 #ifdef PPS_SYNC
574 	pps_tf[0].tv_sec = pps_tf[0].tv_nsec = 0;
575 	pps_tf[1].tv_sec = pps_tf[1].tv_nsec = 0;
576 	pps_tf[2].tv_sec = pps_tf[2].tv_nsec = 0;
577 	pps_fcount = 0;
578 	L_CLR(pps_freq);
579 #endif /* PPS_SYNC */
580 #endif
581 }
582 
583 #ifdef NTP
584 /*
585  * hardupdate() - local clock update
586  *
587  * This routine is called by ntp_adjtime() to update the local clock
588  * phase and frequency. The implementation is of an adaptive-parameter,
589  * hybrid phase/frequency-lock loop (PLL/FLL). The routine computes new
590  * time and frequency offset estimates for each call. If the kernel PPS
591  * discipline code is configured (PPS_SYNC), the PPS signal itself
592  * determines the new time offset, instead of the calling argument.
593  * Presumably, calls to ntp_adjtime() occur only when the caller
594  * believes the local clock is valid within some bound (+-128 ms with
595  * NTP). If the caller's time is far different than the PPS time, an
596  * argument will ensue, and it's not clear who will lose.
597  *
598  * For uncompensated quartz crystal oscillators and nominal update
599  * intervals less than 256 s, operation should be in phase-lock mode,
600  * where the loop is disciplined to phase. For update intervals greater
601  * than 1024 s, operation should be in frequency-lock mode, where the
602  * loop is disciplined to frequency. Between 256 s and 1024 s, the mode
603  * is selected by the STA_MODE status bit.
604  *
605  * Note: splclock() is in effect.
606  */
607 void
608 hardupdate(long offset)
609 {
610 	long mtemp;
611 	l_fp ftemp;
612 
613 	KASSERT(mutex_owned(&timecounter_lock));
614 
615 	/*
616 	 * Select how the phase is to be controlled and from which
617 	 * source. If the PPS signal is present and enabled to
618 	 * discipline the time, the PPS offset is used; otherwise, the
619 	 * argument offset is used.
620 	 */
621 	if (!(time_status & STA_PLL))
622 		return;
623 	if (!(time_status & STA_PPSTIME && time_status &
624 	    STA_PPSSIGNAL)) {
625 		if (offset > MAXPHASE)
626 			time_monitor = MAXPHASE;
627 		else if (offset < -MAXPHASE)
628 			time_monitor = -MAXPHASE;
629 		else
630 			time_monitor = offset;
631 		L_LINT(time_offset, time_monitor);
632 	}
633 
634 	/*
635 	 * Select how the frequency is to be controlled and in which
636 	 * mode (PLL or FLL). If the PPS signal is present and enabled
637 	 * to discipline the frequency, the PPS frequency is used;
638 	 * otherwise, the argument offset is used to compute it.
639 	 */
640 	if (time_status & STA_PPSFREQ && time_status & STA_PPSSIGNAL) {
641 		time_reftime = time_second;
642 		return;
643 	}
644 	if (time_status & STA_FREQHOLD || time_reftime == 0)
645 		time_reftime = time_second;
646 	mtemp = time_second - time_reftime;
647 	L_LINT(ftemp, time_monitor);
648 	L_RSHIFT(ftemp, (SHIFT_PLL + 2 + time_constant) << 1);
649 	L_MPY(ftemp, mtemp);
650 	L_ADD(time_freq, ftemp);
651 	time_status &= ~STA_MODE;
652 	if (mtemp >= MINSEC && (time_status & STA_FLL || mtemp >
653 	    MAXSEC)) {
654 		L_LINT(ftemp, (time_monitor << 4) / mtemp);
655 		L_RSHIFT(ftemp, SHIFT_FLL + 4);
656 		L_ADD(time_freq, ftemp);
657 		time_status |= STA_MODE;
658 	}
659 	time_reftime = time_second;
660 	if (L_GINT(time_freq) > MAXFREQ)
661 		L_LINT(time_freq, MAXFREQ);
662 	else if (L_GINT(time_freq) < -MAXFREQ)
663 		L_LINT(time_freq, -MAXFREQ);
664 }
665 
666 #ifdef PPS_SYNC
667 /*
668  * hardpps() - discipline CPU clock oscillator to external PPS signal
669  *
670  * This routine is called at each PPS interrupt in order to discipline
671  * the CPU clock oscillator to the PPS signal. It measures the PPS phase
672  * and leaves it in a handy spot for the hardclock() routine. It
673  * integrates successive PPS phase differences and calculates the
674  * frequency offset. This is used in hardclock() to discipline the CPU
675  * clock oscillator so that intrinsic frequency error is cancelled out.
676  * The code requires the caller to capture the time and hardware counter
677  * value at the on-time PPS signal transition.
678  *
679  * Note that, on some Unix systems, this routine runs at an interrupt
680  * priority level higher than the timer interrupt routine hardclock().
681  * Therefore, the variables used are distinct from the hardclock()
682  * variables, except for certain exceptions: The PPS frequency pps_freq
683  * and phase pps_offset variables are determined by this routine and
684  * updated atomically. The time_tolerance variable can be considered a
685  * constant, since it is infrequently changed, and then only when the
686  * PPS signal is disabled. The watchdog counter pps_valid is updated
687  * once per second by hardclock() and is atomically cleared in this
688  * routine.
689  */
690 void
691 hardpps(struct timespec *tsp,		/* time at PPS */
692 	long nsec			/* hardware counter at PPS */)
693 {
694 	long u_sec, u_nsec, v_nsec; /* temps */
695 	l_fp ftemp;
696 
697 	KASSERT(mutex_owned(&timecounter_lock));
698 
699 	/*
700 	 * The signal is first processed by a range gate and frequency
701 	 * discriminator. The range gate rejects noise spikes outside
702 	 * the range +-500 us. The frequency discriminator rejects input
703 	 * signals with apparent frequency outside the range 1 +-500
704 	 * PPM. If two hits occur in the same second, we ignore the
705 	 * later hit; if not and a hit occurs outside the range gate,
706 	 * keep the later hit for later comparison, but do not process
707 	 * it.
708 	 */
709 	time_status |= STA_PPSSIGNAL | STA_PPSJITTER;
710 	time_status &= ~(STA_PPSWANDER | STA_PPSERROR);
711 	pps_valid = PPS_VALID;
712 	u_sec = tsp->tv_sec;
713 	u_nsec = tsp->tv_nsec;
714 	if (u_nsec >= (NANOSECOND >> 1)) {
715 		u_nsec -= NANOSECOND;
716 		u_sec++;
717 	}
718 	v_nsec = u_nsec - pps_tf[0].tv_nsec;
719 	if (u_sec == pps_tf[0].tv_sec && v_nsec < NANOSECOND -
720 	    MAXFREQ)
721 		return;
722 	pps_tf[2] = pps_tf[1];
723 	pps_tf[1] = pps_tf[0];
724 	pps_tf[0].tv_sec = u_sec;
725 	pps_tf[0].tv_nsec = u_nsec;
726 
727 	/*
728 	 * Compute the difference between the current and previous
729 	 * counter values. If the difference exceeds 0.5 s, assume it
730 	 * has wrapped around, so correct 1.0 s. If the result exceeds
731 	 * the tick interval, the sample point has crossed a tick
732 	 * boundary during the last second, so correct the tick. Very
733 	 * intricate.
734 	 */
735 	u_nsec = nsec;
736 	if (u_nsec > (NANOSECOND >> 1))
737 		u_nsec -= NANOSECOND;
738 	else if (u_nsec < -(NANOSECOND >> 1))
739 		u_nsec += NANOSECOND;
740 	pps_fcount += u_nsec;
741 	if (v_nsec > MAXFREQ || v_nsec < -MAXFREQ)
742 		return;
743 	time_status &= ~STA_PPSJITTER;
744 
745 	/*
746 	 * A three-stage median filter is used to help denoise the PPS
747 	 * time. The median sample becomes the time offset estimate; the
748 	 * difference between the other two samples becomes the time
749 	 * dispersion (jitter) estimate.
750 	 */
751 	if (pps_tf[0].tv_nsec > pps_tf[1].tv_nsec) {
752 		if (pps_tf[1].tv_nsec > pps_tf[2].tv_nsec) {
753 			v_nsec = pps_tf[1].tv_nsec;	/* 0 1 2 */
754 			u_nsec = pps_tf[0].tv_nsec - pps_tf[2].tv_nsec;
755 		} else if (pps_tf[2].tv_nsec > pps_tf[0].tv_nsec) {
756 			v_nsec = pps_tf[0].tv_nsec;	/* 2 0 1 */
757 			u_nsec = pps_tf[2].tv_nsec - pps_tf[1].tv_nsec;
758 		} else {
759 			v_nsec = pps_tf[2].tv_nsec;	/* 0 2 1 */
760 			u_nsec = pps_tf[0].tv_nsec - pps_tf[1].tv_nsec;
761 		}
762 	} else {
763 		if (pps_tf[1].tv_nsec < pps_tf[2].tv_nsec) {
764 			v_nsec = pps_tf[1].tv_nsec;	/* 2 1 0 */
765 			u_nsec = pps_tf[2].tv_nsec - pps_tf[0].tv_nsec;
766 		} else if (pps_tf[2].tv_nsec < pps_tf[0].tv_nsec) {
767 			v_nsec = pps_tf[0].tv_nsec;	/* 1 0 2 */
768 			u_nsec = pps_tf[1].tv_nsec - pps_tf[2].tv_nsec;
769 		} else {
770 			v_nsec = pps_tf[2].tv_nsec;	/* 1 2 0 */
771 			u_nsec = pps_tf[1].tv_nsec - pps_tf[0].tv_nsec;
772 		}
773 	}
774 
775 	/*
776 	 * Nominal jitter is due to PPS signal noise and interrupt
777 	 * latency. If it exceeds the popcorn threshold, the sample is
778 	 * discarded. otherwise, if so enabled, the time offset is
779 	 * updated. We can tolerate a modest loss of data here without
780 	 * much degrading time accuracy.
781 	 */
782 	if (u_nsec > (pps_jitter << PPS_POPCORN)) {
783 		time_status |= STA_PPSJITTER;
784 		pps_jitcnt++;
785 	} else if (time_status & STA_PPSTIME) {
786 		time_monitor = -v_nsec;
787 		L_LINT(time_offset, time_monitor);
788 	}
789 	pps_jitter += (u_nsec - pps_jitter) >> PPS_FAVG;
790 	u_sec = pps_tf[0].tv_sec - pps_lastsec;
791 	if (u_sec < (1 << pps_shift))
792 		return;
793 
794 	/*
795 	 * At the end of the calibration interval the difference between
796 	 * the first and last counter values becomes the scaled
797 	 * frequency. It will later be divided by the length of the
798 	 * interval to determine the frequency update. If the frequency
799 	 * exceeds a sanity threshold, or if the actual calibration
800 	 * interval is not equal to the expected length, the data are
801 	 * discarded. We can tolerate a modest loss of data here without
802 	 * much degrading frequency accuracy.
803 	 */
804 	pps_calcnt++;
805 	v_nsec = -pps_fcount;
806 	pps_lastsec = pps_tf[0].tv_sec;
807 	pps_fcount = 0;
808 	u_nsec = MAXFREQ << pps_shift;
809 	if (v_nsec > u_nsec || v_nsec < -u_nsec || u_sec != (1 <<
810 	    pps_shift)) {
811 		time_status |= STA_PPSERROR;
812 		pps_errcnt++;
813 		return;
814 	}
815 
816 	/*
817 	 * Here the raw frequency offset and wander (stability) is
818 	 * calculated. If the wander is less than the wander threshold
819 	 * for four consecutive averaging intervals, the interval is
820 	 * doubled; if it is greater than the threshold for four
821 	 * consecutive intervals, the interval is halved. The scaled
822 	 * frequency offset is converted to frequency offset. The
823 	 * stability metric is calculated as the average of recent
824 	 * frequency changes, but is used only for performance
825 	 * monitoring.
826 	 */
827 	L_LINT(ftemp, v_nsec);
828 	L_RSHIFT(ftemp, pps_shift);
829 	L_SUB(ftemp, pps_freq);
830 	u_nsec = L_GINT(ftemp);
831 	if (u_nsec > PPS_MAXWANDER) {
832 		L_LINT(ftemp, PPS_MAXWANDER);
833 		pps_intcnt--;
834 		time_status |= STA_PPSWANDER;
835 		pps_stbcnt++;
836 	} else if (u_nsec < -PPS_MAXWANDER) {
837 		L_LINT(ftemp, -PPS_MAXWANDER);
838 		pps_intcnt--;
839 		time_status |= STA_PPSWANDER;
840 		pps_stbcnt++;
841 	} else {
842 		pps_intcnt++;
843 	}
844 	if (pps_intcnt >= 4) {
845 		pps_intcnt = 4;
846 		if (pps_shift < pps_shiftmax) {
847 			pps_shift++;
848 			pps_intcnt = 0;
849 		}
850 	} else if (pps_intcnt <= -4 || pps_shift > pps_shiftmax) {
851 		pps_intcnt = -4;
852 		if (pps_shift > PPS_FAVG) {
853 			pps_shift--;
854 			pps_intcnt = 0;
855 		}
856 	}
857 	if (u_nsec < 0)
858 		u_nsec = -u_nsec;
859 	pps_stabil += (u_nsec * SCALE_PPM - pps_stabil) >> PPS_FAVG;
860 
861 	/*
862 	 * The PPS frequency is recalculated and clamped to the maximum
863 	 * MAXFREQ. If enabled, the system clock frequency is updated as
864 	 * well.
865 	 */
866 	L_ADD(pps_freq, ftemp);
867 	u_nsec = L_GINT(pps_freq);
868 	if (u_nsec > MAXFREQ)
869 		L_LINT(pps_freq, MAXFREQ);
870 	else if (u_nsec < -MAXFREQ)
871 		L_LINT(pps_freq, -MAXFREQ);
872 	if (time_status & STA_PPSFREQ)
873 		time_freq = pps_freq;
874 }
875 #endif /* PPS_SYNC */
876 #endif /* NTP */
877 
878 #ifdef NTP
879 int
880 ntp_timestatus(void)
881 {
882 	int rv;
883 
884 	/*
885 	 * Status word error decode. If any of these conditions
886 	 * occur, an error is returned, instead of the status
887 	 * word. Most applications will care only about the fact
888 	 * the system clock may not be trusted, not about the
889 	 * details.
890 	 *
891 	 * Hardware or software error
892 	 */
893 	mutex_spin_enter(&timecounter_lock);
894 	if ((time_status & (STA_UNSYNC | STA_CLOCKERR)) ||
895 
896 	/*
897 	 * PPS signal lost when either time or frequency
898 	 * synchronization requested
899 	 */
900 	    (time_status & (STA_PPSFREQ | STA_PPSTIME) &&
901 	     !(time_status & STA_PPSSIGNAL)) ||
902 
903 	/*
904 	 * PPS jitter exceeded when time synchronization
905 	 * requested
906 	 */
907 	    (time_status & STA_PPSTIME &&
908 	     time_status & STA_PPSJITTER) ||
909 
910 	/*
911 	 * PPS wander exceeded or calibration error when
912 	 * frequency synchronization requested
913 	 */
914 	    (time_status & STA_PPSFREQ &&
915 	     time_status & (STA_PPSWANDER | STA_PPSERROR)))
916 		rv = TIME_ERROR;
917 	else
918 		rv = time_state;
919 	mutex_spin_exit(&timecounter_lock);
920 
921 	return rv;
922 }
923 
924 /*ARGSUSED*/
925 /*
926  * ntp_gettime() - NTP user application interface
927  */
928 int
929 sys___ntp_gettime50(struct lwp *l, const struct sys___ntp_gettime50_args *uap, register_t *retval)
930 {
931 	/* {
932 		syscallarg(struct ntptimeval *) ntvp;
933 	} */
934 	struct ntptimeval ntv;
935 	int error = 0;
936 
937 	if (SCARG(uap, ntvp)) {
938 		ntp_gettime(&ntv);
939 
940 		error = copyout((void *)&ntv, (void *)SCARG(uap, ntvp),
941 				sizeof(ntv));
942 	}
943 	if (!error) {
944 		*retval = ntp_timestatus();
945 	}
946 	return(error);
947 }
948 
949 /*
950  * return information about kernel precision timekeeping
951  */
952 static int
953 sysctl_kern_ntptime(SYSCTLFN_ARGS)
954 {
955 	struct sysctlnode node;
956 	struct ntptimeval ntv;
957 
958 	ntp_gettime(&ntv);
959 
960 	node = *rnode;
961 	node.sysctl_data = &ntv;
962 	node.sysctl_size = sizeof(ntv);
963 	return (sysctl_lookup(SYSCTLFN_CALL(&node)));
964 }
965 
966 SYSCTL_SETUP(sysctl_kern_ntptime_setup, "sysctl kern.ntptime node setup")
967 {
968 
969 	sysctl_createv(clog, 0, NULL, NULL,
970 		       CTLFLAG_PERMANENT,
971 		       CTLTYPE_NODE, "kern", NULL,
972 		       NULL, 0, NULL, 0,
973 		       CTL_KERN, CTL_EOL);
974 
975 	sysctl_createv(clog, 0, NULL, NULL,
976 		       CTLFLAG_PERMANENT,
977 		       CTLTYPE_STRUCT, "ntptime",
978 		       SYSCTL_DESCR("Kernel clock values for NTP"),
979 		       sysctl_kern_ntptime, 0, NULL,
980 		       sizeof(struct ntptimeval),
981 		       CTL_KERN, KERN_NTPTIME, CTL_EOL);
982 }
983 #else /* !NTP */
984 /* For some reason, raising SIGSYS (as sys_nosys would) is problematic. */
985 
986 int
987 sys___ntp_gettime50(struct lwp *l, const struct sys___ntp_gettime50_args *uap, register_t *retval)
988 {
989 
990 	return(ENOSYS);
991 }
992 
993 #endif /* !NTP */
994