xref: /netbsd-src/sys/kern/kern_mutex.c (revision 0df165c04d0a9ca1adde9ed2b890344c937954a6)
1 /*	$NetBSD: kern_mutex.c,v 1.23 2007/11/21 10:19:10 yamt Exp $	*/
2 
3 /*-
4  * Copyright (c) 2002, 2006, 2007 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Jason R. Thorpe and Andrew Doran.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. All advertising materials mentioning features or use of this software
19  *    must display the following acknowledgement:
20  *	This product includes software developed by the NetBSD
21  *	Foundation, Inc. and its contributors.
22  * 4. Neither the name of The NetBSD Foundation nor the names of its
23  *    contributors may be used to endorse or promote products derived
24  *    from this software without specific prior written permission.
25  *
26  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36  * POSSIBILITY OF SUCH DAMAGE.
37  */
38 
39 /*
40  * Kernel mutex implementation, modeled after those found in Solaris,
41  * a description of which can be found in:
42  *
43  *	Solaris Internals: Core Kernel Architecture, Jim Mauro and
44  *	    Richard McDougall.
45  */
46 
47 #define	__MUTEX_PRIVATE
48 
49 #include <sys/cdefs.h>
50 __KERNEL_RCSID(0, "$NetBSD: kern_mutex.c,v 1.23 2007/11/21 10:19:10 yamt Exp $");
51 
52 #include "opt_multiprocessor.h"
53 
54 #include <sys/param.h>
55 #include <sys/proc.h>
56 #include <sys/mutex.h>
57 #include <sys/sched.h>
58 #include <sys/sleepq.h>
59 #include <sys/systm.h>
60 #include <sys/lockdebug.h>
61 #include <sys/kernel.h>
62 
63 #include <dev/lockstat.h>
64 
65 #include <sys/intr.h>
66 
67 /*
68  * When not running a debug kernel, spin mutexes are not much
69  * more than an splraiseipl() and splx() pair.
70  */
71 
72 #if defined(DIAGNOSTIC) || defined(MULTIPROCESSOR) || defined(LOCKDEBUG)
73 #define	FULL
74 #endif
75 
76 /*
77  * Debugging support.
78  */
79 
80 #define	MUTEX_WANTLOCK(mtx)					\
81     LOCKDEBUG_WANTLOCK(MUTEX_DEBUG_P(mtx), (mtx),		\
82         (uintptr_t)__builtin_return_address(0), 0)
83 #define	MUTEX_LOCKED(mtx)					\
84     LOCKDEBUG_LOCKED(MUTEX_DEBUG_P(mtx), (mtx),			\
85         (uintptr_t)__builtin_return_address(0), 0)
86 #define	MUTEX_UNLOCKED(mtx)					\
87     LOCKDEBUG_UNLOCKED(MUTEX_DEBUG_P(mtx), (mtx),		\
88         (uintptr_t)__builtin_return_address(0), 0)
89 #define	MUTEX_ABORT(mtx, msg)					\
90     mutex_abort(mtx, __func__, msg)
91 
92 #if defined(LOCKDEBUG)
93 
94 #define	MUTEX_DASSERT(mtx, cond)				\
95 do {								\
96 	if (!(cond))						\
97 		MUTEX_ABORT(mtx, "assertion failed: " #cond);	\
98 } while (/* CONSTCOND */ 0);
99 
100 #else	/* LOCKDEBUG */
101 
102 #define	MUTEX_DASSERT(mtx, cond)	/* nothing */
103 
104 #endif /* LOCKDEBUG */
105 
106 #if defined(DIAGNOSTIC)
107 
108 #define	MUTEX_ASSERT(mtx, cond)					\
109 do {								\
110 	if (!(cond))						\
111 		MUTEX_ABORT(mtx, "assertion failed: " #cond);	\
112 } while (/* CONSTCOND */ 0)
113 
114 #else	/* DIAGNOSTIC */
115 
116 #define	MUTEX_ASSERT(mtx, cond)	/* nothing */
117 
118 #endif	/* DIAGNOSTIC */
119 
120 /*
121  * Spin mutex SPL save / restore.
122  */
123 #ifndef MUTEX_COUNT_BIAS
124 #define	MUTEX_COUNT_BIAS	0
125 #endif
126 
127 #define	MUTEX_SPIN_SPLRAISE(mtx)					\
128 do {									\
129 	struct cpu_info *x__ci = curcpu();				\
130 	int x__cnt, s;							\
131 	x__cnt = x__ci->ci_mtx_count--;					\
132 	s = splraiseipl(mtx->mtx_ipl);					\
133 	if (x__cnt == MUTEX_COUNT_BIAS)					\
134 		x__ci->ci_mtx_oldspl = (s);				\
135 } while (/* CONSTCOND */ 0)
136 
137 #define	MUTEX_SPIN_SPLRESTORE(mtx)					\
138 do {									\
139 	struct cpu_info *x__ci = curcpu();				\
140 	int s = x__ci->ci_mtx_oldspl;					\
141 	__insn_barrier();						\
142 	if (++(x__ci->ci_mtx_count) == MUTEX_COUNT_BIAS)		\
143 		splx(s);						\
144 } while (/* CONSTCOND */ 0)
145 
146 /*
147  * For architectures that provide 'simple' mutexes: they provide a
148  * CAS function that is either MP-safe, or does not need to be MP
149  * safe.  Adaptive mutexes on these architectures do not require an
150  * additional interlock.
151  */
152 
153 #ifdef __HAVE_SIMPLE_MUTEXES
154 
155 #define	MUTEX_OWNER(owner)						\
156 	(owner & MUTEX_THREAD)
157 #define	MUTEX_HAS_WAITERS(mtx)						\
158 	(((int)(mtx)->mtx_owner & MUTEX_BIT_WAITERS) != 0)
159 
160 #define	MUTEX_INITIALIZE_ADAPTIVE(mtx, dodebug)				\
161 do {									\
162 	if (dodebug)							\
163 		(mtx)->mtx_owner |= MUTEX_BIT_DEBUG;			\
164 } while (/* CONSTCOND */ 0);
165 
166 #define	MUTEX_INITIALIZE_SPIN(mtx, dodebug, ipl)			\
167 do {									\
168 	(mtx)->mtx_owner = MUTEX_BIT_SPIN;				\
169 	if (dodebug)							\
170 		(mtx)->mtx_owner |= MUTEX_BIT_DEBUG;			\
171 	(mtx)->mtx_ipl = makeiplcookie((ipl));				\
172 	__cpu_simple_lock_init(&(mtx)->mtx_lock);			\
173 } while (/* CONSTCOND */ 0)
174 
175 #define	MUTEX_DESTROY(mtx)						\
176 do {									\
177 	(mtx)->mtx_owner = MUTEX_THREAD;				\
178 } while (/* CONSTCOND */ 0);
179 
180 #define	MUTEX_SPIN_P(mtx)		\
181     (((mtx)->mtx_owner & MUTEX_BIT_SPIN) != 0)
182 #define	MUTEX_ADAPTIVE_P(mtx)		\
183     (((mtx)->mtx_owner & MUTEX_BIT_SPIN) == 0)
184 
185 #define	MUTEX_DEBUG_P(mtx)	(((mtx)->mtx_owner & MUTEX_BIT_DEBUG) != 0)
186 #if defined(LOCKDEBUG)
187 #define	MUTEX_OWNED(owner)		(((owner) & ~MUTEX_BIT_DEBUG) != 0)
188 #define	MUTEX_INHERITDEBUG(new, old)	(new) |= (old) & MUTEX_BIT_DEBUG
189 #else /* defined(LOCKDEBUG) */
190 #define	MUTEX_OWNED(owner)		((owner) != 0)
191 #define	MUTEX_INHERITDEBUG(new, old)	/* nothing */
192 #endif /* defined(LOCKDEBUG) */
193 
194 static inline int
195 MUTEX_ACQUIRE(kmutex_t *mtx, uintptr_t curthread)
196 {
197 	int rv;
198 	uintptr_t old = 0;
199 	uintptr_t new = curthread;
200 
201 	MUTEX_INHERITDEBUG(old, mtx->mtx_owner);
202 	MUTEX_INHERITDEBUG(new, old);
203 	rv = MUTEX_CAS(&mtx->mtx_owner, old, new);
204 	MUTEX_RECEIVE(mtx);
205 	return rv;
206 }
207 
208 static inline int
209 MUTEX_SET_WAITERS(kmutex_t *mtx, uintptr_t owner)
210 {
211 	int rv;
212 	rv = MUTEX_CAS(&mtx->mtx_owner, owner, owner | MUTEX_BIT_WAITERS);
213 	MUTEX_RECEIVE(mtx);
214 	return rv;
215 }
216 
217 static inline void
218 MUTEX_RELEASE(kmutex_t *mtx)
219 {
220 	uintptr_t new;
221 
222 	MUTEX_GIVE(mtx);
223 	new = 0;
224 	MUTEX_INHERITDEBUG(new, mtx->mtx_owner);
225 	mtx->mtx_owner = new;
226 }
227 
228 static inline void
229 MUTEX_CLEAR_WAITERS(kmutex_t *mtx)
230 {
231 	/* nothing */
232 }
233 #endif	/* __HAVE_SIMPLE_MUTEXES */
234 
235 /*
236  * Patch in stubs via strong alias where they are not available.
237  */
238 
239 #if defined(LOCKDEBUG)
240 #undef	__HAVE_MUTEX_STUBS
241 #undef	__HAVE_SPIN_MUTEX_STUBS
242 #endif
243 
244 #ifndef __HAVE_MUTEX_STUBS
245 __strong_alias(mutex_enter,mutex_vector_enter);
246 __strong_alias(mutex_exit,mutex_vector_exit);
247 #endif
248 
249 #ifndef __HAVE_SPIN_MUTEX_STUBS
250 __strong_alias(mutex_spin_enter,mutex_vector_enter);
251 __strong_alias(mutex_spin_exit,mutex_vector_exit);
252 #endif
253 
254 void	mutex_abort(kmutex_t *, const char *, const char *);
255 void	mutex_dump(volatile void *);
256 int	mutex_onproc(uintptr_t, struct cpu_info **);
257 static struct lwp *mutex_owner(wchan_t);
258 
259 lockops_t mutex_spin_lockops = {
260 	"Mutex",
261 	0,
262 	mutex_dump
263 };
264 
265 lockops_t mutex_adaptive_lockops = {
266 	"Mutex",
267 	1,
268 	mutex_dump
269 };
270 
271 syncobj_t mutex_syncobj = {
272 	SOBJ_SLEEPQ_SORTED,
273 	turnstile_unsleep,
274 	turnstile_changepri,
275 	sleepq_lendpri,
276 	mutex_owner,
277 };
278 
279 /*
280  * mutex_dump:
281  *
282  *	Dump the contents of a mutex structure.
283  */
284 void
285 mutex_dump(volatile void *cookie)
286 {
287 	volatile kmutex_t *mtx = cookie;
288 
289 	printf_nolog("owner field  : %#018lx wait/spin: %16d/%d\n",
290 	    (long)MUTEX_OWNER(mtx->mtx_owner), MUTEX_HAS_WAITERS(mtx),
291 	    MUTEX_SPIN_P(mtx));
292 }
293 
294 /*
295  * mutex_abort:
296  *
297  *	Dump information about an error and panic the system.  This
298  *	generates a lot of machine code in the DIAGNOSTIC case, so
299  *	we ask the compiler to not inline it.
300  */
301 
302 #if __GNUC_PREREQ__(3, 0)
303 __attribute ((noinline)) __attribute ((noreturn))
304 #endif
305 void
306 mutex_abort(kmutex_t *mtx, const char *func, const char *msg)
307 {
308 
309 	LOCKDEBUG_ABORT(mtx, (MUTEX_SPIN_P(mtx) ?
310 	    &mutex_spin_lockops : &mutex_adaptive_lockops), func, msg);
311 	/* NOTREACHED */
312 }
313 
314 /*
315  * mutex_init:
316  *
317  *	Initialize a mutex for use.  Note that adaptive mutexes are in
318  *	essence spin mutexes that can sleep to avoid deadlock and wasting
319  *	CPU time.  We can't easily provide a type of mutex that always
320  *	sleeps - see comments in mutex_vector_enter() about releasing
321  *	mutexes unlocked.
322  */
323 void
324 mutex_init(kmutex_t *mtx, kmutex_type_t type, int ipl)
325 {
326 	bool dodebug;
327 
328 	memset(mtx, 0, sizeof(*mtx));
329 
330 	switch (type) {
331 	case MUTEX_ADAPTIVE:
332 		KASSERT(ipl == IPL_NONE);
333 		break;
334 	case MUTEX_DEFAULT:
335 	case MUTEX_DRIVER:
336 		switch (ipl) {
337 		case IPL_NONE:
338 			type = MUTEX_ADAPTIVE;
339 			break;
340 		default:
341 			type = MUTEX_SPIN;
342 			break;
343 		}
344 		break;
345 	default:
346 		break;
347 	}
348 
349 	switch (type) {
350 	case MUTEX_NODEBUG:
351 		dodebug = LOCKDEBUG_ALLOC(mtx, NULL,
352 		    (uintptr_t)__builtin_return_address(0));
353 		MUTEX_INITIALIZE_SPIN(mtx, dodebug, ipl);
354 		break;
355 	case MUTEX_ADAPTIVE:
356 		dodebug = LOCKDEBUG_ALLOC(mtx, &mutex_adaptive_lockops,
357 		    (uintptr_t)__builtin_return_address(0));
358 		MUTEX_INITIALIZE_ADAPTIVE(mtx, dodebug);
359 		break;
360 	case MUTEX_SPIN:
361 		dodebug = LOCKDEBUG_ALLOC(mtx, &mutex_spin_lockops,
362 		    (uintptr_t)__builtin_return_address(0));
363 		MUTEX_INITIALIZE_SPIN(mtx, dodebug, ipl);
364 		break;
365 	default:
366 		panic("mutex_init: impossible type");
367 		break;
368 	}
369 }
370 
371 /*
372  * mutex_destroy:
373  *
374  *	Tear down a mutex.
375  */
376 void
377 mutex_destroy(kmutex_t *mtx)
378 {
379 
380 	if (MUTEX_ADAPTIVE_P(mtx)) {
381 		MUTEX_ASSERT(mtx, !MUTEX_OWNED(mtx->mtx_owner) &&
382 		    !MUTEX_HAS_WAITERS(mtx));
383 	} else {
384 		MUTEX_ASSERT(mtx, !__SIMPLELOCK_LOCKED_P(&mtx->mtx_lock));
385 	}
386 
387 	LOCKDEBUG_FREE(MUTEX_DEBUG_P(mtx), mtx);
388 	MUTEX_DESTROY(mtx);
389 }
390 
391 /*
392  * mutex_onproc:
393  *
394  *	Return true if an adaptive mutex owner is running on a CPU in the
395  *	system.  If the target is waiting on the kernel big lock, then we
396  *	must release it.  This is necessary to avoid deadlock.
397  *
398  *	Note that we can't use the mutex owner field as an LWP pointer.  We
399  *	don't have full control over the timing of our execution, and so the
400  *	pointer could be completely invalid by the time we dereference it.
401  */
402 #ifdef MULTIPROCESSOR
403 int
404 mutex_onproc(uintptr_t owner, struct cpu_info **cip)
405 {
406 	CPU_INFO_ITERATOR cii;
407 	struct cpu_info *ci;
408 	struct lwp *l;
409 
410 	if (!MUTEX_OWNED(owner))
411 		return 0;
412 	l = (struct lwp *)MUTEX_OWNER(owner);
413 
414 	/* See if the target is running on a CPU somewhere. */
415 	if ((ci = *cip) != NULL && ci->ci_curlwp == l)
416 		goto run;
417 	for (CPU_INFO_FOREACH(cii, ci))
418 		if (ci->ci_curlwp == l)
419 			goto run;
420 
421 	/* No: it may be safe to block now. */
422 	*cip = NULL;
423 	return 0;
424 
425  run:
426  	/* Target is running; do we need to block? */
427  	*cip = ci;
428 	return ci->ci_biglock_wanted != l;
429 }
430 #endif	/* MULTIPROCESSOR */
431 
432 /*
433  * mutex_vector_enter:
434  *
435  *	Support routine for mutex_enter() that must handles all cases.  In
436  *	the LOCKDEBUG case, mutex_enter() is always aliased here, even if
437  *	fast-path stubs are available.  If an mutex_spin_enter() stub is
438  *	not available, then it is also aliased directly here.
439  */
440 void
441 mutex_vector_enter(kmutex_t *mtx)
442 {
443 	uintptr_t owner, curthread;
444 	turnstile_t *ts;
445 #ifdef MULTIPROCESSOR
446 	struct cpu_info *ci = NULL;
447 	u_int count;
448 #endif
449 	LOCKSTAT_COUNTER(spincnt);
450 	LOCKSTAT_COUNTER(slpcnt);
451 	LOCKSTAT_TIMER(spintime);
452 	LOCKSTAT_TIMER(slptime);
453 	LOCKSTAT_FLAG(lsflag);
454 
455 	/*
456 	 * Handle spin mutexes.
457 	 */
458 	if (MUTEX_SPIN_P(mtx)) {
459 #if defined(LOCKDEBUG) && defined(MULTIPROCESSOR)
460 		u_int spins = 0;
461 #endif
462 		MUTEX_SPIN_SPLRAISE(mtx);
463 		MUTEX_WANTLOCK(mtx);
464 #ifdef FULL
465 		if (__cpu_simple_lock_try(&mtx->mtx_lock)) {
466 			MUTEX_LOCKED(mtx);
467 			return;
468 		}
469 #if !defined(MULTIPROCESSOR)
470 		MUTEX_ABORT(mtx, "locking against myself");
471 #else /* !MULTIPROCESSOR */
472 
473 		LOCKSTAT_ENTER(lsflag);
474 		LOCKSTAT_START_TIMER(lsflag, spintime);
475 		count = SPINLOCK_BACKOFF_MIN;
476 
477 		/*
478 		 * Spin testing the lock word and do exponential backoff
479 		 * to reduce cache line ping-ponging between CPUs.
480 		 */
481 		do {
482 			if (panicstr != NULL)
483 				break;
484 			while (__SIMPLELOCK_LOCKED_P(&mtx->mtx_lock)) {
485 				SPINLOCK_BACKOFF(count);
486 #ifdef LOCKDEBUG
487 				if (SPINLOCK_SPINOUT(spins))
488 					MUTEX_ABORT(mtx, "spinout");
489 #endif	/* LOCKDEBUG */
490 			}
491 		} while (!__cpu_simple_lock_try(&mtx->mtx_lock));
492 
493 		if (count != SPINLOCK_BACKOFF_MIN) {
494 			LOCKSTAT_STOP_TIMER(lsflag, spintime);
495 			LOCKSTAT_EVENT(lsflag, mtx,
496 			    LB_SPIN_MUTEX | LB_SPIN, 1, spintime);
497 		}
498 		LOCKSTAT_EXIT(lsflag);
499 #endif	/* !MULTIPROCESSOR */
500 #endif	/* FULL */
501 		MUTEX_LOCKED(mtx);
502 		return;
503 	}
504 
505 	curthread = (uintptr_t)curlwp;
506 
507 	MUTEX_DASSERT(mtx, MUTEX_ADAPTIVE_P(mtx));
508 	MUTEX_ASSERT(mtx, curthread != 0);
509 	MUTEX_WANTLOCK(mtx);
510 
511 #ifdef LOCKDEBUG
512 	if (panicstr == NULL) {
513 		simple_lock_only_held(NULL, "mutex_enter");
514 #ifdef MULTIPROCESSOR
515 		LOCKDEBUG_BARRIER(&kernel_lock, 1);
516 #else
517 		LOCKDEBUG_BARRIER(NULL, 1);
518 #endif
519 	}
520 #endif
521 
522 	LOCKSTAT_ENTER(lsflag);
523 
524 	/*
525 	 * Adaptive mutex; spin trying to acquire the mutex.  If we
526 	 * determine that the owner is not running on a processor,
527 	 * then we stop spinning, and sleep instead.
528 	 */
529 	for (;;) {
530 		owner = mtx->mtx_owner;
531 		if (!MUTEX_OWNED(owner)) {
532 			/*
533 			 * Mutex owner clear could mean two things:
534 			 *
535 			 *	* The mutex has been released.
536 			 *	* The owner field hasn't been set yet.
537 			 *
538 			 * Try to acquire it again.  If that fails,
539 			 * we'll just loop again.
540 			 */
541 			if (MUTEX_ACQUIRE(mtx, curthread))
542 				break;
543 			continue;
544 		}
545 
546 		if (panicstr != NULL)
547 			return;
548 		if (MUTEX_OWNER(owner) == curthread)
549 			MUTEX_ABORT(mtx, "locking against myself");
550 
551 #ifdef MULTIPROCESSOR
552 		/*
553 		 * Check to see if the owner is running on a processor.
554 		 * If so, then we should just spin, as the owner will
555 		 * likely release the lock very soon.
556 		 */
557 		if (mutex_onproc(owner, &ci)) {
558 			LOCKSTAT_START_TIMER(lsflag, spintime);
559 			count = SPINLOCK_BACKOFF_MIN;
560 			for (;;) {
561 				owner = mtx->mtx_owner;
562 				if (!mutex_onproc(owner, &ci))
563 					break;
564 				SPINLOCK_BACKOFF(count);
565 			}
566 			LOCKSTAT_STOP_TIMER(lsflag, spintime);
567 			LOCKSTAT_COUNT(spincnt, 1);
568 			if (!MUTEX_OWNED(owner))
569 				continue;
570 		}
571 #endif
572 
573 		ts = turnstile_lookup(mtx);
574 
575 		/*
576 		 * Once we have the turnstile chain interlock, mark the
577 		 * mutex has having waiters.  If that fails, spin again:
578 		 * chances are that the mutex has been released.
579 		 */
580 		if (!MUTEX_SET_WAITERS(mtx, owner)) {
581 			turnstile_exit(mtx);
582 			continue;
583 		}
584 
585 #ifdef MULTIPROCESSOR
586 		/*
587 		 * mutex_exit() is permitted to release the mutex without
588 		 * any interlocking instructions, and the following can
589 		 * occur as a result:
590 		 *
591 		 *  CPU 1: MUTEX_SET_WAITERS()      CPU2: mutex_exit()
592 		 * ---------------------------- ----------------------------
593 		 *		..		    acquire cache line
594 		 *		..                   test for waiters
595 		 *	acquire cache line    <-      lose cache line
596 		 *	 lock cache line	           ..
597 		 *     verify mutex is held                ..
598 		 *	    set waiters  	           ..
599 		 *	 unlock cache line		   ..
600 		 *	  lose cache line     ->    acquire cache line
601 		 *		..	          clear lock word, waiters
602 		 *	  return success
603 		 *
604 		 * There is a another race that can occur: a third CPU could
605 		 * acquire the mutex as soon as it is released.  Since
606 		 * adaptive mutexes are primarily spin mutexes, this is not
607 		 * something that we need to worry about too much.  What we
608 		 * do need to ensure is that the waiters bit gets set.
609 		 *
610 		 * To allow the unlocked release, we need to make some
611 		 * assumptions here:
612 		 *
613 		 * o Release is the only non-atomic/unlocked operation
614 		 *   that can be performed on the mutex.  (It must still
615 		 *   be atomic on the local CPU, e.g. in case interrupted
616 		 *   or preempted).
617 		 *
618 		 * o At any given time, MUTEX_SET_WAITERS() can only ever
619 		 *   be in progress on one CPU in the system - guaranteed
620 		 *   by the turnstile chain lock.
621 		 *
622 		 * o No other operations other than MUTEX_SET_WAITERS()
623 		 *   and release can modify a mutex with a non-zero
624 		 *   owner field.
625 		 *
626 		 * o The result of a successful MUTEX_SET_WAITERS() call
627 		 *   is an unbuffered write that is immediately visible
628 		 *   to all other processors in the system.
629 		 *
630 		 * o If the holding LWP switches away, it posts a store
631 		 *   fence before changing curlwp, ensuring that any
632 		 *   overwrite of the mutex waiters flag by mutex_exit()
633 		 *   completes before the modification of curlwp becomes
634 		 *   visible to this CPU.
635 		 *
636 		 * o mi_switch() posts a store fence before setting curlwp
637 		 *   and before resuming execution of an LWP.
638 		 *
639 		 * o _kernel_lock() posts a store fence before setting
640 		 *   curcpu()->ci_biglock_wanted, and after clearing it.
641 		 *   This ensures that any overwrite of the mutex waiters
642 		 *   flag by mutex_exit() completes before the modification
643 		 *   of ci_biglock_wanted becomes visible.
644 		 *
645 		 * We now post a read memory barrier (after setting the
646 		 * waiters field) and check the lock holder's status again.
647 		 * Some of the possible outcomes (not an exhaustive list):
648 		 *
649 		 * 1. The onproc check returns true: the holding LWP is
650 		 *    running again.  The lock may be released soon and
651 		 *    we should spin.  Importantly, we can't trust the
652 		 *    value of the waiters flag.
653 		 *
654 		 * 2. The onproc check returns false: the holding LWP is
655 		 *    not running.  We now have the oppertunity to check
656 		 *    if mutex_exit() has blatted the modifications made
657 		 *    by MUTEX_SET_WAITERS().
658 		 *
659 		 * 3. The onproc check returns false: the holding LWP may
660 		 *    or may not be running.  It has context switched at
661 		 *    some point during our check.  Again, we have the
662 		 *    chance to see if the waiters bit is still set or
663 		 *    has been overwritten.
664 		 *
665 		 * 4. The onproc check returns false: the holding LWP is
666 		 *    running on a CPU, but wants the big lock.  It's OK
667 		 *    to check the waiters field in this case.
668 		 *
669 		 * 5. The has-waiters check fails: the mutex has been
670 		 *    released, the waiters flag cleared and another LWP
671 		 *    now owns the mutex.
672 		 *
673 		 * 6. The has-waiters check fails: the mutex has been
674 		 *    released.
675 		 *
676 		 * If the waiters bit is not set it's unsafe to go asleep,
677 		 * as we might never be awoken.
678 		 */
679 		if ((mb_read(), mutex_onproc(owner, &ci)) ||
680 		    (mb_read(), !MUTEX_HAS_WAITERS(mtx))) {
681 			turnstile_exit(mtx);
682 			continue;
683 		}
684 #endif	/* MULTIPROCESSOR */
685 
686 		LOCKSTAT_START_TIMER(lsflag, slptime);
687 
688 		turnstile_block(ts, TS_WRITER_Q, mtx, &mutex_syncobj);
689 
690 		LOCKSTAT_STOP_TIMER(lsflag, slptime);
691 		LOCKSTAT_COUNT(slpcnt, 1);
692 	}
693 
694 	LOCKSTAT_EVENT(lsflag, mtx, LB_ADAPTIVE_MUTEX | LB_SLEEP1,
695 	    slpcnt, slptime);
696 	LOCKSTAT_EVENT(lsflag, mtx, LB_ADAPTIVE_MUTEX | LB_SPIN,
697 	    spincnt, spintime);
698 	LOCKSTAT_EXIT(lsflag);
699 
700 	MUTEX_DASSERT(mtx, MUTEX_OWNER(mtx->mtx_owner) == curthread);
701 	MUTEX_LOCKED(mtx);
702 }
703 
704 /*
705  * mutex_vector_exit:
706  *
707  *	Support routine for mutex_exit() that handles all cases.
708  */
709 void
710 mutex_vector_exit(kmutex_t *mtx)
711 {
712 	turnstile_t *ts;
713 	uintptr_t curthread;
714 
715 	if (MUTEX_SPIN_P(mtx)) {
716 #ifdef FULL
717 		if (!__SIMPLELOCK_LOCKED_P(&mtx->mtx_lock))
718 			MUTEX_ABORT(mtx, "exiting unheld spin mutex");
719 		MUTEX_UNLOCKED(mtx);
720 		__cpu_simple_unlock(&mtx->mtx_lock);
721 #endif
722 		MUTEX_SPIN_SPLRESTORE(mtx);
723 		return;
724 	}
725 
726 	if (__predict_false((uintptr_t)panicstr | cold)) {
727 		MUTEX_UNLOCKED(mtx);
728 		MUTEX_RELEASE(mtx);
729 		return;
730 	}
731 
732 	curthread = (uintptr_t)curlwp;
733 	MUTEX_DASSERT(mtx, curthread != 0);
734 	MUTEX_ASSERT(mtx, MUTEX_OWNER(mtx->mtx_owner) == curthread);
735 	MUTEX_UNLOCKED(mtx);
736 
737 #ifdef LOCKDEBUG
738 	/*
739 	 * Avoid having to take the turnstile chain lock every time
740 	 * around.  Raise the priority level to splhigh() in order
741 	 * to disable preemption and so make the following atomic.
742 	 */
743 	{
744 		int s = splhigh();
745 		if (!MUTEX_HAS_WAITERS(mtx)) {
746 			MUTEX_RELEASE(mtx);
747 			splx(s);
748 			return;
749 		}
750 		splx(s);
751 	}
752 #endif
753 
754 	/*
755 	 * Get this lock's turnstile.  This gets the interlock on
756 	 * the sleep queue.  Once we have that, we can clear the
757 	 * lock.  If there was no turnstile for the lock, there
758 	 * were no waiters remaining.
759 	 */
760 	ts = turnstile_lookup(mtx);
761 
762 	if (ts == NULL) {
763 		MUTEX_RELEASE(mtx);
764 		turnstile_exit(mtx);
765 	} else {
766 		MUTEX_RELEASE(mtx);
767 		turnstile_wakeup(ts, TS_WRITER_Q,
768 		    TS_WAITERS(ts, TS_WRITER_Q), NULL);
769 	}
770 }
771 
772 #ifndef __HAVE_SIMPLE_MUTEXES
773 /*
774  * mutex_wakeup:
775  *
776  *	Support routine for mutex_exit() that wakes up all waiters.
777  *	We assume that the mutex has been released, but it need not
778  *	be.
779  */
780 void
781 mutex_wakeup(kmutex_t *mtx)
782 {
783 	turnstile_t *ts;
784 
785 	ts = turnstile_lookup(mtx);
786 	if (ts == NULL) {
787 		turnstile_exit(mtx);
788 		return;
789 	}
790 	MUTEX_CLEAR_WAITERS(mtx);
791 	turnstile_wakeup(ts, TS_WRITER_Q, TS_WAITERS(ts, TS_WRITER_Q), NULL);
792 }
793 #endif	/* !__HAVE_SIMPLE_MUTEXES */
794 
795 /*
796  * mutex_owned:
797  *
798  *	Return true if the current LWP (adaptive) or CPU (spin)
799  *	holds the mutex.
800  */
801 int
802 mutex_owned(kmutex_t *mtx)
803 {
804 
805 	if (MUTEX_ADAPTIVE_P(mtx))
806 		return MUTEX_OWNER(mtx->mtx_owner) == (uintptr_t)curlwp;
807 #ifdef FULL
808 	return __SIMPLELOCK_LOCKED_P(&mtx->mtx_lock);
809 #else
810 	return 1;
811 #endif
812 }
813 
814 /*
815  * mutex_owner:
816  *
817  *	Return the current owner of an adaptive mutex.  Used for
818  *	priority inheritance.
819  */
820 static struct lwp *
821 mutex_owner(wchan_t obj)
822 {
823 	kmutex_t *mtx = (void *)(uintptr_t)obj; /* discard qualifiers */
824 
825 	MUTEX_ASSERT(mtx, MUTEX_ADAPTIVE_P(mtx));
826 	return (struct lwp *)MUTEX_OWNER(mtx->mtx_owner);
827 }
828 
829 /*
830  * mutex_tryenter:
831  *
832  *	Try to acquire the mutex; return non-zero if we did.
833  */
834 int
835 mutex_tryenter(kmutex_t *mtx)
836 {
837 	uintptr_t curthread;
838 
839 	/*
840 	 * Handle spin mutexes.
841 	 */
842 	if (MUTEX_SPIN_P(mtx)) {
843 		MUTEX_SPIN_SPLRAISE(mtx);
844 #ifdef FULL
845 		if (__cpu_simple_lock_try(&mtx->mtx_lock)) {
846 			MUTEX_WANTLOCK(mtx);
847 			MUTEX_LOCKED(mtx);
848 			return 1;
849 		}
850 		MUTEX_SPIN_SPLRESTORE(mtx);
851 #else
852 		MUTEX_WANTLOCK(mtx);
853 		MUTEX_LOCKED(mtx);
854 		return 1;
855 #endif
856 	} else {
857 		curthread = (uintptr_t)curlwp;
858 		MUTEX_ASSERT(mtx, curthread != 0);
859 		if (MUTEX_ACQUIRE(mtx, curthread)) {
860 			MUTEX_WANTLOCK(mtx);
861 			MUTEX_LOCKED(mtx);
862 			MUTEX_DASSERT(mtx,
863 			    MUTEX_OWNER(mtx->mtx_owner) == curthread);
864 			return 1;
865 		}
866 	}
867 
868 	return 0;
869 }
870 
871 #if defined(__HAVE_SPIN_MUTEX_STUBS) || defined(FULL)
872 /*
873  * mutex_spin_retry:
874  *
875  *	Support routine for mutex_spin_enter().  Assumes that the caller
876  *	has already raised the SPL, and adjusted counters.
877  */
878 void
879 mutex_spin_retry(kmutex_t *mtx)
880 {
881 #ifdef MULTIPROCESSOR
882 	u_int count;
883 	LOCKSTAT_TIMER(spintime);
884 	LOCKSTAT_FLAG(lsflag);
885 #ifdef LOCKDEBUG
886 	u_int spins = 0;
887 #endif	/* LOCKDEBUG */
888 
889 	MUTEX_WANTLOCK(mtx);
890 
891 	LOCKSTAT_ENTER(lsflag);
892 	LOCKSTAT_START_TIMER(lsflag, spintime);
893 	count = SPINLOCK_BACKOFF_MIN;
894 
895 	/*
896 	 * Spin testing the lock word and do exponential backoff
897 	 * to reduce cache line ping-ponging between CPUs.
898 	 */
899 	do {
900 		if (panicstr != NULL)
901 			break;
902 		while (__SIMPLELOCK_LOCKED_P(&mtx->mtx_lock)) {
903 			SPINLOCK_BACKOFF(count);
904 #ifdef LOCKDEBUG
905 			if (SPINLOCK_SPINOUT(spins))
906 				MUTEX_ABORT(mtx, "spinout");
907 #endif	/* LOCKDEBUG */
908 		}
909 	} while (!__cpu_simple_lock_try(&mtx->mtx_lock));
910 
911 	LOCKSTAT_STOP_TIMER(lsflag, spintime);
912 	LOCKSTAT_EVENT(lsflag, mtx, LB_SPIN_MUTEX | LB_SPIN, 1, spintime);
913 	LOCKSTAT_EXIT(lsflag);
914 
915 	MUTEX_LOCKED(mtx);
916 #else	/* MULTIPROCESSOR */
917 	MUTEX_ABORT(mtx, "locking against myself");
918 #endif	/* MULTIPROCESSOR */
919 }
920 #endif	/* defined(__HAVE_SPIN_MUTEX_STUBS) || defined(FULL) */
921