xref: /netbsd-src/sys/kern/kern_mutex.c (revision 6d322f2f4598f0d8a138f10ea648ec4fabe41f8b)
1 /*	$NetBSD: kern_mutex.c,v 1.58 2013/10/19 21:01:39 mrg Exp $	*/
2 
3 /*-
4  * Copyright (c) 2002, 2006, 2007, 2008 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Jason R. Thorpe and Andrew Doran.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29  * POSSIBILITY OF SUCH DAMAGE.
30  */
31 
32 /*
33  * Kernel mutex implementation, modeled after those found in Solaris,
34  * a description of which can be found in:
35  *
36  *	Solaris Internals: Core Kernel Architecture, Jim Mauro and
37  *	    Richard McDougall.
38  */
39 
40 #define	__MUTEX_PRIVATE
41 
42 #include <sys/cdefs.h>
43 __KERNEL_RCSID(0, "$NetBSD: kern_mutex.c,v 1.58 2013/10/19 21:01:39 mrg Exp $");
44 
45 #include <sys/param.h>
46 #include <sys/atomic.h>
47 #include <sys/proc.h>
48 #include <sys/mutex.h>
49 #include <sys/sched.h>
50 #include <sys/sleepq.h>
51 #include <sys/systm.h>
52 #include <sys/lockdebug.h>
53 #include <sys/kernel.h>
54 #include <sys/intr.h>
55 #include <sys/lock.h>
56 #include <sys/types.h>
57 
58 #include <dev/lockstat.h>
59 
60 #include <machine/lock.h>
61 
62 /*
63  * When not running a debug kernel, spin mutexes are not much
64  * more than an splraiseipl() and splx() pair.
65  */
66 
67 #if defined(DIAGNOSTIC) || defined(MULTIPROCESSOR) || defined(LOCKDEBUG)
68 #define	FULL
69 #endif
70 
71 /*
72  * Debugging support.
73  */
74 
75 #define	MUTEX_WANTLOCK(mtx)					\
76     LOCKDEBUG_WANTLOCK(MUTEX_DEBUG_P(mtx), (mtx),		\
77         (uintptr_t)__builtin_return_address(0), 0)
78 #define	MUTEX_LOCKED(mtx)					\
79     LOCKDEBUG_LOCKED(MUTEX_DEBUG_P(mtx), (mtx), NULL,		\
80         (uintptr_t)__builtin_return_address(0), 0)
81 #define	MUTEX_UNLOCKED(mtx)					\
82     LOCKDEBUG_UNLOCKED(MUTEX_DEBUG_P(mtx), (mtx),		\
83         (uintptr_t)__builtin_return_address(0), 0)
84 #define	MUTEX_ABORT(mtx, msg)					\
85     mutex_abort(mtx, __func__, msg)
86 
87 #if defined(LOCKDEBUG)
88 
89 #define	MUTEX_DASSERT(mtx, cond)				\
90 do {								\
91 	if (!(cond))						\
92 		MUTEX_ABORT(mtx, "assertion failed: " #cond);	\
93 } while (/* CONSTCOND */ 0);
94 
95 #else	/* LOCKDEBUG */
96 
97 #define	MUTEX_DASSERT(mtx, cond)	/* nothing */
98 
99 #endif /* LOCKDEBUG */
100 
101 #if defined(DIAGNOSTIC)
102 
103 #define	MUTEX_ASSERT(mtx, cond)					\
104 do {								\
105 	if (!(cond))						\
106 		MUTEX_ABORT(mtx, "assertion failed: " #cond);	\
107 } while (/* CONSTCOND */ 0)
108 
109 #else	/* DIAGNOSTIC */
110 
111 #define	MUTEX_ASSERT(mtx, cond)	/* nothing */
112 
113 #endif	/* DIAGNOSTIC */
114 
115 /*
116  * Spin mutex SPL save / restore.
117  */
118 
119 #define	MUTEX_SPIN_SPLRAISE(mtx)					\
120 do {									\
121 	struct cpu_info *x__ci;						\
122 	int x__cnt, s;							\
123 	s = splraiseipl(mtx->mtx_ipl);					\
124 	x__ci = curcpu();						\
125 	x__cnt = x__ci->ci_mtx_count--;					\
126 	__insn_barrier();						\
127 	if (x__cnt == 0)						\
128 		x__ci->ci_mtx_oldspl = (s);				\
129 } while (/* CONSTCOND */ 0)
130 
131 #define	MUTEX_SPIN_SPLRESTORE(mtx)					\
132 do {									\
133 	struct cpu_info *x__ci = curcpu();				\
134 	int s = x__ci->ci_mtx_oldspl;					\
135 	__insn_barrier();						\
136 	if (++(x__ci->ci_mtx_count) == 0)			\
137 		splx(s);						\
138 } while (/* CONSTCOND */ 0)
139 
140 /*
141  * For architectures that provide 'simple' mutexes: they provide a
142  * CAS function that is either MP-safe, or does not need to be MP
143  * safe.  Adaptive mutexes on these architectures do not require an
144  * additional interlock.
145  */
146 
147 #ifdef __HAVE_SIMPLE_MUTEXES
148 
149 #define	MUTEX_OWNER(owner)						\
150 	(owner & MUTEX_THREAD)
151 #define	MUTEX_HAS_WAITERS(mtx)						\
152 	(((int)(mtx)->mtx_owner & MUTEX_BIT_WAITERS) != 0)
153 
154 #define	MUTEX_INITIALIZE_ADAPTIVE(mtx, dodebug)				\
155 	if (!dodebug)							\
156 		(mtx)->mtx_owner |= MUTEX_BIT_NODEBUG;			\
157 do {									\
158 } while (/* CONSTCOND */ 0);
159 
160 #define	MUTEX_INITIALIZE_SPIN(mtx, dodebug, ipl)			\
161 do {									\
162 	(mtx)->mtx_owner = MUTEX_BIT_SPIN;				\
163 	if (!dodebug)							\
164 		(mtx)->mtx_owner |= MUTEX_BIT_NODEBUG;			\
165 	(mtx)->mtx_ipl = makeiplcookie((ipl));				\
166 	__cpu_simple_lock_init(&(mtx)->mtx_lock);			\
167 } while (/* CONSTCOND */ 0)
168 
169 #define	MUTEX_DESTROY(mtx)						\
170 do {									\
171 	(mtx)->mtx_owner = MUTEX_THREAD;				\
172 } while (/* CONSTCOND */ 0);
173 
174 #define	MUTEX_SPIN_P(mtx)		\
175     (((mtx)->mtx_owner & MUTEX_BIT_SPIN) != 0)
176 #define	MUTEX_ADAPTIVE_P(mtx)		\
177     (((mtx)->mtx_owner & MUTEX_BIT_SPIN) == 0)
178 
179 #define	MUTEX_DEBUG_P(mtx)	(((mtx)->mtx_owner & MUTEX_BIT_NODEBUG) == 0)
180 #if defined(LOCKDEBUG)
181 #define	MUTEX_OWNED(owner)		(((owner) & ~MUTEX_BIT_NODEBUG) != 0)
182 #define	MUTEX_INHERITDEBUG(new, old)	(new) |= (old) & MUTEX_BIT_NODEBUG
183 #else /* defined(LOCKDEBUG) */
184 #define	MUTEX_OWNED(owner)		((owner) != 0)
185 #define	MUTEX_INHERITDEBUG(new, old)	/* nothing */
186 #endif /* defined(LOCKDEBUG) */
187 
188 static inline int
189 MUTEX_ACQUIRE(kmutex_t *mtx, uintptr_t curthread)
190 {
191 	int rv;
192 	uintptr_t old = 0;
193 	uintptr_t new = curthread;
194 
195 	MUTEX_INHERITDEBUG(old, mtx->mtx_owner);
196 	MUTEX_INHERITDEBUG(new, old);
197 	rv = MUTEX_CAS(&mtx->mtx_owner, old, new);
198 	MUTEX_RECEIVE(mtx);
199 	return rv;
200 }
201 
202 static inline int
203 MUTEX_SET_WAITERS(kmutex_t *mtx, uintptr_t owner)
204 {
205 	int rv;
206 	rv = MUTEX_CAS(&mtx->mtx_owner, owner, owner | MUTEX_BIT_WAITERS);
207 	MUTEX_RECEIVE(mtx);
208 	return rv;
209 }
210 
211 static inline void
212 MUTEX_RELEASE(kmutex_t *mtx)
213 {
214 	uintptr_t new;
215 
216 	MUTEX_GIVE(mtx);
217 	new = 0;
218 	MUTEX_INHERITDEBUG(new, mtx->mtx_owner);
219 	mtx->mtx_owner = new;
220 }
221 #endif	/* __HAVE_SIMPLE_MUTEXES */
222 
223 /*
224  * Patch in stubs via strong alias where they are not available.
225  */
226 
227 #if defined(LOCKDEBUG)
228 #undef	__HAVE_MUTEX_STUBS
229 #undef	__HAVE_SPIN_MUTEX_STUBS
230 #endif
231 
232 #ifndef __HAVE_MUTEX_STUBS
233 __strong_alias(mutex_enter,mutex_vector_enter);
234 __strong_alias(mutex_exit,mutex_vector_exit);
235 #endif
236 
237 #ifndef __HAVE_SPIN_MUTEX_STUBS
238 __strong_alias(mutex_spin_enter,mutex_vector_enter);
239 __strong_alias(mutex_spin_exit,mutex_vector_exit);
240 #endif
241 
242 static void		mutex_abort(kmutex_t *, const char *, const char *);
243 static void		mutex_dump(volatile void *);
244 
245 lockops_t mutex_spin_lockops = {
246 	"Mutex",
247 	LOCKOPS_SPIN,
248 	mutex_dump
249 };
250 
251 lockops_t mutex_adaptive_lockops = {
252 	"Mutex",
253 	LOCKOPS_SLEEP,
254 	mutex_dump
255 };
256 
257 syncobj_t mutex_syncobj = {
258 	SOBJ_SLEEPQ_SORTED,
259 	turnstile_unsleep,
260 	turnstile_changepri,
261 	sleepq_lendpri,
262 	(void *)mutex_owner,
263 };
264 
265 /*
266  * mutex_dump:
267  *
268  *	Dump the contents of a mutex structure.
269  */
270 void
271 mutex_dump(volatile void *cookie)
272 {
273 	volatile kmutex_t *mtx = cookie;
274 
275 	printf_nolog("owner field  : %#018lx wait/spin: %16d/%d\n",
276 	    (long)MUTEX_OWNER(mtx->mtx_owner), MUTEX_HAS_WAITERS(mtx),
277 	    MUTEX_SPIN_P(mtx));
278 }
279 
280 /*
281  * mutex_abort:
282  *
283  *	Dump information about an error and panic the system.  This
284  *	generates a lot of machine code in the DIAGNOSTIC case, so
285  *	we ask the compiler to not inline it.
286  */
287 void __noinline
288 mutex_abort(kmutex_t *mtx, const char *func, const char *msg)
289 {
290 
291 	LOCKDEBUG_ABORT(mtx, (MUTEX_SPIN_P(mtx) ?
292 	    &mutex_spin_lockops : &mutex_adaptive_lockops), func, msg);
293 }
294 
295 /*
296  * mutex_init:
297  *
298  *	Initialize a mutex for use.  Note that adaptive mutexes are in
299  *	essence spin mutexes that can sleep to avoid deadlock and wasting
300  *	CPU time.  We can't easily provide a type of mutex that always
301  *	sleeps - see comments in mutex_vector_enter() about releasing
302  *	mutexes unlocked.
303  */
304 void
305 mutex_init(kmutex_t *mtx, kmutex_type_t type, int ipl)
306 {
307 	bool dodebug;
308 
309 	memset(mtx, 0, sizeof(*mtx));
310 
311 	switch (type) {
312 	case MUTEX_ADAPTIVE:
313 		KASSERT(ipl == IPL_NONE);
314 		break;
315 	case MUTEX_DEFAULT:
316 	case MUTEX_DRIVER:
317 		if (ipl == IPL_NONE || ipl == IPL_SOFTCLOCK ||
318 		    ipl == IPL_SOFTBIO || ipl == IPL_SOFTNET ||
319 		    ipl == IPL_SOFTSERIAL) {
320 			type = MUTEX_ADAPTIVE;
321 		} else {
322 			type = MUTEX_SPIN;
323 		}
324 		break;
325 	default:
326 		break;
327 	}
328 
329 	switch (type) {
330 	case MUTEX_NODEBUG:
331 		dodebug = LOCKDEBUG_ALLOC(mtx, NULL,
332 		    (uintptr_t)__builtin_return_address(0));
333 		MUTEX_INITIALIZE_SPIN(mtx, dodebug, ipl);
334 		break;
335 	case MUTEX_ADAPTIVE:
336 		dodebug = LOCKDEBUG_ALLOC(mtx, &mutex_adaptive_lockops,
337 		    (uintptr_t)__builtin_return_address(0));
338 		MUTEX_INITIALIZE_ADAPTIVE(mtx, dodebug);
339 		break;
340 	case MUTEX_SPIN:
341 		dodebug = LOCKDEBUG_ALLOC(mtx, &mutex_spin_lockops,
342 		    (uintptr_t)__builtin_return_address(0));
343 		MUTEX_INITIALIZE_SPIN(mtx, dodebug, ipl);
344 		break;
345 	default:
346 		panic("mutex_init: impossible type");
347 		break;
348 	}
349 }
350 
351 /*
352  * mutex_destroy:
353  *
354  *	Tear down a mutex.
355  */
356 void
357 mutex_destroy(kmutex_t *mtx)
358 {
359 
360 	if (MUTEX_ADAPTIVE_P(mtx)) {
361 		MUTEX_ASSERT(mtx, !MUTEX_OWNED(mtx->mtx_owner) &&
362 		    !MUTEX_HAS_WAITERS(mtx));
363 	} else {
364 		MUTEX_ASSERT(mtx, !__SIMPLELOCK_LOCKED_P(&mtx->mtx_lock));
365 	}
366 
367 	LOCKDEBUG_FREE(MUTEX_DEBUG_P(mtx), mtx);
368 	MUTEX_DESTROY(mtx);
369 }
370 
371 #ifdef MULTIPROCESSOR
372 /*
373  * mutex_oncpu:
374  *
375  *	Return true if an adaptive mutex owner is running on a CPU in the
376  *	system.  If the target is waiting on the kernel big lock, then we
377  *	must release it.  This is necessary to avoid deadlock.
378  */
379 static bool
380 mutex_oncpu(uintptr_t owner)
381 {
382 	struct cpu_info *ci;
383 	lwp_t *l;
384 
385 	KASSERT(kpreempt_disabled());
386 
387 	if (!MUTEX_OWNED(owner)) {
388 		return false;
389 	}
390 
391 	/*
392 	 * See lwp_dtor() why dereference of the LWP pointer is safe.
393 	 * We must have kernel preemption disabled for that.
394 	 */
395 	l = (lwp_t *)MUTEX_OWNER(owner);
396 	ci = l->l_cpu;
397 
398 	if (ci && ci->ci_curlwp == l) {
399 		/* Target is running; do we need to block? */
400 		return (ci->ci_biglock_wanted != l);
401 	}
402 
403 	/* Not running.  It may be safe to block now. */
404 	return false;
405 }
406 #endif	/* MULTIPROCESSOR */
407 
408 /*
409  * mutex_vector_enter:
410  *
411  *	Support routine for mutex_enter() that must handle all cases.  In
412  *	the LOCKDEBUG case, mutex_enter() is always aliased here, even if
413  *	fast-path stubs are available.  If an mutex_spin_enter() stub is
414  *	not available, then it is also aliased directly here.
415  */
416 void
417 mutex_vector_enter(kmutex_t *mtx)
418 {
419 	uintptr_t owner, curthread;
420 	turnstile_t *ts;
421 #ifdef MULTIPROCESSOR
422 	u_int count;
423 #endif
424 	LOCKSTAT_COUNTER(spincnt);
425 	LOCKSTAT_COUNTER(slpcnt);
426 	LOCKSTAT_TIMER(spintime);
427 	LOCKSTAT_TIMER(slptime);
428 	LOCKSTAT_FLAG(lsflag);
429 
430 	/*
431 	 * Handle spin mutexes.
432 	 */
433 	if (MUTEX_SPIN_P(mtx)) {
434 #if defined(LOCKDEBUG) && defined(MULTIPROCESSOR)
435 		u_int spins = 0;
436 #endif
437 		MUTEX_SPIN_SPLRAISE(mtx);
438 		MUTEX_WANTLOCK(mtx);
439 #ifdef FULL
440 		if (__cpu_simple_lock_try(&mtx->mtx_lock)) {
441 			MUTEX_LOCKED(mtx);
442 			return;
443 		}
444 #if !defined(MULTIPROCESSOR)
445 		MUTEX_ABORT(mtx, "locking against myself");
446 #else /* !MULTIPROCESSOR */
447 
448 		LOCKSTAT_ENTER(lsflag);
449 		LOCKSTAT_START_TIMER(lsflag, spintime);
450 		count = SPINLOCK_BACKOFF_MIN;
451 
452 		/*
453 		 * Spin testing the lock word and do exponential backoff
454 		 * to reduce cache line ping-ponging between CPUs.
455 		 */
456 		do {
457 			if (panicstr != NULL)
458 				break;
459 			while (__SIMPLELOCK_LOCKED_P(&mtx->mtx_lock)) {
460 				SPINLOCK_BACKOFF(count);
461 #ifdef LOCKDEBUG
462 				if (SPINLOCK_SPINOUT(spins))
463 					MUTEX_ABORT(mtx, "spinout");
464 #endif	/* LOCKDEBUG */
465 			}
466 		} while (!__cpu_simple_lock_try(&mtx->mtx_lock));
467 
468 		if (count != SPINLOCK_BACKOFF_MIN) {
469 			LOCKSTAT_STOP_TIMER(lsflag, spintime);
470 			LOCKSTAT_EVENT(lsflag, mtx,
471 			    LB_SPIN_MUTEX | LB_SPIN, 1, spintime);
472 		}
473 		LOCKSTAT_EXIT(lsflag);
474 #endif	/* !MULTIPROCESSOR */
475 #endif	/* FULL */
476 		MUTEX_LOCKED(mtx);
477 		return;
478 	}
479 
480 	curthread = (uintptr_t)curlwp;
481 
482 	MUTEX_DASSERT(mtx, MUTEX_ADAPTIVE_P(mtx));
483 	MUTEX_ASSERT(mtx, curthread != 0);
484 	MUTEX_WANTLOCK(mtx);
485 
486 	if (panicstr == NULL) {
487 		LOCKDEBUG_BARRIER(&kernel_lock, 1);
488 	}
489 
490 	LOCKSTAT_ENTER(lsflag);
491 
492 	/*
493 	 * Adaptive mutex; spin trying to acquire the mutex.  If we
494 	 * determine that the owner is not running on a processor,
495 	 * then we stop spinning, and sleep instead.
496 	 */
497 	KPREEMPT_DISABLE(curlwp);
498 	for (owner = mtx->mtx_owner;;) {
499 		if (!MUTEX_OWNED(owner)) {
500 			/*
501 			 * Mutex owner clear could mean two things:
502 			 *
503 			 *	* The mutex has been released.
504 			 *	* The owner field hasn't been set yet.
505 			 *
506 			 * Try to acquire it again.  If that fails,
507 			 * we'll just loop again.
508 			 */
509 			if (MUTEX_ACQUIRE(mtx, curthread))
510 				break;
511 			owner = mtx->mtx_owner;
512 			continue;
513 		}
514 		if (__predict_false(panicstr != NULL)) {
515 			kpreempt_enable();
516 			return;
517 		}
518 		if (__predict_false(MUTEX_OWNER(owner) == curthread)) {
519 			MUTEX_ABORT(mtx, "locking against myself");
520 		}
521 #ifdef MULTIPROCESSOR
522 		/*
523 		 * Check to see if the owner is running on a processor.
524 		 * If so, then we should just spin, as the owner will
525 		 * likely release the lock very soon.
526 		 */
527 		if (mutex_oncpu(owner)) {
528 			LOCKSTAT_START_TIMER(lsflag, spintime);
529 			count = SPINLOCK_BACKOFF_MIN;
530 			do {
531 				KPREEMPT_ENABLE(curlwp);
532 				SPINLOCK_BACKOFF(count);
533 				KPREEMPT_DISABLE(curlwp);
534 				owner = mtx->mtx_owner;
535 			} while (mutex_oncpu(owner));
536 			LOCKSTAT_STOP_TIMER(lsflag, spintime);
537 			LOCKSTAT_COUNT(spincnt, 1);
538 			if (!MUTEX_OWNED(owner))
539 				continue;
540 		}
541 #endif
542 
543 		ts = turnstile_lookup(mtx);
544 
545 		/*
546 		 * Once we have the turnstile chain interlock, mark the
547 		 * mutex has having waiters.  If that fails, spin again:
548 		 * chances are that the mutex has been released.
549 		 */
550 		if (!MUTEX_SET_WAITERS(mtx, owner)) {
551 			turnstile_exit(mtx);
552 			owner = mtx->mtx_owner;
553 			continue;
554 		}
555 
556 #ifdef MULTIPROCESSOR
557 		/*
558 		 * mutex_exit() is permitted to release the mutex without
559 		 * any interlocking instructions, and the following can
560 		 * occur as a result:
561 		 *
562 		 *  CPU 1: MUTEX_SET_WAITERS()      CPU2: mutex_exit()
563 		 * ---------------------------- ----------------------------
564 		 *		..		    acquire cache line
565 		 *		..                   test for waiters
566 		 *	acquire cache line    <-      lose cache line
567 		 *	 lock cache line	           ..
568 		 *     verify mutex is held                ..
569 		 *	    set waiters  	           ..
570 		 *	 unlock cache line		   ..
571 		 *	  lose cache line     ->    acquire cache line
572 		 *		..	          clear lock word, waiters
573 		 *	  return success
574 		 *
575 		 * There is another race that can occur: a third CPU could
576 		 * acquire the mutex as soon as it is released.  Since
577 		 * adaptive mutexes are primarily spin mutexes, this is not
578 		 * something that we need to worry about too much.  What we
579 		 * do need to ensure is that the waiters bit gets set.
580 		 *
581 		 * To allow the unlocked release, we need to make some
582 		 * assumptions here:
583 		 *
584 		 * o Release is the only non-atomic/unlocked operation
585 		 *   that can be performed on the mutex.  (It must still
586 		 *   be atomic on the local CPU, e.g. in case interrupted
587 		 *   or preempted).
588 		 *
589 		 * o At any given time, MUTEX_SET_WAITERS() can only ever
590 		 *   be in progress on one CPU in the system - guaranteed
591 		 *   by the turnstile chain lock.
592 		 *
593 		 * o No other operations other than MUTEX_SET_WAITERS()
594 		 *   and release can modify a mutex with a non-zero
595 		 *   owner field.
596 		 *
597 		 * o The result of a successful MUTEX_SET_WAITERS() call
598 		 *   is an unbuffered write that is immediately visible
599 		 *   to all other processors in the system.
600 		 *
601 		 * o If the holding LWP switches away, it posts a store
602 		 *   fence before changing curlwp, ensuring that any
603 		 *   overwrite of the mutex waiters flag by mutex_exit()
604 		 *   completes before the modification of curlwp becomes
605 		 *   visible to this CPU.
606 		 *
607 		 * o mi_switch() posts a store fence before setting curlwp
608 		 *   and before resuming execution of an LWP.
609 		 *
610 		 * o _kernel_lock() posts a store fence before setting
611 		 *   curcpu()->ci_biglock_wanted, and after clearing it.
612 		 *   This ensures that any overwrite of the mutex waiters
613 		 *   flag by mutex_exit() completes before the modification
614 		 *   of ci_biglock_wanted becomes visible.
615 		 *
616 		 * We now post a read memory barrier (after setting the
617 		 * waiters field) and check the lock holder's status again.
618 		 * Some of the possible outcomes (not an exhaustive list):
619 		 *
620 		 * 1. The on-CPU check returns true: the holding LWP is
621 		 *    running again.  The lock may be released soon and
622 		 *    we should spin.  Importantly, we can't trust the
623 		 *    value of the waiters flag.
624 		 *
625 		 * 2. The on-CPU check returns false: the holding LWP is
626 		 *    not running.  We now have the opportunity to check
627 		 *    if mutex_exit() has blatted the modifications made
628 		 *    by MUTEX_SET_WAITERS().
629 		 *
630 		 * 3. The on-CPU check returns false: the holding LWP may
631 		 *    or may not be running.  It has context switched at
632 		 *    some point during our check.  Again, we have the
633 		 *    chance to see if the waiters bit is still set or
634 		 *    has been overwritten.
635 		 *
636 		 * 4. The on-CPU check returns false: the holding LWP is
637 		 *    running on a CPU, but wants the big lock.  It's OK
638 		 *    to check the waiters field in this case.
639 		 *
640 		 * 5. The has-waiters check fails: the mutex has been
641 		 *    released, the waiters flag cleared and another LWP
642 		 *    now owns the mutex.
643 		 *
644 		 * 6. The has-waiters check fails: the mutex has been
645 		 *    released.
646 		 *
647 		 * If the waiters bit is not set it's unsafe to go asleep,
648 		 * as we might never be awoken.
649 		 */
650 		if ((membar_consumer(), mutex_oncpu(owner)) ||
651 		    (membar_consumer(), !MUTEX_HAS_WAITERS(mtx))) {
652 			turnstile_exit(mtx);
653 			owner = mtx->mtx_owner;
654 			continue;
655 		}
656 #endif	/* MULTIPROCESSOR */
657 
658 		LOCKSTAT_START_TIMER(lsflag, slptime);
659 
660 		turnstile_block(ts, TS_WRITER_Q, mtx, &mutex_syncobj);
661 
662 		LOCKSTAT_STOP_TIMER(lsflag, slptime);
663 		LOCKSTAT_COUNT(slpcnt, 1);
664 
665 		owner = mtx->mtx_owner;
666 	}
667 	KPREEMPT_ENABLE(curlwp);
668 
669 	LOCKSTAT_EVENT(lsflag, mtx, LB_ADAPTIVE_MUTEX | LB_SLEEP1,
670 	    slpcnt, slptime);
671 	LOCKSTAT_EVENT(lsflag, mtx, LB_ADAPTIVE_MUTEX | LB_SPIN,
672 	    spincnt, spintime);
673 	LOCKSTAT_EXIT(lsflag);
674 
675 	MUTEX_DASSERT(mtx, MUTEX_OWNER(mtx->mtx_owner) == curthread);
676 	MUTEX_LOCKED(mtx);
677 }
678 
679 /*
680  * mutex_vector_exit:
681  *
682  *	Support routine for mutex_exit() that handles all cases.
683  */
684 void
685 mutex_vector_exit(kmutex_t *mtx)
686 {
687 	turnstile_t *ts;
688 	uintptr_t curthread;
689 
690 	if (MUTEX_SPIN_P(mtx)) {
691 #ifdef FULL
692 		if (__predict_false(!__SIMPLELOCK_LOCKED_P(&mtx->mtx_lock))) {
693 			if (panicstr != NULL)
694 				return;
695 			MUTEX_ABORT(mtx, "exiting unheld spin mutex");
696 		}
697 		MUTEX_UNLOCKED(mtx);
698 		__cpu_simple_unlock(&mtx->mtx_lock);
699 #endif
700 		MUTEX_SPIN_SPLRESTORE(mtx);
701 		return;
702 	}
703 
704 	if (__predict_false((uintptr_t)panicstr | cold)) {
705 		MUTEX_UNLOCKED(mtx);
706 		MUTEX_RELEASE(mtx);
707 		return;
708 	}
709 
710 	curthread = (uintptr_t)curlwp;
711 	MUTEX_DASSERT(mtx, curthread != 0);
712 	MUTEX_ASSERT(mtx, MUTEX_OWNER(mtx->mtx_owner) == curthread);
713 	MUTEX_UNLOCKED(mtx);
714 #if !defined(LOCKDEBUG)
715 	__USE(curthread);
716 #endif
717 
718 #ifdef LOCKDEBUG
719 	/*
720 	 * Avoid having to take the turnstile chain lock every time
721 	 * around.  Raise the priority level to splhigh() in order
722 	 * to disable preemption and so make the following atomic.
723 	 */
724 	{
725 		int s = splhigh();
726 		if (!MUTEX_HAS_WAITERS(mtx)) {
727 			MUTEX_RELEASE(mtx);
728 			splx(s);
729 			return;
730 		}
731 		splx(s);
732 	}
733 #endif
734 
735 	/*
736 	 * Get this lock's turnstile.  This gets the interlock on
737 	 * the sleep queue.  Once we have that, we can clear the
738 	 * lock.  If there was no turnstile for the lock, there
739 	 * were no waiters remaining.
740 	 */
741 	ts = turnstile_lookup(mtx);
742 
743 	if (ts == NULL) {
744 		MUTEX_RELEASE(mtx);
745 		turnstile_exit(mtx);
746 	} else {
747 		MUTEX_RELEASE(mtx);
748 		turnstile_wakeup(ts, TS_WRITER_Q,
749 		    TS_WAITERS(ts, TS_WRITER_Q), NULL);
750 	}
751 }
752 
753 #ifndef __HAVE_SIMPLE_MUTEXES
754 /*
755  * mutex_wakeup:
756  *
757  *	Support routine for mutex_exit() that wakes up all waiters.
758  *	We assume that the mutex has been released, but it need not
759  *	be.
760  */
761 void
762 mutex_wakeup(kmutex_t *mtx)
763 {
764 	turnstile_t *ts;
765 
766 	ts = turnstile_lookup(mtx);
767 	if (ts == NULL) {
768 		turnstile_exit(mtx);
769 		return;
770 	}
771 	MUTEX_CLEAR_WAITERS(mtx);
772 	turnstile_wakeup(ts, TS_WRITER_Q, TS_WAITERS(ts, TS_WRITER_Q), NULL);
773 }
774 #endif	/* !__HAVE_SIMPLE_MUTEXES */
775 
776 /*
777  * mutex_owned:
778  *
779  *	Return true if the current LWP (adaptive) or CPU (spin)
780  *	holds the mutex.
781  */
782 int
783 mutex_owned(kmutex_t *mtx)
784 {
785 
786 	if (mtx == NULL)
787 		return 0;
788 	if (MUTEX_ADAPTIVE_P(mtx))
789 		return MUTEX_OWNER(mtx->mtx_owner) == (uintptr_t)curlwp;
790 #ifdef FULL
791 	return __SIMPLELOCK_LOCKED_P(&mtx->mtx_lock);
792 #else
793 	return 1;
794 #endif
795 }
796 
797 /*
798  * mutex_owner:
799  *
800  *	Return the current owner of an adaptive mutex.  Used for
801  *	priority inheritance.
802  */
803 lwp_t *
804 mutex_owner(kmutex_t *mtx)
805 {
806 
807 	MUTEX_ASSERT(mtx, MUTEX_ADAPTIVE_P(mtx));
808 	return (struct lwp *)MUTEX_OWNER(mtx->mtx_owner);
809 }
810 
811 /*
812  * mutex_tryenter:
813  *
814  *	Try to acquire the mutex; return non-zero if we did.
815  */
816 int
817 mutex_tryenter(kmutex_t *mtx)
818 {
819 	uintptr_t curthread;
820 
821 	/*
822 	 * Handle spin mutexes.
823 	 */
824 	if (MUTEX_SPIN_P(mtx)) {
825 		MUTEX_SPIN_SPLRAISE(mtx);
826 #ifdef FULL
827 		if (__cpu_simple_lock_try(&mtx->mtx_lock)) {
828 			MUTEX_WANTLOCK(mtx);
829 			MUTEX_LOCKED(mtx);
830 			return 1;
831 		}
832 		MUTEX_SPIN_SPLRESTORE(mtx);
833 #else
834 		MUTEX_WANTLOCK(mtx);
835 		MUTEX_LOCKED(mtx);
836 		return 1;
837 #endif
838 	} else {
839 		curthread = (uintptr_t)curlwp;
840 		MUTEX_ASSERT(mtx, curthread != 0);
841 		if (MUTEX_ACQUIRE(mtx, curthread)) {
842 			MUTEX_WANTLOCK(mtx);
843 			MUTEX_LOCKED(mtx);
844 			MUTEX_DASSERT(mtx,
845 			    MUTEX_OWNER(mtx->mtx_owner) == curthread);
846 			return 1;
847 		}
848 	}
849 
850 	return 0;
851 }
852 
853 #if defined(__HAVE_SPIN_MUTEX_STUBS) || defined(FULL)
854 /*
855  * mutex_spin_retry:
856  *
857  *	Support routine for mutex_spin_enter().  Assumes that the caller
858  *	has already raised the SPL, and adjusted counters.
859  */
860 void
861 mutex_spin_retry(kmutex_t *mtx)
862 {
863 #ifdef MULTIPROCESSOR
864 	u_int count;
865 	LOCKSTAT_TIMER(spintime);
866 	LOCKSTAT_FLAG(lsflag);
867 #ifdef LOCKDEBUG
868 	u_int spins = 0;
869 #endif	/* LOCKDEBUG */
870 
871 	MUTEX_WANTLOCK(mtx);
872 
873 	LOCKSTAT_ENTER(lsflag);
874 	LOCKSTAT_START_TIMER(lsflag, spintime);
875 	count = SPINLOCK_BACKOFF_MIN;
876 
877 	/*
878 	 * Spin testing the lock word and do exponential backoff
879 	 * to reduce cache line ping-ponging between CPUs.
880 	 */
881 	do {
882 		if (panicstr != NULL)
883 			break;
884 		while (__SIMPLELOCK_LOCKED_P(&mtx->mtx_lock)) {
885 			SPINLOCK_BACKOFF(count);
886 #ifdef LOCKDEBUG
887 			if (SPINLOCK_SPINOUT(spins))
888 				MUTEX_ABORT(mtx, "spinout");
889 #endif	/* LOCKDEBUG */
890 		}
891 	} while (!__cpu_simple_lock_try(&mtx->mtx_lock));
892 
893 	LOCKSTAT_STOP_TIMER(lsflag, spintime);
894 	LOCKSTAT_EVENT(lsflag, mtx, LB_SPIN_MUTEX | LB_SPIN, 1, spintime);
895 	LOCKSTAT_EXIT(lsflag);
896 
897 	MUTEX_LOCKED(mtx);
898 #else	/* MULTIPROCESSOR */
899 	MUTEX_ABORT(mtx, "locking against myself");
900 #endif	/* MULTIPROCESSOR */
901 }
902 #endif	/* defined(__HAVE_SPIN_MUTEX_STUBS) || defined(FULL) */
903