xref: /netbsd-src/sys/kern/kern_ntptime.c (revision 267197ec1eebfcb9810ea27a89625b6ddf68e3e7)
1 /*	$NetBSD: kern_ntptime.c,v 1.46 2008/01/20 18:09:11 joerg Exp $	*/
2 
3 /*-
4  ***********************************************************************
5  *								       *
6  * Copyright (c) David L. Mills 1993-2001			       *
7  *								       *
8  * Permission to use, copy, modify, and distribute this software and   *
9  * its documentation for any purpose and without fee is hereby	       *
10  * granted, provided that the above copyright notice appears in all    *
11  * copies and that both the copyright notice and this permission       *
12  * notice appear in supporting documentation, and that the name	       *
13  * University of Delaware not be used in advertising or publicity      *
14  * pertaining to distribution of the software without specific,	       *
15  * written prior permission. The University of Delaware makes no       *
16  * representations about the suitability this software for any	       *
17  * purpose. It is provided "as is" without express or implied	       *
18  * warranty.							       *
19  *								       *
20  **********************************************************************/
21 
22 /*
23  * Adapted from the original sources for FreeBSD and timecounters by:
24  * Poul-Henning Kamp <phk@FreeBSD.org>.
25  *
26  * The 32bit version of the "LP" macros seems a bit past its "sell by"
27  * date so I have retained only the 64bit version and included it directly
28  * in this file.
29  *
30  * Only minor changes done to interface with the timecounters over in
31  * sys/kern/kern_clock.c.   Some of the comments below may be (even more)
32  * confusing and/or plain wrong in that context.
33  */
34 
35 #include <sys/cdefs.h>
36 /* __FBSDID("$FreeBSD: src/sys/kern/kern_ntptime.c,v 1.59 2005/05/28 14:34:41 rwatson Exp $"); */
37 __KERNEL_RCSID(0, "$NetBSD: kern_ntptime.c,v 1.46 2008/01/20 18:09:11 joerg Exp $");
38 
39 #include "opt_ntp.h"
40 #include "opt_compat_netbsd.h"
41 
42 #include <sys/param.h>
43 #include <sys/resourcevar.h>
44 #include <sys/systm.h>
45 #include <sys/kernel.h>
46 #include <sys/proc.h>
47 #include <sys/sysctl.h>
48 #include <sys/timex.h>
49 #ifdef COMPAT_30
50 #include <compat/sys/timex.h>
51 #endif
52 #include <sys/vnode.h>
53 #include <sys/kauth.h>
54 
55 #include <sys/mount.h>
56 #include <sys/syscallargs.h>
57 
58 #include <sys/cpu.h>
59 
60 /*
61  * Single-precision macros for 64-bit machines
62  */
63 typedef int64_t l_fp;
64 #define L_ADD(v, u)	((v) += (u))
65 #define L_SUB(v, u)	((v) -= (u))
66 #define L_ADDHI(v, a)	((v) += (int64_t)(a) << 32)
67 #define L_NEG(v)	((v) = -(v))
68 #define L_RSHIFT(v, n) \
69 	do { \
70 		if ((v) < 0) \
71 			(v) = -(-(v) >> (n)); \
72 		else \
73 			(v) = (v) >> (n); \
74 	} while (0)
75 #define L_MPY(v, a)	((v) *= (a))
76 #define L_CLR(v)	((v) = 0)
77 #define L_ISNEG(v)	((v) < 0)
78 #define L_LINT(v, a)	((v) = (int64_t)(a) << 32)
79 #define L_GINT(v)	((v) < 0 ? -(-(v) >> 32) : (v) >> 32)
80 
81 #ifdef NTP
82 /*
83  * Generic NTP kernel interface
84  *
85  * These routines constitute the Network Time Protocol (NTP) interfaces
86  * for user and daemon application programs. The ntp_gettime() routine
87  * provides the time, maximum error (synch distance) and estimated error
88  * (dispersion) to client user application programs. The ntp_adjtime()
89  * routine is used by the NTP daemon to adjust the system clock to an
90  * externally derived time. The time offset and related variables set by
91  * this routine are used by other routines in this module to adjust the
92  * phase and frequency of the clock discipline loop which controls the
93  * system clock.
94  *
95  * When the kernel time is reckoned directly in nanoseconds (NTP_NANO
96  * defined), the time at each tick interrupt is derived directly from
97  * the kernel time variable. When the kernel time is reckoned in
98  * microseconds, (NTP_NANO undefined), the time is derived from the
99  * kernel time variable together with a variable representing the
100  * leftover nanoseconds at the last tick interrupt. In either case, the
101  * current nanosecond time is reckoned from these values plus an
102  * interpolated value derived by the clock routines in another
103  * architecture-specific module. The interpolation can use either a
104  * dedicated counter or a processor cycle counter (PCC) implemented in
105  * some architectures.
106  *
107  * Note that all routines must run at priority splclock or higher.
108  */
109 /*
110  * Phase/frequency-lock loop (PLL/FLL) definitions
111  *
112  * The nanosecond clock discipline uses two variable types, time
113  * variables and frequency variables. Both types are represented as 64-
114  * bit fixed-point quantities with the decimal point between two 32-bit
115  * halves. On a 32-bit machine, each half is represented as a single
116  * word and mathematical operations are done using multiple-precision
117  * arithmetic. On a 64-bit machine, ordinary computer arithmetic is
118  * used.
119  *
120  * A time variable is a signed 64-bit fixed-point number in ns and
121  * fraction. It represents the remaining time offset to be amortized
122  * over succeeding tick interrupts. The maximum time offset is about
123  * 0.5 s and the resolution is about 2.3e-10 ns.
124  *
125  *			1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3
126  *  0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
127  * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
128  * |s s s|			 ns				   |
129  * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
130  * |			    fraction				   |
131  * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
132  *
133  * A frequency variable is a signed 64-bit fixed-point number in ns/s
134  * and fraction. It represents the ns and fraction to be added to the
135  * kernel time variable at each second. The maximum frequency offset is
136  * about +-500000 ns/s and the resolution is about 2.3e-10 ns/s.
137  *
138  *			1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3
139  *  0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
140  * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
141  * |s s s s s s s s s s s s s|	          ns/s			   |
142  * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
143  * |			    fraction				   |
144  * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
145  */
146 /*
147  * The following variables establish the state of the PLL/FLL and the
148  * residual time and frequency offset of the local clock.
149  */
150 #define SHIFT_PLL	4		/* PLL loop gain (shift) */
151 #define SHIFT_FLL	2		/* FLL loop gain (shift) */
152 
153 static int time_state = TIME_OK;	/* clock state */
154 static int time_status = STA_UNSYNC;	/* clock status bits */
155 static long time_tai;			/* TAI offset (s) */
156 static long time_monitor;		/* last time offset scaled (ns) */
157 static long time_constant;		/* poll interval (shift) (s) */
158 static long time_precision = 1;		/* clock precision (ns) */
159 static long time_maxerror = MAXPHASE / 1000; /* maximum error (us) */
160 static long time_esterror = MAXPHASE / 1000; /* estimated error (us) */
161 static long time_reftime;		/* time at last adjustment (s) */
162 static l_fp time_offset;		/* time offset (ns) */
163 static l_fp time_freq;			/* frequency offset (ns/s) */
164 #endif /* NTP */
165 
166 static l_fp time_adj;			/* tick adjust (ns/s) */
167 int64_t time_adjtime;		/* correction from adjtime(2) (usec) */
168 
169 extern int time_adjusted;	/* ntp might have changed the system time */
170 
171 #ifdef NTP
172 #ifdef PPS_SYNC
173 /*
174  * The following variables are used when a pulse-per-second (PPS) signal
175  * is available and connected via a modem control lead. They establish
176  * the engineering parameters of the clock discipline loop when
177  * controlled by the PPS signal.
178  */
179 #define PPS_FAVG	2		/* min freq avg interval (s) (shift) */
180 #define PPS_FAVGDEF	8		/* default freq avg int (s) (shift) */
181 #define PPS_FAVGMAX	15		/* max freq avg interval (s) (shift) */
182 #define PPS_PAVG	4		/* phase avg interval (s) (shift) */
183 #define PPS_VALID	120		/* PPS signal watchdog max (s) */
184 #define PPS_MAXWANDER	100000		/* max PPS wander (ns/s) */
185 #define PPS_POPCORN	2		/* popcorn spike threshold (shift) */
186 
187 static struct timespec pps_tf[3];	/* phase median filter */
188 static l_fp pps_freq;			/* scaled frequency offset (ns/s) */
189 static long pps_fcount;			/* frequency accumulator */
190 static long pps_jitter;			/* nominal jitter (ns) */
191 static long pps_stabil;			/* nominal stability (scaled ns/s) */
192 static long pps_lastsec;		/* time at last calibration (s) */
193 static int pps_valid;			/* signal watchdog counter */
194 static int pps_shift = PPS_FAVG;	/* interval duration (s) (shift) */
195 static int pps_shiftmax = PPS_FAVGDEF;	/* max interval duration (s) (shift) */
196 static int pps_intcnt;			/* wander counter */
197 
198 /*
199  * PPS signal quality monitors
200  */
201 static long pps_calcnt;			/* calibration intervals */
202 static long pps_jitcnt;			/* jitter limit exceeded */
203 static long pps_stbcnt;			/* stability limit exceeded */
204 static long pps_errcnt;			/* calibration errors */
205 #endif /* PPS_SYNC */
206 /*
207  * End of phase/frequency-lock loop (PLL/FLL) definitions
208  */
209 
210 static void hardupdate(long offset);
211 
212 /*
213  * ntp_gettime() - NTP user application interface
214  */
215 void
216 ntp_gettime(struct ntptimeval *ntv)
217 {
218 	nanotime(&ntv->time);
219 	ntv->maxerror = time_maxerror;
220 	ntv->esterror = time_esterror;
221 	ntv->tai = time_tai;
222 	ntv->time_state = time_state;
223 }
224 
225 /* ARGSUSED */
226 /*
227  * ntp_adjtime() - NTP daemon application interface
228  */
229 int
230 sys_ntp_adjtime(struct lwp *l, const struct sys_ntp_adjtime_args *uap, register_t *retval)
231 {
232 	/* {
233 		syscallarg(struct timex *) tp;
234 	} */
235 	struct timex ntv;
236 	int error = 0;
237 
238 	error = copyin((void *)SCARG(uap, tp), (void *)&ntv, sizeof(ntv));
239 	if (error != 0)
240 		return (error);
241 
242 	if (ntv.modes != 0 && (error = kauth_authorize_system(l->l_cred,
243 	    KAUTH_SYSTEM_TIME, KAUTH_REQ_SYSTEM_TIME_NTPADJTIME, NULL,
244 	    NULL, NULL)) != 0)
245 		return (error);
246 
247 	ntp_adjtime1(&ntv);
248 
249 	error = copyout((void *)&ntv, (void *)SCARG(uap, tp), sizeof(ntv));
250 	if (!error)
251 		*retval = ntp_timestatus();
252 
253 	return error;
254 }
255 
256 void
257 ntp_adjtime1(struct timex *ntv)
258 {
259 	long freq;
260 	int modes;
261 	int s;
262 
263 	/*
264 	 * Update selected clock variables - only the superuser can
265 	 * change anything. Note that there is no error checking here on
266 	 * the assumption the superuser should know what it is doing.
267 	 * Note that either the time constant or TAI offset are loaded
268 	 * from the ntv.constant member, depending on the mode bits. If
269 	 * the STA_PLL bit in the status word is cleared, the state and
270 	 * status words are reset to the initial values at boot.
271 	 */
272 	modes = ntv->modes;
273 	if (modes != 0)
274 		/* We need to save the system time during shutdown */
275 		time_adjusted |= 2;
276 	s = splclock();
277 	if (modes & MOD_MAXERROR)
278 		time_maxerror = ntv->maxerror;
279 	if (modes & MOD_ESTERROR)
280 		time_esterror = ntv->esterror;
281 	if (modes & MOD_STATUS) {
282 		if (time_status & STA_PLL && !(ntv->status & STA_PLL)) {
283 			time_state = TIME_OK;
284 			time_status = STA_UNSYNC;
285 #ifdef PPS_SYNC
286 			pps_shift = PPS_FAVG;
287 #endif /* PPS_SYNC */
288 		}
289 		time_status &= STA_RONLY;
290 		time_status |= ntv->status & ~STA_RONLY;
291 	}
292 	if (modes & MOD_TIMECONST) {
293 		if (ntv->constant < 0)
294 			time_constant = 0;
295 		else if (ntv->constant > MAXTC)
296 			time_constant = MAXTC;
297 		else
298 			time_constant = ntv->constant;
299 	}
300 	if (modes & MOD_TAI) {
301 		if (ntv->constant > 0)	/* XXX zero & negative numbers ? */
302 			time_tai = ntv->constant;
303 	}
304 #ifdef PPS_SYNC
305 	if (modes & MOD_PPSMAX) {
306 		if (ntv->shift < PPS_FAVG)
307 			pps_shiftmax = PPS_FAVG;
308 		else if (ntv->shift > PPS_FAVGMAX)
309 			pps_shiftmax = PPS_FAVGMAX;
310 		else
311 			pps_shiftmax = ntv->shift;
312 	}
313 #endif /* PPS_SYNC */
314 	if (modes & MOD_NANO)
315 		time_status |= STA_NANO;
316 	if (modes & MOD_MICRO)
317 		time_status &= ~STA_NANO;
318 	if (modes & MOD_CLKB)
319 		time_status |= STA_CLK;
320 	if (modes & MOD_CLKA)
321 		time_status &= ~STA_CLK;
322 	if (modes & MOD_FREQUENCY) {
323 		freq = (ntv->freq * 1000LL) >> 16;
324 		if (freq > MAXFREQ)
325 			L_LINT(time_freq, MAXFREQ);
326 		else if (freq < -MAXFREQ)
327 			L_LINT(time_freq, -MAXFREQ);
328 		else {
329 			/*
330 			 * ntv.freq is [PPM * 2^16] = [us/s * 2^16]
331 			 * time_freq is [ns/s * 2^32]
332 			 */
333 			time_freq = ntv->freq * 1000LL * 65536LL;
334 		}
335 #ifdef PPS_SYNC
336 		pps_freq = time_freq;
337 #endif /* PPS_SYNC */
338 	}
339 	if (modes & MOD_OFFSET) {
340 		if (time_status & STA_NANO)
341 			hardupdate(ntv->offset);
342 		else
343 			hardupdate(ntv->offset * 1000);
344 	}
345 
346 	/*
347 	 * Retrieve all clock variables. Note that the TAI offset is
348 	 * returned only by ntp_gettime();
349 	 */
350 	if (time_status & STA_NANO)
351 		ntv->offset = L_GINT(time_offset);
352 	else
353 		ntv->offset = L_GINT(time_offset) / 1000; /* XXX rounding ? */
354 	ntv->freq = L_GINT((time_freq / 1000LL) << 16);
355 	ntv->maxerror = time_maxerror;
356 	ntv->esterror = time_esterror;
357 	ntv->status = time_status;
358 	ntv->constant = time_constant;
359 	if (time_status & STA_NANO)
360 		ntv->precision = time_precision;
361 	else
362 		ntv->precision = time_precision / 1000;
363 	ntv->tolerance = MAXFREQ * SCALE_PPM;
364 #ifdef PPS_SYNC
365 	ntv->shift = pps_shift;
366 	ntv->ppsfreq = L_GINT((pps_freq / 1000LL) << 16);
367 	if (time_status & STA_NANO)
368 		ntv->jitter = pps_jitter;
369 	else
370 		ntv->jitter = pps_jitter / 1000;
371 	ntv->stabil = pps_stabil;
372 	ntv->calcnt = pps_calcnt;
373 	ntv->errcnt = pps_errcnt;
374 	ntv->jitcnt = pps_jitcnt;
375 	ntv->stbcnt = pps_stbcnt;
376 #endif /* PPS_SYNC */
377 	splx(s);
378 }
379 #endif /* NTP */
380 
381 /*
382  * second_overflow() - called after ntp_tick_adjust()
383  *
384  * This routine is ordinarily called immediately following the above
385  * routine ntp_tick_adjust(). While these two routines are normally
386  * combined, they are separated here only for the purposes of
387  * simulation.
388  */
389 void
390 ntp_update_second(int64_t *adjustment, time_t *newsec)
391 {
392 	int tickrate;
393 	l_fp ftemp;		/* 32/64-bit temporary */
394 
395 #ifdef NTP
396 
397 	/*
398 	 * On rollover of the second both the nanosecond and microsecond
399 	 * clocks are updated and the state machine cranked as
400 	 * necessary. The phase adjustment to be used for the next
401 	 * second is calculated and the maximum error is increased by
402 	 * the tolerance.
403 	 */
404 	time_maxerror += MAXFREQ / 1000;
405 
406 	/*
407 	 * Leap second processing. If in leap-insert state at
408 	 * the end of the day, the system clock is set back one
409 	 * second; if in leap-delete state, the system clock is
410 	 * set ahead one second. The nano_time() routine or
411 	 * external clock driver will insure that reported time
412 	 * is always monotonic.
413 	 */
414 	switch (time_state) {
415 
416 		/*
417 		 * No warning.
418 		 */
419 		case TIME_OK:
420 		if (time_status & STA_INS)
421 			time_state = TIME_INS;
422 		else if (time_status & STA_DEL)
423 			time_state = TIME_DEL;
424 		break;
425 
426 		/*
427 		 * Insert second 23:59:60 following second
428 		 * 23:59:59.
429 		 */
430 		case TIME_INS:
431 		if (!(time_status & STA_INS))
432 			time_state = TIME_OK;
433 		else if ((*newsec) % 86400 == 0) {
434 			(*newsec)--;
435 			time_state = TIME_OOP;
436 			time_tai++;
437 		}
438 		break;
439 
440 		/*
441 		 * Delete second 23:59:59.
442 		 */
443 		case TIME_DEL:
444 		if (!(time_status & STA_DEL))
445 			time_state = TIME_OK;
446 		else if (((*newsec) + 1) % 86400 == 0) {
447 			(*newsec)++;
448 			time_tai--;
449 			time_state = TIME_WAIT;
450 		}
451 		break;
452 
453 		/*
454 		 * Insert second in progress.
455 		 */
456 		case TIME_OOP:
457 			time_state = TIME_WAIT;
458 		break;
459 
460 		/*
461 		 * Wait for status bits to clear.
462 		 */
463 		case TIME_WAIT:
464 		if (!(time_status & (STA_INS | STA_DEL)))
465 			time_state = TIME_OK;
466 	}
467 
468 	/*
469 	 * Compute the total time adjustment for the next second
470 	 * in ns. The offset is reduced by a factor depending on
471 	 * whether the PPS signal is operating. Note that the
472 	 * value is in effect scaled by the clock frequency,
473 	 * since the adjustment is added at each tick interrupt.
474 	 */
475 	ftemp = time_offset;
476 #ifdef PPS_SYNC
477 	/* XXX even if PPS signal dies we should finish adjustment ? */
478 	if (time_status & STA_PPSTIME && time_status &
479 	    STA_PPSSIGNAL)
480 		L_RSHIFT(ftemp, pps_shift);
481 	else
482 		L_RSHIFT(ftemp, SHIFT_PLL + time_constant);
483 #else
484 		L_RSHIFT(ftemp, SHIFT_PLL + time_constant);
485 #endif /* PPS_SYNC */
486 	time_adj = ftemp;
487 	L_SUB(time_offset, ftemp);
488 	L_ADD(time_adj, time_freq);
489 
490 #ifdef PPS_SYNC
491 	if (pps_valid > 0)
492 		pps_valid--;
493 	else
494 		time_status &= ~STA_PPSSIGNAL;
495 #endif /* PPS_SYNC */
496 #else  /* !NTP */
497 	L_CLR(time_adj);
498 #endif /* !NTP */
499 
500 	/*
501 	 * Apply any correction from adjtime(2).  If more than one second
502 	 * off we slew at a rate of 5ms/s (5000 PPM) else 500us/s (500PPM)
503 	 * until the last second is slewed the final < 500 usecs.
504 	 */
505 	if (time_adjtime != 0) {
506 		if (time_adjtime > 1000000)
507 			tickrate = 5000;
508 		else if (time_adjtime < -1000000)
509 			tickrate = -5000;
510 		else if (time_adjtime > 500)
511 			tickrate = 500;
512 		else if (time_adjtime < -500)
513 			tickrate = -500;
514 		else
515 			tickrate = time_adjtime;
516 		time_adjtime -= tickrate;
517 		L_LINT(ftemp, tickrate * 1000);
518 		L_ADD(time_adj, ftemp);
519 	}
520 	*adjustment = time_adj;
521 }
522 
523 /*
524  * ntp_init() - initialize variables and structures
525  *
526  * This routine must be called after the kernel variables hz and tick
527  * are set or changed and before the next tick interrupt. In this
528  * particular implementation, these values are assumed set elsewhere in
529  * the kernel. The design allows the clock frequency and tick interval
530  * to be changed while the system is running. So, this routine should
531  * probably be integrated with the code that does that.
532  */
533 void
534 ntp_init(void)
535 {
536 
537 	/*
538 	 * The following variables are initialized only at startup. Only
539 	 * those structures not cleared by the compiler need to be
540 	 * initialized, and these only in the simulator. In the actual
541 	 * kernel, any nonzero values here will quickly evaporate.
542 	 */
543 	L_CLR(time_adj);
544 #ifdef NTP
545 	L_CLR(time_offset);
546 	L_CLR(time_freq);
547 #ifdef PPS_SYNC
548 	pps_tf[0].tv_sec = pps_tf[0].tv_nsec = 0;
549 	pps_tf[1].tv_sec = pps_tf[1].tv_nsec = 0;
550 	pps_tf[2].tv_sec = pps_tf[2].tv_nsec = 0;
551 	pps_fcount = 0;
552 	L_CLR(pps_freq);
553 #endif /* PPS_SYNC */
554 #endif
555 }
556 
557 #ifdef NTP
558 /*
559  * hardupdate() - local clock update
560  *
561  * This routine is called by ntp_adjtime() to update the local clock
562  * phase and frequency. The implementation is of an adaptive-parameter,
563  * hybrid phase/frequency-lock loop (PLL/FLL). The routine computes new
564  * time and frequency offset estimates for each call. If the kernel PPS
565  * discipline code is configured (PPS_SYNC), the PPS signal itself
566  * determines the new time offset, instead of the calling argument.
567  * Presumably, calls to ntp_adjtime() occur only when the caller
568  * believes the local clock is valid within some bound (+-128 ms with
569  * NTP). If the caller's time is far different than the PPS time, an
570  * argument will ensue, and it's not clear who will lose.
571  *
572  * For uncompensated quartz crystal oscillators and nominal update
573  * intervals less than 256 s, operation should be in phase-lock mode,
574  * where the loop is disciplined to phase. For update intervals greater
575  * than 1024 s, operation should be in frequency-lock mode, where the
576  * loop is disciplined to frequency. Between 256 s and 1024 s, the mode
577  * is selected by the STA_MODE status bit.
578  *
579  * Note: splclock() is in effect.
580  */
581 void
582 hardupdate(long offset)
583 {
584 	long mtemp;
585 	l_fp ftemp;
586 
587 	/*
588 	 * Select how the phase is to be controlled and from which
589 	 * source. If the PPS signal is present and enabled to
590 	 * discipline the time, the PPS offset is used; otherwise, the
591 	 * argument offset is used.
592 	 */
593 	if (!(time_status & STA_PLL))
594 		return;
595 	if (!(time_status & STA_PPSTIME && time_status &
596 	    STA_PPSSIGNAL)) {
597 		if (offset > MAXPHASE)
598 			time_monitor = MAXPHASE;
599 		else if (offset < -MAXPHASE)
600 			time_monitor = -MAXPHASE;
601 		else
602 			time_monitor = offset;
603 		L_LINT(time_offset, time_monitor);
604 	}
605 
606 	/*
607 	 * Select how the frequency is to be controlled and in which
608 	 * mode (PLL or FLL). If the PPS signal is present and enabled
609 	 * to discipline the frequency, the PPS frequency is used;
610 	 * otherwise, the argument offset is used to compute it.
611 	 */
612 	if (time_status & STA_PPSFREQ && time_status & STA_PPSSIGNAL) {
613 		time_reftime = time_second;
614 		return;
615 	}
616 	if (time_status & STA_FREQHOLD || time_reftime == 0)
617 		time_reftime = time_second;
618 	mtemp = time_second - time_reftime;
619 	L_LINT(ftemp, time_monitor);
620 	L_RSHIFT(ftemp, (SHIFT_PLL + 2 + time_constant) << 1);
621 	L_MPY(ftemp, mtemp);
622 	L_ADD(time_freq, ftemp);
623 	time_status &= ~STA_MODE;
624 	if (mtemp >= MINSEC && (time_status & STA_FLL || mtemp >
625 	    MAXSEC)) {
626 		L_LINT(ftemp, (time_monitor << 4) / mtemp);
627 		L_RSHIFT(ftemp, SHIFT_FLL + 4);
628 		L_ADD(time_freq, ftemp);
629 		time_status |= STA_MODE;
630 	}
631 	time_reftime = time_second;
632 	if (L_GINT(time_freq) > MAXFREQ)
633 		L_LINT(time_freq, MAXFREQ);
634 	else if (L_GINT(time_freq) < -MAXFREQ)
635 		L_LINT(time_freq, -MAXFREQ);
636 }
637 
638 #ifdef PPS_SYNC
639 /*
640  * hardpps() - discipline CPU clock oscillator to external PPS signal
641  *
642  * This routine is called at each PPS interrupt in order to discipline
643  * the CPU clock oscillator to the PPS signal. It measures the PPS phase
644  * and leaves it in a handy spot for the hardclock() routine. It
645  * integrates successive PPS phase differences and calculates the
646  * frequency offset. This is used in hardclock() to discipline the CPU
647  * clock oscillator so that intrinsic frequency error is cancelled out.
648  * The code requires the caller to capture the time and hardware counter
649  * value at the on-time PPS signal transition.
650  *
651  * Note that, on some Unix systems, this routine runs at an interrupt
652  * priority level higher than the timer interrupt routine hardclock().
653  * Therefore, the variables used are distinct from the hardclock()
654  * variables, except for certain exceptions: The PPS frequency pps_freq
655  * and phase pps_offset variables are determined by this routine and
656  * updated atomically. The time_tolerance variable can be considered a
657  * constant, since it is infrequently changed, and then only when the
658  * PPS signal is disabled. The watchdog counter pps_valid is updated
659  * once per second by hardclock() and is atomically cleared in this
660  * routine.
661  */
662 void
663 hardpps(struct timespec *tsp,		/* time at PPS */
664 	long nsec			/* hardware counter at PPS */)
665 {
666 	long u_sec, u_nsec, v_nsec; /* temps */
667 	l_fp ftemp;
668 
669 	/*
670 	 * The signal is first processed by a range gate and frequency
671 	 * discriminator. The range gate rejects noise spikes outside
672 	 * the range +-500 us. The frequency discriminator rejects input
673 	 * signals with apparent frequency outside the range 1 +-500
674 	 * PPM. If two hits occur in the same second, we ignore the
675 	 * later hit; if not and a hit occurs outside the range gate,
676 	 * keep the later hit for later comparison, but do not process
677 	 * it.
678 	 */
679 	time_status |= STA_PPSSIGNAL | STA_PPSJITTER;
680 	time_status &= ~(STA_PPSWANDER | STA_PPSERROR);
681 	pps_valid = PPS_VALID;
682 	u_sec = tsp->tv_sec;
683 	u_nsec = tsp->tv_nsec;
684 	if (u_nsec >= (NANOSECOND >> 1)) {
685 		u_nsec -= NANOSECOND;
686 		u_sec++;
687 	}
688 	v_nsec = u_nsec - pps_tf[0].tv_nsec;
689 	if (u_sec == pps_tf[0].tv_sec && v_nsec < NANOSECOND -
690 	    MAXFREQ)
691 		return;
692 	pps_tf[2] = pps_tf[1];
693 	pps_tf[1] = pps_tf[0];
694 	pps_tf[0].tv_sec = u_sec;
695 	pps_tf[0].tv_nsec = u_nsec;
696 
697 	/*
698 	 * Compute the difference between the current and previous
699 	 * counter values. If the difference exceeds 0.5 s, assume it
700 	 * has wrapped around, so correct 1.0 s. If the result exceeds
701 	 * the tick interval, the sample point has crossed a tick
702 	 * boundary during the last second, so correct the tick. Very
703 	 * intricate.
704 	 */
705 	u_nsec = nsec;
706 	if (u_nsec > (NANOSECOND >> 1))
707 		u_nsec -= NANOSECOND;
708 	else if (u_nsec < -(NANOSECOND >> 1))
709 		u_nsec += NANOSECOND;
710 	pps_fcount += u_nsec;
711 	if (v_nsec > MAXFREQ || v_nsec < -MAXFREQ)
712 		return;
713 	time_status &= ~STA_PPSJITTER;
714 
715 	/*
716 	 * A three-stage median filter is used to help denoise the PPS
717 	 * time. The median sample becomes the time offset estimate; the
718 	 * difference between the other two samples becomes the time
719 	 * dispersion (jitter) estimate.
720 	 */
721 	if (pps_tf[0].tv_nsec > pps_tf[1].tv_nsec) {
722 		if (pps_tf[1].tv_nsec > pps_tf[2].tv_nsec) {
723 			v_nsec = pps_tf[1].tv_nsec;	/* 0 1 2 */
724 			u_nsec = pps_tf[0].tv_nsec - pps_tf[2].tv_nsec;
725 		} else if (pps_tf[2].tv_nsec > pps_tf[0].tv_nsec) {
726 			v_nsec = pps_tf[0].tv_nsec;	/* 2 0 1 */
727 			u_nsec = pps_tf[2].tv_nsec - pps_tf[1].tv_nsec;
728 		} else {
729 			v_nsec = pps_tf[2].tv_nsec;	/* 0 2 1 */
730 			u_nsec = pps_tf[0].tv_nsec - pps_tf[1].tv_nsec;
731 		}
732 	} else {
733 		if (pps_tf[1].tv_nsec < pps_tf[2].tv_nsec) {
734 			v_nsec = pps_tf[1].tv_nsec;	/* 2 1 0 */
735 			u_nsec = pps_tf[2].tv_nsec - pps_tf[0].tv_nsec;
736 		} else if (pps_tf[2].tv_nsec < pps_tf[0].tv_nsec) {
737 			v_nsec = pps_tf[0].tv_nsec;	/* 1 0 2 */
738 			u_nsec = pps_tf[1].tv_nsec - pps_tf[2].tv_nsec;
739 		} else {
740 			v_nsec = pps_tf[2].tv_nsec;	/* 1 2 0 */
741 			u_nsec = pps_tf[1].tv_nsec - pps_tf[0].tv_nsec;
742 		}
743 	}
744 
745 	/*
746 	 * Nominal jitter is due to PPS signal noise and interrupt
747 	 * latency. If it exceeds the popcorn threshold, the sample is
748 	 * discarded. otherwise, if so enabled, the time offset is
749 	 * updated. We can tolerate a modest loss of data here without
750 	 * much degrading time accuracy.
751 	 */
752 	if (u_nsec > (pps_jitter << PPS_POPCORN)) {
753 		time_status |= STA_PPSJITTER;
754 		pps_jitcnt++;
755 	} else if (time_status & STA_PPSTIME) {
756 		time_monitor = -v_nsec;
757 		L_LINT(time_offset, time_monitor);
758 	}
759 	pps_jitter += (u_nsec - pps_jitter) >> PPS_FAVG;
760 	u_sec = pps_tf[0].tv_sec - pps_lastsec;
761 	if (u_sec < (1 << pps_shift))
762 		return;
763 
764 	/*
765 	 * At the end of the calibration interval the difference between
766 	 * the first and last counter values becomes the scaled
767 	 * frequency. It will later be divided by the length of the
768 	 * interval to determine the frequency update. If the frequency
769 	 * exceeds a sanity threshold, or if the actual calibration
770 	 * interval is not equal to the expected length, the data are
771 	 * discarded. We can tolerate a modest loss of data here without
772 	 * much degrading frequency accuracy.
773 	 */
774 	pps_calcnt++;
775 	v_nsec = -pps_fcount;
776 	pps_lastsec = pps_tf[0].tv_sec;
777 	pps_fcount = 0;
778 	u_nsec = MAXFREQ << pps_shift;
779 	if (v_nsec > u_nsec || v_nsec < -u_nsec || u_sec != (1 <<
780 	    pps_shift)) {
781 		time_status |= STA_PPSERROR;
782 		pps_errcnt++;
783 		return;
784 	}
785 
786 	/*
787 	 * Here the raw frequency offset and wander (stability) is
788 	 * calculated. If the wander is less than the wander threshold
789 	 * for four consecutive averaging intervals, the interval is
790 	 * doubled; if it is greater than the threshold for four
791 	 * consecutive intervals, the interval is halved. The scaled
792 	 * frequency offset is converted to frequency offset. The
793 	 * stability metric is calculated as the average of recent
794 	 * frequency changes, but is used only for performance
795 	 * monitoring.
796 	 */
797 	L_LINT(ftemp, v_nsec);
798 	L_RSHIFT(ftemp, pps_shift);
799 	L_SUB(ftemp, pps_freq);
800 	u_nsec = L_GINT(ftemp);
801 	if (u_nsec > PPS_MAXWANDER) {
802 		L_LINT(ftemp, PPS_MAXWANDER);
803 		pps_intcnt--;
804 		time_status |= STA_PPSWANDER;
805 		pps_stbcnt++;
806 	} else if (u_nsec < -PPS_MAXWANDER) {
807 		L_LINT(ftemp, -PPS_MAXWANDER);
808 		pps_intcnt--;
809 		time_status |= STA_PPSWANDER;
810 		pps_stbcnt++;
811 	} else {
812 		pps_intcnt++;
813 	}
814 	if (pps_intcnt >= 4) {
815 		pps_intcnt = 4;
816 		if (pps_shift < pps_shiftmax) {
817 			pps_shift++;
818 			pps_intcnt = 0;
819 		}
820 	} else if (pps_intcnt <= -4 || pps_shift > pps_shiftmax) {
821 		pps_intcnt = -4;
822 		if (pps_shift > PPS_FAVG) {
823 			pps_shift--;
824 			pps_intcnt = 0;
825 		}
826 	}
827 	if (u_nsec < 0)
828 		u_nsec = -u_nsec;
829 	pps_stabil += (u_nsec * SCALE_PPM - pps_stabil) >> PPS_FAVG;
830 
831 	/*
832 	 * The PPS frequency is recalculated and clamped to the maximum
833 	 * MAXFREQ. If enabled, the system clock frequency is updated as
834 	 * well.
835 	 */
836 	L_ADD(pps_freq, ftemp);
837 	u_nsec = L_GINT(pps_freq);
838 	if (u_nsec > MAXFREQ)
839 		L_LINT(pps_freq, MAXFREQ);
840 	else if (u_nsec < -MAXFREQ)
841 		L_LINT(pps_freq, -MAXFREQ);
842 	if (time_status & STA_PPSFREQ)
843 		time_freq = pps_freq;
844 }
845 #endif /* PPS_SYNC */
846 #endif /* NTP */
847 
848 #ifdef NTP
849 int
850 ntp_timestatus()
851 {
852 	/*
853 	 * Status word error decode. If any of these conditions
854 	 * occur, an error is returned, instead of the status
855 	 * word. Most applications will care only about the fact
856 	 * the system clock may not be trusted, not about the
857 	 * details.
858 	 *
859 	 * Hardware or software error
860 	 */
861 	if ((time_status & (STA_UNSYNC | STA_CLOCKERR)) ||
862 
863 	/*
864 	 * PPS signal lost when either time or frequency
865 	 * synchronization requested
866 	 */
867 	    (time_status & (STA_PPSFREQ | STA_PPSTIME) &&
868 	     !(time_status & STA_PPSSIGNAL)) ||
869 
870 	/*
871 	 * PPS jitter exceeded when time synchronization
872 	 * requested
873 	 */
874 	    (time_status & STA_PPSTIME &&
875 	     time_status & STA_PPSJITTER) ||
876 
877 	/*
878 	 * PPS wander exceeded or calibration error when
879 	 * frequency synchronization requested
880 	 */
881 	    (time_status & STA_PPSFREQ &&
882 	     time_status & (STA_PPSWANDER | STA_PPSERROR)))
883 		return (TIME_ERROR);
884 	else
885 		return (time_state);
886 }
887 
888 /*ARGSUSED*/
889 /*
890  * ntp_gettime() - NTP user application interface
891  */
892 int
893 sys___ntp_gettime30(struct lwp *l, const struct sys___ntp_gettime30_args *uap, register_t *retval)
894 {
895 	/* {
896 		syscallarg(struct ntptimeval *) ntvp;
897 	} */
898 	struct ntptimeval ntv;
899 	int error = 0;
900 
901 	if (SCARG(uap, ntvp)) {
902 		ntp_gettime(&ntv);
903 
904 		error = copyout((void *)&ntv, (void *)SCARG(uap, ntvp),
905 				sizeof(ntv));
906 	}
907 	if (!error) {
908 		*retval = ntp_timestatus();
909 	}
910 	return(error);
911 }
912 
913 #ifdef COMPAT_30
914 int
915 compat_30_sys_ntp_gettime(struct lwp *l, const struct compat_30_sys_ntp_gettime_args *uap, register_t *retval)
916 {
917 	/* {
918 		syscallarg(struct ntptimeval30 *) ontvp;
919 	} */
920 	struct ntptimeval ntv;
921 	struct ntptimeval30 ontv;
922 	int error = 0;
923 
924 	if (SCARG(uap, ntvp)) {
925 		ntp_gettime(&ntv);
926 		TIMESPEC_TO_TIMEVAL(&ontv.time, &ntv.time);
927 		ontv.maxerror = ntv.maxerror;
928 		ontv.esterror = ntv.esterror;
929 
930 		error = copyout((void *)&ontv, (void *)SCARG(uap, ntvp),
931 				sizeof(ontv));
932  	}
933 	if (!error)
934 		*retval = ntp_timestatus();
935 
936 	return (error);
937 }
938 #endif
939 
940 /*
941  * return information about kernel precision timekeeping
942  */
943 static int
944 sysctl_kern_ntptime(SYSCTLFN_ARGS)
945 {
946 	struct sysctlnode node;
947 	struct ntptimeval ntv;
948 
949 	ntp_gettime(&ntv);
950 
951 	node = *rnode;
952 	node.sysctl_data = &ntv;
953 	node.sysctl_size = sizeof(ntv);
954 	return (sysctl_lookup(SYSCTLFN_CALL(&node)));
955 }
956 
957 SYSCTL_SETUP(sysctl_kern_ntptime_setup, "sysctl kern.ntptime node setup")
958 {
959 
960 	sysctl_createv(clog, 0, NULL, NULL,
961 		       CTLFLAG_PERMANENT,
962 		       CTLTYPE_NODE, "kern", NULL,
963 		       NULL, 0, NULL, 0,
964 		       CTL_KERN, CTL_EOL);
965 
966 	sysctl_createv(clog, 0, NULL, NULL,
967 		       CTLFLAG_PERMANENT,
968 		       CTLTYPE_STRUCT, "ntptime",
969 		       SYSCTL_DESCR("Kernel clock values for NTP"),
970 		       sysctl_kern_ntptime, 0, NULL,
971 		       sizeof(struct ntptimeval),
972 		       CTL_KERN, KERN_NTPTIME, CTL_EOL);
973 }
974 #else /* !NTP */
975 /* For some reason, raising SIGSYS (as sys_nosys would) is problematic. */
976 
977 int
978 sys___ntp_gettime30(struct lwp *l, const struct sys___ntp_gettime30_args *uap, register_t *retval)
979 {
980 
981 	return(ENOSYS);
982 }
983 
984 #ifdef COMPAT_30
985 int
986 compat_30_sys_ntp_gettime(struct lwp *l, const struct compat_30_sys_ntp_gettime_args *uap, register_t *retval)
987 {
988 
989  	return(ENOSYS);
990 }
991 #endif
992 #endif /* !NTP */
993