1 /* 2 * Copyright (c) 1987, 1991 The Regents of the University of California. 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 3. All advertising materials mentioning features or use of this software 14 * must display the following acknowledgement: 15 * This product includes software developed by the University of 16 * California, Berkeley and its contributors. 17 * 4. Neither the name of the University nor the names of its contributors 18 * may be used to endorse or promote products derived from this software 19 * without specific prior written permission. 20 * 21 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 24 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 31 * SUCH DAMAGE. 32 * 33 * @(#)kern_malloc.c 7.25 (Berkeley) 5/8/91 34 */ 35 36 #include "param.h" 37 #include "proc.h" 38 #include "kernel.h" 39 #include "malloc.h" 40 #include "vm/vm.h" 41 #include "vm/vm_kern.h" 42 43 struct kmembuckets bucket[MINBUCKET + 16]; 44 struct kmemstats kmemstats[M_LAST]; 45 struct kmemusage *kmemusage; 46 char *kmembase, *kmemlimit; 47 char *memname[] = INITKMEMNAMES; 48 49 /* 50 * Allocate a block of memory 51 */ 52 void * 53 malloc(size, type, flags) 54 unsigned long size; 55 int type, flags; 56 { 57 register struct kmembuckets *kbp; 58 register struct kmemusage *kup; 59 long indx, npg, alloc, allocsize; 60 int s; 61 caddr_t va, cp, savedlist; 62 #ifdef KMEMSTATS 63 register struct kmemstats *ksp = &kmemstats[type]; 64 65 if (((unsigned long)type) > M_LAST) 66 panic("malloc - bogus type"); 67 #endif 68 69 indx = BUCKETINDX(size); 70 kbp = &bucket[indx]; 71 s = splimp(); 72 #ifdef KMEMSTATS 73 while (ksp->ks_memuse >= ksp->ks_limit) { 74 if (flags & M_NOWAIT) { 75 splx(s); 76 return ((void *) NULL); 77 } 78 if (ksp->ks_limblocks < 65535) 79 ksp->ks_limblocks++; 80 tsleep((caddr_t)ksp, PSWP+2, memname[type], 0); 81 } 82 #endif 83 if (kbp->kb_next == NULL) { 84 if (size > MAXALLOCSAVE) 85 allocsize = roundup(size, CLBYTES); 86 else 87 allocsize = 1 << indx; 88 npg = clrnd(btoc(allocsize)); 89 va = (caddr_t) kmem_malloc(kmem_map, (vm_size_t)ctob(npg), 90 !(flags & M_NOWAIT)); 91 if (va == NULL) { 92 splx(s); 93 return ((void *) NULL); 94 } 95 #ifdef KMEMSTATS 96 kbp->kb_total += kbp->kb_elmpercl; 97 #endif 98 kup = btokup(va); 99 kup->ku_indx = indx; 100 if (allocsize > MAXALLOCSAVE) { 101 if (npg > 65535) 102 panic("malloc: allocation too large"); 103 kup->ku_pagecnt = npg; 104 #ifdef KMEMSTATS 105 ksp->ks_memuse += allocsize; 106 #endif 107 goto out; 108 } 109 #ifdef KMEMSTATS 110 kup->ku_freecnt = kbp->kb_elmpercl; 111 kbp->kb_totalfree += kbp->kb_elmpercl; 112 #endif 113 /* 114 * Just in case we blocked while allocating memory, 115 * and someone else also allocated memory for this 116 * bucket, don't assume the list is still empty. 117 */ 118 savedlist = kbp->kb_next; 119 kbp->kb_next = va + (npg * NBPG) - allocsize; 120 for (cp = kbp->kb_next; cp > va; cp -= allocsize) 121 *(caddr_t *)cp = cp - allocsize; 122 *(caddr_t *)cp = savedlist; 123 } 124 va = kbp->kb_next; 125 kbp->kb_next = *(caddr_t *)va; 126 #ifdef KMEMSTATS 127 kup = btokup(va); 128 if (kup->ku_indx != indx) 129 panic("malloc: wrong bucket"); 130 if (kup->ku_freecnt == 0) 131 panic("malloc: lost data"); 132 kup->ku_freecnt--; 133 kbp->kb_totalfree--; 134 ksp->ks_memuse += 1 << indx; 135 out: 136 kbp->kb_calls++; 137 ksp->ks_inuse++; 138 ksp->ks_calls++; 139 if (ksp->ks_memuse > ksp->ks_maxused) 140 ksp->ks_maxused = ksp->ks_memuse; 141 #else 142 out: 143 #endif 144 splx(s); 145 return ((void *) va); 146 } 147 148 #ifdef DIAGNOSTIC 149 long addrmask[] = { 0x00000000, 150 0x00000001, 0x00000003, 0x00000007, 0x0000000f, 151 0x0000001f, 0x0000003f, 0x0000007f, 0x000000ff, 152 0x000001ff, 0x000003ff, 0x000007ff, 0x00000fff, 153 0x00001fff, 0x00003fff, 0x00007fff, 0x0000ffff, 154 }; 155 #endif /* DIAGNOSTIC */ 156 157 /* 158 * Free a block of memory allocated by malloc. 159 */ 160 void 161 free(addr, type) 162 void *addr; 163 int type; 164 { 165 register struct kmembuckets *kbp; 166 register struct kmemusage *kup; 167 long alloc, size; 168 int s; 169 #ifdef KMEMSTATS 170 register struct kmemstats *ksp = &kmemstats[type]; 171 #endif 172 173 kup = btokup(addr); 174 size = 1 << kup->ku_indx; 175 #ifdef DIAGNOSTIC 176 if (size > NBPG * CLSIZE) 177 alloc = addrmask[BUCKETINDX(NBPG * CLSIZE)]; 178 else 179 alloc = addrmask[kup->ku_indx]; 180 if (((u_long)addr & alloc) != 0) { 181 printf("free: unaligned addr 0x%x, size %d, type %d, mask %d\n", 182 addr, size, type, alloc); 183 panic("free: unaligned addr"); 184 } 185 #endif /* DIAGNOSTIC */ 186 kbp = &bucket[kup->ku_indx]; 187 s = splimp(); 188 if (size > MAXALLOCSAVE) { 189 kmem_free(kmem_map, (vm_offset_t)addr, ctob(kup->ku_pagecnt)); 190 #ifdef KMEMSTATS 191 size = kup->ku_pagecnt << PGSHIFT; 192 ksp->ks_memuse -= size; 193 kup->ku_indx = 0; 194 kup->ku_pagecnt = 0; 195 if (ksp->ks_memuse + size >= ksp->ks_limit && 196 ksp->ks_memuse < ksp->ks_limit) 197 wakeup((caddr_t)ksp); 198 ksp->ks_inuse--; 199 kbp->kb_total -= 1; 200 #endif 201 splx(s); 202 return; 203 } 204 #ifdef KMEMSTATS 205 kup->ku_freecnt++; 206 if (kup->ku_freecnt >= kbp->kb_elmpercl) 207 if (kup->ku_freecnt > kbp->kb_elmpercl) 208 panic("free: multiple frees"); 209 else if (kbp->kb_totalfree > kbp->kb_highwat) 210 kbp->kb_couldfree++; 211 kbp->kb_totalfree++; 212 ksp->ks_memuse -= size; 213 if (ksp->ks_memuse + size >= ksp->ks_limit && 214 ksp->ks_memuse < ksp->ks_limit) 215 wakeup((caddr_t)ksp); 216 ksp->ks_inuse--; 217 #endif 218 *(caddr_t *)addr = kbp->kb_next; 219 kbp->kb_next = addr; 220 splx(s); 221 } 222 223 /* 224 * Initialize the kernel memory allocator 225 */ 226 kmeminit() 227 { 228 register long indx; 229 int npg; 230 231 #if ((MAXALLOCSAVE & (MAXALLOCSAVE - 1)) != 0) 232 ERROR!_kmeminit:_MAXALLOCSAVE_not_power_of_2 233 #endif 234 #if (MAXALLOCSAVE > MINALLOCSIZE * 32768) 235 ERROR!_kmeminit:_MAXALLOCSAVE_too_big 236 #endif 237 #if (MAXALLOCSAVE < CLBYTES) 238 ERROR!_kmeminit:_MAXALLOCSAVE_too_small 239 #endif 240 npg = VM_KMEM_SIZE/ NBPG; 241 kmemusage = (struct kmemusage *) kmem_alloc(kernel_map, 242 (vm_size_t)(npg * sizeof(struct kmemusage))); 243 kmem_map = kmem_suballoc(kernel_map, (vm_offset_t *)&kmembase, 244 (vm_offset_t *)&kmemlimit, (vm_size_t)(npg * NBPG), FALSE); 245 #ifdef KMEMSTATS 246 for (indx = 0; indx < MINBUCKET + 16; indx++) { 247 if (1 << indx >= CLBYTES) 248 bucket[indx].kb_elmpercl = 1; 249 else 250 bucket[indx].kb_elmpercl = CLBYTES / (1 << indx); 251 bucket[indx].kb_highwat = 5 * bucket[indx].kb_elmpercl; 252 } 253 for (indx = 0; indx < M_LAST; indx++) 254 kmemstats[indx].ks_limit = npg * NBPG * 6 / 10; 255 #endif 256 } 257