xref: /netbsd-src/sys/kern/kern_mutex.c (revision ce099b40997c43048fb78bd578195f81d2456523)
1 /*	$NetBSD: kern_mutex.c,v 1.38 2008/04/28 20:24:03 martin Exp $	*/
2 
3 /*-
4  * Copyright (c) 2002, 2006, 2007, 2008 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Jason R. Thorpe and Andrew Doran.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29  * POSSIBILITY OF SUCH DAMAGE.
30  */
31 
32 /*
33  * Kernel mutex implementation, modeled after those found in Solaris,
34  * a description of which can be found in:
35  *
36  *	Solaris Internals: Core Kernel Architecture, Jim Mauro and
37  *	    Richard McDougall.
38  */
39 
40 #define	__MUTEX_PRIVATE
41 
42 #include <sys/cdefs.h>
43 __KERNEL_RCSID(0, "$NetBSD: kern_mutex.c,v 1.38 2008/04/28 20:24:03 martin Exp $");
44 
45 #include "opt_multiprocessor.h"
46 
47 #include <sys/param.h>
48 #include <sys/proc.h>
49 #include <sys/mutex.h>
50 #include <sys/sched.h>
51 #include <sys/sleepq.h>
52 #include <sys/systm.h>
53 #include <sys/lockdebug.h>
54 #include <sys/kernel.h>
55 #include <sys/atomic.h>
56 #include <sys/intr.h>
57 #include <sys/lock.h>
58 #include <sys/pool.h>
59 
60 #include <dev/lockstat.h>
61 
62 #include <machine/lock.h>
63 
64 /*
65  * When not running a debug kernel, spin mutexes are not much
66  * more than an splraiseipl() and splx() pair.
67  */
68 
69 #if defined(DIAGNOSTIC) || defined(MULTIPROCESSOR) || defined(LOCKDEBUG)
70 #define	FULL
71 #endif
72 
73 /*
74  * Debugging support.
75  */
76 
77 #define	MUTEX_WANTLOCK(mtx)					\
78     LOCKDEBUG_WANTLOCK(MUTEX_DEBUG_P(mtx), (mtx),		\
79         (uintptr_t)__builtin_return_address(0), 0)
80 #define	MUTEX_LOCKED(mtx)					\
81     LOCKDEBUG_LOCKED(MUTEX_DEBUG_P(mtx), (mtx),			\
82         (uintptr_t)__builtin_return_address(0), 0)
83 #define	MUTEX_UNLOCKED(mtx)					\
84     LOCKDEBUG_UNLOCKED(MUTEX_DEBUG_P(mtx), (mtx),		\
85         (uintptr_t)__builtin_return_address(0), 0)
86 #define	MUTEX_ABORT(mtx, msg)					\
87     mutex_abort(mtx, __func__, msg)
88 
89 #if defined(LOCKDEBUG)
90 
91 #define	MUTEX_DASSERT(mtx, cond)				\
92 do {								\
93 	if (!(cond))						\
94 		MUTEX_ABORT(mtx, "assertion failed: " #cond);	\
95 } while (/* CONSTCOND */ 0);
96 
97 #else	/* LOCKDEBUG */
98 
99 #define	MUTEX_DASSERT(mtx, cond)	/* nothing */
100 
101 #endif /* LOCKDEBUG */
102 
103 #if defined(DIAGNOSTIC)
104 
105 #define	MUTEX_ASSERT(mtx, cond)					\
106 do {								\
107 	if (!(cond))						\
108 		MUTEX_ABORT(mtx, "assertion failed: " #cond);	\
109 } while (/* CONSTCOND */ 0)
110 
111 #else	/* DIAGNOSTIC */
112 
113 #define	MUTEX_ASSERT(mtx, cond)	/* nothing */
114 
115 #endif	/* DIAGNOSTIC */
116 
117 /*
118  * Spin mutex SPL save / restore.
119  */
120 #ifndef MUTEX_COUNT_BIAS
121 #define	MUTEX_COUNT_BIAS	0
122 #endif
123 
124 #define	MUTEX_SPIN_SPLRAISE(mtx)					\
125 do {									\
126 	struct cpu_info *x__ci;						\
127 	int x__cnt, s;							\
128 	s = splraiseipl(mtx->mtx_ipl);					\
129 	x__ci = curcpu();						\
130 	x__cnt = x__ci->ci_mtx_count--;					\
131 	__insn_barrier();						\
132 	if (x__cnt == MUTEX_COUNT_BIAS)					\
133 		x__ci->ci_mtx_oldspl = (s);				\
134 } while (/* CONSTCOND */ 0)
135 
136 #define	MUTEX_SPIN_SPLRESTORE(mtx)					\
137 do {									\
138 	struct cpu_info *x__ci = curcpu();				\
139 	int s = x__ci->ci_mtx_oldspl;					\
140 	__insn_barrier();						\
141 	if (++(x__ci->ci_mtx_count) == MUTEX_COUNT_BIAS)		\
142 		splx(s);						\
143 } while (/* CONSTCOND */ 0)
144 
145 /*
146  * For architectures that provide 'simple' mutexes: they provide a
147  * CAS function that is either MP-safe, or does not need to be MP
148  * safe.  Adaptive mutexes on these architectures do not require an
149  * additional interlock.
150  */
151 
152 #ifdef __HAVE_SIMPLE_MUTEXES
153 
154 #define	MUTEX_OWNER(owner)						\
155 	(owner & MUTEX_THREAD)
156 #define	MUTEX_HAS_WAITERS(mtx)						\
157 	(((int)(mtx)->mtx_owner & MUTEX_BIT_WAITERS) != 0)
158 
159 #define	MUTEX_INITIALIZE_ADAPTIVE(mtx, dodebug)				\
160 do {									\
161 	if (dodebug)							\
162 		(mtx)->mtx_owner |= MUTEX_BIT_DEBUG;			\
163 } while (/* CONSTCOND */ 0);
164 
165 #define	MUTEX_INITIALIZE_SPIN(mtx, dodebug, ipl)			\
166 do {									\
167 	(mtx)->mtx_owner = MUTEX_BIT_SPIN;				\
168 	if (dodebug)							\
169 		(mtx)->mtx_owner |= MUTEX_BIT_DEBUG;			\
170 	(mtx)->mtx_ipl = makeiplcookie((ipl));				\
171 	__cpu_simple_lock_init(&(mtx)->mtx_lock);			\
172 } while (/* CONSTCOND */ 0)
173 
174 #define	MUTEX_DESTROY(mtx)						\
175 do {									\
176 	(mtx)->mtx_owner = MUTEX_THREAD;				\
177 } while (/* CONSTCOND */ 0);
178 
179 #define	MUTEX_SPIN_P(mtx)		\
180     (((mtx)->mtx_owner & MUTEX_BIT_SPIN) != 0)
181 #define	MUTEX_ADAPTIVE_P(mtx)		\
182     (((mtx)->mtx_owner & MUTEX_BIT_SPIN) == 0)
183 
184 #define	MUTEX_DEBUG_P(mtx)	(((mtx)->mtx_owner & MUTEX_BIT_DEBUG) != 0)
185 #if defined(LOCKDEBUG)
186 #define	MUTEX_OWNED(owner)		(((owner) & ~MUTEX_BIT_DEBUG) != 0)
187 #define	MUTEX_INHERITDEBUG(new, old)	(new) |= (old) & MUTEX_BIT_DEBUG
188 #else /* defined(LOCKDEBUG) */
189 #define	MUTEX_OWNED(owner)		((owner) != 0)
190 #define	MUTEX_INHERITDEBUG(new, old)	/* nothing */
191 #endif /* defined(LOCKDEBUG) */
192 
193 static inline int
194 MUTEX_ACQUIRE(kmutex_t *mtx, uintptr_t curthread)
195 {
196 	int rv;
197 	uintptr_t old = 0;
198 	uintptr_t new = curthread;
199 
200 	MUTEX_INHERITDEBUG(old, mtx->mtx_owner);
201 	MUTEX_INHERITDEBUG(new, old);
202 	rv = MUTEX_CAS(&mtx->mtx_owner, old, new);
203 	MUTEX_RECEIVE(mtx);
204 	return rv;
205 }
206 
207 static inline int
208 MUTEX_SET_WAITERS(kmutex_t *mtx, uintptr_t owner)
209 {
210 	int rv;
211 	rv = MUTEX_CAS(&mtx->mtx_owner, owner, owner | MUTEX_BIT_WAITERS);
212 	MUTEX_RECEIVE(mtx);
213 	return rv;
214 }
215 
216 static inline void
217 MUTEX_RELEASE(kmutex_t *mtx)
218 {
219 	uintptr_t new;
220 
221 	MUTEX_GIVE(mtx);
222 	new = 0;
223 	MUTEX_INHERITDEBUG(new, mtx->mtx_owner);
224 	mtx->mtx_owner = new;
225 }
226 
227 static inline void
228 MUTEX_CLEAR_WAITERS(kmutex_t *mtx)
229 {
230 	/* nothing */
231 }
232 #endif	/* __HAVE_SIMPLE_MUTEXES */
233 
234 /*
235  * Patch in stubs via strong alias where they are not available.
236  */
237 
238 #if defined(LOCKDEBUG)
239 #undef	__HAVE_MUTEX_STUBS
240 #undef	__HAVE_SPIN_MUTEX_STUBS
241 #endif
242 
243 #ifndef __HAVE_MUTEX_STUBS
244 __strong_alias(mutex_enter,mutex_vector_enter);
245 __strong_alias(mutex_exit,mutex_vector_exit);
246 #endif
247 
248 #ifndef __HAVE_SPIN_MUTEX_STUBS
249 __strong_alias(mutex_spin_enter,mutex_vector_enter);
250 __strong_alias(mutex_spin_exit,mutex_vector_exit);
251 #endif
252 
253 void	mutex_abort(kmutex_t *, const char *, const char *);
254 void	mutex_dump(volatile void *);
255 int	mutex_onproc(uintptr_t, struct cpu_info **);
256 
257 lockops_t mutex_spin_lockops = {
258 	"Mutex",
259 	0,
260 	mutex_dump
261 };
262 
263 lockops_t mutex_adaptive_lockops = {
264 	"Mutex",
265 	1,
266 	mutex_dump
267 };
268 
269 syncobj_t mutex_syncobj = {
270 	SOBJ_SLEEPQ_SORTED,
271 	turnstile_unsleep,
272 	turnstile_changepri,
273 	sleepq_lendpri,
274 	(void *)mutex_owner,
275 };
276 
277 /* Mutex cache */
278 #define	MUTEX_OBJ_MAGIC	0x5aa3c85d
279 struct kmutexobj {
280 	kmutex_t	mo_lock;
281 	u_int		mo_magic;
282 	u_int		mo_refcnt;
283 };
284 
285 static int	mutex_obj_ctor(void *, void *, int);
286 
287 static pool_cache_t	mutex_obj_cache;
288 
289 /*
290  * mutex_dump:
291  *
292  *	Dump the contents of a mutex structure.
293  */
294 void
295 mutex_dump(volatile void *cookie)
296 {
297 	volatile kmutex_t *mtx = cookie;
298 
299 	printf_nolog("owner field  : %#018lx wait/spin: %16d/%d\n",
300 	    (long)MUTEX_OWNER(mtx->mtx_owner), MUTEX_HAS_WAITERS(mtx),
301 	    MUTEX_SPIN_P(mtx));
302 }
303 
304 /*
305  * mutex_abort:
306  *
307  *	Dump information about an error and panic the system.  This
308  *	generates a lot of machine code in the DIAGNOSTIC case, so
309  *	we ask the compiler to not inline it.
310  */
311 
312 #if __GNUC_PREREQ__(3, 0)
313 __attribute ((noinline)) __attribute ((noreturn))
314 #endif
315 void
316 mutex_abort(kmutex_t *mtx, const char *func, const char *msg)
317 {
318 
319 	LOCKDEBUG_ABORT(mtx, (MUTEX_SPIN_P(mtx) ?
320 	    &mutex_spin_lockops : &mutex_adaptive_lockops), func, msg);
321 	/* NOTREACHED */
322 }
323 
324 /*
325  * mutex_init:
326  *
327  *	Initialize a mutex for use.  Note that adaptive mutexes are in
328  *	essence spin mutexes that can sleep to avoid deadlock and wasting
329  *	CPU time.  We can't easily provide a type of mutex that always
330  *	sleeps - see comments in mutex_vector_enter() about releasing
331  *	mutexes unlocked.
332  */
333 void
334 mutex_init(kmutex_t *mtx, kmutex_type_t type, int ipl)
335 {
336 	bool dodebug;
337 
338 	memset(mtx, 0, sizeof(*mtx));
339 
340 	switch (type) {
341 	case MUTEX_ADAPTIVE:
342 		KASSERT(ipl == IPL_NONE);
343 		break;
344 	case MUTEX_DEFAULT:
345 	case MUTEX_DRIVER:
346 		if (ipl == IPL_NONE || ipl == IPL_SOFTCLOCK ||
347 		    ipl == IPL_SOFTBIO || ipl == IPL_SOFTNET ||
348 		    ipl == IPL_SOFTSERIAL) {
349 			type = MUTEX_ADAPTIVE;
350 		} else {
351 			type = MUTEX_SPIN;
352 		}
353 		break;
354 	default:
355 		break;
356 	}
357 
358 	switch (type) {
359 	case MUTEX_NODEBUG:
360 		dodebug = LOCKDEBUG_ALLOC(mtx, NULL,
361 		    (uintptr_t)__builtin_return_address(0));
362 		MUTEX_INITIALIZE_SPIN(mtx, dodebug, ipl);
363 		break;
364 	case MUTEX_ADAPTIVE:
365 		dodebug = LOCKDEBUG_ALLOC(mtx, &mutex_adaptive_lockops,
366 		    (uintptr_t)__builtin_return_address(0));
367 		MUTEX_INITIALIZE_ADAPTIVE(mtx, dodebug);
368 		break;
369 	case MUTEX_SPIN:
370 		dodebug = LOCKDEBUG_ALLOC(mtx, &mutex_spin_lockops,
371 		    (uintptr_t)__builtin_return_address(0));
372 		MUTEX_INITIALIZE_SPIN(mtx, dodebug, ipl);
373 		break;
374 	default:
375 		panic("mutex_init: impossible type");
376 		break;
377 	}
378 }
379 
380 /*
381  * mutex_destroy:
382  *
383  *	Tear down a mutex.
384  */
385 void
386 mutex_destroy(kmutex_t *mtx)
387 {
388 
389 	if (MUTEX_ADAPTIVE_P(mtx)) {
390 		MUTEX_ASSERT(mtx, !MUTEX_OWNED(mtx->mtx_owner) &&
391 		    !MUTEX_HAS_WAITERS(mtx));
392 	} else {
393 		MUTEX_ASSERT(mtx, !__SIMPLELOCK_LOCKED_P(&mtx->mtx_lock));
394 	}
395 
396 	LOCKDEBUG_FREE(MUTEX_DEBUG_P(mtx), mtx);
397 	MUTEX_DESTROY(mtx);
398 }
399 
400 /*
401  * mutex_onproc:
402  *
403  *	Return true if an adaptive mutex owner is running on a CPU in the
404  *	system.  If the target is waiting on the kernel big lock, then we
405  *	must release it.  This is necessary to avoid deadlock.
406  *
407  *	Note that we can't use the mutex owner field as an LWP pointer.  We
408  *	don't have full control over the timing of our execution, and so the
409  *	pointer could be completely invalid by the time we dereference it.
410  */
411 #ifdef MULTIPROCESSOR
412 int
413 mutex_onproc(uintptr_t owner, struct cpu_info **cip)
414 {
415 	CPU_INFO_ITERATOR cii;
416 	struct cpu_info *ci;
417 	struct lwp *l;
418 
419 	if (!MUTEX_OWNED(owner))
420 		return 0;
421 	l = (struct lwp *)MUTEX_OWNER(owner);
422 
423 	/* See if the target is running on a CPU somewhere. */
424 	if ((ci = *cip) != NULL && ci->ci_curlwp == l)
425 		goto run;
426 	for (CPU_INFO_FOREACH(cii, ci))
427 		if (ci->ci_curlwp == l)
428 			goto run;
429 
430 	/* No: it may be safe to block now. */
431 	*cip = NULL;
432 	return 0;
433 
434  run:
435  	/* Target is running; do we need to block? */
436  	*cip = ci;
437 	return ci->ci_biglock_wanted != l;
438 }
439 #endif	/* MULTIPROCESSOR */
440 
441 /*
442  * mutex_vector_enter:
443  *
444  *	Support routine for mutex_enter() that must handles all cases.  In
445  *	the LOCKDEBUG case, mutex_enter() is always aliased here, even if
446  *	fast-path stubs are available.  If an mutex_spin_enter() stub is
447  *	not available, then it is also aliased directly here.
448  */
449 void
450 mutex_vector_enter(kmutex_t *mtx)
451 {
452 	uintptr_t owner, curthread;
453 	turnstile_t *ts;
454 #ifdef MULTIPROCESSOR
455 	struct cpu_info *ci = NULL;
456 	u_int count;
457 #endif
458 	LOCKSTAT_COUNTER(spincnt);
459 	LOCKSTAT_COUNTER(slpcnt);
460 	LOCKSTAT_TIMER(spintime);
461 	LOCKSTAT_TIMER(slptime);
462 	LOCKSTAT_FLAG(lsflag);
463 
464 	/*
465 	 * Handle spin mutexes.
466 	 */
467 	if (MUTEX_SPIN_P(mtx)) {
468 #if defined(LOCKDEBUG) && defined(MULTIPROCESSOR)
469 		u_int spins = 0;
470 #endif
471 		MUTEX_SPIN_SPLRAISE(mtx);
472 		MUTEX_WANTLOCK(mtx);
473 #ifdef FULL
474 		if (__cpu_simple_lock_try(&mtx->mtx_lock)) {
475 			MUTEX_LOCKED(mtx);
476 			return;
477 		}
478 #if !defined(MULTIPROCESSOR)
479 		MUTEX_ABORT(mtx, "locking against myself");
480 #else /* !MULTIPROCESSOR */
481 
482 		LOCKSTAT_ENTER(lsflag);
483 		LOCKSTAT_START_TIMER(lsflag, spintime);
484 		count = SPINLOCK_BACKOFF_MIN;
485 
486 		/*
487 		 * Spin testing the lock word and do exponential backoff
488 		 * to reduce cache line ping-ponging between CPUs.
489 		 */
490 		do {
491 			if (panicstr != NULL)
492 				break;
493 			while (__SIMPLELOCK_LOCKED_P(&mtx->mtx_lock)) {
494 				SPINLOCK_BACKOFF(count);
495 #ifdef LOCKDEBUG
496 				if (SPINLOCK_SPINOUT(spins))
497 					MUTEX_ABORT(mtx, "spinout");
498 #endif	/* LOCKDEBUG */
499 			}
500 		} while (!__cpu_simple_lock_try(&mtx->mtx_lock));
501 
502 		if (count != SPINLOCK_BACKOFF_MIN) {
503 			LOCKSTAT_STOP_TIMER(lsflag, spintime);
504 			LOCKSTAT_EVENT(lsflag, mtx,
505 			    LB_SPIN_MUTEX | LB_SPIN, 1, spintime);
506 		}
507 		LOCKSTAT_EXIT(lsflag);
508 #endif	/* !MULTIPROCESSOR */
509 #endif	/* FULL */
510 		MUTEX_LOCKED(mtx);
511 		return;
512 	}
513 
514 	curthread = (uintptr_t)curlwp;
515 
516 	MUTEX_DASSERT(mtx, MUTEX_ADAPTIVE_P(mtx));
517 	MUTEX_ASSERT(mtx, curthread != 0);
518 	MUTEX_WANTLOCK(mtx);
519 
520 	if (panicstr == NULL) {
521 		LOCKDEBUG_BARRIER(&kernel_lock, 1);
522 	}
523 
524 	LOCKSTAT_ENTER(lsflag);
525 
526 	/*
527 	 * Adaptive mutex; spin trying to acquire the mutex.  If we
528 	 * determine that the owner is not running on a processor,
529 	 * then we stop spinning, and sleep instead.
530 	 */
531 	for (owner = mtx->mtx_owner;;) {
532 		if (!MUTEX_OWNED(owner)) {
533 			/*
534 			 * Mutex owner clear could mean two things:
535 			 *
536 			 *	* The mutex has been released.
537 			 *	* The owner field hasn't been set yet.
538 			 *
539 			 * Try to acquire it again.  If that fails,
540 			 * we'll just loop again.
541 			 */
542 			if (MUTEX_ACQUIRE(mtx, curthread))
543 				break;
544 			owner = mtx->mtx_owner;
545 			continue;
546 		}
547 
548 		if (panicstr != NULL)
549 			return;
550 		if (MUTEX_OWNER(owner) == curthread)
551 			MUTEX_ABORT(mtx, "locking against myself");
552 
553 #ifdef MULTIPROCESSOR
554 		/*
555 		 * Check to see if the owner is running on a processor.
556 		 * If so, then we should just spin, as the owner will
557 		 * likely release the lock very soon.
558 		 */
559 		if (mutex_onproc(owner, &ci)) {
560 			LOCKSTAT_START_TIMER(lsflag, spintime);
561 			count = SPINLOCK_BACKOFF_MIN;
562 			for (;;) {
563 				SPINLOCK_BACKOFF(count);
564 				owner = mtx->mtx_owner;
565 				if (!mutex_onproc(owner, &ci))
566 					break;
567 			}
568 			LOCKSTAT_STOP_TIMER(lsflag, spintime);
569 			LOCKSTAT_COUNT(spincnt, 1);
570 			if (!MUTEX_OWNED(owner))
571 				continue;
572 		}
573 #endif
574 
575 		ts = turnstile_lookup(mtx);
576 
577 		/*
578 		 * Once we have the turnstile chain interlock, mark the
579 		 * mutex has having waiters.  If that fails, spin again:
580 		 * chances are that the mutex has been released.
581 		 */
582 		if (!MUTEX_SET_WAITERS(mtx, owner)) {
583 			turnstile_exit(mtx);
584 			owner = mtx->mtx_owner;
585 			continue;
586 		}
587 
588 #ifdef MULTIPROCESSOR
589 		/*
590 		 * mutex_exit() is permitted to release the mutex without
591 		 * any interlocking instructions, and the following can
592 		 * occur as a result:
593 		 *
594 		 *  CPU 1: MUTEX_SET_WAITERS()      CPU2: mutex_exit()
595 		 * ---------------------------- ----------------------------
596 		 *		..		    acquire cache line
597 		 *		..                   test for waiters
598 		 *	acquire cache line    <-      lose cache line
599 		 *	 lock cache line	           ..
600 		 *     verify mutex is held                ..
601 		 *	    set waiters  	           ..
602 		 *	 unlock cache line		   ..
603 		 *	  lose cache line     ->    acquire cache line
604 		 *		..	          clear lock word, waiters
605 		 *	  return success
606 		 *
607 		 * There is a another race that can occur: a third CPU could
608 		 * acquire the mutex as soon as it is released.  Since
609 		 * adaptive mutexes are primarily spin mutexes, this is not
610 		 * something that we need to worry about too much.  What we
611 		 * do need to ensure is that the waiters bit gets set.
612 		 *
613 		 * To allow the unlocked release, we need to make some
614 		 * assumptions here:
615 		 *
616 		 * o Release is the only non-atomic/unlocked operation
617 		 *   that can be performed on the mutex.  (It must still
618 		 *   be atomic on the local CPU, e.g. in case interrupted
619 		 *   or preempted).
620 		 *
621 		 * o At any given time, MUTEX_SET_WAITERS() can only ever
622 		 *   be in progress on one CPU in the system - guaranteed
623 		 *   by the turnstile chain lock.
624 		 *
625 		 * o No other operations other than MUTEX_SET_WAITERS()
626 		 *   and release can modify a mutex with a non-zero
627 		 *   owner field.
628 		 *
629 		 * o The result of a successful MUTEX_SET_WAITERS() call
630 		 *   is an unbuffered write that is immediately visible
631 		 *   to all other processors in the system.
632 		 *
633 		 * o If the holding LWP switches away, it posts a store
634 		 *   fence before changing curlwp, ensuring that any
635 		 *   overwrite of the mutex waiters flag by mutex_exit()
636 		 *   completes before the modification of curlwp becomes
637 		 *   visible to this CPU.
638 		 *
639 		 * o mi_switch() posts a store fence before setting curlwp
640 		 *   and before resuming execution of an LWP.
641 		 *
642 		 * o _kernel_lock() posts a store fence before setting
643 		 *   curcpu()->ci_biglock_wanted, and after clearing it.
644 		 *   This ensures that any overwrite of the mutex waiters
645 		 *   flag by mutex_exit() completes before the modification
646 		 *   of ci_biglock_wanted becomes visible.
647 		 *
648 		 * We now post a read memory barrier (after setting the
649 		 * waiters field) and check the lock holder's status again.
650 		 * Some of the possible outcomes (not an exhaustive list):
651 		 *
652 		 * 1. The onproc check returns true: the holding LWP is
653 		 *    running again.  The lock may be released soon and
654 		 *    we should spin.  Importantly, we can't trust the
655 		 *    value of the waiters flag.
656 		 *
657 		 * 2. The onproc check returns false: the holding LWP is
658 		 *    not running.  We now have the oppertunity to check
659 		 *    if mutex_exit() has blatted the modifications made
660 		 *    by MUTEX_SET_WAITERS().
661 		 *
662 		 * 3. The onproc check returns false: the holding LWP may
663 		 *    or may not be running.  It has context switched at
664 		 *    some point during our check.  Again, we have the
665 		 *    chance to see if the waiters bit is still set or
666 		 *    has been overwritten.
667 		 *
668 		 * 4. The onproc check returns false: the holding LWP is
669 		 *    running on a CPU, but wants the big lock.  It's OK
670 		 *    to check the waiters field in this case.
671 		 *
672 		 * 5. The has-waiters check fails: the mutex has been
673 		 *    released, the waiters flag cleared and another LWP
674 		 *    now owns the mutex.
675 		 *
676 		 * 6. The has-waiters check fails: the mutex has been
677 		 *    released.
678 		 *
679 		 * If the waiters bit is not set it's unsafe to go asleep,
680 		 * as we might never be awoken.
681 		 */
682 		if ((membar_consumer(), mutex_onproc(owner, &ci)) ||
683 		    (membar_consumer(), !MUTEX_HAS_WAITERS(mtx))) {
684 			turnstile_exit(mtx);
685 			owner = mtx->mtx_owner;
686 			continue;
687 		}
688 #endif	/* MULTIPROCESSOR */
689 
690 		LOCKSTAT_START_TIMER(lsflag, slptime);
691 
692 		turnstile_block(ts, TS_WRITER_Q, mtx, &mutex_syncobj);
693 
694 		LOCKSTAT_STOP_TIMER(lsflag, slptime);
695 		LOCKSTAT_COUNT(slpcnt, 1);
696 
697 		owner = mtx->mtx_owner;
698 	}
699 
700 	LOCKSTAT_EVENT(lsflag, mtx, LB_ADAPTIVE_MUTEX | LB_SLEEP1,
701 	    slpcnt, slptime);
702 	LOCKSTAT_EVENT(lsflag, mtx, LB_ADAPTIVE_MUTEX | LB_SPIN,
703 	    spincnt, spintime);
704 	LOCKSTAT_EXIT(lsflag);
705 
706 	MUTEX_DASSERT(mtx, MUTEX_OWNER(mtx->mtx_owner) == curthread);
707 	MUTEX_LOCKED(mtx);
708 }
709 
710 /*
711  * mutex_vector_exit:
712  *
713  *	Support routine for mutex_exit() that handles all cases.
714  */
715 void
716 mutex_vector_exit(kmutex_t *mtx)
717 {
718 	turnstile_t *ts;
719 	uintptr_t curthread;
720 
721 	if (MUTEX_SPIN_P(mtx)) {
722 #ifdef FULL
723 		if (__predict_false(!__SIMPLELOCK_LOCKED_P(&mtx->mtx_lock))) {
724 			if (panicstr != NULL)
725 				return;
726 			MUTEX_ABORT(mtx, "exiting unheld spin mutex");
727 		}
728 		MUTEX_UNLOCKED(mtx);
729 		__cpu_simple_unlock(&mtx->mtx_lock);
730 #endif
731 		MUTEX_SPIN_SPLRESTORE(mtx);
732 		return;
733 	}
734 
735 	if (__predict_false((uintptr_t)panicstr | cold)) {
736 		MUTEX_UNLOCKED(mtx);
737 		MUTEX_RELEASE(mtx);
738 		return;
739 	}
740 
741 	curthread = (uintptr_t)curlwp;
742 	MUTEX_DASSERT(mtx, curthread != 0);
743 	MUTEX_ASSERT(mtx, MUTEX_OWNER(mtx->mtx_owner) == curthread);
744 	MUTEX_UNLOCKED(mtx);
745 
746 #ifdef LOCKDEBUG
747 	/*
748 	 * Avoid having to take the turnstile chain lock every time
749 	 * around.  Raise the priority level to splhigh() in order
750 	 * to disable preemption and so make the following atomic.
751 	 */
752 	{
753 		int s = splhigh();
754 		if (!MUTEX_HAS_WAITERS(mtx)) {
755 			MUTEX_RELEASE(mtx);
756 			splx(s);
757 			return;
758 		}
759 		splx(s);
760 	}
761 #endif
762 
763 	/*
764 	 * Get this lock's turnstile.  This gets the interlock on
765 	 * the sleep queue.  Once we have that, we can clear the
766 	 * lock.  If there was no turnstile for the lock, there
767 	 * were no waiters remaining.
768 	 */
769 	ts = turnstile_lookup(mtx);
770 
771 	if (ts == NULL) {
772 		MUTEX_RELEASE(mtx);
773 		turnstile_exit(mtx);
774 	} else {
775 		MUTEX_RELEASE(mtx);
776 		turnstile_wakeup(ts, TS_WRITER_Q,
777 		    TS_WAITERS(ts, TS_WRITER_Q), NULL);
778 	}
779 }
780 
781 #ifndef __HAVE_SIMPLE_MUTEXES
782 /*
783  * mutex_wakeup:
784  *
785  *	Support routine for mutex_exit() that wakes up all waiters.
786  *	We assume that the mutex has been released, but it need not
787  *	be.
788  */
789 void
790 mutex_wakeup(kmutex_t *mtx)
791 {
792 	turnstile_t *ts;
793 
794 	ts = turnstile_lookup(mtx);
795 	if (ts == NULL) {
796 		turnstile_exit(mtx);
797 		return;
798 	}
799 	MUTEX_CLEAR_WAITERS(mtx);
800 	turnstile_wakeup(ts, TS_WRITER_Q, TS_WAITERS(ts, TS_WRITER_Q), NULL);
801 }
802 #endif	/* !__HAVE_SIMPLE_MUTEXES */
803 
804 /*
805  * mutex_owned:
806  *
807  *	Return true if the current LWP (adaptive) or CPU (spin)
808  *	holds the mutex.
809  */
810 int
811 mutex_owned(kmutex_t *mtx)
812 {
813 
814 	if (mtx == NULL)
815 		return 0;
816 	if (MUTEX_ADAPTIVE_P(mtx))
817 		return MUTEX_OWNER(mtx->mtx_owner) == (uintptr_t)curlwp;
818 #ifdef FULL
819 	return __SIMPLELOCK_LOCKED_P(&mtx->mtx_lock);
820 #else
821 	return 1;
822 #endif
823 }
824 
825 /*
826  * mutex_owner:
827  *
828  *	Return the current owner of an adaptive mutex.  Used for
829  *	priority inheritance.
830  */
831 lwp_t *
832 mutex_owner(kmutex_t *mtx)
833 {
834 
835 	MUTEX_ASSERT(mtx, MUTEX_ADAPTIVE_P(mtx));
836 	return (struct lwp *)MUTEX_OWNER(mtx->mtx_owner);
837 }
838 
839 /*
840  * mutex_tryenter:
841  *
842  *	Try to acquire the mutex; return non-zero if we did.
843  */
844 int
845 mutex_tryenter(kmutex_t *mtx)
846 {
847 	uintptr_t curthread;
848 
849 	/*
850 	 * Handle spin mutexes.
851 	 */
852 	if (MUTEX_SPIN_P(mtx)) {
853 		MUTEX_SPIN_SPLRAISE(mtx);
854 #ifdef FULL
855 		if (__cpu_simple_lock_try(&mtx->mtx_lock)) {
856 			MUTEX_WANTLOCK(mtx);
857 			MUTEX_LOCKED(mtx);
858 			return 1;
859 		}
860 		MUTEX_SPIN_SPLRESTORE(mtx);
861 #else
862 		MUTEX_WANTLOCK(mtx);
863 		MUTEX_LOCKED(mtx);
864 		return 1;
865 #endif
866 	} else {
867 		curthread = (uintptr_t)curlwp;
868 		MUTEX_ASSERT(mtx, curthread != 0);
869 		if (MUTEX_ACQUIRE(mtx, curthread)) {
870 			MUTEX_WANTLOCK(mtx);
871 			MUTEX_LOCKED(mtx);
872 			MUTEX_DASSERT(mtx,
873 			    MUTEX_OWNER(mtx->mtx_owner) == curthread);
874 			return 1;
875 		}
876 	}
877 
878 	return 0;
879 }
880 
881 #if defined(__HAVE_SPIN_MUTEX_STUBS) || defined(FULL)
882 /*
883  * mutex_spin_retry:
884  *
885  *	Support routine for mutex_spin_enter().  Assumes that the caller
886  *	has already raised the SPL, and adjusted counters.
887  */
888 void
889 mutex_spin_retry(kmutex_t *mtx)
890 {
891 #ifdef MULTIPROCESSOR
892 	u_int count;
893 	LOCKSTAT_TIMER(spintime);
894 	LOCKSTAT_FLAG(lsflag);
895 #ifdef LOCKDEBUG
896 	u_int spins = 0;
897 #endif	/* LOCKDEBUG */
898 
899 	MUTEX_WANTLOCK(mtx);
900 
901 	LOCKSTAT_ENTER(lsflag);
902 	LOCKSTAT_START_TIMER(lsflag, spintime);
903 	count = SPINLOCK_BACKOFF_MIN;
904 
905 	/*
906 	 * Spin testing the lock word and do exponential backoff
907 	 * to reduce cache line ping-ponging between CPUs.
908 	 */
909 	do {
910 		if (panicstr != NULL)
911 			break;
912 		while (__SIMPLELOCK_LOCKED_P(&mtx->mtx_lock)) {
913 			SPINLOCK_BACKOFF(count);
914 #ifdef LOCKDEBUG
915 			if (SPINLOCK_SPINOUT(spins))
916 				MUTEX_ABORT(mtx, "spinout");
917 #endif	/* LOCKDEBUG */
918 		}
919 	} while (!__cpu_simple_lock_try(&mtx->mtx_lock));
920 
921 	LOCKSTAT_STOP_TIMER(lsflag, spintime);
922 	LOCKSTAT_EVENT(lsflag, mtx, LB_SPIN_MUTEX | LB_SPIN, 1, spintime);
923 	LOCKSTAT_EXIT(lsflag);
924 
925 	MUTEX_LOCKED(mtx);
926 #else	/* MULTIPROCESSOR */
927 	MUTEX_ABORT(mtx, "locking against myself");
928 #endif	/* MULTIPROCESSOR */
929 }
930 #endif	/* defined(__HAVE_SPIN_MUTEX_STUBS) || defined(FULL) */
931 
932 /*
933  * mutex_obj_init:
934  *
935  *	Initialize the mutex object store.
936  */
937 void
938 mutex_obj_init(void)
939 {
940 
941 	mutex_obj_cache = pool_cache_init(sizeof(struct kmutexobj),
942 	    coherency_unit, 0, 0, "mutex", NULL, IPL_NONE, mutex_obj_ctor,
943 	    NULL, NULL);
944 }
945 
946 /*
947  * mutex_obj_ctor:
948  *
949  *	Initialize a new lock for the cache.
950  */
951 static int
952 mutex_obj_ctor(void *arg, void *obj, int flags)
953 {
954 	struct kmutexobj * mo = obj;
955 
956 	mo->mo_magic = MUTEX_OBJ_MAGIC;
957 
958 	return 0;
959 }
960 
961 /*
962  * mutex_obj_alloc:
963  *
964  *	Allocate a single lock object.
965  */
966 kmutex_t *
967 mutex_obj_alloc(kmutex_type_t type, int ipl)
968 {
969 	struct kmutexobj *mo;
970 
971 	mo = pool_cache_get(mutex_obj_cache, PR_WAITOK);
972 	mutex_init(&mo->mo_lock, type, ipl);
973 	mo->mo_refcnt = 1;
974 
975 	return (kmutex_t *)mo;
976 }
977 
978 /*
979  * mutex_obj_hold:
980  *
981  *	Add a single reference to a lock object.  A reference to the object
982  *	must already be held, and must be held across this call.
983  */
984 void
985 mutex_obj_hold(kmutex_t *lock)
986 {
987 	struct kmutexobj *mo = (struct kmutexobj *)lock;
988 
989 	KASSERT(mo->mo_magic == MUTEX_OBJ_MAGIC);
990 	KASSERT(mo->mo_refcnt > 0);
991 
992 	atomic_inc_uint(&mo->mo_refcnt);
993 }
994 
995 /*
996  * mutex_obj_free:
997  *
998  *	Drop a reference from a lock object.  If the last reference is being
999  *	dropped, free the object and return true.  Otherwise, return false.
1000  */
1001 bool
1002 mutex_obj_free(kmutex_t *lock)
1003 {
1004 	struct kmutexobj *mo = (struct kmutexobj *)lock;
1005 
1006 	KASSERT(mo->mo_magic == MUTEX_OBJ_MAGIC);
1007 	KASSERT(mo->mo_refcnt > 0);
1008 
1009 	if (atomic_dec_uint_nv(&mo->mo_refcnt) > 0) {
1010 		return false;
1011 	}
1012 	mutex_destroy(&mo->mo_lock);
1013 	pool_cache_put(mutex_obj_cache, mo);
1014 	return true;
1015 }
1016