1 /* $NetBSD: kern_malloc.c,v 1.52 2000/05/26 23:18:26 sommerfeld Exp $ */ 2 3 /* 4 * Copyright (c) 1996 Christopher G. Demetriou. All rights reserved. 5 * Copyright (c) 1987, 1991, 1993 6 * The Regents of the University of California. All rights reserved. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 3. All advertising materials mentioning features or use of this software 17 * must display the following acknowledgement: 18 * This product includes software developed by the University of 19 * California, Berkeley and its contributors. 20 * 4. Neither the name of the University nor the names of its contributors 21 * may be used to endorse or promote products derived from this software 22 * without specific prior written permission. 23 * 24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 27 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 34 * SUCH DAMAGE. 35 * 36 * @(#)kern_malloc.c 8.4 (Berkeley) 5/20/95 37 */ 38 39 #include "opt_lockdebug.h" 40 41 #include <sys/param.h> 42 #include <sys/proc.h> 43 #include <sys/map.h> 44 #include <sys/kernel.h> 45 #include <sys/malloc.h> 46 #include <sys/systm.h> 47 48 #include <vm/vm.h> 49 #include <vm/vm_kern.h> 50 51 #include <uvm/uvm_extern.h> 52 53 static struct vm_map_intrsafe kmem_map_store; 54 vm_map_t kmem_map = NULL; 55 56 #include "opt_kmempages.h" 57 58 #ifdef NKMEMCLUSTERS 59 #error NKMEMCLUSTERS is obsolete; remove it from your kernel config file and use NKMEMPAGES instead or let the kernel auto-size 60 #endif 61 62 /* 63 * Default number of pages in kmem_map. We attempt to calculate this 64 * at run-time, but allow it to be either patched or set in the kernel 65 * config file. 66 */ 67 #ifndef NKMEMPAGES 68 #define NKMEMPAGES 0 69 #endif 70 int nkmempages = NKMEMPAGES; 71 72 /* 73 * Defaults for lower- and upper-bounds for the kmem_map page count. 74 * Can be overridden by kernel config options. 75 */ 76 #ifndef NKMEMPAGES_MIN 77 #define NKMEMPAGES_MIN NKMEMPAGES_MIN_DEFAULT 78 #endif 79 80 #ifndef NKMEMPAGES_MAX 81 #define NKMEMPAGES_MAX NKMEMPAGES_MAX_DEFAULT 82 #endif 83 84 #include "opt_kmemstats.h" 85 #include "opt_malloclog.h" 86 87 struct kmembuckets bucket[MINBUCKET + 16]; 88 struct kmemstats kmemstats[M_LAST]; 89 struct kmemusage *kmemusage; 90 char *kmembase, *kmemlimit; 91 const char *memname[] = INITKMEMNAMES; 92 93 #ifdef MALLOCLOG 94 #ifndef MALLOCLOGSIZE 95 #define MALLOCLOGSIZE 100000 96 #endif 97 98 struct malloclog { 99 void *addr; 100 long size; 101 int type; 102 int action; 103 const char *file; 104 long line; 105 } malloclog[MALLOCLOGSIZE]; 106 107 long malloclogptr; 108 109 static void domlog __P((void *a, long size, int type, int action, 110 const char *file, long line)); 111 static void hitmlog __P((void *a)); 112 113 static void 114 domlog(a, size, type, action, file, line) 115 void *a; 116 long size; 117 int type; 118 int action; 119 const char *file; 120 long line; 121 { 122 123 malloclog[malloclogptr].addr = a; 124 malloclog[malloclogptr].size = size; 125 malloclog[malloclogptr].type = type; 126 malloclog[malloclogptr].action = action; 127 malloclog[malloclogptr].file = file; 128 malloclog[malloclogptr].line = line; 129 malloclogptr++; 130 if (malloclogptr >= MALLOCLOGSIZE) 131 malloclogptr = 0; 132 } 133 134 static void 135 hitmlog(a) 136 void *a; 137 { 138 struct malloclog *lp; 139 long l; 140 141 #define PRT \ 142 if (malloclog[l].addr == a && malloclog[l].action) { \ 143 lp = &malloclog[l]; \ 144 printf("malloc log entry %ld:\n", l); \ 145 printf("\taddr = %p\n", lp->addr); \ 146 printf("\tsize = %ld\n", lp->size); \ 147 printf("\ttype = %s\n", memname[lp->type]); \ 148 printf("\taction = %s\n", lp->action == 1 ? "alloc" : "free"); \ 149 printf("\tfile = %s\n", lp->file); \ 150 printf("\tline = %ld\n", lp->line); \ 151 } 152 153 for (l = malloclogptr; l < MALLOCLOGSIZE; l++) 154 PRT 155 156 for (l = 0; l < malloclogptr; l++) 157 PRT 158 } 159 #endif /* MALLOCLOG */ 160 161 #ifdef DIAGNOSTIC 162 /* 163 * This structure provides a set of masks to catch unaligned frees. 164 */ 165 long addrmask[] = { 0, 166 0x00000001, 0x00000003, 0x00000007, 0x0000000f, 167 0x0000001f, 0x0000003f, 0x0000007f, 0x000000ff, 168 0x000001ff, 0x000003ff, 0x000007ff, 0x00000fff, 169 0x00001fff, 0x00003fff, 0x00007fff, 0x0000ffff, 170 }; 171 172 /* 173 * The WEIRD_ADDR is used as known text to copy into free objects so 174 * that modifications after frees can be detected. 175 */ 176 #define WEIRD_ADDR ((unsigned) 0xdeadbeef) 177 #define MAX_COPY 32 178 179 /* 180 * Normally the freelist structure is used only to hold the list pointer 181 * for free objects. However, when running with diagnostics, the first 182 * 8 bytes of the structure is unused except for diagnostic information, 183 * and the free list pointer is at offst 8 in the structure. Since the 184 * first 8 bytes is the portion of the structure most often modified, this 185 * helps to detect memory reuse problems and avoid free list corruption. 186 */ 187 struct freelist { 188 int32_t spare0; 189 int16_t type; 190 int16_t spare1; 191 caddr_t next; 192 }; 193 #else /* !DIAGNOSTIC */ 194 struct freelist { 195 caddr_t next; 196 }; 197 #endif /* DIAGNOSTIC */ 198 199 /* 200 * Allocate a block of memory 201 */ 202 #ifdef MALLOCLOG 203 void * 204 _malloc(size, type, flags, file, line) 205 unsigned long size; 206 int type, flags; 207 const char *file; 208 long line; 209 #else 210 void * 211 malloc(size, type, flags) 212 unsigned long size; 213 int type, flags; 214 #endif /* MALLOCLOG */ 215 { 216 struct kmembuckets *kbp; 217 struct kmemusage *kup; 218 struct freelist *freep; 219 long indx, npg, allocsize; 220 int s; 221 caddr_t va, cp, savedlist; 222 #ifdef DIAGNOSTIC 223 int32_t *end, *lp; 224 int copysize; 225 const char *savedtype; 226 #endif 227 #ifdef KMEMSTATS 228 struct kmemstats *ksp = &kmemstats[type]; 229 230 if (__predict_false(((unsigned long)type) > M_LAST)) 231 panic("malloc - bogus type"); 232 #endif 233 indx = BUCKETINDX(size); 234 kbp = &bucket[indx]; 235 s = splmem(); 236 #ifdef KMEMSTATS 237 while (ksp->ks_memuse >= ksp->ks_limit) { 238 if (flags & M_NOWAIT) { 239 splx(s); 240 return ((void *) NULL); 241 } 242 if (ksp->ks_limblocks < 65535) 243 ksp->ks_limblocks++; 244 tsleep((caddr_t)ksp, PSWP+2, memname[type], 0); 245 } 246 ksp->ks_size |= 1 << indx; 247 #endif 248 #ifdef DIAGNOSTIC 249 copysize = 1 << indx < MAX_COPY ? 1 << indx : MAX_COPY; 250 #endif 251 if (kbp->kb_next == NULL) { 252 kbp->kb_last = NULL; 253 if (size > MAXALLOCSAVE) 254 allocsize = roundup(size, PAGE_SIZE); 255 else 256 allocsize = 1 << indx; 257 npg = btoc(allocsize); 258 va = (caddr_t) uvm_km_kmemalloc(kmem_map, uvmexp.kmem_object, 259 (vsize_t)ctob(npg), 260 (flags & M_NOWAIT) ? UVM_KMF_NOWAIT : 0); 261 if (__predict_false(va == NULL)) { 262 /* 263 * Kmem_malloc() can return NULL, even if it can 264 * wait, if there is no map space avaiable, because 265 * it can't fix that problem. Neither can we, 266 * right now. (We should release pages which 267 * are completely free and which are in buckets 268 * with too many free elements.) 269 */ 270 if ((flags & M_NOWAIT) == 0) 271 panic("malloc: out of space in kmem_map"); 272 splx(s); 273 return ((void *) NULL); 274 } 275 #ifdef KMEMSTATS 276 kbp->kb_total += kbp->kb_elmpercl; 277 #endif 278 kup = btokup(va); 279 kup->ku_indx = indx; 280 if (allocsize > MAXALLOCSAVE) { 281 if (npg > 65535) 282 panic("malloc: allocation too large"); 283 kup->ku_pagecnt = npg; 284 #ifdef KMEMSTATS 285 ksp->ks_memuse += allocsize; 286 #endif 287 goto out; 288 } 289 #ifdef KMEMSTATS 290 kup->ku_freecnt = kbp->kb_elmpercl; 291 kbp->kb_totalfree += kbp->kb_elmpercl; 292 #endif 293 /* 294 * Just in case we blocked while allocating memory, 295 * and someone else also allocated memory for this 296 * bucket, don't assume the list is still empty. 297 */ 298 savedlist = kbp->kb_next; 299 kbp->kb_next = cp = va + (npg << PAGE_SHIFT) - allocsize; 300 for (;;) { 301 freep = (struct freelist *)cp; 302 #ifdef DIAGNOSTIC 303 /* 304 * Copy in known text to detect modification 305 * after freeing. 306 */ 307 end = (int32_t *)&cp[copysize]; 308 for (lp = (int32_t *)cp; lp < end; lp++) 309 *lp = WEIRD_ADDR; 310 freep->type = M_FREE; 311 #endif /* DIAGNOSTIC */ 312 if (cp <= va) 313 break; 314 cp -= allocsize; 315 freep->next = cp; 316 } 317 freep->next = savedlist; 318 if (kbp->kb_last == NULL) 319 kbp->kb_last = (caddr_t)freep; 320 } 321 va = kbp->kb_next; 322 kbp->kb_next = ((struct freelist *)va)->next; 323 #ifdef DIAGNOSTIC 324 freep = (struct freelist *)va; 325 savedtype = (unsigned)freep->type < M_LAST ? 326 memname[freep->type] : "???"; 327 if (kbp->kb_next) { 328 int rv; 329 vaddr_t addr = (vaddr_t)kbp->kb_next; 330 331 vm_map_lock(kmem_map); 332 rv = uvm_map_checkprot(kmem_map, addr, 333 addr + sizeof(struct freelist), 334 VM_PROT_WRITE); 335 vm_map_unlock(kmem_map); 336 337 if (__predict_false(rv == 0)) { 338 printf( 339 "%s %ld of object %p size %ld %s %s (invalid addr %p)\n", 340 "Data modified on freelist: word", 341 (long)((int32_t *)&kbp->kb_next - (int32_t *)kbp), 342 va, size, "previous type", savedtype, kbp->kb_next); 343 #ifdef MALLOCLOG 344 hitmlog(va); 345 #endif 346 kbp->kb_next = NULL; 347 } 348 } 349 350 /* Fill the fields that we've used with WEIRD_ADDR */ 351 #if BYTE_ORDER == BIG_ENDIAN 352 freep->type = WEIRD_ADDR >> 16; 353 #endif 354 #if BYTE_ORDER == LITTLE_ENDIAN 355 freep->type = (short)WEIRD_ADDR; 356 #endif 357 end = (int32_t *)&freep->next + 358 (sizeof(freep->next) / sizeof(int32_t)); 359 for (lp = (int32_t *)&freep->next; lp < end; lp++) 360 *lp = WEIRD_ADDR; 361 362 /* and check that the data hasn't been modified. */ 363 end = (int32_t *)&va[copysize]; 364 for (lp = (int32_t *)va; lp < end; lp++) { 365 if (__predict_true(*lp == WEIRD_ADDR)) 366 continue; 367 printf("%s %ld of object %p size %ld %s %s (0x%x != 0x%x)\n", 368 "Data modified on freelist: word", 369 (long)(lp - (int32_t *)va), va, size, "previous type", 370 savedtype, *lp, WEIRD_ADDR); 371 #ifdef MALLOCLOG 372 hitmlog(va); 373 #endif 374 break; 375 } 376 377 freep->spare0 = 0; 378 #endif /* DIAGNOSTIC */ 379 #ifdef KMEMSTATS 380 kup = btokup(va); 381 if (kup->ku_indx != indx) 382 panic("malloc: wrong bucket"); 383 if (kup->ku_freecnt == 0) 384 panic("malloc: lost data"); 385 kup->ku_freecnt--; 386 kbp->kb_totalfree--; 387 ksp->ks_memuse += 1 << indx; 388 out: 389 kbp->kb_calls++; 390 ksp->ks_inuse++; 391 ksp->ks_calls++; 392 if (ksp->ks_memuse > ksp->ks_maxused) 393 ksp->ks_maxused = ksp->ks_memuse; 394 #else 395 out: 396 #endif 397 #ifdef MALLOCLOG 398 domlog(va, size, type, 1, file, line); 399 #endif 400 splx(s); 401 return ((void *) va); 402 } 403 404 /* 405 * Free a block of memory allocated by malloc. 406 */ 407 #ifdef MALLOCLOG 408 void 409 _free(addr, type, file, line) 410 void *addr; 411 int type; 412 const char *file; 413 long line; 414 #else 415 void 416 free(addr, type) 417 void *addr; 418 int type; 419 #endif /* MALLOCLOG */ 420 { 421 struct kmembuckets *kbp; 422 struct kmemusage *kup; 423 struct freelist *freep; 424 long size; 425 int s; 426 #ifdef DIAGNOSTIC 427 caddr_t cp; 428 int32_t *end, *lp; 429 long alloc, copysize; 430 #endif 431 #ifdef KMEMSTATS 432 struct kmemstats *ksp = &kmemstats[type]; 433 #endif 434 435 #ifdef DIAGNOSTIC 436 /* 437 * Ensure that we're free'ing something that we could 438 * have allocated in the first place. That is, check 439 * to see that the address is within kmem_map. 440 */ 441 if (__predict_false((vaddr_t)addr < kmem_map->header.start || 442 (vaddr_t)addr >= kmem_map->header.end)) 443 panic("free: addr %p not within kmem_map", addr); 444 #endif 445 446 kup = btokup(addr); 447 size = 1 << kup->ku_indx; 448 kbp = &bucket[kup->ku_indx]; 449 s = splmem(); 450 #ifdef MALLOCLOG 451 domlog(addr, 0, type, 2, file, line); 452 #endif 453 #ifdef DIAGNOSTIC 454 /* 455 * Check for returns of data that do not point to the 456 * beginning of the allocation. 457 */ 458 if (size > PAGE_SIZE) 459 alloc = addrmask[BUCKETINDX(PAGE_SIZE)]; 460 else 461 alloc = addrmask[kup->ku_indx]; 462 if (((u_long)addr & alloc) != 0) 463 panic("free: unaligned addr %p, size %ld, type %s, mask %ld\n", 464 addr, size, memname[type], alloc); 465 #endif /* DIAGNOSTIC */ 466 if (size > MAXALLOCSAVE) { 467 uvm_km_free(kmem_map, (vaddr_t)addr, ctob(kup->ku_pagecnt)); 468 #ifdef KMEMSTATS 469 size = kup->ku_pagecnt << PGSHIFT; 470 ksp->ks_memuse -= size; 471 kup->ku_indx = 0; 472 kup->ku_pagecnt = 0; 473 if (ksp->ks_memuse + size >= ksp->ks_limit && 474 ksp->ks_memuse < ksp->ks_limit) 475 wakeup((caddr_t)ksp); 476 ksp->ks_inuse--; 477 kbp->kb_total -= 1; 478 #endif 479 splx(s); 480 return; 481 } 482 freep = (struct freelist *)addr; 483 #ifdef DIAGNOSTIC 484 /* 485 * Check for multiple frees. Use a quick check to see if 486 * it looks free before laboriously searching the freelist. 487 */ 488 if (__predict_false(freep->spare0 == WEIRD_ADDR)) { 489 for (cp = kbp->kb_next; cp; 490 cp = ((struct freelist *)cp)->next) { 491 if (addr != cp) 492 continue; 493 printf("multiply freed item %p\n", addr); 494 #ifdef MALLOCLOG 495 hitmlog(addr); 496 #endif 497 panic("free: duplicated free"); 498 } 499 } 500 #ifdef LOCKDEBUG 501 /* 502 * Check if we're freeing a locked simple lock. 503 */ 504 simple_lock_freecheck(addr, (char *)addr + size); 505 #endif 506 /* 507 * Copy in known text to detect modification after freeing 508 * and to make it look free. Also, save the type being freed 509 * so we can list likely culprit if modification is detected 510 * when the object is reallocated. 511 */ 512 copysize = size < MAX_COPY ? size : MAX_COPY; 513 end = (int32_t *)&((caddr_t)addr)[copysize]; 514 for (lp = (int32_t *)addr; lp < end; lp++) 515 *lp = WEIRD_ADDR; 516 freep->type = type; 517 #endif /* DIAGNOSTIC */ 518 #ifdef KMEMSTATS 519 kup->ku_freecnt++; 520 if (kup->ku_freecnt >= kbp->kb_elmpercl) { 521 if (kup->ku_freecnt > kbp->kb_elmpercl) 522 panic("free: multiple frees"); 523 else if (kbp->kb_totalfree > kbp->kb_highwat) 524 kbp->kb_couldfree++; 525 } 526 kbp->kb_totalfree++; 527 ksp->ks_memuse -= size; 528 if (ksp->ks_memuse + size >= ksp->ks_limit && 529 ksp->ks_memuse < ksp->ks_limit) 530 wakeup((caddr_t)ksp); 531 ksp->ks_inuse--; 532 #endif 533 if (kbp->kb_next == NULL) 534 kbp->kb_next = addr; 535 else 536 ((struct freelist *)kbp->kb_last)->next = addr; 537 freep->next = NULL; 538 kbp->kb_last = addr; 539 splx(s); 540 } 541 542 /* 543 * Change the size of a block of memory. 544 */ 545 void * 546 realloc(curaddr, newsize, type, flags) 547 void *curaddr; 548 unsigned long newsize; 549 int type, flags; 550 { 551 struct kmemusage *kup; 552 long cursize; 553 void *newaddr; 554 #ifdef DIAGNOSTIC 555 long alloc; 556 #endif 557 558 /* 559 * Realloc() with a NULL pointer is the same as malloc(). 560 */ 561 if (curaddr == NULL) 562 return (malloc(newsize, type, flags)); 563 564 /* 565 * Realloc() with zero size is the same as free(). 566 */ 567 if (newsize == 0) { 568 free(curaddr, type); 569 return (NULL); 570 } 571 572 /* 573 * Find out how large the old allocation was (and do some 574 * sanity checking). 575 */ 576 kup = btokup(curaddr); 577 cursize = 1 << kup->ku_indx; 578 579 #ifdef DIAGNOSTIC 580 /* 581 * Check for returns of data that do not point to the 582 * beginning of the allocation. 583 */ 584 if (cursize > PAGE_SIZE) 585 alloc = addrmask[BUCKETINDX(PAGE_SIZE)]; 586 else 587 alloc = addrmask[kup->ku_indx]; 588 if (((u_long)curaddr & alloc) != 0) 589 panic("realloc: unaligned addr %p, size %ld, type %s, mask %ld\n", 590 curaddr, cursize, memname[type], alloc); 591 #endif /* DIAGNOSTIC */ 592 593 if (cursize > MAXALLOCSAVE) 594 cursize = ctob(kup->ku_pagecnt); 595 596 /* 597 * If we already actually have as much as they want, we're done. 598 */ 599 if (newsize <= cursize) 600 return (curaddr); 601 602 /* 603 * Can't satisfy the allocation with the existing block. 604 * Allocate a new one and copy the data. 605 */ 606 newaddr = malloc(newsize, type, flags); 607 if (__predict_false(newaddr == NULL)) { 608 /* 609 * Malloc() failed, because flags included M_NOWAIT. 610 * Return NULL to indicate that failure. The old 611 * pointer is still valid. 612 */ 613 return NULL; 614 } 615 memcpy(newaddr, curaddr, cursize); 616 617 /* 618 * We were successful: free the old allocation and return 619 * the new one. 620 */ 621 free(curaddr, type); 622 return (newaddr); 623 } 624 625 /* 626 * Compute the number of pages that kmem_map will map, that is, 627 * the size of the kernel malloc arena. 628 */ 629 void 630 kmeminit_nkmempages() 631 { 632 int npages; 633 634 if (nkmempages != 0) { 635 /* 636 * It's already been set (by us being here before, or 637 * by patching or kernel config options), bail out now. 638 */ 639 return; 640 } 641 642 /* 643 * We use the following (simple) formula: 644 * 645 * - Starting point is physical memory / 4. 646 * 647 * - Clamp it down to NKMEMPAGES_MAX. 648 * 649 * - Round it up to NKMEMPAGES_MIN. 650 */ 651 npages = physmem / 4; 652 653 if (npages > NKMEMPAGES_MAX) 654 npages = NKMEMPAGES_MAX; 655 656 if (npages < NKMEMPAGES_MIN) 657 npages = NKMEMPAGES_MIN; 658 659 nkmempages = npages; 660 } 661 662 /* 663 * Initialize the kernel memory allocator 664 */ 665 void 666 kmeminit() 667 { 668 #ifdef KMEMSTATS 669 long indx; 670 #endif 671 672 #if ((MAXALLOCSAVE & (MAXALLOCSAVE - 1)) != 0) 673 ERROR!_kmeminit:_MAXALLOCSAVE_not_power_of_2 674 #endif 675 #if (MAXALLOCSAVE > MINALLOCSIZE * 32768) 676 ERROR!_kmeminit:_MAXALLOCSAVE_too_big 677 #endif 678 #if (MAXALLOCSAVE < NBPG) 679 ERROR!_kmeminit:_MAXALLOCSAVE_too_small 680 #endif 681 682 if (sizeof(struct freelist) > (1 << MINBUCKET)) 683 panic("minbucket too small/struct freelist too big"); 684 685 /* 686 * Compute the number of kmem_map pages, if we have not 687 * done so already. 688 */ 689 kmeminit_nkmempages(); 690 691 kmemusage = (struct kmemusage *) uvm_km_zalloc(kernel_map, 692 (vsize_t)(nkmempages * sizeof(struct kmemusage))); 693 kmem_map = uvm_km_suballoc(kernel_map, (vaddr_t *)&kmembase, 694 (vaddr_t *)&kmemlimit, (vsize_t)(nkmempages << PAGE_SHIFT), 695 VM_MAP_INTRSAFE, FALSE, &kmem_map_store.vmi_map); 696 #ifdef KMEMSTATS 697 for (indx = 0; indx < MINBUCKET + 16; indx++) { 698 if (1 << indx >= PAGE_SIZE) 699 bucket[indx].kb_elmpercl = 1; 700 else 701 bucket[indx].kb_elmpercl = PAGE_SIZE / (1 << indx); 702 bucket[indx].kb_highwat = 5 * bucket[indx].kb_elmpercl; 703 } 704 for (indx = 0; indx < M_LAST; indx++) 705 kmemstats[indx].ks_limit = (nkmempages << PAGE_SHIFT) * 6 / 10; 706 #endif 707 } 708 709 #ifdef DDB 710 #include <ddb/db_output.h> 711 712 /* 713 * Dump kmem statistics from ddb. 714 * 715 * usage: call dump_kmemstats 716 */ 717 void dump_kmemstats __P((void)); 718 719 void 720 dump_kmemstats() 721 { 722 #ifdef KMEMSTATS 723 const char *name; 724 int i; 725 726 for (i = 0; i < M_LAST; i++) { 727 name = memname[i] ? memname[i] : ""; 728 729 db_printf("%2d %s%.*s %ld\n", i, name, 730 (int)(20 - strlen(name)), " ", 731 kmemstats[i].ks_memuse); 732 } 733 #else 734 db_printf("Kmem stats are not being collected.\n"); 735 #endif /* KMEMSTATS */ 736 } 737 #endif /* DDB */ 738