1 /* $NetBSD: kern_malloc.c,v 1.54 2000/06/27 17:41:22 mrg Exp $ */ 2 3 /* 4 * Copyright (c) 1996 Christopher G. Demetriou. All rights reserved. 5 * Copyright (c) 1987, 1991, 1993 6 * The Regents of the University of California. All rights reserved. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 3. All advertising materials mentioning features or use of this software 17 * must display the following acknowledgement: 18 * This product includes software developed by the University of 19 * California, Berkeley and its contributors. 20 * 4. Neither the name of the University nor the names of its contributors 21 * may be used to endorse or promote products derived from this software 22 * without specific prior written permission. 23 * 24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 27 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 34 * SUCH DAMAGE. 35 * 36 * @(#)kern_malloc.c 8.4 (Berkeley) 5/20/95 37 */ 38 39 #include "opt_lockdebug.h" 40 41 #include <sys/param.h> 42 #include <sys/proc.h> 43 #include <sys/map.h> 44 #include <sys/kernel.h> 45 #include <sys/malloc.h> 46 #include <sys/systm.h> 47 48 #include <uvm/uvm_extern.h> 49 50 static struct vm_map_intrsafe kmem_map_store; 51 vm_map_t kmem_map = NULL; 52 53 #include "opt_kmempages.h" 54 55 #ifdef NKMEMCLUSTERS 56 #error NKMEMCLUSTERS is obsolete; remove it from your kernel config file and use NKMEMPAGES instead or let the kernel auto-size 57 #endif 58 59 /* 60 * Default number of pages in kmem_map. We attempt to calculate this 61 * at run-time, but allow it to be either patched or set in the kernel 62 * config file. 63 */ 64 #ifndef NKMEMPAGES 65 #define NKMEMPAGES 0 66 #endif 67 int nkmempages = NKMEMPAGES; 68 69 /* 70 * Defaults for lower- and upper-bounds for the kmem_map page count. 71 * Can be overridden by kernel config options. 72 */ 73 #ifndef NKMEMPAGES_MIN 74 #define NKMEMPAGES_MIN NKMEMPAGES_MIN_DEFAULT 75 #endif 76 77 #ifndef NKMEMPAGES_MAX 78 #define NKMEMPAGES_MAX NKMEMPAGES_MAX_DEFAULT 79 #endif 80 81 #include "opt_kmemstats.h" 82 #include "opt_malloclog.h" 83 84 struct kmembuckets bucket[MINBUCKET + 16]; 85 struct kmemstats kmemstats[M_LAST]; 86 struct kmemusage *kmemusage; 87 char *kmembase, *kmemlimit; 88 const char *memname[] = INITKMEMNAMES; 89 90 #ifdef MALLOCLOG 91 #ifndef MALLOCLOGSIZE 92 #define MALLOCLOGSIZE 100000 93 #endif 94 95 struct malloclog { 96 void *addr; 97 long size; 98 int type; 99 int action; 100 const char *file; 101 long line; 102 } malloclog[MALLOCLOGSIZE]; 103 104 long malloclogptr; 105 106 static void domlog __P((void *a, long size, int type, int action, 107 const char *file, long line)); 108 static void hitmlog __P((void *a)); 109 110 static void 111 domlog(a, size, type, action, file, line) 112 void *a; 113 long size; 114 int type; 115 int action; 116 const char *file; 117 long line; 118 { 119 120 malloclog[malloclogptr].addr = a; 121 malloclog[malloclogptr].size = size; 122 malloclog[malloclogptr].type = type; 123 malloclog[malloclogptr].action = action; 124 malloclog[malloclogptr].file = file; 125 malloclog[malloclogptr].line = line; 126 malloclogptr++; 127 if (malloclogptr >= MALLOCLOGSIZE) 128 malloclogptr = 0; 129 } 130 131 static void 132 hitmlog(a) 133 void *a; 134 { 135 struct malloclog *lp; 136 long l; 137 138 #define PRT \ 139 if (malloclog[l].addr == a && malloclog[l].action) { \ 140 lp = &malloclog[l]; \ 141 printf("malloc log entry %ld:\n", l); \ 142 printf("\taddr = %p\n", lp->addr); \ 143 printf("\tsize = %ld\n", lp->size); \ 144 printf("\ttype = %s\n", memname[lp->type]); \ 145 printf("\taction = %s\n", lp->action == 1 ? "alloc" : "free"); \ 146 printf("\tfile = %s\n", lp->file); \ 147 printf("\tline = %ld\n", lp->line); \ 148 } 149 150 for (l = malloclogptr; l < MALLOCLOGSIZE; l++) 151 PRT 152 153 for (l = 0; l < malloclogptr; l++) 154 PRT 155 } 156 #endif /* MALLOCLOG */ 157 158 #ifdef DIAGNOSTIC 159 /* 160 * This structure provides a set of masks to catch unaligned frees. 161 */ 162 long addrmask[] = { 0, 163 0x00000001, 0x00000003, 0x00000007, 0x0000000f, 164 0x0000001f, 0x0000003f, 0x0000007f, 0x000000ff, 165 0x000001ff, 0x000003ff, 0x000007ff, 0x00000fff, 166 0x00001fff, 0x00003fff, 0x00007fff, 0x0000ffff, 167 }; 168 169 /* 170 * The WEIRD_ADDR is used as known text to copy into free objects so 171 * that modifications after frees can be detected. 172 */ 173 #define WEIRD_ADDR ((unsigned) 0xdeadbeef) 174 #define MAX_COPY 32 175 176 /* 177 * Normally the freelist structure is used only to hold the list pointer 178 * for free objects. However, when running with diagnostics, the first 179 * 8 bytes of the structure is unused except for diagnostic information, 180 * and the free list pointer is at offst 8 in the structure. Since the 181 * first 8 bytes is the portion of the structure most often modified, this 182 * helps to detect memory reuse problems and avoid free list corruption. 183 */ 184 struct freelist { 185 int32_t spare0; 186 int16_t type; 187 int16_t spare1; 188 caddr_t next; 189 }; 190 #else /* !DIAGNOSTIC */ 191 struct freelist { 192 caddr_t next; 193 }; 194 #endif /* DIAGNOSTIC */ 195 196 /* 197 * Allocate a block of memory 198 */ 199 #ifdef MALLOCLOG 200 void * 201 _malloc(size, type, flags, file, line) 202 unsigned long size; 203 int type, flags; 204 const char *file; 205 long line; 206 #else 207 void * 208 malloc(size, type, flags) 209 unsigned long size; 210 int type, flags; 211 #endif /* MALLOCLOG */ 212 { 213 struct kmembuckets *kbp; 214 struct kmemusage *kup; 215 struct freelist *freep; 216 long indx, npg, allocsize; 217 int s; 218 caddr_t va, cp, savedlist; 219 #ifdef DIAGNOSTIC 220 int32_t *end, *lp; 221 int copysize; 222 const char *savedtype; 223 #endif 224 #ifdef KMEMSTATS 225 struct kmemstats *ksp = &kmemstats[type]; 226 227 if (__predict_false(((unsigned long)type) > M_LAST)) 228 panic("malloc - bogus type"); 229 #endif 230 indx = BUCKETINDX(size); 231 kbp = &bucket[indx]; 232 s = splmem(); 233 #ifdef KMEMSTATS 234 while (ksp->ks_memuse >= ksp->ks_limit) { 235 if (flags & M_NOWAIT) { 236 splx(s); 237 return ((void *) NULL); 238 } 239 if (ksp->ks_limblocks < 65535) 240 ksp->ks_limblocks++; 241 tsleep((caddr_t)ksp, PSWP+2, memname[type], 0); 242 } 243 ksp->ks_size |= 1 << indx; 244 #endif 245 #ifdef DIAGNOSTIC 246 copysize = 1 << indx < MAX_COPY ? 1 << indx : MAX_COPY; 247 #endif 248 if (kbp->kb_next == NULL) { 249 kbp->kb_last = NULL; 250 if (size > MAXALLOCSAVE) 251 allocsize = roundup(size, PAGE_SIZE); 252 else 253 allocsize = 1 << indx; 254 npg = btoc(allocsize); 255 va = (caddr_t) uvm_km_kmemalloc(kmem_map, uvmexp.kmem_object, 256 (vsize_t)ctob(npg), 257 (flags & M_NOWAIT) ? UVM_KMF_NOWAIT : 0); 258 if (__predict_false(va == NULL)) { 259 /* 260 * Kmem_malloc() can return NULL, even if it can 261 * wait, if there is no map space avaiable, because 262 * it can't fix that problem. Neither can we, 263 * right now. (We should release pages which 264 * are completely free and which are in buckets 265 * with too many free elements.) 266 */ 267 if ((flags & M_NOWAIT) == 0) 268 panic("malloc: out of space in kmem_map"); 269 splx(s); 270 return ((void *) NULL); 271 } 272 #ifdef KMEMSTATS 273 kbp->kb_total += kbp->kb_elmpercl; 274 #endif 275 kup = btokup(va); 276 kup->ku_indx = indx; 277 if (allocsize > MAXALLOCSAVE) { 278 if (npg > 65535) 279 panic("malloc: allocation too large"); 280 kup->ku_pagecnt = npg; 281 #ifdef KMEMSTATS 282 ksp->ks_memuse += allocsize; 283 #endif 284 goto out; 285 } 286 #ifdef KMEMSTATS 287 kup->ku_freecnt = kbp->kb_elmpercl; 288 kbp->kb_totalfree += kbp->kb_elmpercl; 289 #endif 290 /* 291 * Just in case we blocked while allocating memory, 292 * and someone else also allocated memory for this 293 * bucket, don't assume the list is still empty. 294 */ 295 savedlist = kbp->kb_next; 296 kbp->kb_next = cp = va + (npg << PAGE_SHIFT) - allocsize; 297 for (;;) { 298 freep = (struct freelist *)cp; 299 #ifdef DIAGNOSTIC 300 /* 301 * Copy in known text to detect modification 302 * after freeing. 303 */ 304 end = (int32_t *)&cp[copysize]; 305 for (lp = (int32_t *)cp; lp < end; lp++) 306 *lp = WEIRD_ADDR; 307 freep->type = M_FREE; 308 #endif /* DIAGNOSTIC */ 309 if (cp <= va) 310 break; 311 cp -= allocsize; 312 freep->next = cp; 313 } 314 freep->next = savedlist; 315 if (kbp->kb_last == NULL) 316 kbp->kb_last = (caddr_t)freep; 317 } 318 va = kbp->kb_next; 319 kbp->kb_next = ((struct freelist *)va)->next; 320 #ifdef DIAGNOSTIC 321 freep = (struct freelist *)va; 322 savedtype = (unsigned)freep->type < M_LAST ? 323 memname[freep->type] : "???"; 324 if (kbp->kb_next) { 325 int rv; 326 vaddr_t addr = (vaddr_t)kbp->kb_next; 327 328 vm_map_lock(kmem_map); 329 rv = uvm_map_checkprot(kmem_map, addr, 330 addr + sizeof(struct freelist), 331 VM_PROT_WRITE); 332 vm_map_unlock(kmem_map); 333 334 if (__predict_false(rv == 0)) { 335 printf( 336 "%s %ld of object %p size %ld %s %s (invalid addr %p)\n", 337 "Data modified on freelist: word", 338 (long)((int32_t *)&kbp->kb_next - (int32_t *)kbp), 339 va, size, "previous type", savedtype, kbp->kb_next); 340 #ifdef MALLOCLOG 341 hitmlog(va); 342 #endif 343 kbp->kb_next = NULL; 344 } 345 } 346 347 /* Fill the fields that we've used with WEIRD_ADDR */ 348 #if BYTE_ORDER == BIG_ENDIAN 349 freep->type = WEIRD_ADDR >> 16; 350 #endif 351 #if BYTE_ORDER == LITTLE_ENDIAN 352 freep->type = (short)WEIRD_ADDR; 353 #endif 354 end = (int32_t *)&freep->next + 355 (sizeof(freep->next) / sizeof(int32_t)); 356 for (lp = (int32_t *)&freep->next; lp < end; lp++) 357 *lp = WEIRD_ADDR; 358 359 /* and check that the data hasn't been modified. */ 360 end = (int32_t *)&va[copysize]; 361 for (lp = (int32_t *)va; lp < end; lp++) { 362 if (__predict_true(*lp == WEIRD_ADDR)) 363 continue; 364 printf("%s %ld of object %p size %ld %s %s (0x%x != 0x%x)\n", 365 "Data modified on freelist: word", 366 (long)(lp - (int32_t *)va), va, size, "previous type", 367 savedtype, *lp, WEIRD_ADDR); 368 #ifdef MALLOCLOG 369 hitmlog(va); 370 #endif 371 break; 372 } 373 374 freep->spare0 = 0; 375 #endif /* DIAGNOSTIC */ 376 #ifdef KMEMSTATS 377 kup = btokup(va); 378 if (kup->ku_indx != indx) 379 panic("malloc: wrong bucket"); 380 if (kup->ku_freecnt == 0) 381 panic("malloc: lost data"); 382 kup->ku_freecnt--; 383 kbp->kb_totalfree--; 384 ksp->ks_memuse += 1 << indx; 385 out: 386 kbp->kb_calls++; 387 ksp->ks_inuse++; 388 ksp->ks_calls++; 389 if (ksp->ks_memuse > ksp->ks_maxused) 390 ksp->ks_maxused = ksp->ks_memuse; 391 #else 392 out: 393 #endif 394 #ifdef MALLOCLOG 395 domlog(va, size, type, 1, file, line); 396 #endif 397 splx(s); 398 return ((void *) va); 399 } 400 401 /* 402 * Free a block of memory allocated by malloc. 403 */ 404 #ifdef MALLOCLOG 405 void 406 _free(addr, type, file, line) 407 void *addr; 408 int type; 409 const char *file; 410 long line; 411 #else 412 void 413 free(addr, type) 414 void *addr; 415 int type; 416 #endif /* MALLOCLOG */ 417 { 418 struct kmembuckets *kbp; 419 struct kmemusage *kup; 420 struct freelist *freep; 421 long size; 422 int s; 423 #ifdef DIAGNOSTIC 424 caddr_t cp; 425 int32_t *end, *lp; 426 long alloc, copysize; 427 #endif 428 #ifdef KMEMSTATS 429 struct kmemstats *ksp = &kmemstats[type]; 430 #endif 431 432 #ifdef DIAGNOSTIC 433 /* 434 * Ensure that we're free'ing something that we could 435 * have allocated in the first place. That is, check 436 * to see that the address is within kmem_map. 437 */ 438 if (__predict_false((vaddr_t)addr < kmem_map->header.start || 439 (vaddr_t)addr >= kmem_map->header.end)) 440 panic("free: addr %p not within kmem_map", addr); 441 #endif 442 443 kup = btokup(addr); 444 size = 1 << kup->ku_indx; 445 kbp = &bucket[kup->ku_indx]; 446 s = splmem(); 447 #ifdef MALLOCLOG 448 domlog(addr, 0, type, 2, file, line); 449 #endif 450 #ifdef DIAGNOSTIC 451 /* 452 * Check for returns of data that do not point to the 453 * beginning of the allocation. 454 */ 455 if (size > PAGE_SIZE) 456 alloc = addrmask[BUCKETINDX(PAGE_SIZE)]; 457 else 458 alloc = addrmask[kup->ku_indx]; 459 if (((u_long)addr & alloc) != 0) 460 panic("free: unaligned addr %p, size %ld, type %s, mask %ld\n", 461 addr, size, memname[type], alloc); 462 #endif /* DIAGNOSTIC */ 463 if (size > MAXALLOCSAVE) { 464 uvm_km_free(kmem_map, (vaddr_t)addr, ctob(kup->ku_pagecnt)); 465 #ifdef KMEMSTATS 466 size = kup->ku_pagecnt << PGSHIFT; 467 ksp->ks_memuse -= size; 468 kup->ku_indx = 0; 469 kup->ku_pagecnt = 0; 470 if (ksp->ks_memuse + size >= ksp->ks_limit && 471 ksp->ks_memuse < ksp->ks_limit) 472 wakeup((caddr_t)ksp); 473 ksp->ks_inuse--; 474 kbp->kb_total -= 1; 475 #endif 476 splx(s); 477 return; 478 } 479 freep = (struct freelist *)addr; 480 #ifdef DIAGNOSTIC 481 /* 482 * Check for multiple frees. Use a quick check to see if 483 * it looks free before laboriously searching the freelist. 484 */ 485 if (__predict_false(freep->spare0 == WEIRD_ADDR)) { 486 for (cp = kbp->kb_next; cp; 487 cp = ((struct freelist *)cp)->next) { 488 if (addr != cp) 489 continue; 490 printf("multiply freed item %p\n", addr); 491 #ifdef MALLOCLOG 492 hitmlog(addr); 493 #endif 494 panic("free: duplicated free"); 495 } 496 } 497 #ifdef LOCKDEBUG 498 /* 499 * Check if we're freeing a locked simple lock. 500 */ 501 simple_lock_freecheck(addr, (char *)addr + size); 502 #endif 503 /* 504 * Copy in known text to detect modification after freeing 505 * and to make it look free. Also, save the type being freed 506 * so we can list likely culprit if modification is detected 507 * when the object is reallocated. 508 */ 509 copysize = size < MAX_COPY ? size : MAX_COPY; 510 end = (int32_t *)&((caddr_t)addr)[copysize]; 511 for (lp = (int32_t *)addr; lp < end; lp++) 512 *lp = WEIRD_ADDR; 513 freep->type = type; 514 #endif /* DIAGNOSTIC */ 515 #ifdef KMEMSTATS 516 kup->ku_freecnt++; 517 if (kup->ku_freecnt >= kbp->kb_elmpercl) { 518 if (kup->ku_freecnt > kbp->kb_elmpercl) 519 panic("free: multiple frees"); 520 else if (kbp->kb_totalfree > kbp->kb_highwat) 521 kbp->kb_couldfree++; 522 } 523 kbp->kb_totalfree++; 524 ksp->ks_memuse -= size; 525 if (ksp->ks_memuse + size >= ksp->ks_limit && 526 ksp->ks_memuse < ksp->ks_limit) 527 wakeup((caddr_t)ksp); 528 ksp->ks_inuse--; 529 #endif 530 if (kbp->kb_next == NULL) 531 kbp->kb_next = addr; 532 else 533 ((struct freelist *)kbp->kb_last)->next = addr; 534 freep->next = NULL; 535 kbp->kb_last = addr; 536 splx(s); 537 } 538 539 /* 540 * Change the size of a block of memory. 541 */ 542 void * 543 realloc(curaddr, newsize, type, flags) 544 void *curaddr; 545 unsigned long newsize; 546 int type, flags; 547 { 548 struct kmemusage *kup; 549 long cursize; 550 void *newaddr; 551 #ifdef DIAGNOSTIC 552 long alloc; 553 #endif 554 555 /* 556 * Realloc() with a NULL pointer is the same as malloc(). 557 */ 558 if (curaddr == NULL) 559 return (malloc(newsize, type, flags)); 560 561 /* 562 * Realloc() with zero size is the same as free(). 563 */ 564 if (newsize == 0) { 565 free(curaddr, type); 566 return (NULL); 567 } 568 569 /* 570 * Find out how large the old allocation was (and do some 571 * sanity checking). 572 */ 573 kup = btokup(curaddr); 574 cursize = 1 << kup->ku_indx; 575 576 #ifdef DIAGNOSTIC 577 /* 578 * Check for returns of data that do not point to the 579 * beginning of the allocation. 580 */ 581 if (cursize > PAGE_SIZE) 582 alloc = addrmask[BUCKETINDX(PAGE_SIZE)]; 583 else 584 alloc = addrmask[kup->ku_indx]; 585 if (((u_long)curaddr & alloc) != 0) 586 panic("realloc: unaligned addr %p, size %ld, type %s, mask %ld\n", 587 curaddr, cursize, memname[type], alloc); 588 #endif /* DIAGNOSTIC */ 589 590 if (cursize > MAXALLOCSAVE) 591 cursize = ctob(kup->ku_pagecnt); 592 593 /* 594 * If we already actually have as much as they want, we're done. 595 */ 596 if (newsize <= cursize) 597 return (curaddr); 598 599 /* 600 * Can't satisfy the allocation with the existing block. 601 * Allocate a new one and copy the data. 602 */ 603 newaddr = malloc(newsize, type, flags); 604 if (__predict_false(newaddr == NULL)) { 605 /* 606 * Malloc() failed, because flags included M_NOWAIT. 607 * Return NULL to indicate that failure. The old 608 * pointer is still valid. 609 */ 610 return NULL; 611 } 612 memcpy(newaddr, curaddr, cursize); 613 614 /* 615 * We were successful: free the old allocation and return 616 * the new one. 617 */ 618 free(curaddr, type); 619 return (newaddr); 620 } 621 622 /* 623 * Compute the number of pages that kmem_map will map, that is, 624 * the size of the kernel malloc arena. 625 */ 626 void 627 kmeminit_nkmempages() 628 { 629 int npages; 630 631 if (nkmempages != 0) { 632 /* 633 * It's already been set (by us being here before, or 634 * by patching or kernel config options), bail out now. 635 */ 636 return; 637 } 638 639 /* 640 * We use the following (simple) formula: 641 * 642 * - Starting point is physical memory / 4. 643 * 644 * - Clamp it down to NKMEMPAGES_MAX. 645 * 646 * - Round it up to NKMEMPAGES_MIN. 647 */ 648 npages = physmem / 4; 649 650 if (npages > NKMEMPAGES_MAX) 651 npages = NKMEMPAGES_MAX; 652 653 if (npages < NKMEMPAGES_MIN) 654 npages = NKMEMPAGES_MIN; 655 656 nkmempages = npages; 657 } 658 659 /* 660 * Initialize the kernel memory allocator 661 */ 662 void 663 kmeminit() 664 { 665 #ifdef KMEMSTATS 666 long indx; 667 #endif 668 669 #if ((MAXALLOCSAVE & (MAXALLOCSAVE - 1)) != 0) 670 ERROR!_kmeminit:_MAXALLOCSAVE_not_power_of_2 671 #endif 672 #if (MAXALLOCSAVE > MINALLOCSIZE * 32768) 673 ERROR!_kmeminit:_MAXALLOCSAVE_too_big 674 #endif 675 #if (MAXALLOCSAVE < NBPG) 676 ERROR!_kmeminit:_MAXALLOCSAVE_too_small 677 #endif 678 679 if (sizeof(struct freelist) > (1 << MINBUCKET)) 680 panic("minbucket too small/struct freelist too big"); 681 682 /* 683 * Compute the number of kmem_map pages, if we have not 684 * done so already. 685 */ 686 kmeminit_nkmempages(); 687 688 kmemusage = (struct kmemusage *) uvm_km_zalloc(kernel_map, 689 (vsize_t)(nkmempages * sizeof(struct kmemusage))); 690 kmem_map = uvm_km_suballoc(kernel_map, (vaddr_t *)&kmembase, 691 (vaddr_t *)&kmemlimit, (vsize_t)(nkmempages << PAGE_SHIFT), 692 VM_MAP_INTRSAFE, FALSE, &kmem_map_store.vmi_map); 693 #ifdef KMEMSTATS 694 for (indx = 0; indx < MINBUCKET + 16; indx++) { 695 if (1 << indx >= PAGE_SIZE) 696 bucket[indx].kb_elmpercl = 1; 697 else 698 bucket[indx].kb_elmpercl = PAGE_SIZE / (1 << indx); 699 bucket[indx].kb_highwat = 5 * bucket[indx].kb_elmpercl; 700 } 701 for (indx = 0; indx < M_LAST; indx++) 702 kmemstats[indx].ks_limit = (nkmempages << PAGE_SHIFT) * 6 / 10; 703 #endif 704 } 705 706 #ifdef DDB 707 #include <ddb/db_output.h> 708 709 /* 710 * Dump kmem statistics from ddb. 711 * 712 * usage: call dump_kmemstats 713 */ 714 void dump_kmemstats __P((void)); 715 716 void 717 dump_kmemstats() 718 { 719 #ifdef KMEMSTATS 720 const char *name; 721 int i; 722 723 for (i = 0; i < M_LAST; i++) { 724 name = memname[i] ? memname[i] : ""; 725 726 db_printf("%2d %s%.*s %ld\n", i, name, 727 (int)(20 - strlen(name)), " ", 728 kmemstats[i].ks_memuse); 729 } 730 #else 731 db_printf("Kmem stats are not being collected.\n"); 732 #endif /* KMEMSTATS */ 733 } 734 #endif /* DDB */ 735