xref: /netbsd-src/sys/kern/kern_malloc.c (revision 62a8debe1dc62962e18a1c918def78666141273b)
1 /*	$NetBSD: kern_malloc.c,v 1.128 2010/01/22 08:32:05 hubertf Exp $	*/
2 
3 /*
4  * Copyright (c) 1987, 1991, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. Neither the name of the University nor the names of its contributors
16  *    may be used to endorse or promote products derived from this software
17  *    without specific prior written permission.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29  * SUCH DAMAGE.
30  *
31  *	@(#)kern_malloc.c	8.4 (Berkeley) 5/20/95
32  */
33 
34 /*
35  * Copyright (c) 1996 Christopher G. Demetriou.  All rights reserved.
36  *
37  * Redistribution and use in source and binary forms, with or without
38  * modification, are permitted provided that the following conditions
39  * are met:
40  * 1. Redistributions of source code must retain the above copyright
41  *    notice, this list of conditions and the following disclaimer.
42  * 2. Redistributions in binary form must reproduce the above copyright
43  *    notice, this list of conditions and the following disclaimer in the
44  *    documentation and/or other materials provided with the distribution.
45  * 3. All advertising materials mentioning features or use of this software
46  *    must display the following acknowledgement:
47  *	This product includes software developed by the University of
48  *	California, Berkeley and its contributors.
49  * 4. Neither the name of the University nor the names of its contributors
50  *    may be used to endorse or promote products derived from this software
51  *    without specific prior written permission.
52  *
53  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
54  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
55  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
56  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
57  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
58  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
59  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
60  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
61  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
62  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
63  * SUCH DAMAGE.
64  *
65  *	@(#)kern_malloc.c	8.4 (Berkeley) 5/20/95
66  */
67 
68 #include <sys/cdefs.h>
69 __KERNEL_RCSID(0, "$NetBSD: kern_malloc.c,v 1.128 2010/01/22 08:32:05 hubertf Exp $");
70 
71 #include <sys/param.h>
72 #include <sys/proc.h>
73 #include <sys/kernel.h>
74 #include <sys/malloc.h>
75 #include <sys/systm.h>
76 #include <sys/debug.h>
77 #include <sys/mutex.h>
78 #include <sys/lockdebug.h>
79 
80 #include <uvm/uvm_extern.h>
81 
82 static struct vm_map_kernel kmem_map_store;
83 struct vm_map *kmem_map = NULL;
84 
85 #include "opt_kmempages.h"
86 
87 #ifdef NKMEMCLUSTERS
88 #error NKMEMCLUSTERS is obsolete; remove it from your kernel config file and use NKMEMPAGES instead or let the kernel auto-size
89 #endif
90 
91 /*
92  * Default number of pages in kmem_map.  We attempt to calculate this
93  * at run-time, but allow it to be either patched or set in the kernel
94  * config file.
95  */
96 #ifndef NKMEMPAGES
97 #define	NKMEMPAGES	0
98 #endif
99 int	nkmempages = NKMEMPAGES;
100 
101 /*
102  * Defaults for lower- and upper-bounds for the kmem_map page count.
103  * Can be overridden by kernel config options.
104  */
105 #ifndef	NKMEMPAGES_MIN
106 #define	NKMEMPAGES_MIN	NKMEMPAGES_MIN_DEFAULT
107 #endif
108 
109 #ifndef NKMEMPAGES_MAX
110 #define	NKMEMPAGES_MAX	NKMEMPAGES_MAX_DEFAULT
111 #endif
112 
113 #include "opt_kmemstats.h"
114 #include "opt_malloclog.h"
115 #include "opt_malloc_debug.h"
116 
117 #define	MINALLOCSIZE	(1 << MINBUCKET)
118 #define	BUCKETINDX(size) \
119 	((size) <= (MINALLOCSIZE * 128) \
120 		? (size) <= (MINALLOCSIZE * 8) \
121 			? (size) <= (MINALLOCSIZE * 2) \
122 				? (size) <= (MINALLOCSIZE * 1) \
123 					? (MINBUCKET + 0) \
124 					: (MINBUCKET + 1) \
125 				: (size) <= (MINALLOCSIZE * 4) \
126 					? (MINBUCKET + 2) \
127 					: (MINBUCKET + 3) \
128 			: (size) <= (MINALLOCSIZE* 32) \
129 				? (size) <= (MINALLOCSIZE * 16) \
130 					? (MINBUCKET + 4) \
131 					: (MINBUCKET + 5) \
132 				: (size) <= (MINALLOCSIZE * 64) \
133 					? (MINBUCKET + 6) \
134 					: (MINBUCKET + 7) \
135 		: (size) <= (MINALLOCSIZE * 2048) \
136 			? (size) <= (MINALLOCSIZE * 512) \
137 				? (size) <= (MINALLOCSIZE * 256) \
138 					? (MINBUCKET + 8) \
139 					: (MINBUCKET + 9) \
140 				: (size) <= (MINALLOCSIZE * 1024) \
141 					? (MINBUCKET + 10) \
142 					: (MINBUCKET + 11) \
143 			: (size) <= (MINALLOCSIZE * 8192) \
144 				? (size) <= (MINALLOCSIZE * 4096) \
145 					? (MINBUCKET + 12) \
146 					: (MINBUCKET + 13) \
147 				: (size) <= (MINALLOCSIZE * 16384) \
148 					? (MINBUCKET + 14) \
149 					: (MINBUCKET + 15))
150 
151 /*
152  * Array of descriptors that describe the contents of each page
153  */
154 struct kmemusage {
155 	short ku_indx;		/* bucket index */
156 	union {
157 		u_short freecnt;/* for small allocations, free pieces in page */
158 		u_short pagecnt;/* for large allocations, pages alloced */
159 	} ku_un;
160 };
161 #define	ku_freecnt ku_un.freecnt
162 #define	ku_pagecnt ku_un.pagecnt
163 
164 struct kmembuckets kmembuckets[MINBUCKET + 16];
165 struct kmemusage *kmemusage;
166 char *kmembase, *kmemlimit;
167 
168 #ifdef DEBUG
169 static void *malloc_freecheck;
170 #endif
171 
172 /*
173  * Turn virtual addresses into kmem map indicies
174  */
175 #define	btokup(addr)	(&kmemusage[((char *)(addr) - kmembase) >> PGSHIFT])
176 
177 struct malloc_type *kmemstatistics;
178 
179 #ifdef MALLOCLOG
180 #ifndef MALLOCLOGSIZE
181 #define	MALLOCLOGSIZE	100000
182 #endif
183 
184 struct malloclog {
185 	void *addr;
186 	long size;
187 	struct malloc_type *type;
188 	int action;
189 	const char *file;
190 	long line;
191 } malloclog[MALLOCLOGSIZE];
192 
193 long	malloclogptr;
194 
195 /*
196  * Fuzz factor for neighbour address match this must be a mask of the lower
197  * bits we wish to ignore when comparing addresses
198  */
199 __uintptr_t malloclog_fuzz = 0x7FL;
200 
201 
202 static void
203 domlog(void *a, long size, struct malloc_type *type, int action,
204     const char *file, long line)
205 {
206 
207 	malloclog[malloclogptr].addr = a;
208 	malloclog[malloclogptr].size = size;
209 	malloclog[malloclogptr].type = type;
210 	malloclog[malloclogptr].action = action;
211 	malloclog[malloclogptr].file = file;
212 	malloclog[malloclogptr].line = line;
213 	malloclogptr++;
214 	if (malloclogptr >= MALLOCLOGSIZE)
215 		malloclogptr = 0;
216 }
217 
218 #ifdef DIAGNOSTIC
219 static void
220 hitmlog(void *a)
221 {
222 	struct malloclog *lp;
223 	long l;
224 
225 #define	PRT do { \
226 	lp = &malloclog[l]; \
227 	if (lp->addr == a && lp->action) { \
228 		printf("malloc log entry %ld:\n", l); \
229 		printf("\taddr = %p\n", lp->addr); \
230 		printf("\tsize = %ld\n", lp->size); \
231 		printf("\ttype = %s\n", lp->type->ks_shortdesc); \
232 		printf("\taction = %s\n", lp->action == 1 ? "alloc" : "free"); \
233 		printf("\tfile = %s\n", lp->file); \
234 		printf("\tline = %ld\n", lp->line); \
235 	} \
236 } while (/* CONSTCOND */0)
237 
238 /*
239  * Print fuzzy matched "neighbour" - look for the memory block that has
240  * been allocated below the address we are interested in.  We look for a
241  * base address + size that is within malloclog_fuzz of our target
242  * address. If the base address and target address are the same then it is
243  * likely we have found a free (size is 0 in this case) so we won't report
244  * those, they will get reported by PRT anyway.
245  */
246 #define	NPRT do { \
247 	__uintptr_t fuzz_mask = ~(malloclog_fuzz); \
248 	lp = &malloclog[l]; \
249 	if ((__uintptr_t)lp->addr != (__uintptr_t)a && \
250 	    (((__uintptr_t)lp->addr + lp->size + malloclog_fuzz) & fuzz_mask) \
251 	    == ((__uintptr_t)a & fuzz_mask) && lp->action) {		\
252 		printf("neighbour malloc log entry %ld:\n", l); \
253 		printf("\taddr = %p\n", lp->addr); \
254 		printf("\tsize = %ld\n", lp->size); \
255 		printf("\ttype = %s\n", lp->type->ks_shortdesc); \
256 		printf("\taction = %s\n", lp->action == 1 ? "alloc" : "free"); \
257 		printf("\tfile = %s\n", lp->file); \
258 		printf("\tline = %ld\n", lp->line); \
259 	} \
260 } while (/* CONSTCOND */0)
261 
262 	for (l = malloclogptr; l < MALLOCLOGSIZE; l++) {
263 		PRT;
264 		NPRT;
265 	}
266 
267 
268 	for (l = 0; l < malloclogptr; l++) {
269 		PRT;
270 		NPRT;
271 	}
272 
273 #undef PRT
274 }
275 #endif /* DIAGNOSTIC */
276 #endif /* MALLOCLOG */
277 
278 #ifdef DIAGNOSTIC
279 /*
280  * This structure provides a set of masks to catch unaligned frees.
281  */
282 const long addrmask[] = { 0,
283 	0x00000001, 0x00000003, 0x00000007, 0x0000000f,
284 	0x0000001f, 0x0000003f, 0x0000007f, 0x000000ff,
285 	0x000001ff, 0x000003ff, 0x000007ff, 0x00000fff,
286 	0x00001fff, 0x00003fff, 0x00007fff, 0x0000ffff,
287 };
288 
289 /*
290  * The WEIRD_ADDR is used as known text to copy into free objects so
291  * that modifications after frees can be detected.
292  */
293 #define	WEIRD_ADDR	((uint32_t) 0xdeadbeef)
294 #ifdef DEBUG
295 #define	MAX_COPY	PAGE_SIZE
296 #else
297 #define	MAX_COPY	32
298 #endif
299 
300 /*
301  * Normally the freelist structure is used only to hold the list pointer
302  * for free objects.  However, when running with diagnostics, the first
303  * 8/16 bytes of the structure is unused except for diagnostic information,
304  * and the free list pointer is at offset 8/16 in the structure.  Since the
305  * first 8 bytes is the portion of the structure most often modified, this
306  * helps to detect memory reuse problems and avoid free list corruption.
307  */
308 struct freelist {
309 	uint32_t spare0;
310 #ifdef _LP64
311 	uint32_t spare1;		/* explicit padding */
312 #endif
313 	struct malloc_type *type;
314 	void *	next;
315 };
316 #else /* !DIAGNOSTIC */
317 struct freelist {
318 	void *	next;
319 };
320 #endif /* DIAGNOSTIC */
321 
322 kmutex_t malloc_lock;
323 
324 /*
325  * Allocate a block of memory
326  */
327 #ifdef MALLOCLOG
328 void *
329 _kern_malloc(unsigned long size, struct malloc_type *ksp, int flags,
330     const char *file, long line)
331 #else
332 void *
333 kern_malloc(unsigned long size, struct malloc_type *ksp, int flags)
334 #endif /* MALLOCLOG */
335 {
336 	struct kmembuckets *kbp;
337 	struct kmemusage *kup;
338 	struct freelist *freep;
339 	long indx, npg, allocsize;
340 	char *va, *cp, *savedlist;
341 #ifdef DIAGNOSTIC
342 	uint32_t *end, *lp;
343 	int copysize;
344 #endif
345 
346 #ifdef LOCKDEBUG
347 	if ((flags & M_NOWAIT) == 0) {
348 		ASSERT_SLEEPABLE();
349 	}
350 #endif
351 #ifdef MALLOC_DEBUG
352 	if (debug_malloc(size, ksp, flags, (void *) &va)) {
353 		if (va != 0) {
354 			FREECHECK_OUT(&malloc_freecheck, (void *)va);
355 		}
356 		return ((void *) va);
357 	}
358 #endif
359 	indx = BUCKETINDX(size);
360 	kbp = &kmembuckets[indx];
361 	mutex_spin_enter(&malloc_lock);
362 #ifdef KMEMSTATS
363 	while (ksp->ks_memuse >= ksp->ks_limit) {
364 		if (flags & M_NOWAIT) {
365 			mutex_spin_exit(&malloc_lock);
366 			return ((void *) NULL);
367 		}
368 		if (ksp->ks_limblocks < 65535)
369 			ksp->ks_limblocks++;
370 		mtsleep((void *)ksp, PSWP+2, ksp->ks_shortdesc, 0,
371 			&malloc_lock);
372 	}
373 	ksp->ks_size |= 1 << indx;
374 #endif
375 #ifdef DIAGNOSTIC
376 	copysize = 1 << indx < MAX_COPY ? 1 << indx : MAX_COPY;
377 #endif
378 	if (kbp->kb_next == NULL) {
379 		int s;
380 		kbp->kb_last = NULL;
381 		if (size > MAXALLOCSAVE)
382 			allocsize = round_page(size);
383 		else
384 			allocsize = 1 << indx;
385 		npg = btoc(allocsize);
386 		mutex_spin_exit(&malloc_lock);
387 		s = splvm();
388 		va = (void *) uvm_km_alloc(kmem_map,
389 		    (vsize_t)ctob(npg), 0,
390 		    ((flags & M_NOWAIT) ? UVM_KMF_NOWAIT : 0) |
391 		    ((flags & M_CANFAIL) ? UVM_KMF_CANFAIL : 0) |
392 		    UVM_KMF_WIRED);
393 		splx(s);
394 		if (__predict_false(va == NULL)) {
395 			/*
396 			 * Kmem_malloc() can return NULL, even if it can
397 			 * wait, if there is no map space available, because
398 			 * it can't fix that problem.  Neither can we,
399 			 * right now.  (We should release pages which
400 			 * are completely free and which are in kmembuckets
401 			 * with too many free elements.)
402 			 */
403 			if ((flags & (M_NOWAIT|M_CANFAIL)) == 0)
404 				panic("malloc: out of space in kmem_map");
405 			return (NULL);
406 		}
407 		mutex_spin_enter(&malloc_lock);
408 #ifdef KMEMSTATS
409 		kbp->kb_total += kbp->kb_elmpercl;
410 #endif
411 		kup = btokup(va);
412 		kup->ku_indx = indx;
413 		if (allocsize > MAXALLOCSAVE) {
414 			if (npg > 65535)
415 				panic("malloc: allocation too large");
416 			kup->ku_pagecnt = npg;
417 #ifdef KMEMSTATS
418 			ksp->ks_memuse += allocsize;
419 #endif
420 			goto out;
421 		}
422 #ifdef KMEMSTATS
423 		kup->ku_freecnt = kbp->kb_elmpercl;
424 		kbp->kb_totalfree += kbp->kb_elmpercl;
425 #endif
426 		/*
427 		 * Just in case we blocked while allocating memory,
428 		 * and someone else also allocated memory for this
429 		 * kmembucket, don't assume the list is still empty.
430 		 */
431 		savedlist = kbp->kb_next;
432 		kbp->kb_next = cp = va + (npg << PAGE_SHIFT) - allocsize;
433 		for (;;) {
434 			freep = (struct freelist *)cp;
435 #ifdef DIAGNOSTIC
436 			/*
437 			 * Copy in known text to detect modification
438 			 * after freeing.
439 			 */
440 			end = (uint32_t *)&cp[copysize];
441 			for (lp = (uint32_t *)cp; lp < end; lp++)
442 				*lp = WEIRD_ADDR;
443 			freep->type = M_FREE;
444 #endif /* DIAGNOSTIC */
445 			if (cp <= va)
446 				break;
447 			cp -= allocsize;
448 			freep->next = cp;
449 		}
450 		freep->next = savedlist;
451 		if (savedlist == NULL)
452 			kbp->kb_last = (void *)freep;
453 	}
454 	va = kbp->kb_next;
455 	kbp->kb_next = ((struct freelist *)va)->next;
456 #ifdef DIAGNOSTIC
457 	freep = (struct freelist *)va;
458 	/* XXX potential to get garbage pointer here. */
459 	if (kbp->kb_next) {
460 		int rv;
461 		vaddr_t addr = (vaddr_t)kbp->kb_next;
462 
463 		vm_map_lock(kmem_map);
464 		rv = uvm_map_checkprot(kmem_map, addr,
465 		    addr + sizeof(struct freelist), VM_PROT_WRITE);
466 		vm_map_unlock(kmem_map);
467 
468 		if (__predict_false(rv == 0)) {
469 			printf("Data modified on freelist: "
470 			    "word %ld of object %p size %ld previous type %s "
471 			    "(invalid addr %p)\n",
472 			    (long)((int32_t *)&kbp->kb_next - (int32_t *)kbp),
473 			    va, size, "foo", kbp->kb_next);
474 #ifdef MALLOCLOG
475 			hitmlog(va);
476 #endif
477 			kbp->kb_next = NULL;
478 		}
479 	}
480 
481 	/* Fill the fields that we've used with WEIRD_ADDR */
482 #ifdef _LP64
483 	freep->type = (struct malloc_type *)
484 	    (WEIRD_ADDR | (((u_long) WEIRD_ADDR) << 32));
485 #else
486 	freep->type = (struct malloc_type *) WEIRD_ADDR;
487 #endif
488 	end = (uint32_t *)&freep->next +
489 	    (sizeof(freep->next) / sizeof(int32_t));
490 	for (lp = (uint32_t *)&freep->next; lp < end; lp++)
491 		*lp = WEIRD_ADDR;
492 
493 	/* and check that the data hasn't been modified. */
494 	end = (uint32_t *)&va[copysize];
495 	for (lp = (uint32_t *)va; lp < end; lp++) {
496 		if (__predict_true(*lp == WEIRD_ADDR))
497 			continue;
498 		printf("Data modified on freelist: "
499 		    "word %ld of object %p size %ld previous type %s "
500 		    "(0x%x != 0x%x)\n",
501 		    (long)(lp - (uint32_t *)va), va, size,
502 		    "bar", *lp, WEIRD_ADDR);
503 #ifdef MALLOCLOG
504 		hitmlog(va);
505 #endif
506 		break;
507 	}
508 
509 	freep->spare0 = 0;
510 #endif /* DIAGNOSTIC */
511 #ifdef KMEMSTATS
512 	kup = btokup(va);
513 	if (kup->ku_indx != indx)
514 		panic("malloc: wrong bucket");
515 	if (kup->ku_freecnt == 0)
516 		panic("malloc: lost data");
517 	kup->ku_freecnt--;
518 	kbp->kb_totalfree--;
519 	ksp->ks_memuse += 1 << indx;
520 out:
521 	kbp->kb_calls++;
522 	ksp->ks_inuse++;
523 	ksp->ks_calls++;
524 	if (ksp->ks_memuse > ksp->ks_maxused)
525 		ksp->ks_maxused = ksp->ks_memuse;
526 #else
527 out:
528 #endif
529 #ifdef MALLOCLOG
530 	domlog(va, size, ksp, 1, file, line);
531 #endif
532 	mutex_spin_exit(&malloc_lock);
533 	if ((flags & M_ZERO) != 0)
534 		memset(va, 0, size);
535 	FREECHECK_OUT(&malloc_freecheck, (void *)va);
536 	return ((void *) va);
537 }
538 
539 /*
540  * Free a block of memory allocated by malloc.
541  */
542 #ifdef MALLOCLOG
543 void
544 _kern_free(void *addr, struct malloc_type *ksp, const char *file, long line)
545 #else
546 void
547 kern_free(void *addr, struct malloc_type *ksp)
548 #endif /* MALLOCLOG */
549 {
550 	struct kmembuckets *kbp;
551 	struct kmemusage *kup;
552 	struct freelist *freep;
553 	long size;
554 #ifdef DIAGNOSTIC
555 	void *cp;
556 	int32_t *end, *lp;
557 	long alloc, copysize;
558 #endif
559 
560 	FREECHECK_IN(&malloc_freecheck, addr);
561 #ifdef MALLOC_DEBUG
562 	if (debug_free(addr, ksp))
563 		return;
564 #endif
565 
566 #ifdef DIAGNOSTIC
567 	/*
568 	 * Ensure that we're free'ing something that we could
569 	 * have allocated in the first place.  That is, check
570 	 * to see that the address is within kmem_map.
571 	 */
572 	if (__predict_false((vaddr_t)addr < vm_map_min(kmem_map) ||
573 	    (vaddr_t)addr >= vm_map_max(kmem_map)))
574 		panic("free: addr %p not within kmem_map", addr);
575 #endif
576 
577 	kup = btokup(addr);
578 	size = 1 << kup->ku_indx;
579 	kbp = &kmembuckets[kup->ku_indx];
580 
581 	LOCKDEBUG_MEM_CHECK(addr,
582 	    size <= MAXALLOCSAVE ? size : ctob(kup->ku_pagecnt));
583 
584 	mutex_spin_enter(&malloc_lock);
585 #ifdef MALLOCLOG
586 	domlog(addr, 0, ksp, 2, file, line);
587 #endif
588 #ifdef DIAGNOSTIC
589 	/*
590 	 * Check for returns of data that do not point to the
591 	 * beginning of the allocation.
592 	 */
593 	if (size > PAGE_SIZE)
594 		alloc = addrmask[BUCKETINDX(PAGE_SIZE)];
595 	else
596 		alloc = addrmask[kup->ku_indx];
597 	if (((u_long)addr & alloc) != 0)
598 		panic("free: unaligned addr %p, size %ld, type %s, mask %ld",
599 		    addr, size, ksp->ks_shortdesc, alloc);
600 #endif /* DIAGNOSTIC */
601 	if (size > MAXALLOCSAVE) {
602 		uvm_km_free(kmem_map, (vaddr_t)addr, ctob(kup->ku_pagecnt),
603 		    UVM_KMF_WIRED);
604 #ifdef KMEMSTATS
605 		size = kup->ku_pagecnt << PGSHIFT;
606 		ksp->ks_memuse -= size;
607 		kup->ku_indx = 0;
608 		kup->ku_pagecnt = 0;
609 		if (ksp->ks_memuse + size >= ksp->ks_limit &&
610 		    ksp->ks_memuse < ksp->ks_limit)
611 			wakeup((void *)ksp);
612 #ifdef DIAGNOSTIC
613 		if (ksp->ks_inuse == 0)
614 			panic("free 1: inuse 0, probable double free");
615 #endif
616 		ksp->ks_inuse--;
617 		kbp->kb_total -= 1;
618 #endif
619 		mutex_spin_exit(&malloc_lock);
620 		return;
621 	}
622 	freep = (struct freelist *)addr;
623 #ifdef DIAGNOSTIC
624 	/*
625 	 * Check for multiple frees. Use a quick check to see if
626 	 * it looks free before laboriously searching the freelist.
627 	 */
628 	if (__predict_false(freep->spare0 == WEIRD_ADDR)) {
629 		for (cp = kbp->kb_next; cp;
630 		    cp = ((struct freelist *)cp)->next) {
631 			if (addr != cp)
632 				continue;
633 			printf("multiply freed item %p\n", addr);
634 #ifdef MALLOCLOG
635 			hitmlog(addr);
636 #endif
637 			panic("free: duplicated free");
638 		}
639 	}
640 
641 	/*
642 	 * Copy in known text to detect modification after freeing
643 	 * and to make it look free. Also, save the type being freed
644 	 * so we can list likely culprit if modification is detected
645 	 * when the object is reallocated.
646 	 */
647 	copysize = size < MAX_COPY ? size : MAX_COPY;
648 	end = (int32_t *)&((char *)addr)[copysize];
649 	for (lp = (int32_t *)addr; lp < end; lp++)
650 		*lp = WEIRD_ADDR;
651 	freep->type = ksp;
652 #endif /* DIAGNOSTIC */
653 #ifdef KMEMSTATS
654 	kup->ku_freecnt++;
655 	if (kup->ku_freecnt >= kbp->kb_elmpercl) {
656 		if (kup->ku_freecnt > kbp->kb_elmpercl)
657 			panic("free: multiple frees");
658 		else if (kbp->kb_totalfree > kbp->kb_highwat)
659 			kbp->kb_couldfree++;
660 	}
661 	kbp->kb_totalfree++;
662 	ksp->ks_memuse -= size;
663 	if (ksp->ks_memuse + size >= ksp->ks_limit &&
664 	    ksp->ks_memuse < ksp->ks_limit)
665 		wakeup((void *)ksp);
666 #ifdef DIAGNOSTIC
667 	if (ksp->ks_inuse == 0)
668 		panic("free 2: inuse 0, probable double free");
669 #endif
670 	ksp->ks_inuse--;
671 #endif
672 	if (kbp->kb_next == NULL)
673 		kbp->kb_next = addr;
674 	else
675 		((struct freelist *)kbp->kb_last)->next = addr;
676 	freep->next = NULL;
677 	kbp->kb_last = addr;
678 	mutex_spin_exit(&malloc_lock);
679 }
680 
681 /*
682  * Change the size of a block of memory.
683  */
684 void *
685 kern_realloc(void *curaddr, unsigned long newsize, struct malloc_type *ksp,
686     int flags)
687 {
688 	struct kmemusage *kup;
689 	unsigned long cursize;
690 	void *newaddr;
691 #ifdef DIAGNOSTIC
692 	long alloc;
693 #endif
694 
695 	/*
696 	 * realloc() with a NULL pointer is the same as malloc().
697 	 */
698 	if (curaddr == NULL)
699 		return (malloc(newsize, ksp, flags));
700 
701 	/*
702 	 * realloc() with zero size is the same as free().
703 	 */
704 	if (newsize == 0) {
705 		free(curaddr, ksp);
706 		return (NULL);
707 	}
708 
709 #ifdef LOCKDEBUG
710 	if ((flags & M_NOWAIT) == 0) {
711 		ASSERT_SLEEPABLE();
712 	}
713 #endif
714 
715 	/*
716 	 * Find out how large the old allocation was (and do some
717 	 * sanity checking).
718 	 */
719 	kup = btokup(curaddr);
720 	cursize = 1 << kup->ku_indx;
721 
722 #ifdef DIAGNOSTIC
723 	/*
724 	 * Check for returns of data that do not point to the
725 	 * beginning of the allocation.
726 	 */
727 	if (cursize > PAGE_SIZE)
728 		alloc = addrmask[BUCKETINDX(PAGE_SIZE)];
729 	else
730 		alloc = addrmask[kup->ku_indx];
731 	if (((u_long)curaddr & alloc) != 0)
732 		panic("realloc: "
733 		    "unaligned addr %p, size %ld, type %s, mask %ld\n",
734 		    curaddr, cursize, ksp->ks_shortdesc, alloc);
735 #endif /* DIAGNOSTIC */
736 
737 	if (cursize > MAXALLOCSAVE)
738 		cursize = ctob(kup->ku_pagecnt);
739 
740 	/*
741 	 * If we already actually have as much as they want, we're done.
742 	 */
743 	if (newsize <= cursize)
744 		return (curaddr);
745 
746 	/*
747 	 * Can't satisfy the allocation with the existing block.
748 	 * Allocate a new one and copy the data.
749 	 */
750 	newaddr = malloc(newsize, ksp, flags);
751 	if (__predict_false(newaddr == NULL)) {
752 		/*
753 		 * malloc() failed, because flags included M_NOWAIT.
754 		 * Return NULL to indicate that failure.  The old
755 		 * pointer is still valid.
756 		 */
757 		return (NULL);
758 	}
759 	memcpy(newaddr, curaddr, cursize);
760 
761 	/*
762 	 * We were successful: free the old allocation and return
763 	 * the new one.
764 	 */
765 	free(curaddr, ksp);
766 	return (newaddr);
767 }
768 
769 /*
770  * Roundup size to the actual allocation size.
771  */
772 unsigned long
773 malloc_roundup(unsigned long size)
774 {
775 
776 	if (size > MAXALLOCSAVE)
777 		return (roundup(size, PAGE_SIZE));
778 	else
779 		return (1 << BUCKETINDX(size));
780 }
781 
782 /*
783  * Add a malloc type to the system.
784  */
785 void
786 malloc_type_attach(struct malloc_type *type)
787 {
788 
789 	if (nkmempages == 0)
790 		panic("malloc_type_attach: nkmempages == 0");
791 
792 	if (type->ks_magic != M_MAGIC)
793 		panic("malloc_type_attach: bad magic");
794 
795 #ifdef DIAGNOSTIC
796 	{
797 		struct malloc_type *ksp;
798 		for (ksp = kmemstatistics; ksp != NULL; ksp = ksp->ks_next) {
799 			if (ksp == type)
800 				panic("malloc_type_attach: already on list");
801 		}
802 	}
803 #endif
804 
805 #ifdef KMEMSTATS
806 	if (type->ks_limit == 0)
807 		type->ks_limit = ((u_long)nkmempages << PAGE_SHIFT) * 6U / 10U;
808 #else
809 	type->ks_limit = 0;
810 #endif
811 
812 	type->ks_next = kmemstatistics;
813 	kmemstatistics = type;
814 }
815 
816 /*
817  * Remove a malloc type from the system..
818  */
819 void
820 malloc_type_detach(struct malloc_type *type)
821 {
822 	struct malloc_type *ksp;
823 
824 #ifdef DIAGNOSTIC
825 	if (type->ks_magic != M_MAGIC)
826 		panic("malloc_type_detach: bad magic");
827 #endif
828 
829 	if (type == kmemstatistics)
830 		kmemstatistics = type->ks_next;
831 	else {
832 		for (ksp = kmemstatistics; ksp->ks_next != NULL;
833 		     ksp = ksp->ks_next) {
834 			if (ksp->ks_next == type) {
835 				ksp->ks_next = type->ks_next;
836 				break;
837 			}
838 		}
839 #ifdef DIAGNOSTIC
840 		if (ksp->ks_next == NULL)
841 			panic("malloc_type_detach: not on list");
842 #endif
843 	}
844 	type->ks_next = NULL;
845 }
846 
847 /*
848  * Set the limit on a malloc type.
849  */
850 void
851 malloc_type_setlimit(struct malloc_type *type, u_long limit)
852 {
853 #ifdef KMEMSTATS
854 	mutex_spin_enter(&malloc_lock);
855 	type->ks_limit = limit;
856 	mutex_spin_exit(&malloc_lock);
857 #endif
858 }
859 
860 /*
861  * Compute the number of pages that kmem_map will map, that is,
862  * the size of the kernel malloc arena.
863  */
864 void
865 kmeminit_nkmempages(void)
866 {
867 	int npages;
868 
869 	if (nkmempages != 0) {
870 		/*
871 		 * It's already been set (by us being here before, or
872 		 * by patching or kernel config options), bail out now.
873 		 */
874 		return;
875 	}
876 
877 	npages = physmem;
878 
879 	if (npages > NKMEMPAGES_MAX)
880 		npages = NKMEMPAGES_MAX;
881 
882 	if (npages < NKMEMPAGES_MIN)
883 		npages = NKMEMPAGES_MIN;
884 
885 	nkmempages = npages;
886 }
887 
888 /*
889  * Initialize the kernel memory allocator
890  */
891 void
892 kmeminit(void)
893 {
894 	__link_set_decl(malloc_types, struct malloc_type);
895 	struct malloc_type * const *ksp;
896 	vaddr_t kmb, kml;
897 #ifdef KMEMSTATS
898 	long indx;
899 #endif
900 
901 #if	((MAXALLOCSAVE & (MAXALLOCSAVE - 1)) != 0)
902 		ERROR!_kmeminit:_MAXALLOCSAVE_not_power_of_2
903 #endif
904 #if	(MAXALLOCSAVE > MINALLOCSIZE * 32768)
905 		ERROR!_kmeminit:_MAXALLOCSAVE_too_big
906 #endif
907 #if	(MAXALLOCSAVE < NBPG)
908 		ERROR!_kmeminit:_MAXALLOCSAVE_too_small
909 #endif
910 
911 	if (sizeof(struct freelist) > (1 << MINBUCKET))
912 		panic("minbucket too small/struct freelist too big");
913 
914 	mutex_init(&malloc_lock, MUTEX_DEFAULT, IPL_VM);
915 
916 	/*
917 	 * Compute the number of kmem_map pages, if we have not
918 	 * done so already.
919 	 */
920 	kmeminit_nkmempages();
921 
922 	kmemusage = (struct kmemusage *) uvm_km_alloc(kernel_map,
923 	    (vsize_t)(nkmempages * sizeof(struct kmemusage)), 0,
924 	    UVM_KMF_WIRED|UVM_KMF_ZERO);
925 	kmb = 0;
926 	kmem_map = uvm_km_suballoc(kernel_map, &kmb,
927 	    &kml, ((vsize_t)nkmempages << PAGE_SHIFT),
928 	    VM_MAP_INTRSAFE, false, &kmem_map_store);
929 	uvm_km_vacache_init(kmem_map, "kvakmem", 0);
930 	kmembase = (char *)kmb;
931 	kmemlimit = (char *)kml;
932 #ifdef KMEMSTATS
933 	for (indx = 0; indx < MINBUCKET + 16; indx++) {
934 		if (1 << indx >= PAGE_SIZE)
935 			kmembuckets[indx].kb_elmpercl = 1;
936 		else
937 			kmembuckets[indx].kb_elmpercl = PAGE_SIZE / (1 << indx);
938 		kmembuckets[indx].kb_highwat =
939 			5 * kmembuckets[indx].kb_elmpercl;
940 	}
941 #endif
942 
943 	/* Attach all of the statically-linked malloc types. */
944 	__link_set_foreach(ksp, malloc_types)
945 		malloc_type_attach(*ksp);
946 
947 #ifdef MALLOC_DEBUG
948 	debug_malloc_init();
949 #endif
950 }
951 
952 #ifdef DDB
953 #include <ddb/db_output.h>
954 
955 /*
956  * Dump kmem statistics from ddb.
957  *
958  * usage: call dump_kmemstats
959  */
960 void	dump_kmemstats(void);
961 
962 void
963 dump_kmemstats(void)
964 {
965 #ifdef KMEMSTATS
966 	struct malloc_type *ksp;
967 
968 	for (ksp = kmemstatistics; ksp != NULL; ksp = ksp->ks_next) {
969 		if (ksp->ks_memuse == 0)
970 			continue;
971 		db_printf("%s%.*s %ld\n", ksp->ks_shortdesc,
972 		    (int)(20 - strlen(ksp->ks_shortdesc)),
973 		    "                    ",
974 		    ksp->ks_memuse);
975 	}
976 #else
977 	db_printf("Kmem stats are not being collected.\n");
978 #endif /* KMEMSTATS */
979 }
980 #endif /* DDB */
981 
982 
983 #if 0
984 /*
985  * Diagnostic messages about "Data modified on
986  * freelist" indicate a memory corruption, but
987  * they do not help tracking it down.
988  * This function can be called at various places
989  * to sanity check malloc's freelist and discover
990  * where does the corruption take place.
991  */
992 int
993 freelist_sanitycheck(void) {
994 	int i,j;
995 	struct kmembuckets *kbp;
996 	struct freelist *freep;
997 	int rv = 0;
998 
999 	for (i = MINBUCKET; i <= MINBUCKET + 15; i++) {
1000 		kbp = &kmembuckets[i];
1001 		freep = (struct freelist *)kbp->kb_next;
1002 		j = 0;
1003 		while(freep) {
1004 			vm_map_lock(kmem_map);
1005 			rv = uvm_map_checkprot(kmem_map, (vaddr_t)freep,
1006 			    (vaddr_t)freep + sizeof(struct freelist),
1007 			    VM_PROT_WRITE);
1008 			vm_map_unlock(kmem_map);
1009 
1010 			if ((rv == 0) || (*(int *)freep != WEIRD_ADDR)) {
1011 				printf("bucket %i, chunck %d at %p modified\n",
1012 				    i, j, freep);
1013 				return 1;
1014 			}
1015 			freep = (struct freelist *)freep->next;
1016 			j++;
1017 		}
1018 	}
1019 
1020 	return 0;
1021 }
1022 #endif
1023