xref: /netbsd-src/sys/kern/kern_mutex.c (revision a0698ed9d41653d7a2378819ad501a285ca0d401)
1 /*	$NetBSD: kern_mutex.c,v 1.75 2018/08/31 01:23:57 ozaki-r Exp $	*/
2 
3 /*-
4  * Copyright (c) 2002, 2006, 2007, 2008 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Jason R. Thorpe and Andrew Doran.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29  * POSSIBILITY OF SUCH DAMAGE.
30  */
31 
32 /*
33  * Kernel mutex implementation, modeled after those found in Solaris,
34  * a description of which can be found in:
35  *
36  *	Solaris Internals: Core Kernel Architecture, Jim Mauro and
37  *	    Richard McDougall.
38  */
39 
40 #define	__MUTEX_PRIVATE
41 
42 #include <sys/cdefs.h>
43 __KERNEL_RCSID(0, "$NetBSD: kern_mutex.c,v 1.75 2018/08/31 01:23:57 ozaki-r Exp $");
44 
45 #include <sys/param.h>
46 #include <sys/atomic.h>
47 #include <sys/proc.h>
48 #include <sys/mutex.h>
49 #include <sys/sched.h>
50 #include <sys/sleepq.h>
51 #include <sys/systm.h>
52 #include <sys/lockdebug.h>
53 #include <sys/kernel.h>
54 #include <sys/intr.h>
55 #include <sys/lock.h>
56 #include <sys/types.h>
57 #include <sys/cpu.h>
58 #include <sys/pserialize.h>
59 
60 #include <dev/lockstat.h>
61 
62 #include <machine/lock.h>
63 
64 #define MUTEX_PANIC_SKIP_SPIN 1
65 #define MUTEX_PANIC_SKIP_ADAPTIVE 1
66 
67 /*
68  * When not running a debug kernel, spin mutexes are not much
69  * more than an splraiseipl() and splx() pair.
70  */
71 
72 #if defined(DIAGNOSTIC) || defined(MULTIPROCESSOR) || defined(LOCKDEBUG)
73 #define	FULL
74 #endif
75 
76 /*
77  * Debugging support.
78  */
79 
80 #define	MUTEX_WANTLOCK(mtx)					\
81     LOCKDEBUG_WANTLOCK(MUTEX_DEBUG_P(mtx), (mtx),		\
82         (uintptr_t)__builtin_return_address(0), 0)
83 #define	MUTEX_TESTLOCK(mtx)					\
84     LOCKDEBUG_WANTLOCK(MUTEX_DEBUG_P(mtx), (mtx),		\
85         (uintptr_t)__builtin_return_address(0), -1)
86 #define	MUTEX_LOCKED(mtx)					\
87     LOCKDEBUG_LOCKED(MUTEX_DEBUG_P(mtx), (mtx), NULL,		\
88         (uintptr_t)__builtin_return_address(0), 0)
89 #define	MUTEX_UNLOCKED(mtx)					\
90     LOCKDEBUG_UNLOCKED(MUTEX_DEBUG_P(mtx), (mtx),		\
91         (uintptr_t)__builtin_return_address(0), 0)
92 #define	MUTEX_ABORT(mtx, msg)					\
93     mutex_abort(__func__, __LINE__, mtx, msg)
94 
95 #if defined(LOCKDEBUG)
96 
97 #define	MUTEX_DASSERT(mtx, cond)				\
98 do {								\
99 	if (__predict_false(!(cond)))				\
100 		MUTEX_ABORT(mtx, "assertion failed: " #cond);	\
101 } while (/* CONSTCOND */ 0);
102 
103 #else	/* LOCKDEBUG */
104 
105 #define	MUTEX_DASSERT(mtx, cond)	/* nothing */
106 
107 #endif /* LOCKDEBUG */
108 
109 #if defined(DIAGNOSTIC)
110 
111 #define	MUTEX_ASSERT(mtx, cond)					\
112 do {								\
113 	if (__predict_false(!(cond)))				\
114 		MUTEX_ABORT(mtx, "assertion failed: " #cond);	\
115 } while (/* CONSTCOND */ 0)
116 
117 #else	/* DIAGNOSTIC */
118 
119 #define	MUTEX_ASSERT(mtx, cond)	/* nothing */
120 
121 #endif	/* DIAGNOSTIC */
122 
123 /*
124  * Some architectures can't use __cpu_simple_lock as is so allow a way
125  * for them to use an alternate definition.
126  */
127 #ifndef MUTEX_SPINBIT_LOCK_INIT
128 #define MUTEX_SPINBIT_LOCK_INIT(mtx)	__cpu_simple_lock_init(&(mtx)->mtx_lock)
129 #endif
130 #ifndef MUTEX_SPINBIT_LOCKED_P
131 #define MUTEX_SPINBIT_LOCKED_P(mtx)	__SIMPLELOCK_LOCKED_P(&(mtx)->mtx_lock)
132 #endif
133 #ifndef MUTEX_SPINBIT_LOCK_TRY
134 #define MUTEX_SPINBIT_LOCK_TRY(mtx)	__cpu_simple_lock_try(&(mtx)->mtx_lock)
135 #endif
136 #ifndef MUTEX_SPINBIT_LOCK_UNLOCK
137 #define MUTEX_SPINBIT_LOCK_UNLOCK(mtx)	__cpu_simple_unlock(&(mtx)->mtx_lock)
138 #endif
139 
140 #ifndef MUTEX_INITIALIZE_SPIN_IPL
141 #define MUTEX_INITIALIZE_SPIN_IPL(mtx, ipl) \
142 					((mtx)->mtx_ipl = makeiplcookie((ipl)))
143 #endif
144 
145 /*
146  * Spin mutex SPL save / restore.
147  */
148 
149 #define	MUTEX_SPIN_SPLRAISE(mtx)					\
150 do {									\
151 	struct cpu_info *x__ci;						\
152 	int x__cnt, s;							\
153 	s = splraiseipl(MUTEX_SPIN_IPL(mtx));				\
154 	x__ci = curcpu();						\
155 	x__cnt = x__ci->ci_mtx_count--;					\
156 	__insn_barrier();						\
157 	if (x__cnt == 0)						\
158 		x__ci->ci_mtx_oldspl = (s);				\
159 } while (/* CONSTCOND */ 0)
160 
161 #define	MUTEX_SPIN_SPLRESTORE(mtx)					\
162 do {									\
163 	struct cpu_info *x__ci = curcpu();				\
164 	int s = x__ci->ci_mtx_oldspl;					\
165 	__insn_barrier();						\
166 	if (++(x__ci->ci_mtx_count) == 0)			\
167 		splx(s);						\
168 } while (/* CONSTCOND */ 0)
169 
170 /*
171  * For architectures that provide 'simple' mutexes: they provide a
172  * CAS function that is either MP-safe, or does not need to be MP
173  * safe.  Adaptive mutexes on these architectures do not require an
174  * additional interlock.
175  */
176 
177 #ifdef __HAVE_SIMPLE_MUTEXES
178 
179 #define	MUTEX_OWNER(owner)						\
180 	(owner & MUTEX_THREAD)
181 #define	MUTEX_HAS_WAITERS(mtx)						\
182 	(((int)(mtx)->mtx_owner & MUTEX_BIT_WAITERS) != 0)
183 
184 #define	MUTEX_INITIALIZE_ADAPTIVE(mtx, dodebug)				\
185 	if (!dodebug)							\
186 		(mtx)->mtx_owner |= MUTEX_BIT_NODEBUG;			\
187 do {									\
188 } while (/* CONSTCOND */ 0);
189 
190 #define	MUTEX_INITIALIZE_SPIN(mtx, dodebug, ipl)			\
191 do {									\
192 	(mtx)->mtx_owner = MUTEX_BIT_SPIN;				\
193 	if (!dodebug)							\
194 		(mtx)->mtx_owner |= MUTEX_BIT_NODEBUG;			\
195 	MUTEX_INITIALIZE_SPIN_IPL((mtx), (ipl));			\
196 	MUTEX_SPINBIT_LOCK_INIT((mtx));					\
197 } while (/* CONSTCOND */ 0)
198 
199 #define	MUTEX_DESTROY(mtx)						\
200 do {									\
201 	(mtx)->mtx_owner = MUTEX_THREAD;				\
202 } while (/* CONSTCOND */ 0);
203 
204 #define	MUTEX_SPIN_P(mtx)		\
205     (((mtx)->mtx_owner & MUTEX_BIT_SPIN) != 0)
206 #define	MUTEX_ADAPTIVE_P(mtx)		\
207     (((mtx)->mtx_owner & MUTEX_BIT_SPIN) == 0)
208 
209 #define	MUTEX_DEBUG_P(mtx)	(((mtx)->mtx_owner & MUTEX_BIT_NODEBUG) == 0)
210 #if defined(LOCKDEBUG)
211 #define	MUTEX_OWNED(owner)		(((owner) & ~MUTEX_BIT_NODEBUG) != 0)
212 #define	MUTEX_INHERITDEBUG(n, o)	(n) |= (o) & MUTEX_BIT_NODEBUG
213 #else /* defined(LOCKDEBUG) */
214 #define	MUTEX_OWNED(owner)		((owner) != 0)
215 #define	MUTEX_INHERITDEBUG(n, o)	/* nothing */
216 #endif /* defined(LOCKDEBUG) */
217 
218 static inline int
219 MUTEX_ACQUIRE(kmutex_t *mtx, uintptr_t curthread)
220 {
221 	int rv;
222 	uintptr_t oldown = 0;
223 	uintptr_t newown = curthread;
224 
225 	MUTEX_INHERITDEBUG(oldown, mtx->mtx_owner);
226 	MUTEX_INHERITDEBUG(newown, oldown);
227 	rv = MUTEX_CAS(&mtx->mtx_owner, oldown, newown);
228 	MUTEX_RECEIVE(mtx);
229 	return rv;
230 }
231 
232 static inline int
233 MUTEX_SET_WAITERS(kmutex_t *mtx, uintptr_t owner)
234 {
235 	int rv;
236 	rv = MUTEX_CAS(&mtx->mtx_owner, owner, owner | MUTEX_BIT_WAITERS);
237 	MUTEX_RECEIVE(mtx);
238 	return rv;
239 }
240 
241 static inline void
242 MUTEX_RELEASE(kmutex_t *mtx)
243 {
244 	uintptr_t newown;
245 
246 	MUTEX_GIVE(mtx);
247 	newown = 0;
248 	MUTEX_INHERITDEBUG(newown, mtx->mtx_owner);
249 	mtx->mtx_owner = newown;
250 }
251 #endif	/* __HAVE_SIMPLE_MUTEXES */
252 
253 /*
254  * Patch in stubs via strong alias where they are not available.
255  */
256 
257 #if defined(LOCKDEBUG)
258 #undef	__HAVE_MUTEX_STUBS
259 #undef	__HAVE_SPIN_MUTEX_STUBS
260 #endif
261 
262 #ifndef __HAVE_MUTEX_STUBS
263 __strong_alias(mutex_enter,mutex_vector_enter);
264 __strong_alias(mutex_exit,mutex_vector_exit);
265 #endif
266 
267 #ifndef __HAVE_SPIN_MUTEX_STUBS
268 __strong_alias(mutex_spin_enter,mutex_vector_enter);
269 __strong_alias(mutex_spin_exit,mutex_vector_exit);
270 #endif
271 
272 static void	mutex_abort(const char *, size_t, const kmutex_t *,
273     const char *);
274 static void	mutex_dump(const volatile void *);
275 
276 lockops_t mutex_spin_lockops = {
277 	.lo_name = "Mutex",
278 	.lo_type = LOCKOPS_SPIN,
279 	.lo_dump = mutex_dump,
280 };
281 
282 lockops_t mutex_adaptive_lockops = {
283 	.lo_name = "Mutex",
284 	.lo_type = LOCKOPS_SLEEP,
285 	.lo_dump = mutex_dump,
286 };
287 
288 syncobj_t mutex_syncobj = {
289 	.sobj_flag	= SOBJ_SLEEPQ_SORTED,
290 	.sobj_unsleep	= turnstile_unsleep,
291 	.sobj_changepri	= turnstile_changepri,
292 	.sobj_lendpri	= sleepq_lendpri,
293 	.sobj_owner	= (void *)mutex_owner,
294 };
295 
296 /*
297  * mutex_dump:
298  *
299  *	Dump the contents of a mutex structure.
300  */
301 void
302 mutex_dump(const volatile void *cookie)
303 {
304 	const volatile kmutex_t *mtx = cookie;
305 
306 	printf_nolog("owner field  : %#018lx wait/spin: %16d/%d\n",
307 	    (long)MUTEX_OWNER(mtx->mtx_owner), MUTEX_HAS_WAITERS(mtx),
308 	    MUTEX_SPIN_P(mtx));
309 }
310 
311 /*
312  * mutex_abort:
313  *
314  *	Dump information about an error and panic the system.  This
315  *	generates a lot of machine code in the DIAGNOSTIC case, so
316  *	we ask the compiler to not inline it.
317  */
318 void __noinline
319 mutex_abort(const char *func, size_t line, const kmutex_t *mtx, const char *msg)
320 {
321 
322 	LOCKDEBUG_ABORT(func, line, mtx, (MUTEX_SPIN_P(mtx) ?
323 	    &mutex_spin_lockops : &mutex_adaptive_lockops), msg);
324 }
325 
326 /*
327  * mutex_init:
328  *
329  *	Initialize a mutex for use.  Note that adaptive mutexes are in
330  *	essence spin mutexes that can sleep to avoid deadlock and wasting
331  *	CPU time.  We can't easily provide a type of mutex that always
332  *	sleeps - see comments in mutex_vector_enter() about releasing
333  *	mutexes unlocked.
334  */
335 void _mutex_init(kmutex_t *, kmutex_type_t, int, uintptr_t);
336 void
337 _mutex_init(kmutex_t *mtx, kmutex_type_t type, int ipl,
338     uintptr_t return_address)
339 {
340 	bool dodebug;
341 
342 	memset(mtx, 0, sizeof(*mtx));
343 
344 	switch (type) {
345 	case MUTEX_ADAPTIVE:
346 		KASSERT(ipl == IPL_NONE);
347 		break;
348 	case MUTEX_DEFAULT:
349 	case MUTEX_DRIVER:
350 		if (ipl == IPL_NONE || ipl == IPL_SOFTCLOCK ||
351 		    ipl == IPL_SOFTBIO || ipl == IPL_SOFTNET ||
352 		    ipl == IPL_SOFTSERIAL) {
353 			type = MUTEX_ADAPTIVE;
354 		} else {
355 			type = MUTEX_SPIN;
356 		}
357 		break;
358 	default:
359 		break;
360 	}
361 
362 	switch (type) {
363 	case MUTEX_NODEBUG:
364 		dodebug = LOCKDEBUG_ALLOC(mtx, NULL, return_address);
365 		MUTEX_INITIALIZE_SPIN(mtx, dodebug, ipl);
366 		break;
367 	case MUTEX_ADAPTIVE:
368 		dodebug = LOCKDEBUG_ALLOC(mtx, &mutex_adaptive_lockops,
369 		    return_address);
370 		MUTEX_INITIALIZE_ADAPTIVE(mtx, dodebug);
371 		break;
372 	case MUTEX_SPIN:
373 		dodebug = LOCKDEBUG_ALLOC(mtx, &mutex_spin_lockops,
374 		    return_address);
375 		MUTEX_INITIALIZE_SPIN(mtx, dodebug, ipl);
376 		break;
377 	default:
378 		panic("mutex_init: impossible type");
379 		break;
380 	}
381 }
382 
383 void
384 mutex_init(kmutex_t *mtx, kmutex_type_t type, int ipl)
385 {
386 
387 	_mutex_init(mtx, type, ipl, (uintptr_t)__builtin_return_address(0));
388 }
389 
390 /*
391  * mutex_destroy:
392  *
393  *	Tear down a mutex.
394  */
395 void
396 mutex_destroy(kmutex_t *mtx)
397 {
398 
399 	if (MUTEX_ADAPTIVE_P(mtx)) {
400 		MUTEX_ASSERT(mtx, !MUTEX_OWNED(mtx->mtx_owner) &&
401 		    !MUTEX_HAS_WAITERS(mtx));
402 	} else {
403 		MUTEX_ASSERT(mtx, !MUTEX_SPINBIT_LOCKED_P(mtx));
404 	}
405 
406 	LOCKDEBUG_FREE(MUTEX_DEBUG_P(mtx), mtx);
407 	MUTEX_DESTROY(mtx);
408 }
409 
410 #ifdef MULTIPROCESSOR
411 /*
412  * mutex_oncpu:
413  *
414  *	Return true if an adaptive mutex owner is running on a CPU in the
415  *	system.  If the target is waiting on the kernel big lock, then we
416  *	must release it.  This is necessary to avoid deadlock.
417  */
418 static bool
419 mutex_oncpu(uintptr_t owner)
420 {
421 	struct cpu_info *ci;
422 	lwp_t *l;
423 
424 	KASSERT(kpreempt_disabled());
425 
426 	if (!MUTEX_OWNED(owner)) {
427 		return false;
428 	}
429 
430 	/*
431 	 * See lwp_dtor() why dereference of the LWP pointer is safe.
432 	 * We must have kernel preemption disabled for that.
433 	 */
434 	l = (lwp_t *)MUTEX_OWNER(owner);
435 	ci = l->l_cpu;
436 
437 	if (ci && ci->ci_curlwp == l) {
438 		/* Target is running; do we need to block? */
439 		return (ci->ci_biglock_wanted != l);
440 	}
441 
442 	/* Not running.  It may be safe to block now. */
443 	return false;
444 }
445 #endif	/* MULTIPROCESSOR */
446 
447 /*
448  * mutex_vector_enter:
449  *
450  *	Support routine for mutex_enter() that must handle all cases.  In
451  *	the LOCKDEBUG case, mutex_enter() is always aliased here, even if
452  *	fast-path stubs are available.  If a mutex_spin_enter() stub is
453  *	not available, then it is also aliased directly here.
454  */
455 void
456 mutex_vector_enter(kmutex_t *mtx)
457 {
458 	uintptr_t owner, curthread;
459 	turnstile_t *ts;
460 #ifdef MULTIPROCESSOR
461 	u_int count;
462 #endif
463 	LOCKSTAT_COUNTER(spincnt);
464 	LOCKSTAT_COUNTER(slpcnt);
465 	LOCKSTAT_TIMER(spintime);
466 	LOCKSTAT_TIMER(slptime);
467 	LOCKSTAT_FLAG(lsflag);
468 
469 	/*
470 	 * Handle spin mutexes.
471 	 */
472 	if (MUTEX_SPIN_P(mtx)) {
473 #if defined(LOCKDEBUG) && defined(MULTIPROCESSOR)
474 		u_int spins = 0;
475 #endif
476 		MUTEX_SPIN_SPLRAISE(mtx);
477 		MUTEX_WANTLOCK(mtx);
478 #ifdef FULL
479 		if (MUTEX_SPINBIT_LOCK_TRY(mtx)) {
480 			MUTEX_LOCKED(mtx);
481 			return;
482 		}
483 #if !defined(MULTIPROCESSOR)
484 		MUTEX_ABORT(mtx, "locking against myself");
485 #else /* !MULTIPROCESSOR */
486 
487 		LOCKSTAT_ENTER(lsflag);
488 		LOCKSTAT_START_TIMER(lsflag, spintime);
489 		count = SPINLOCK_BACKOFF_MIN;
490 
491 		/*
492 		 * Spin testing the lock word and do exponential backoff
493 		 * to reduce cache line ping-ponging between CPUs.
494 		 */
495 		do {
496 #if MUTEX_PANIC_SKIP_SPIN
497 			if (panicstr != NULL)
498 				break;
499 #endif
500 			while (MUTEX_SPINBIT_LOCKED_P(mtx)) {
501 				SPINLOCK_BACKOFF(count);
502 #ifdef LOCKDEBUG
503 				if (SPINLOCK_SPINOUT(spins))
504 					MUTEX_ABORT(mtx, "spinout");
505 #endif	/* LOCKDEBUG */
506 			}
507 		} while (!MUTEX_SPINBIT_LOCK_TRY(mtx));
508 
509 		if (count != SPINLOCK_BACKOFF_MIN) {
510 			LOCKSTAT_STOP_TIMER(lsflag, spintime);
511 			LOCKSTAT_EVENT(lsflag, mtx,
512 			    LB_SPIN_MUTEX | LB_SPIN, 1, spintime);
513 		}
514 		LOCKSTAT_EXIT(lsflag);
515 #endif	/* !MULTIPROCESSOR */
516 #endif	/* FULL */
517 		MUTEX_LOCKED(mtx);
518 		return;
519 	}
520 
521 	curthread = (uintptr_t)curlwp;
522 
523 	MUTEX_DASSERT(mtx, MUTEX_ADAPTIVE_P(mtx));
524 	MUTEX_ASSERT(mtx, curthread != 0);
525 	MUTEX_ASSERT(mtx, !cpu_intr_p());
526 	MUTEX_WANTLOCK(mtx);
527 	KDASSERT(pserialize_not_in_read_section());
528 
529 	if (panicstr == NULL) {
530 		LOCKDEBUG_BARRIER(&kernel_lock, 1);
531 	}
532 
533 	LOCKSTAT_ENTER(lsflag);
534 
535 	/*
536 	 * Adaptive mutex; spin trying to acquire the mutex.  If we
537 	 * determine that the owner is not running on a processor,
538 	 * then we stop spinning, and sleep instead.
539 	 */
540 	KPREEMPT_DISABLE(curlwp);
541 	for (owner = mtx->mtx_owner;;) {
542 		if (!MUTEX_OWNED(owner)) {
543 			/*
544 			 * Mutex owner clear could mean two things:
545 			 *
546 			 *	* The mutex has been released.
547 			 *	* The owner field hasn't been set yet.
548 			 *
549 			 * Try to acquire it again.  If that fails,
550 			 * we'll just loop again.
551 			 */
552 			if (MUTEX_ACQUIRE(mtx, curthread))
553 				break;
554 			owner = mtx->mtx_owner;
555 			continue;
556 		}
557 #if MUTEX_PANIC_SKIP_ADAPTIVE
558 		if (__predict_false(panicstr != NULL)) {
559 			KPREEMPT_ENABLE(curlwp);
560 			return;
561 		}
562 #endif
563 		if (__predict_false(MUTEX_OWNER(owner) == curthread)) {
564 			MUTEX_ABORT(mtx, "locking against myself");
565 		}
566 #ifdef MULTIPROCESSOR
567 		/*
568 		 * Check to see if the owner is running on a processor.
569 		 * If so, then we should just spin, as the owner will
570 		 * likely release the lock very soon.
571 		 */
572 		if (mutex_oncpu(owner)) {
573 			LOCKSTAT_START_TIMER(lsflag, spintime);
574 			count = SPINLOCK_BACKOFF_MIN;
575 			do {
576 				KPREEMPT_ENABLE(curlwp);
577 				SPINLOCK_BACKOFF(count);
578 				KPREEMPT_DISABLE(curlwp);
579 				owner = mtx->mtx_owner;
580 			} while (mutex_oncpu(owner));
581 			LOCKSTAT_STOP_TIMER(lsflag, spintime);
582 			LOCKSTAT_COUNT(spincnt, 1);
583 			if (!MUTEX_OWNED(owner))
584 				continue;
585 		}
586 #endif
587 
588 		ts = turnstile_lookup(mtx);
589 
590 		/*
591 		 * Once we have the turnstile chain interlock, mark the
592 		 * mutex as having waiters.  If that fails, spin again:
593 		 * chances are that the mutex has been released.
594 		 */
595 		if (!MUTEX_SET_WAITERS(mtx, owner)) {
596 			turnstile_exit(mtx);
597 			owner = mtx->mtx_owner;
598 			continue;
599 		}
600 
601 #ifdef MULTIPROCESSOR
602 		/*
603 		 * mutex_exit() is permitted to release the mutex without
604 		 * any interlocking instructions, and the following can
605 		 * occur as a result:
606 		 *
607 		 *  CPU 1: MUTEX_SET_WAITERS()      CPU2: mutex_exit()
608 		 * ---------------------------- ----------------------------
609 		 *		..		    acquire cache line
610 		 *		..                   test for waiters
611 		 *	acquire cache line    <-      lose cache line
612 		 *	 lock cache line	           ..
613 		 *     verify mutex is held                ..
614 		 *	    set waiters  	           ..
615 		 *	 unlock cache line		   ..
616 		 *	  lose cache line     ->    acquire cache line
617 		 *		..	          clear lock word, waiters
618 		 *	  return success
619 		 *
620 		 * There is another race that can occur: a third CPU could
621 		 * acquire the mutex as soon as it is released.  Since
622 		 * adaptive mutexes are primarily spin mutexes, this is not
623 		 * something that we need to worry about too much.  What we
624 		 * do need to ensure is that the waiters bit gets set.
625 		 *
626 		 * To allow the unlocked release, we need to make some
627 		 * assumptions here:
628 		 *
629 		 * o Release is the only non-atomic/unlocked operation
630 		 *   that can be performed on the mutex.  (It must still
631 		 *   be atomic on the local CPU, e.g. in case interrupted
632 		 *   or preempted).
633 		 *
634 		 * o At any given time, MUTEX_SET_WAITERS() can only ever
635 		 *   be in progress on one CPU in the system - guaranteed
636 		 *   by the turnstile chain lock.
637 		 *
638 		 * o No other operations other than MUTEX_SET_WAITERS()
639 		 *   and release can modify a mutex with a non-zero
640 		 *   owner field.
641 		 *
642 		 * o The result of a successful MUTEX_SET_WAITERS() call
643 		 *   is an unbuffered write that is immediately visible
644 		 *   to all other processors in the system.
645 		 *
646 		 * o If the holding LWP switches away, it posts a store
647 		 *   fence before changing curlwp, ensuring that any
648 		 *   overwrite of the mutex waiters flag by mutex_exit()
649 		 *   completes before the modification of curlwp becomes
650 		 *   visible to this CPU.
651 		 *
652 		 * o mi_switch() posts a store fence before setting curlwp
653 		 *   and before resuming execution of an LWP.
654 		 *
655 		 * o _kernel_lock() posts a store fence before setting
656 		 *   curcpu()->ci_biglock_wanted, and after clearing it.
657 		 *   This ensures that any overwrite of the mutex waiters
658 		 *   flag by mutex_exit() completes before the modification
659 		 *   of ci_biglock_wanted becomes visible.
660 		 *
661 		 * We now post a read memory barrier (after setting the
662 		 * waiters field) and check the lock holder's status again.
663 		 * Some of the possible outcomes (not an exhaustive list):
664 		 *
665 		 * 1. The on-CPU check returns true: the holding LWP is
666 		 *    running again.  The lock may be released soon and
667 		 *    we should spin.  Importantly, we can't trust the
668 		 *    value of the waiters flag.
669 		 *
670 		 * 2. The on-CPU check returns false: the holding LWP is
671 		 *    not running.  We now have the opportunity to check
672 		 *    if mutex_exit() has blatted the modifications made
673 		 *    by MUTEX_SET_WAITERS().
674 		 *
675 		 * 3. The on-CPU check returns false: the holding LWP may
676 		 *    or may not be running.  It has context switched at
677 		 *    some point during our check.  Again, we have the
678 		 *    chance to see if the waiters bit is still set or
679 		 *    has been overwritten.
680 		 *
681 		 * 4. The on-CPU check returns false: the holding LWP is
682 		 *    running on a CPU, but wants the big lock.  It's OK
683 		 *    to check the waiters field in this case.
684 		 *
685 		 * 5. The has-waiters check fails: the mutex has been
686 		 *    released, the waiters flag cleared and another LWP
687 		 *    now owns the mutex.
688 		 *
689 		 * 6. The has-waiters check fails: the mutex has been
690 		 *    released.
691 		 *
692 		 * If the waiters bit is not set it's unsafe to go asleep,
693 		 * as we might never be awoken.
694 		 */
695 		if ((membar_consumer(), mutex_oncpu(owner)) ||
696 		    (membar_consumer(), !MUTEX_HAS_WAITERS(mtx))) {
697 			turnstile_exit(mtx);
698 			owner = mtx->mtx_owner;
699 			continue;
700 		}
701 #endif	/* MULTIPROCESSOR */
702 
703 		LOCKSTAT_START_TIMER(lsflag, slptime);
704 
705 		turnstile_block(ts, TS_WRITER_Q, mtx, &mutex_syncobj);
706 
707 		LOCKSTAT_STOP_TIMER(lsflag, slptime);
708 		LOCKSTAT_COUNT(slpcnt, 1);
709 
710 		owner = mtx->mtx_owner;
711 	}
712 	KPREEMPT_ENABLE(curlwp);
713 
714 	LOCKSTAT_EVENT(lsflag, mtx, LB_ADAPTIVE_MUTEX | LB_SLEEP1,
715 	    slpcnt, slptime);
716 	LOCKSTAT_EVENT(lsflag, mtx, LB_ADAPTIVE_MUTEX | LB_SPIN,
717 	    spincnt, spintime);
718 	LOCKSTAT_EXIT(lsflag);
719 
720 	MUTEX_DASSERT(mtx, MUTEX_OWNER(mtx->mtx_owner) == curthread);
721 	MUTEX_LOCKED(mtx);
722 }
723 
724 /*
725  * mutex_vector_exit:
726  *
727  *	Support routine for mutex_exit() that handles all cases.
728  */
729 void
730 mutex_vector_exit(kmutex_t *mtx)
731 {
732 	turnstile_t *ts;
733 	uintptr_t curthread;
734 
735 	if (MUTEX_SPIN_P(mtx)) {
736 #ifdef FULL
737 		if (__predict_false(!MUTEX_SPINBIT_LOCKED_P(mtx))) {
738 #if MUTEX_PANIC_SKIP_SPIN
739 			if (panicstr != NULL)
740 				return;
741 #endif
742 			MUTEX_ABORT(mtx, "exiting unheld spin mutex");
743 		}
744 		MUTEX_UNLOCKED(mtx);
745 		MUTEX_SPINBIT_LOCK_UNLOCK(mtx);
746 #endif
747 		MUTEX_SPIN_SPLRESTORE(mtx);
748 		return;
749 	}
750 
751 #ifdef MUTEX_PANIC_SKIP_ADAPTIVE
752 	if (__predict_false((uintptr_t)panicstr | cold)) {
753 		MUTEX_UNLOCKED(mtx);
754 		MUTEX_RELEASE(mtx);
755 		return;
756 	}
757 #endif
758 
759 	curthread = (uintptr_t)curlwp;
760 	MUTEX_DASSERT(mtx, curthread != 0);
761 	MUTEX_ASSERT(mtx, MUTEX_OWNER(mtx->mtx_owner) == curthread);
762 	MUTEX_UNLOCKED(mtx);
763 #if !defined(LOCKDEBUG)
764 	__USE(curthread);
765 #endif
766 
767 #ifdef LOCKDEBUG
768 	/*
769 	 * Avoid having to take the turnstile chain lock every time
770 	 * around.  Raise the priority level to splhigh() in order
771 	 * to disable preemption and so make the following atomic.
772 	 */
773 	{
774 		int s = splhigh();
775 		if (!MUTEX_HAS_WAITERS(mtx)) {
776 			MUTEX_RELEASE(mtx);
777 			splx(s);
778 			return;
779 		}
780 		splx(s);
781 	}
782 #endif
783 
784 	/*
785 	 * Get this lock's turnstile.  This gets the interlock on
786 	 * the sleep queue.  Once we have that, we can clear the
787 	 * lock.  If there was no turnstile for the lock, there
788 	 * were no waiters remaining.
789 	 */
790 	ts = turnstile_lookup(mtx);
791 
792 	if (ts == NULL) {
793 		MUTEX_RELEASE(mtx);
794 		turnstile_exit(mtx);
795 	} else {
796 		MUTEX_RELEASE(mtx);
797 		turnstile_wakeup(ts, TS_WRITER_Q,
798 		    TS_WAITERS(ts, TS_WRITER_Q), NULL);
799 	}
800 }
801 
802 #ifndef __HAVE_SIMPLE_MUTEXES
803 /*
804  * mutex_wakeup:
805  *
806  *	Support routine for mutex_exit() that wakes up all waiters.
807  *	We assume that the mutex has been released, but it need not
808  *	be.
809  */
810 void
811 mutex_wakeup(kmutex_t *mtx)
812 {
813 	turnstile_t *ts;
814 
815 	ts = turnstile_lookup(mtx);
816 	if (ts == NULL) {
817 		turnstile_exit(mtx);
818 		return;
819 	}
820 	MUTEX_CLEAR_WAITERS(mtx);
821 	turnstile_wakeup(ts, TS_WRITER_Q, TS_WAITERS(ts, TS_WRITER_Q), NULL);
822 }
823 #endif	/* !__HAVE_SIMPLE_MUTEXES */
824 
825 /*
826  * mutex_owned:
827  *
828  *	Return true if the current LWP (adaptive) or CPU (spin)
829  *	holds the mutex.
830  */
831 int
832 mutex_owned(const kmutex_t *mtx)
833 {
834 
835 	if (mtx == NULL)
836 		return 0;
837 	if (MUTEX_ADAPTIVE_P(mtx))
838 		return MUTEX_OWNER(mtx->mtx_owner) == (uintptr_t)curlwp;
839 #ifdef FULL
840 	return MUTEX_SPINBIT_LOCKED_P(mtx);
841 #else
842 	return 1;
843 #endif
844 }
845 
846 /*
847  * mutex_owner:
848  *
849  *	Return the current owner of an adaptive mutex.  Used for
850  *	priority inheritance.
851  */
852 lwp_t *
853 mutex_owner(const kmutex_t *mtx)
854 {
855 
856 	MUTEX_ASSERT(mtx, MUTEX_ADAPTIVE_P(mtx));
857 	return (struct lwp *)MUTEX_OWNER(mtx->mtx_owner);
858 }
859 
860 /*
861  * mutex_ownable:
862  *
863  *	When compiled with DEBUG and LOCKDEBUG defined, ensure that
864  *	the mutex is available.  We cannot use !mutex_owned() since
865  *	that won't work correctly for spin mutexes.
866  */
867 int
868 mutex_ownable(const kmutex_t *mtx)
869 {
870 
871 #ifdef LOCKDEBUG
872 	MUTEX_TESTLOCK(mtx);
873 #endif
874 	return 1;
875 }
876 
877 /*
878  * mutex_tryenter:
879  *
880  *	Try to acquire the mutex; return non-zero if we did.
881  */
882 int
883 mutex_tryenter(kmutex_t *mtx)
884 {
885 	uintptr_t curthread;
886 
887 	/*
888 	 * Handle spin mutexes.
889 	 */
890 	if (MUTEX_SPIN_P(mtx)) {
891 		MUTEX_SPIN_SPLRAISE(mtx);
892 #ifdef FULL
893 		if (MUTEX_SPINBIT_LOCK_TRY(mtx)) {
894 			MUTEX_WANTLOCK(mtx);
895 			MUTEX_LOCKED(mtx);
896 			return 1;
897 		}
898 		MUTEX_SPIN_SPLRESTORE(mtx);
899 #else
900 		MUTEX_WANTLOCK(mtx);
901 		MUTEX_LOCKED(mtx);
902 		return 1;
903 #endif
904 	} else {
905 		curthread = (uintptr_t)curlwp;
906 		MUTEX_ASSERT(mtx, curthread != 0);
907 		if (MUTEX_ACQUIRE(mtx, curthread)) {
908 			MUTEX_WANTLOCK(mtx);
909 			MUTEX_LOCKED(mtx);
910 			MUTEX_DASSERT(mtx,
911 			    MUTEX_OWNER(mtx->mtx_owner) == curthread);
912 			return 1;
913 		}
914 	}
915 
916 	return 0;
917 }
918 
919 #if defined(__HAVE_SPIN_MUTEX_STUBS) || defined(FULL)
920 /*
921  * mutex_spin_retry:
922  *
923  *	Support routine for mutex_spin_enter().  Assumes that the caller
924  *	has already raised the SPL, and adjusted counters.
925  */
926 void
927 mutex_spin_retry(kmutex_t *mtx)
928 {
929 #ifdef MULTIPROCESSOR
930 	u_int count;
931 	LOCKSTAT_TIMER(spintime);
932 	LOCKSTAT_FLAG(lsflag);
933 #ifdef LOCKDEBUG
934 	u_int spins = 0;
935 #endif	/* LOCKDEBUG */
936 
937 	MUTEX_WANTLOCK(mtx);
938 
939 	LOCKSTAT_ENTER(lsflag);
940 	LOCKSTAT_START_TIMER(lsflag, spintime);
941 	count = SPINLOCK_BACKOFF_MIN;
942 
943 	/*
944 	 * Spin testing the lock word and do exponential backoff
945 	 * to reduce cache line ping-ponging between CPUs.
946 	 */
947 	do {
948 #if MUTEX_PANIC_SKIP_SPIN
949 		if (panicstr != NULL)
950 			break;
951 #endif
952 		while (MUTEX_SPINBIT_LOCKED_P(mtx)) {
953 			SPINLOCK_BACKOFF(count);
954 #ifdef LOCKDEBUG
955 			if (SPINLOCK_SPINOUT(spins))
956 				MUTEX_ABORT(mtx, "spinout");
957 #endif	/* LOCKDEBUG */
958 		}
959 	} while (!MUTEX_SPINBIT_LOCK_TRY(mtx));
960 
961 	LOCKSTAT_STOP_TIMER(lsflag, spintime);
962 	LOCKSTAT_EVENT(lsflag, mtx, LB_SPIN_MUTEX | LB_SPIN, 1, spintime);
963 	LOCKSTAT_EXIT(lsflag);
964 
965 	MUTEX_LOCKED(mtx);
966 #else	/* MULTIPROCESSOR */
967 	MUTEX_ABORT(mtx, "locking against myself");
968 #endif	/* MULTIPROCESSOR */
969 }
970 #endif	/* defined(__HAVE_SPIN_MUTEX_STUBS) || defined(FULL) */
971