1 /* $NetBSD: kern_malloc.c,v 1.55 2000/11/24 00:34:32 chs Exp $ */ 2 3 /* 4 * Copyright (c) 1996 Christopher G. Demetriou. All rights reserved. 5 * Copyright (c) 1987, 1991, 1993 6 * The Regents of the University of California. All rights reserved. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 3. All advertising materials mentioning features or use of this software 17 * must display the following acknowledgement: 18 * This product includes software developed by the University of 19 * California, Berkeley and its contributors. 20 * 4. Neither the name of the University nor the names of its contributors 21 * may be used to endorse or promote products derived from this software 22 * without specific prior written permission. 23 * 24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 27 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 34 * SUCH DAMAGE. 35 * 36 * @(#)kern_malloc.c 8.4 (Berkeley) 5/20/95 37 */ 38 39 #include "opt_lockdebug.h" 40 41 #include <sys/param.h> 42 #include <sys/proc.h> 43 #include <sys/map.h> 44 #include <sys/kernel.h> 45 #include <sys/malloc.h> 46 #include <sys/systm.h> 47 48 #include <uvm/uvm_extern.h> 49 50 static struct vm_map_intrsafe kmem_map_store; 51 vm_map_t kmem_map = NULL; 52 53 #include "opt_kmempages.h" 54 55 #ifdef NKMEMCLUSTERS 56 #error NKMEMCLUSTERS is obsolete; remove it from your kernel config file and use NKMEMPAGES instead or let the kernel auto-size 57 #endif 58 59 /* 60 * Default number of pages in kmem_map. We attempt to calculate this 61 * at run-time, but allow it to be either patched or set in the kernel 62 * config file. 63 */ 64 #ifndef NKMEMPAGES 65 #define NKMEMPAGES 0 66 #endif 67 int nkmempages = NKMEMPAGES; 68 69 /* 70 * Defaults for lower- and upper-bounds for the kmem_map page count. 71 * Can be overridden by kernel config options. 72 */ 73 #ifndef NKMEMPAGES_MIN 74 #define NKMEMPAGES_MIN NKMEMPAGES_MIN_DEFAULT 75 #endif 76 77 #ifndef NKMEMPAGES_MAX 78 #define NKMEMPAGES_MAX NKMEMPAGES_MAX_DEFAULT 79 #endif 80 81 #include "opt_kmemstats.h" 82 #include "opt_malloclog.h" 83 84 struct kmembuckets bucket[MINBUCKET + 16]; 85 struct kmemstats kmemstats[M_LAST]; 86 struct kmemusage *kmemusage; 87 char *kmembase, *kmemlimit; 88 const char *memname[] = INITKMEMNAMES; 89 90 #ifdef MALLOCLOG 91 #ifndef MALLOCLOGSIZE 92 #define MALLOCLOGSIZE 100000 93 #endif 94 95 struct malloclog { 96 void *addr; 97 long size; 98 int type; 99 int action; 100 const char *file; 101 long line; 102 } malloclog[MALLOCLOGSIZE]; 103 104 long malloclogptr; 105 106 static void domlog __P((void *a, long size, int type, int action, 107 const char *file, long line)); 108 static void hitmlog __P((void *a)); 109 110 static void 111 domlog(a, size, type, action, file, line) 112 void *a; 113 long size; 114 int type; 115 int action; 116 const char *file; 117 long line; 118 { 119 120 malloclog[malloclogptr].addr = a; 121 malloclog[malloclogptr].size = size; 122 malloclog[malloclogptr].type = type; 123 malloclog[malloclogptr].action = action; 124 malloclog[malloclogptr].file = file; 125 malloclog[malloclogptr].line = line; 126 malloclogptr++; 127 if (malloclogptr >= MALLOCLOGSIZE) 128 malloclogptr = 0; 129 } 130 131 static void 132 hitmlog(a) 133 void *a; 134 { 135 struct malloclog *lp; 136 long l; 137 138 #define PRT \ 139 if (malloclog[l].addr == a && malloclog[l].action) { \ 140 lp = &malloclog[l]; \ 141 printf("malloc log entry %ld:\n", l); \ 142 printf("\taddr = %p\n", lp->addr); \ 143 printf("\tsize = %ld\n", lp->size); \ 144 printf("\ttype = %s\n", memname[lp->type]); \ 145 printf("\taction = %s\n", lp->action == 1 ? "alloc" : "free"); \ 146 printf("\tfile = %s\n", lp->file); \ 147 printf("\tline = %ld\n", lp->line); \ 148 } 149 150 for (l = malloclogptr; l < MALLOCLOGSIZE; l++) 151 PRT 152 153 for (l = 0; l < malloclogptr; l++) 154 PRT 155 } 156 #endif /* MALLOCLOG */ 157 158 #ifdef DIAGNOSTIC 159 /* 160 * This structure provides a set of masks to catch unaligned frees. 161 */ 162 long addrmask[] = { 0, 163 0x00000001, 0x00000003, 0x00000007, 0x0000000f, 164 0x0000001f, 0x0000003f, 0x0000007f, 0x000000ff, 165 0x000001ff, 0x000003ff, 0x000007ff, 0x00000fff, 166 0x00001fff, 0x00003fff, 0x00007fff, 0x0000ffff, 167 }; 168 169 /* 170 * The WEIRD_ADDR is used as known text to copy into free objects so 171 * that modifications after frees can be detected. 172 */ 173 #define WEIRD_ADDR ((unsigned) 0xdeadbeef) 174 #ifdef DEBUG 175 #define MAX_COPY PAGE_SIZE 176 #else 177 #define MAX_COPY 32 178 #endif 179 180 /* 181 * Normally the freelist structure is used only to hold the list pointer 182 * for free objects. However, when running with diagnostics, the first 183 * 8 bytes of the structure is unused except for diagnostic information, 184 * and the free list pointer is at offst 8 in the structure. Since the 185 * first 8 bytes is the portion of the structure most often modified, this 186 * helps to detect memory reuse problems and avoid free list corruption. 187 */ 188 struct freelist { 189 int32_t spare0; 190 int16_t type; 191 int16_t spare1; 192 caddr_t next; 193 }; 194 #else /* !DIAGNOSTIC */ 195 struct freelist { 196 caddr_t next; 197 }; 198 #endif /* DIAGNOSTIC */ 199 200 /* 201 * Allocate a block of memory 202 */ 203 #ifdef MALLOCLOG 204 void * 205 _malloc(size, type, flags, file, line) 206 unsigned long size; 207 int type, flags; 208 const char *file; 209 long line; 210 #else 211 void * 212 malloc(size, type, flags) 213 unsigned long size; 214 int type, flags; 215 #endif /* MALLOCLOG */ 216 { 217 struct kmembuckets *kbp; 218 struct kmemusage *kup; 219 struct freelist *freep; 220 long indx, npg, allocsize; 221 int s; 222 caddr_t va, cp, savedlist; 223 #ifdef DIAGNOSTIC 224 int32_t *end, *lp; 225 int copysize; 226 const char *savedtype; 227 #endif 228 #ifdef KMEMSTATS 229 struct kmemstats *ksp = &kmemstats[type]; 230 231 if (__predict_false(((unsigned long)type) > M_LAST)) 232 panic("malloc - bogus type"); 233 #endif 234 indx = BUCKETINDX(size); 235 kbp = &bucket[indx]; 236 s = splmem(); 237 #ifdef KMEMSTATS 238 while (ksp->ks_memuse >= ksp->ks_limit) { 239 if (flags & M_NOWAIT) { 240 splx(s); 241 return ((void *) NULL); 242 } 243 if (ksp->ks_limblocks < 65535) 244 ksp->ks_limblocks++; 245 tsleep((caddr_t)ksp, PSWP+2, memname[type], 0); 246 } 247 ksp->ks_size |= 1 << indx; 248 #endif 249 #ifdef DIAGNOSTIC 250 copysize = 1 << indx < MAX_COPY ? 1 << indx : MAX_COPY; 251 #endif 252 if (kbp->kb_next == NULL) { 253 kbp->kb_last = NULL; 254 if (size > MAXALLOCSAVE) 255 allocsize = roundup(size, PAGE_SIZE); 256 else 257 allocsize = 1 << indx; 258 npg = btoc(allocsize); 259 va = (caddr_t) uvm_km_kmemalloc(kmem_map, uvmexp.kmem_object, 260 (vsize_t)ctob(npg), 261 (flags & M_NOWAIT) ? UVM_KMF_NOWAIT : 0); 262 if (__predict_false(va == NULL)) { 263 /* 264 * Kmem_malloc() can return NULL, even if it can 265 * wait, if there is no map space avaiable, because 266 * it can't fix that problem. Neither can we, 267 * right now. (We should release pages which 268 * are completely free and which are in buckets 269 * with too many free elements.) 270 */ 271 if ((flags & M_NOWAIT) == 0) 272 panic("malloc: out of space in kmem_map"); 273 splx(s); 274 return ((void *) NULL); 275 } 276 #ifdef KMEMSTATS 277 kbp->kb_total += kbp->kb_elmpercl; 278 #endif 279 kup = btokup(va); 280 kup->ku_indx = indx; 281 if (allocsize > MAXALLOCSAVE) { 282 if (npg > 65535) 283 panic("malloc: allocation too large"); 284 kup->ku_pagecnt = npg; 285 #ifdef KMEMSTATS 286 ksp->ks_memuse += allocsize; 287 #endif 288 goto out; 289 } 290 #ifdef KMEMSTATS 291 kup->ku_freecnt = kbp->kb_elmpercl; 292 kbp->kb_totalfree += kbp->kb_elmpercl; 293 #endif 294 /* 295 * Just in case we blocked while allocating memory, 296 * and someone else also allocated memory for this 297 * bucket, don't assume the list is still empty. 298 */ 299 savedlist = kbp->kb_next; 300 kbp->kb_next = cp = va + (npg << PAGE_SHIFT) - allocsize; 301 for (;;) { 302 freep = (struct freelist *)cp; 303 #ifdef DIAGNOSTIC 304 /* 305 * Copy in known text to detect modification 306 * after freeing. 307 */ 308 end = (int32_t *)&cp[copysize]; 309 for (lp = (int32_t *)cp; lp < end; lp++) 310 *lp = WEIRD_ADDR; 311 freep->type = M_FREE; 312 #endif /* DIAGNOSTIC */ 313 if (cp <= va) 314 break; 315 cp -= allocsize; 316 freep->next = cp; 317 } 318 freep->next = savedlist; 319 if (kbp->kb_last == NULL) 320 kbp->kb_last = (caddr_t)freep; 321 } 322 va = kbp->kb_next; 323 kbp->kb_next = ((struct freelist *)va)->next; 324 #ifdef DIAGNOSTIC 325 freep = (struct freelist *)va; 326 savedtype = (unsigned)freep->type < M_LAST ? 327 memname[freep->type] : "???"; 328 if (kbp->kb_next) { 329 int rv; 330 vaddr_t addr = (vaddr_t)kbp->kb_next; 331 332 vm_map_lock(kmem_map); 333 rv = uvm_map_checkprot(kmem_map, addr, 334 addr + sizeof(struct freelist), 335 VM_PROT_WRITE); 336 vm_map_unlock(kmem_map); 337 338 if (__predict_false(rv == 0)) { 339 printf( 340 "%s %ld of object %p size %ld %s %s (invalid addr %p)\n", 341 "Data modified on freelist: word", 342 (long)((int32_t *)&kbp->kb_next - (int32_t *)kbp), 343 va, size, "previous type", savedtype, kbp->kb_next); 344 #ifdef MALLOCLOG 345 hitmlog(va); 346 #endif 347 kbp->kb_next = NULL; 348 } 349 } 350 351 /* Fill the fields that we've used with WEIRD_ADDR */ 352 #if BYTE_ORDER == BIG_ENDIAN 353 freep->type = WEIRD_ADDR >> 16; 354 #endif 355 #if BYTE_ORDER == LITTLE_ENDIAN 356 freep->type = (short)WEIRD_ADDR; 357 #endif 358 end = (int32_t *)&freep->next + 359 (sizeof(freep->next) / sizeof(int32_t)); 360 for (lp = (int32_t *)&freep->next; lp < end; lp++) 361 *lp = WEIRD_ADDR; 362 363 /* and check that the data hasn't been modified. */ 364 end = (int32_t *)&va[copysize]; 365 for (lp = (int32_t *)va; lp < end; lp++) { 366 if (__predict_true(*lp == WEIRD_ADDR)) 367 continue; 368 printf("%s %ld of object %p size %ld %s %s (0x%x != 0x%x)\n", 369 "Data modified on freelist: word", 370 (long)(lp - (int32_t *)va), va, size, "previous type", 371 savedtype, *lp, WEIRD_ADDR); 372 #ifdef MALLOCLOG 373 hitmlog(va); 374 #endif 375 break; 376 } 377 378 freep->spare0 = 0; 379 #endif /* DIAGNOSTIC */ 380 #ifdef KMEMSTATS 381 kup = btokup(va); 382 if (kup->ku_indx != indx) 383 panic("malloc: wrong bucket"); 384 if (kup->ku_freecnt == 0) 385 panic("malloc: lost data"); 386 kup->ku_freecnt--; 387 kbp->kb_totalfree--; 388 ksp->ks_memuse += 1 << indx; 389 out: 390 kbp->kb_calls++; 391 ksp->ks_inuse++; 392 ksp->ks_calls++; 393 if (ksp->ks_memuse > ksp->ks_maxused) 394 ksp->ks_maxused = ksp->ks_memuse; 395 #else 396 out: 397 #endif 398 #ifdef MALLOCLOG 399 domlog(va, size, type, 1, file, line); 400 #endif 401 splx(s); 402 return ((void *) va); 403 } 404 405 /* 406 * Free a block of memory allocated by malloc. 407 */ 408 #ifdef MALLOCLOG 409 void 410 _free(addr, type, file, line) 411 void *addr; 412 int type; 413 const char *file; 414 long line; 415 #else 416 void 417 free(addr, type) 418 void *addr; 419 int type; 420 #endif /* MALLOCLOG */ 421 { 422 struct kmembuckets *kbp; 423 struct kmemusage *kup; 424 struct freelist *freep; 425 long size; 426 int s; 427 #ifdef DIAGNOSTIC 428 caddr_t cp; 429 int32_t *end, *lp; 430 long alloc, copysize; 431 #endif 432 #ifdef KMEMSTATS 433 struct kmemstats *ksp = &kmemstats[type]; 434 #endif 435 436 #ifdef DIAGNOSTIC 437 /* 438 * Ensure that we're free'ing something that we could 439 * have allocated in the first place. That is, check 440 * to see that the address is within kmem_map. 441 */ 442 if (__predict_false((vaddr_t)addr < kmem_map->header.start || 443 (vaddr_t)addr >= kmem_map->header.end)) 444 panic("free: addr %p not within kmem_map", addr); 445 #endif 446 447 kup = btokup(addr); 448 size = 1 << kup->ku_indx; 449 kbp = &bucket[kup->ku_indx]; 450 s = splmem(); 451 #ifdef MALLOCLOG 452 domlog(addr, 0, type, 2, file, line); 453 #endif 454 #ifdef DIAGNOSTIC 455 /* 456 * Check for returns of data that do not point to the 457 * beginning of the allocation. 458 */ 459 if (size > PAGE_SIZE) 460 alloc = addrmask[BUCKETINDX(PAGE_SIZE)]; 461 else 462 alloc = addrmask[kup->ku_indx]; 463 if (((u_long)addr & alloc) != 0) 464 panic("free: unaligned addr %p, size %ld, type %s, mask %ld\n", 465 addr, size, memname[type], alloc); 466 #endif /* DIAGNOSTIC */ 467 if (size > MAXALLOCSAVE) { 468 uvm_km_free(kmem_map, (vaddr_t)addr, ctob(kup->ku_pagecnt)); 469 #ifdef KMEMSTATS 470 size = kup->ku_pagecnt << PGSHIFT; 471 ksp->ks_memuse -= size; 472 kup->ku_indx = 0; 473 kup->ku_pagecnt = 0; 474 if (ksp->ks_memuse + size >= ksp->ks_limit && 475 ksp->ks_memuse < ksp->ks_limit) 476 wakeup((caddr_t)ksp); 477 ksp->ks_inuse--; 478 kbp->kb_total -= 1; 479 #endif 480 splx(s); 481 return; 482 } 483 freep = (struct freelist *)addr; 484 #ifdef DIAGNOSTIC 485 /* 486 * Check for multiple frees. Use a quick check to see if 487 * it looks free before laboriously searching the freelist. 488 */ 489 if (__predict_false(freep->spare0 == WEIRD_ADDR)) { 490 for (cp = kbp->kb_next; cp; 491 cp = ((struct freelist *)cp)->next) { 492 if (addr != cp) 493 continue; 494 printf("multiply freed item %p\n", addr); 495 #ifdef MALLOCLOG 496 hitmlog(addr); 497 #endif 498 panic("free: duplicated free"); 499 } 500 } 501 #ifdef LOCKDEBUG 502 /* 503 * Check if we're freeing a locked simple lock. 504 */ 505 simple_lock_freecheck(addr, (char *)addr + size); 506 #endif 507 /* 508 * Copy in known text to detect modification after freeing 509 * and to make it look free. Also, save the type being freed 510 * so we can list likely culprit if modification is detected 511 * when the object is reallocated. 512 */ 513 copysize = size < MAX_COPY ? size : MAX_COPY; 514 end = (int32_t *)&((caddr_t)addr)[copysize]; 515 for (lp = (int32_t *)addr; lp < end; lp++) 516 *lp = WEIRD_ADDR; 517 freep->type = type; 518 #endif /* DIAGNOSTIC */ 519 #ifdef KMEMSTATS 520 kup->ku_freecnt++; 521 if (kup->ku_freecnt >= kbp->kb_elmpercl) { 522 if (kup->ku_freecnt > kbp->kb_elmpercl) 523 panic("free: multiple frees"); 524 else if (kbp->kb_totalfree > kbp->kb_highwat) 525 kbp->kb_couldfree++; 526 } 527 kbp->kb_totalfree++; 528 ksp->ks_memuse -= size; 529 if (ksp->ks_memuse + size >= ksp->ks_limit && 530 ksp->ks_memuse < ksp->ks_limit) 531 wakeup((caddr_t)ksp); 532 ksp->ks_inuse--; 533 #endif 534 if (kbp->kb_next == NULL) 535 kbp->kb_next = addr; 536 else 537 ((struct freelist *)kbp->kb_last)->next = addr; 538 freep->next = NULL; 539 kbp->kb_last = addr; 540 splx(s); 541 } 542 543 /* 544 * Change the size of a block of memory. 545 */ 546 void * 547 realloc(curaddr, newsize, type, flags) 548 void *curaddr; 549 unsigned long newsize; 550 int type, flags; 551 { 552 struct kmemusage *kup; 553 long cursize; 554 void *newaddr; 555 #ifdef DIAGNOSTIC 556 long alloc; 557 #endif 558 559 /* 560 * Realloc() with a NULL pointer is the same as malloc(). 561 */ 562 if (curaddr == NULL) 563 return (malloc(newsize, type, flags)); 564 565 /* 566 * Realloc() with zero size is the same as free(). 567 */ 568 if (newsize == 0) { 569 free(curaddr, type); 570 return (NULL); 571 } 572 573 /* 574 * Find out how large the old allocation was (and do some 575 * sanity checking). 576 */ 577 kup = btokup(curaddr); 578 cursize = 1 << kup->ku_indx; 579 580 #ifdef DIAGNOSTIC 581 /* 582 * Check for returns of data that do not point to the 583 * beginning of the allocation. 584 */ 585 if (cursize > PAGE_SIZE) 586 alloc = addrmask[BUCKETINDX(PAGE_SIZE)]; 587 else 588 alloc = addrmask[kup->ku_indx]; 589 if (((u_long)curaddr & alloc) != 0) 590 panic("realloc: unaligned addr %p, size %ld, type %s, mask %ld\n", 591 curaddr, cursize, memname[type], alloc); 592 #endif /* DIAGNOSTIC */ 593 594 if (cursize > MAXALLOCSAVE) 595 cursize = ctob(kup->ku_pagecnt); 596 597 /* 598 * If we already actually have as much as they want, we're done. 599 */ 600 if (newsize <= cursize) 601 return (curaddr); 602 603 /* 604 * Can't satisfy the allocation with the existing block. 605 * Allocate a new one and copy the data. 606 */ 607 newaddr = malloc(newsize, type, flags); 608 if (__predict_false(newaddr == NULL)) { 609 /* 610 * Malloc() failed, because flags included M_NOWAIT. 611 * Return NULL to indicate that failure. The old 612 * pointer is still valid. 613 */ 614 return NULL; 615 } 616 memcpy(newaddr, curaddr, cursize); 617 618 /* 619 * We were successful: free the old allocation and return 620 * the new one. 621 */ 622 free(curaddr, type); 623 return (newaddr); 624 } 625 626 /* 627 * Compute the number of pages that kmem_map will map, that is, 628 * the size of the kernel malloc arena. 629 */ 630 void 631 kmeminit_nkmempages() 632 { 633 int npages; 634 635 if (nkmempages != 0) { 636 /* 637 * It's already been set (by us being here before, or 638 * by patching or kernel config options), bail out now. 639 */ 640 return; 641 } 642 643 /* 644 * We use the following (simple) formula: 645 * 646 * - Starting point is physical memory / 4. 647 * 648 * - Clamp it down to NKMEMPAGES_MAX. 649 * 650 * - Round it up to NKMEMPAGES_MIN. 651 */ 652 npages = physmem / 4; 653 654 if (npages > NKMEMPAGES_MAX) 655 npages = NKMEMPAGES_MAX; 656 657 if (npages < NKMEMPAGES_MIN) 658 npages = NKMEMPAGES_MIN; 659 660 nkmempages = npages; 661 } 662 663 /* 664 * Initialize the kernel memory allocator 665 */ 666 void 667 kmeminit() 668 { 669 #ifdef KMEMSTATS 670 long indx; 671 #endif 672 673 #if ((MAXALLOCSAVE & (MAXALLOCSAVE - 1)) != 0) 674 ERROR!_kmeminit:_MAXALLOCSAVE_not_power_of_2 675 #endif 676 #if (MAXALLOCSAVE > MINALLOCSIZE * 32768) 677 ERROR!_kmeminit:_MAXALLOCSAVE_too_big 678 #endif 679 #if (MAXALLOCSAVE < NBPG) 680 ERROR!_kmeminit:_MAXALLOCSAVE_too_small 681 #endif 682 683 if (sizeof(struct freelist) > (1 << MINBUCKET)) 684 panic("minbucket too small/struct freelist too big"); 685 686 /* 687 * Compute the number of kmem_map pages, if we have not 688 * done so already. 689 */ 690 kmeminit_nkmempages(); 691 692 kmemusage = (struct kmemusage *) uvm_km_zalloc(kernel_map, 693 (vsize_t)(nkmempages * sizeof(struct kmemusage))); 694 kmem_map = uvm_km_suballoc(kernel_map, (vaddr_t *)&kmembase, 695 (vaddr_t *)&kmemlimit, (vsize_t)(nkmempages << PAGE_SHIFT), 696 VM_MAP_INTRSAFE, FALSE, &kmem_map_store.vmi_map); 697 #ifdef KMEMSTATS 698 for (indx = 0; indx < MINBUCKET + 16; indx++) { 699 if (1 << indx >= PAGE_SIZE) 700 bucket[indx].kb_elmpercl = 1; 701 else 702 bucket[indx].kb_elmpercl = PAGE_SIZE / (1 << indx); 703 bucket[indx].kb_highwat = 5 * bucket[indx].kb_elmpercl; 704 } 705 for (indx = 0; indx < M_LAST; indx++) 706 kmemstats[indx].ks_limit = (nkmempages << PAGE_SHIFT) * 6 / 10; 707 #endif 708 } 709 710 #ifdef DDB 711 #include <ddb/db_output.h> 712 713 /* 714 * Dump kmem statistics from ddb. 715 * 716 * usage: call dump_kmemstats 717 */ 718 void dump_kmemstats __P((void)); 719 720 void 721 dump_kmemstats() 722 { 723 #ifdef KMEMSTATS 724 const char *name; 725 int i; 726 727 for (i = 0; i < M_LAST; i++) { 728 name = memname[i] ? memname[i] : ""; 729 730 db_printf("%2d %s%.*s %ld\n", i, name, 731 (int)(20 - strlen(name)), " ", 732 kmemstats[i].ks_memuse); 733 } 734 #else 735 db_printf("Kmem stats are not being collected.\n"); 736 #endif /* KMEMSTATS */ 737 } 738 #endif /* DDB */ 739