xref: /netbsd-src/sys/kern/kern_mutex.c (revision 267197ec1eebfcb9810ea27a89625b6ddf68e3e7)
1 /*	$NetBSD: kern_mutex.c,v 1.30 2008/01/05 12:31:39 ad Exp $	*/
2 
3 /*-
4  * Copyright (c) 2002, 2006, 2007, 2008 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Jason R. Thorpe and Andrew Doran.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. All advertising materials mentioning features or use of this software
19  *    must display the following acknowledgement:
20  *	This product includes software developed by the NetBSD
21  *	Foundation, Inc. and its contributors.
22  * 4. Neither the name of The NetBSD Foundation nor the names of its
23  *    contributors may be used to endorse or promote products derived
24  *    from this software without specific prior written permission.
25  *
26  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36  * POSSIBILITY OF SUCH DAMAGE.
37  */
38 
39 /*
40  * Kernel mutex implementation, modeled after those found in Solaris,
41  * a description of which can be found in:
42  *
43  *	Solaris Internals: Core Kernel Architecture, Jim Mauro and
44  *	    Richard McDougall.
45  */
46 
47 #define	__MUTEX_PRIVATE
48 
49 #include <sys/cdefs.h>
50 __KERNEL_RCSID(0, "$NetBSD: kern_mutex.c,v 1.30 2008/01/05 12:31:39 ad Exp $");
51 
52 #include "opt_multiprocessor.h"
53 
54 #include <sys/param.h>
55 #include <sys/proc.h>
56 #include <sys/mutex.h>
57 #include <sys/sched.h>
58 #include <sys/sleepq.h>
59 #include <sys/systm.h>
60 #include <sys/lockdebug.h>
61 #include <sys/kernel.h>
62 #include <sys/atomic.h>
63 #include <sys/intr.h>
64 #include <sys/lock.h>
65 
66 #include <dev/lockstat.h>
67 
68 #include <machine/lock.h>
69 
70 /*
71  * When not running a debug kernel, spin mutexes are not much
72  * more than an splraiseipl() and splx() pair.
73  */
74 
75 #if defined(DIAGNOSTIC) || defined(MULTIPROCESSOR) || defined(LOCKDEBUG)
76 #define	FULL
77 #endif
78 
79 /*
80  * Debugging support.
81  */
82 
83 #define	MUTEX_WANTLOCK(mtx)					\
84     LOCKDEBUG_WANTLOCK(MUTEX_DEBUG_P(mtx), (mtx),		\
85         (uintptr_t)__builtin_return_address(0), 0)
86 #define	MUTEX_LOCKED(mtx)					\
87     LOCKDEBUG_LOCKED(MUTEX_DEBUG_P(mtx), (mtx),			\
88         (uintptr_t)__builtin_return_address(0), 0)
89 #define	MUTEX_UNLOCKED(mtx)					\
90     LOCKDEBUG_UNLOCKED(MUTEX_DEBUG_P(mtx), (mtx),		\
91         (uintptr_t)__builtin_return_address(0), 0)
92 #define	MUTEX_ABORT(mtx, msg)					\
93     mutex_abort(mtx, __func__, msg)
94 
95 #if defined(LOCKDEBUG)
96 
97 #define	MUTEX_DASSERT(mtx, cond)				\
98 do {								\
99 	if (!(cond))						\
100 		MUTEX_ABORT(mtx, "assertion failed: " #cond);	\
101 } while (/* CONSTCOND */ 0);
102 
103 #else	/* LOCKDEBUG */
104 
105 #define	MUTEX_DASSERT(mtx, cond)	/* nothing */
106 
107 #endif /* LOCKDEBUG */
108 
109 #if defined(DIAGNOSTIC)
110 
111 #define	MUTEX_ASSERT(mtx, cond)					\
112 do {								\
113 	if (!(cond))						\
114 		MUTEX_ABORT(mtx, "assertion failed: " #cond);	\
115 } while (/* CONSTCOND */ 0)
116 
117 #else	/* DIAGNOSTIC */
118 
119 #define	MUTEX_ASSERT(mtx, cond)	/* nothing */
120 
121 #endif	/* DIAGNOSTIC */
122 
123 /*
124  * Spin mutex SPL save / restore.
125  */
126 #ifndef MUTEX_COUNT_BIAS
127 #define	MUTEX_COUNT_BIAS	0
128 #endif
129 
130 #define	MUTEX_SPIN_SPLRAISE(mtx)					\
131 do {									\
132 	struct cpu_info *x__ci = curcpu();				\
133 	int x__cnt, s;							\
134 	x__cnt = x__ci->ci_mtx_count--;					\
135 	s = splraiseipl(mtx->mtx_ipl);					\
136 	if (x__cnt == MUTEX_COUNT_BIAS)					\
137 		x__ci->ci_mtx_oldspl = (s);				\
138 } while (/* CONSTCOND */ 0)
139 
140 #define	MUTEX_SPIN_SPLRESTORE(mtx)					\
141 do {									\
142 	struct cpu_info *x__ci = curcpu();				\
143 	int s = x__ci->ci_mtx_oldspl;					\
144 	__insn_barrier();						\
145 	if (++(x__ci->ci_mtx_count) == MUTEX_COUNT_BIAS)		\
146 		splx(s);						\
147 } while (/* CONSTCOND */ 0)
148 
149 /*
150  * For architectures that provide 'simple' mutexes: they provide a
151  * CAS function that is either MP-safe, or does not need to be MP
152  * safe.  Adaptive mutexes on these architectures do not require an
153  * additional interlock.
154  */
155 
156 #ifdef __HAVE_SIMPLE_MUTEXES
157 
158 #define	MUTEX_OWNER(owner)						\
159 	(owner & MUTEX_THREAD)
160 #define	MUTEX_HAS_WAITERS(mtx)						\
161 	(((int)(mtx)->mtx_owner & MUTEX_BIT_WAITERS) != 0)
162 
163 #define	MUTEX_INITIALIZE_ADAPTIVE(mtx, dodebug)				\
164 do {									\
165 	if (dodebug)							\
166 		(mtx)->mtx_owner |= MUTEX_BIT_DEBUG;			\
167 } while (/* CONSTCOND */ 0);
168 
169 #define	MUTEX_INITIALIZE_SPIN(mtx, dodebug, ipl)			\
170 do {									\
171 	(mtx)->mtx_owner = MUTEX_BIT_SPIN;				\
172 	if (dodebug)							\
173 		(mtx)->mtx_owner |= MUTEX_BIT_DEBUG;			\
174 	(mtx)->mtx_ipl = makeiplcookie((ipl));				\
175 	__cpu_simple_lock_init(&(mtx)->mtx_lock);			\
176 } while (/* CONSTCOND */ 0)
177 
178 #define	MUTEX_DESTROY(mtx)						\
179 do {									\
180 	(mtx)->mtx_owner = MUTEX_THREAD;				\
181 } while (/* CONSTCOND */ 0);
182 
183 #define	MUTEX_SPIN_P(mtx)		\
184     (((mtx)->mtx_owner & MUTEX_BIT_SPIN) != 0)
185 #define	MUTEX_ADAPTIVE_P(mtx)		\
186     (((mtx)->mtx_owner & MUTEX_BIT_SPIN) == 0)
187 
188 #define	MUTEX_DEBUG_P(mtx)	(((mtx)->mtx_owner & MUTEX_BIT_DEBUG) != 0)
189 #if defined(LOCKDEBUG)
190 #define	MUTEX_OWNED(owner)		(((owner) & ~MUTEX_BIT_DEBUG) != 0)
191 #define	MUTEX_INHERITDEBUG(new, old)	(new) |= (old) & MUTEX_BIT_DEBUG
192 #else /* defined(LOCKDEBUG) */
193 #define	MUTEX_OWNED(owner)		((owner) != 0)
194 #define	MUTEX_INHERITDEBUG(new, old)	/* nothing */
195 #endif /* defined(LOCKDEBUG) */
196 
197 static inline int
198 MUTEX_ACQUIRE(kmutex_t *mtx, uintptr_t curthread)
199 {
200 	int rv;
201 	uintptr_t old = 0;
202 	uintptr_t new = curthread;
203 
204 	MUTEX_INHERITDEBUG(old, mtx->mtx_owner);
205 	MUTEX_INHERITDEBUG(new, old);
206 	rv = MUTEX_CAS(&mtx->mtx_owner, old, new);
207 	MUTEX_RECEIVE(mtx);
208 	return rv;
209 }
210 
211 static inline int
212 MUTEX_SET_WAITERS(kmutex_t *mtx, uintptr_t owner)
213 {
214 	int rv;
215 	rv = MUTEX_CAS(&mtx->mtx_owner, owner, owner | MUTEX_BIT_WAITERS);
216 	MUTEX_RECEIVE(mtx);
217 	return rv;
218 }
219 
220 static inline void
221 MUTEX_RELEASE(kmutex_t *mtx)
222 {
223 	uintptr_t new;
224 
225 	MUTEX_GIVE(mtx);
226 	new = 0;
227 	MUTEX_INHERITDEBUG(new, mtx->mtx_owner);
228 	mtx->mtx_owner = new;
229 }
230 
231 static inline void
232 MUTEX_CLEAR_WAITERS(kmutex_t *mtx)
233 {
234 	/* nothing */
235 }
236 #endif	/* __HAVE_SIMPLE_MUTEXES */
237 
238 /*
239  * Patch in stubs via strong alias where they are not available.
240  */
241 
242 #if defined(LOCKDEBUG)
243 #undef	__HAVE_MUTEX_STUBS
244 #undef	__HAVE_SPIN_MUTEX_STUBS
245 #endif
246 
247 #ifndef __HAVE_MUTEX_STUBS
248 __strong_alias(mutex_enter,mutex_vector_enter);
249 __strong_alias(mutex_exit,mutex_vector_exit);
250 #endif
251 
252 #ifndef __HAVE_SPIN_MUTEX_STUBS
253 __strong_alias(mutex_spin_enter,mutex_vector_enter);
254 __strong_alias(mutex_spin_exit,mutex_vector_exit);
255 #endif
256 
257 void	mutex_abort(kmutex_t *, const char *, const char *);
258 void	mutex_dump(volatile void *);
259 int	mutex_onproc(uintptr_t, struct cpu_info **);
260 
261 lockops_t mutex_spin_lockops = {
262 	"Mutex",
263 	0,
264 	mutex_dump
265 };
266 
267 lockops_t mutex_adaptive_lockops = {
268 	"Mutex",
269 	1,
270 	mutex_dump
271 };
272 
273 syncobj_t mutex_syncobj = {
274 	SOBJ_SLEEPQ_SORTED,
275 	turnstile_unsleep,
276 	turnstile_changepri,
277 	sleepq_lendpri,
278 	(void *)mutex_owner,
279 };
280 
281 /*
282  * mutex_dump:
283  *
284  *	Dump the contents of a mutex structure.
285  */
286 void
287 mutex_dump(volatile void *cookie)
288 {
289 	volatile kmutex_t *mtx = cookie;
290 
291 	printf_nolog("owner field  : %#018lx wait/spin: %16d/%d\n",
292 	    (long)MUTEX_OWNER(mtx->mtx_owner), MUTEX_HAS_WAITERS(mtx),
293 	    MUTEX_SPIN_P(mtx));
294 }
295 
296 /*
297  * mutex_abort:
298  *
299  *	Dump information about an error and panic the system.  This
300  *	generates a lot of machine code in the DIAGNOSTIC case, so
301  *	we ask the compiler to not inline it.
302  */
303 
304 #if __GNUC_PREREQ__(3, 0)
305 __attribute ((noinline)) __attribute ((noreturn))
306 #endif
307 void
308 mutex_abort(kmutex_t *mtx, const char *func, const char *msg)
309 {
310 
311 	LOCKDEBUG_ABORT(mtx, (MUTEX_SPIN_P(mtx) ?
312 	    &mutex_spin_lockops : &mutex_adaptive_lockops), func, msg);
313 	/* NOTREACHED */
314 }
315 
316 /*
317  * mutex_init:
318  *
319  *	Initialize a mutex for use.  Note that adaptive mutexes are in
320  *	essence spin mutexes that can sleep to avoid deadlock and wasting
321  *	CPU time.  We can't easily provide a type of mutex that always
322  *	sleeps - see comments in mutex_vector_enter() about releasing
323  *	mutexes unlocked.
324  */
325 void
326 mutex_init(kmutex_t *mtx, kmutex_type_t type, int ipl)
327 {
328 	bool dodebug;
329 
330 	memset(mtx, 0, sizeof(*mtx));
331 
332 	switch (type) {
333 	case MUTEX_ADAPTIVE:
334 		KASSERT(ipl == IPL_NONE);
335 		break;
336 	case MUTEX_DEFAULT:
337 	case MUTEX_DRIVER:
338 		if (ipl == IPL_NONE || ipl == IPL_SOFTCLOCK ||
339 		    ipl == IPL_SOFTBIO || ipl == IPL_SOFTNET ||
340 		    ipl == IPL_SOFTSERIAL) {
341 			type = MUTEX_ADAPTIVE;
342 		} else {
343 			type = MUTEX_SPIN;
344 		}
345 		break;
346 	default:
347 		break;
348 	}
349 
350 	switch (type) {
351 	case MUTEX_NODEBUG:
352 		dodebug = LOCKDEBUG_ALLOC(mtx, NULL,
353 		    (uintptr_t)__builtin_return_address(0));
354 		MUTEX_INITIALIZE_SPIN(mtx, dodebug, ipl);
355 		break;
356 	case MUTEX_ADAPTIVE:
357 		dodebug = LOCKDEBUG_ALLOC(mtx, &mutex_adaptive_lockops,
358 		    (uintptr_t)__builtin_return_address(0));
359 		MUTEX_INITIALIZE_ADAPTIVE(mtx, dodebug);
360 		break;
361 	case MUTEX_SPIN:
362 		dodebug = LOCKDEBUG_ALLOC(mtx, &mutex_spin_lockops,
363 		    (uintptr_t)__builtin_return_address(0));
364 		MUTEX_INITIALIZE_SPIN(mtx, dodebug, ipl);
365 		break;
366 	default:
367 		panic("mutex_init: impossible type");
368 		break;
369 	}
370 }
371 
372 /*
373  * mutex_destroy:
374  *
375  *	Tear down a mutex.
376  */
377 void
378 mutex_destroy(kmutex_t *mtx)
379 {
380 
381 	if (MUTEX_ADAPTIVE_P(mtx)) {
382 		MUTEX_ASSERT(mtx, !MUTEX_OWNED(mtx->mtx_owner) &&
383 		    !MUTEX_HAS_WAITERS(mtx));
384 	} else {
385 		MUTEX_ASSERT(mtx, !__SIMPLELOCK_LOCKED_P(&mtx->mtx_lock));
386 	}
387 
388 	LOCKDEBUG_FREE(MUTEX_DEBUG_P(mtx), mtx);
389 	MUTEX_DESTROY(mtx);
390 }
391 
392 /*
393  * mutex_onproc:
394  *
395  *	Return true if an adaptive mutex owner is running on a CPU in the
396  *	system.  If the target is waiting on the kernel big lock, then we
397  *	must release it.  This is necessary to avoid deadlock.
398  *
399  *	Note that we can't use the mutex owner field as an LWP pointer.  We
400  *	don't have full control over the timing of our execution, and so the
401  *	pointer could be completely invalid by the time we dereference it.
402  */
403 #ifdef MULTIPROCESSOR
404 int
405 mutex_onproc(uintptr_t owner, struct cpu_info **cip)
406 {
407 	CPU_INFO_ITERATOR cii;
408 	struct cpu_info *ci;
409 	struct lwp *l;
410 
411 	if (!MUTEX_OWNED(owner))
412 		return 0;
413 	l = (struct lwp *)MUTEX_OWNER(owner);
414 
415 	/* See if the target is running on a CPU somewhere. */
416 	if ((ci = *cip) != NULL && ci->ci_curlwp == l)
417 		goto run;
418 	for (CPU_INFO_FOREACH(cii, ci))
419 		if (ci->ci_curlwp == l)
420 			goto run;
421 
422 	/* No: it may be safe to block now. */
423 	*cip = NULL;
424 	return 0;
425 
426  run:
427  	/* Target is running; do we need to block? */
428  	*cip = ci;
429 	return ci->ci_biglock_wanted != l;
430 }
431 #endif	/* MULTIPROCESSOR */
432 
433 /*
434  * mutex_vector_enter:
435  *
436  *	Support routine for mutex_enter() that must handles all cases.  In
437  *	the LOCKDEBUG case, mutex_enter() is always aliased here, even if
438  *	fast-path stubs are available.  If an mutex_spin_enter() stub is
439  *	not available, then it is also aliased directly here.
440  */
441 void
442 mutex_vector_enter(kmutex_t *mtx)
443 {
444 	uintptr_t owner, curthread;
445 	turnstile_t *ts;
446 #ifdef MULTIPROCESSOR
447 	struct cpu_info *ci = NULL;
448 	u_int count;
449 #endif
450 	LOCKSTAT_COUNTER(spincnt);
451 	LOCKSTAT_COUNTER(slpcnt);
452 	LOCKSTAT_TIMER(spintime);
453 	LOCKSTAT_TIMER(slptime);
454 	LOCKSTAT_FLAG(lsflag);
455 
456 	/*
457 	 * Handle spin mutexes.
458 	 */
459 	if (MUTEX_SPIN_P(mtx)) {
460 #if defined(LOCKDEBUG) && defined(MULTIPROCESSOR)
461 		u_int spins = 0;
462 #endif
463 		MUTEX_SPIN_SPLRAISE(mtx);
464 		MUTEX_WANTLOCK(mtx);
465 #ifdef FULL
466 		if (__cpu_simple_lock_try(&mtx->mtx_lock)) {
467 			MUTEX_LOCKED(mtx);
468 			return;
469 		}
470 #if !defined(MULTIPROCESSOR)
471 		MUTEX_ABORT(mtx, "locking against myself");
472 #else /* !MULTIPROCESSOR */
473 
474 		LOCKSTAT_ENTER(lsflag);
475 		LOCKSTAT_START_TIMER(lsflag, spintime);
476 		count = SPINLOCK_BACKOFF_MIN;
477 
478 		/*
479 		 * Spin testing the lock word and do exponential backoff
480 		 * to reduce cache line ping-ponging between CPUs.
481 		 */
482 		do {
483 			if (panicstr != NULL)
484 				break;
485 			while (__SIMPLELOCK_LOCKED_P(&mtx->mtx_lock)) {
486 				SPINLOCK_BACKOFF(count);
487 #ifdef LOCKDEBUG
488 				if (SPINLOCK_SPINOUT(spins))
489 					MUTEX_ABORT(mtx, "spinout");
490 #endif	/* LOCKDEBUG */
491 			}
492 		} while (!__cpu_simple_lock_try(&mtx->mtx_lock));
493 
494 		if (count != SPINLOCK_BACKOFF_MIN) {
495 			LOCKSTAT_STOP_TIMER(lsflag, spintime);
496 			LOCKSTAT_EVENT(lsflag, mtx,
497 			    LB_SPIN_MUTEX | LB_SPIN, 1, spintime);
498 		}
499 		LOCKSTAT_EXIT(lsflag);
500 #endif	/* !MULTIPROCESSOR */
501 #endif	/* FULL */
502 		MUTEX_LOCKED(mtx);
503 		return;
504 	}
505 
506 	curthread = (uintptr_t)curlwp;
507 
508 	MUTEX_DASSERT(mtx, MUTEX_ADAPTIVE_P(mtx));
509 	MUTEX_ASSERT(mtx, curthread != 0);
510 	MUTEX_WANTLOCK(mtx);
511 
512 	if (panicstr == NULL) {
513 		LOCKDEBUG_BARRIER(&kernel_lock, 1);
514 	}
515 
516 	LOCKSTAT_ENTER(lsflag);
517 
518 	/*
519 	 * Adaptive mutex; spin trying to acquire the mutex.  If we
520 	 * determine that the owner is not running on a processor,
521 	 * then we stop spinning, and sleep instead.
522 	 */
523 	for (;;) {
524 		owner = mtx->mtx_owner;
525 		if (!MUTEX_OWNED(owner)) {
526 			/*
527 			 * Mutex owner clear could mean two things:
528 			 *
529 			 *	* The mutex has been released.
530 			 *	* The owner field hasn't been set yet.
531 			 *
532 			 * Try to acquire it again.  If that fails,
533 			 * we'll just loop again.
534 			 */
535 			if (MUTEX_ACQUIRE(mtx, curthread))
536 				break;
537 			continue;
538 		}
539 
540 		if (panicstr != NULL)
541 			return;
542 		if (MUTEX_OWNER(owner) == curthread)
543 			MUTEX_ABORT(mtx, "locking against myself");
544 
545 #ifdef MULTIPROCESSOR
546 		/*
547 		 * Check to see if the owner is running on a processor.
548 		 * If so, then we should just spin, as the owner will
549 		 * likely release the lock very soon.
550 		 */
551 		if (mutex_onproc(owner, &ci)) {
552 			LOCKSTAT_START_TIMER(lsflag, spintime);
553 			count = SPINLOCK_BACKOFF_MIN;
554 			for (;;) {
555 				owner = mtx->mtx_owner;
556 				if (!mutex_onproc(owner, &ci))
557 					break;
558 				SPINLOCK_BACKOFF(count);
559 			}
560 			LOCKSTAT_STOP_TIMER(lsflag, spintime);
561 			LOCKSTAT_COUNT(spincnt, 1);
562 			if (!MUTEX_OWNED(owner))
563 				continue;
564 		}
565 #endif
566 
567 		ts = turnstile_lookup(mtx);
568 
569 		/*
570 		 * Once we have the turnstile chain interlock, mark the
571 		 * mutex has having waiters.  If that fails, spin again:
572 		 * chances are that the mutex has been released.
573 		 */
574 		if (!MUTEX_SET_WAITERS(mtx, owner)) {
575 			turnstile_exit(mtx);
576 			continue;
577 		}
578 
579 #ifdef MULTIPROCESSOR
580 		/*
581 		 * mutex_exit() is permitted to release the mutex without
582 		 * any interlocking instructions, and the following can
583 		 * occur as a result:
584 		 *
585 		 *  CPU 1: MUTEX_SET_WAITERS()      CPU2: mutex_exit()
586 		 * ---------------------------- ----------------------------
587 		 *		..		    acquire cache line
588 		 *		..                   test for waiters
589 		 *	acquire cache line    <-      lose cache line
590 		 *	 lock cache line	           ..
591 		 *     verify mutex is held                ..
592 		 *	    set waiters  	           ..
593 		 *	 unlock cache line		   ..
594 		 *	  lose cache line     ->    acquire cache line
595 		 *		..	          clear lock word, waiters
596 		 *	  return success
597 		 *
598 		 * There is a another race that can occur: a third CPU could
599 		 * acquire the mutex as soon as it is released.  Since
600 		 * adaptive mutexes are primarily spin mutexes, this is not
601 		 * something that we need to worry about too much.  What we
602 		 * do need to ensure is that the waiters bit gets set.
603 		 *
604 		 * To allow the unlocked release, we need to make some
605 		 * assumptions here:
606 		 *
607 		 * o Release is the only non-atomic/unlocked operation
608 		 *   that can be performed on the mutex.  (It must still
609 		 *   be atomic on the local CPU, e.g. in case interrupted
610 		 *   or preempted).
611 		 *
612 		 * o At any given time, MUTEX_SET_WAITERS() can only ever
613 		 *   be in progress on one CPU in the system - guaranteed
614 		 *   by the turnstile chain lock.
615 		 *
616 		 * o No other operations other than MUTEX_SET_WAITERS()
617 		 *   and release can modify a mutex with a non-zero
618 		 *   owner field.
619 		 *
620 		 * o The result of a successful MUTEX_SET_WAITERS() call
621 		 *   is an unbuffered write that is immediately visible
622 		 *   to all other processors in the system.
623 		 *
624 		 * o If the holding LWP switches away, it posts a store
625 		 *   fence before changing curlwp, ensuring that any
626 		 *   overwrite of the mutex waiters flag by mutex_exit()
627 		 *   completes before the modification of curlwp becomes
628 		 *   visible to this CPU.
629 		 *
630 		 * o mi_switch() posts a store fence before setting curlwp
631 		 *   and before resuming execution of an LWP.
632 		 *
633 		 * o _kernel_lock() posts a store fence before setting
634 		 *   curcpu()->ci_biglock_wanted, and after clearing it.
635 		 *   This ensures that any overwrite of the mutex waiters
636 		 *   flag by mutex_exit() completes before the modification
637 		 *   of ci_biglock_wanted becomes visible.
638 		 *
639 		 * We now post a read memory barrier (after setting the
640 		 * waiters field) and check the lock holder's status again.
641 		 * Some of the possible outcomes (not an exhaustive list):
642 		 *
643 		 * 1. The onproc check returns true: the holding LWP is
644 		 *    running again.  The lock may be released soon and
645 		 *    we should spin.  Importantly, we can't trust the
646 		 *    value of the waiters flag.
647 		 *
648 		 * 2. The onproc check returns false: the holding LWP is
649 		 *    not running.  We now have the oppertunity to check
650 		 *    if mutex_exit() has blatted the modifications made
651 		 *    by MUTEX_SET_WAITERS().
652 		 *
653 		 * 3. The onproc check returns false: the holding LWP may
654 		 *    or may not be running.  It has context switched at
655 		 *    some point during our check.  Again, we have the
656 		 *    chance to see if the waiters bit is still set or
657 		 *    has been overwritten.
658 		 *
659 		 * 4. The onproc check returns false: the holding LWP is
660 		 *    running on a CPU, but wants the big lock.  It's OK
661 		 *    to check the waiters field in this case.
662 		 *
663 		 * 5. The has-waiters check fails: the mutex has been
664 		 *    released, the waiters flag cleared and another LWP
665 		 *    now owns the mutex.
666 		 *
667 		 * 6. The has-waiters check fails: the mutex has been
668 		 *    released.
669 		 *
670 		 * If the waiters bit is not set it's unsafe to go asleep,
671 		 * as we might never be awoken.
672 		 */
673 		if ((membar_consumer(), mutex_onproc(owner, &ci)) ||
674 		    (membar_consumer(), !MUTEX_HAS_WAITERS(mtx))) {
675 			turnstile_exit(mtx);
676 			continue;
677 		}
678 #endif	/* MULTIPROCESSOR */
679 
680 		LOCKSTAT_START_TIMER(lsflag, slptime);
681 
682 		turnstile_block(ts, TS_WRITER_Q, mtx, &mutex_syncobj);
683 
684 		LOCKSTAT_STOP_TIMER(lsflag, slptime);
685 		LOCKSTAT_COUNT(slpcnt, 1);
686 	}
687 
688 	LOCKSTAT_EVENT(lsflag, mtx, LB_ADAPTIVE_MUTEX | LB_SLEEP1,
689 	    slpcnt, slptime);
690 	LOCKSTAT_EVENT(lsflag, mtx, LB_ADAPTIVE_MUTEX | LB_SPIN,
691 	    spincnt, spintime);
692 	LOCKSTAT_EXIT(lsflag);
693 
694 	MUTEX_DASSERT(mtx, MUTEX_OWNER(mtx->mtx_owner) == curthread);
695 	MUTEX_LOCKED(mtx);
696 }
697 
698 /*
699  * mutex_vector_exit:
700  *
701  *	Support routine for mutex_exit() that handles all cases.
702  */
703 void
704 mutex_vector_exit(kmutex_t *mtx)
705 {
706 	turnstile_t *ts;
707 	uintptr_t curthread;
708 
709 	if (MUTEX_SPIN_P(mtx)) {
710 #ifdef FULL
711 		if (!__SIMPLELOCK_LOCKED_P(&mtx->mtx_lock))
712 			MUTEX_ABORT(mtx, "exiting unheld spin mutex");
713 		MUTEX_UNLOCKED(mtx);
714 		__cpu_simple_unlock(&mtx->mtx_lock);
715 #endif
716 		MUTEX_SPIN_SPLRESTORE(mtx);
717 		return;
718 	}
719 
720 	if (__predict_false((uintptr_t)panicstr | cold)) {
721 		MUTEX_UNLOCKED(mtx);
722 		MUTEX_RELEASE(mtx);
723 		return;
724 	}
725 
726 	curthread = (uintptr_t)curlwp;
727 	MUTEX_DASSERT(mtx, curthread != 0);
728 	MUTEX_ASSERT(mtx, MUTEX_OWNER(mtx->mtx_owner) == curthread);
729 	MUTEX_UNLOCKED(mtx);
730 
731 #ifdef LOCKDEBUG
732 	/*
733 	 * Avoid having to take the turnstile chain lock every time
734 	 * around.  Raise the priority level to splhigh() in order
735 	 * to disable preemption and so make the following atomic.
736 	 */
737 	{
738 		int s = splhigh();
739 		if (!MUTEX_HAS_WAITERS(mtx)) {
740 			MUTEX_RELEASE(mtx);
741 			splx(s);
742 			return;
743 		}
744 		splx(s);
745 	}
746 #endif
747 
748 	/*
749 	 * Get this lock's turnstile.  This gets the interlock on
750 	 * the sleep queue.  Once we have that, we can clear the
751 	 * lock.  If there was no turnstile for the lock, there
752 	 * were no waiters remaining.
753 	 */
754 	ts = turnstile_lookup(mtx);
755 
756 	if (ts == NULL) {
757 		MUTEX_RELEASE(mtx);
758 		turnstile_exit(mtx);
759 	} else {
760 		MUTEX_RELEASE(mtx);
761 		turnstile_wakeup(ts, TS_WRITER_Q,
762 		    TS_WAITERS(ts, TS_WRITER_Q), NULL);
763 	}
764 }
765 
766 #ifndef __HAVE_SIMPLE_MUTEXES
767 /*
768  * mutex_wakeup:
769  *
770  *	Support routine for mutex_exit() that wakes up all waiters.
771  *	We assume that the mutex has been released, but it need not
772  *	be.
773  */
774 void
775 mutex_wakeup(kmutex_t *mtx)
776 {
777 	turnstile_t *ts;
778 
779 	ts = turnstile_lookup(mtx);
780 	if (ts == NULL) {
781 		turnstile_exit(mtx);
782 		return;
783 	}
784 	MUTEX_CLEAR_WAITERS(mtx);
785 	turnstile_wakeup(ts, TS_WRITER_Q, TS_WAITERS(ts, TS_WRITER_Q), NULL);
786 }
787 #endif	/* !__HAVE_SIMPLE_MUTEXES */
788 
789 /*
790  * mutex_owned:
791  *
792  *	Return true if the current LWP (adaptive) or CPU (spin)
793  *	holds the mutex.
794  */
795 int
796 mutex_owned(kmutex_t *mtx)
797 {
798 
799 	if (MUTEX_ADAPTIVE_P(mtx))
800 		return MUTEX_OWNER(mtx->mtx_owner) == (uintptr_t)curlwp;
801 #ifdef FULL
802 	return __SIMPLELOCK_LOCKED_P(&mtx->mtx_lock);
803 #else
804 	return 1;
805 #endif
806 }
807 
808 /*
809  * mutex_owner:
810  *
811  *	Return the current owner of an adaptive mutex.  Used for
812  *	priority inheritance.
813  */
814 lwp_t *
815 mutex_owner(kmutex_t *mtx)
816 {
817 
818 	MUTEX_ASSERT(mtx, MUTEX_ADAPTIVE_P(mtx));
819 	return (struct lwp *)MUTEX_OWNER(mtx->mtx_owner);
820 }
821 
822 /*
823  * mutex_tryenter:
824  *
825  *	Try to acquire the mutex; return non-zero if we did.
826  */
827 int
828 mutex_tryenter(kmutex_t *mtx)
829 {
830 	uintptr_t curthread;
831 
832 	/*
833 	 * Handle spin mutexes.
834 	 */
835 	if (MUTEX_SPIN_P(mtx)) {
836 		MUTEX_SPIN_SPLRAISE(mtx);
837 #ifdef FULL
838 		if (__cpu_simple_lock_try(&mtx->mtx_lock)) {
839 			MUTEX_WANTLOCK(mtx);
840 			MUTEX_LOCKED(mtx);
841 			return 1;
842 		}
843 		MUTEX_SPIN_SPLRESTORE(mtx);
844 #else
845 		MUTEX_WANTLOCK(mtx);
846 		MUTEX_LOCKED(mtx);
847 		return 1;
848 #endif
849 	} else {
850 		curthread = (uintptr_t)curlwp;
851 		MUTEX_ASSERT(mtx, curthread != 0);
852 		if (MUTEX_ACQUIRE(mtx, curthread)) {
853 			MUTEX_WANTLOCK(mtx);
854 			MUTEX_LOCKED(mtx);
855 			MUTEX_DASSERT(mtx,
856 			    MUTEX_OWNER(mtx->mtx_owner) == curthread);
857 			return 1;
858 		}
859 	}
860 
861 	return 0;
862 }
863 
864 #if defined(__HAVE_SPIN_MUTEX_STUBS) || defined(FULL)
865 /*
866  * mutex_spin_retry:
867  *
868  *	Support routine for mutex_spin_enter().  Assumes that the caller
869  *	has already raised the SPL, and adjusted counters.
870  */
871 void
872 mutex_spin_retry(kmutex_t *mtx)
873 {
874 #ifdef MULTIPROCESSOR
875 	u_int count;
876 	LOCKSTAT_TIMER(spintime);
877 	LOCKSTAT_FLAG(lsflag);
878 #ifdef LOCKDEBUG
879 	u_int spins = 0;
880 #endif	/* LOCKDEBUG */
881 
882 	MUTEX_WANTLOCK(mtx);
883 
884 	LOCKSTAT_ENTER(lsflag);
885 	LOCKSTAT_START_TIMER(lsflag, spintime);
886 	count = SPINLOCK_BACKOFF_MIN;
887 
888 	/*
889 	 * Spin testing the lock word and do exponential backoff
890 	 * to reduce cache line ping-ponging between CPUs.
891 	 */
892 	do {
893 		if (panicstr != NULL)
894 			break;
895 		while (__SIMPLELOCK_LOCKED_P(&mtx->mtx_lock)) {
896 			SPINLOCK_BACKOFF(count);
897 #ifdef LOCKDEBUG
898 			if (SPINLOCK_SPINOUT(spins))
899 				MUTEX_ABORT(mtx, "spinout");
900 #endif	/* LOCKDEBUG */
901 		}
902 	} while (!__cpu_simple_lock_try(&mtx->mtx_lock));
903 
904 	LOCKSTAT_STOP_TIMER(lsflag, spintime);
905 	LOCKSTAT_EVENT(lsflag, mtx, LB_SPIN_MUTEX | LB_SPIN, 1, spintime);
906 	LOCKSTAT_EXIT(lsflag);
907 
908 	MUTEX_LOCKED(mtx);
909 #else	/* MULTIPROCESSOR */
910 	MUTEX_ABORT(mtx, "locking against myself");
911 #endif	/* MULTIPROCESSOR */
912 }
913 #endif	/* defined(__HAVE_SPIN_MUTEX_STUBS) || defined(FULL) */
914