xref: /netbsd-src/sys/kern/kern_malloc.c (revision 2a399c6883d870daece976daec6ffa7bb7f934ce)
1 /*	$NetBSD: kern_malloc.c,v 1.26 1997/10/09 13:05:59 mycroft Exp $	*/
2 
3 /*
4  * Copyright 1996 Christopher G. Demetriou.  All rights reserved.
5  * Copyright (c) 1987, 1991, 1993
6  *	The Regents of the University of California.  All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. All advertising materials mentioning features or use of this software
17  *    must display the following acknowledgement:
18  *	This product includes software developed by the University of
19  *	California, Berkeley and its contributors.
20  * 4. Neither the name of the University nor the names of its contributors
21  *    may be used to endorse or promote products derived from this software
22  *    without specific prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34  * SUCH DAMAGE.
35  *
36  *	@(#)kern_malloc.c	8.3 (Berkeley) 1/4/94
37  */
38 
39 #include <sys/param.h>
40 #include <sys/proc.h>
41 #include <sys/map.h>
42 #include <sys/kernel.h>
43 #include <sys/malloc.h>
44 #include <sys/systm.h>
45 
46 #include <vm/vm.h>
47 #include <vm/vm_kern.h>
48 
49 #include "opt_kmemstats.h"
50 
51 struct kmembuckets bucket[MINBUCKET + 16];
52 struct kmemstats kmemstats[M_LAST];
53 struct kmemusage *kmemusage;
54 char *kmembase, *kmemlimit;
55 const char *memname[] = INITKMEMNAMES;
56 
57 #ifdef DIAGNOSTIC
58 /*
59  * This structure provides a set of masks to catch unaligned frees.
60  */
61 long addrmask[] = { 0,
62 	0x00000001, 0x00000003, 0x00000007, 0x0000000f,
63 	0x0000001f, 0x0000003f, 0x0000007f, 0x000000ff,
64 	0x000001ff, 0x000003ff, 0x000007ff, 0x00000fff,
65 	0x00001fff, 0x00003fff, 0x00007fff, 0x0000ffff,
66 };
67 
68 /*
69  * The WEIRD_ADDR is used as known text to copy into free objects so
70  * that modifications after frees can be detected.
71  */
72 #define WEIRD_ADDR	((unsigned) 0xdeadbeef)
73 #define MAX_COPY	32
74 
75 /*
76  * Normally the freelist structure is used only to hold the list pointer
77  * for free objects.  However, when running with diagnostics, the first
78  * 8 bytes of the structure is unused except for diagnostic information,
79  * and the free list pointer is at offst 8 in the structure.  Since the
80  * first 8 bytes is the portion of the structure most often modified, this
81  * helps to detect memory reuse problems and avoid free list corruption.
82  */
83 struct freelist {
84 	int32_t	spare0;
85 	int16_t	type;
86 	int16_t	spare1;
87 	caddr_t	next;
88 };
89 #else /* !DIAGNOSTIC */
90 struct freelist {
91 	caddr_t	next;
92 };
93 #endif /* DIAGNOSTIC */
94 
95 /*
96  * Allocate a block of memory
97  */
98 void *
99 malloc(size, type, flags)
100 	unsigned long size;
101 	int type, flags;
102 {
103 	register struct kmembuckets *kbp;
104 	register struct kmemusage *kup;
105 	register struct freelist *freep;
106 	long indx, npg, allocsize;
107 	int s;
108 	caddr_t va, cp, savedlist;
109 #ifdef DIAGNOSTIC
110 	int32_t *end, *lp;
111 	int copysize;
112 	const char *savedtype;
113 #endif
114 #ifdef KMEMSTATS
115 	register struct kmemstats *ksp = &kmemstats[type];
116 
117 	if (((unsigned long)type) > M_LAST)
118 		panic("malloc - bogus type");
119 #endif
120 	indx = BUCKETINDX(size);
121 	kbp = &bucket[indx];
122 	s = splimp();
123 #ifdef KMEMSTATS
124 	while (ksp->ks_memuse >= ksp->ks_limit) {
125 		if (flags & M_NOWAIT) {
126 			splx(s);
127 			return ((void *) NULL);
128 		}
129 		if (ksp->ks_limblocks < 65535)
130 			ksp->ks_limblocks++;
131 		tsleep((caddr_t)ksp, PSWP+2, memname[type], 0);
132 	}
133 	ksp->ks_size |= 1 << indx;
134 #endif
135 #ifdef DIAGNOSTIC
136 	copysize = 1 << indx < MAX_COPY ? 1 << indx : MAX_COPY;
137 #endif
138 	if (kbp->kb_next == NULL) {
139 		kbp->kb_last = NULL;
140 		if (size > MAXALLOCSAVE)
141 			allocsize = roundup(size, CLBYTES);
142 		else
143 			allocsize = 1 << indx;
144 		npg = clrnd(btoc(allocsize));
145 		va = (caddr_t) kmem_malloc(kmem_map, (vm_size_t)ctob(npg),
146 					   !(flags & M_NOWAIT));
147 		if (va == NULL) {
148 			/*
149 			 * Kmem_malloc() can return NULL, even if it can
150 			 * wait, if there is no map space avaiable, because
151 			 * it can't fix that problem.  Neither can we,
152 			 * right now.  (We should release pages which
153 			 * are completely free and which are in buckets
154 			 * with too many free elements.)
155 			 */
156 			if ((flags & M_NOWAIT) == 0)
157 				panic("malloc: out of space in kmem_map");
158 			splx(s);
159 			return ((void *) NULL);
160 		}
161 #ifdef KMEMSTATS
162 		kbp->kb_total += kbp->kb_elmpercl;
163 #endif
164 		kup = btokup(va);
165 		kup->ku_indx = indx;
166 		if (allocsize > MAXALLOCSAVE) {
167 			if (npg > 65535)
168 				panic("malloc: allocation too large");
169 			kup->ku_pagecnt = npg;
170 #ifdef KMEMSTATS
171 			ksp->ks_memuse += allocsize;
172 #endif
173 			goto out;
174 		}
175 #ifdef KMEMSTATS
176 		kup->ku_freecnt = kbp->kb_elmpercl;
177 		kbp->kb_totalfree += kbp->kb_elmpercl;
178 #endif
179 		/*
180 		 * Just in case we blocked while allocating memory,
181 		 * and someone else also allocated memory for this
182 		 * bucket, don't assume the list is still empty.
183 		 */
184 		savedlist = kbp->kb_next;
185 		kbp->kb_next = cp = va + (npg * NBPG) - allocsize;
186 		for (;;) {
187 			freep = (struct freelist *)cp;
188 #ifdef DIAGNOSTIC
189 			/*
190 			 * Copy in known text to detect modification
191 			 * after freeing.
192 			 */
193 			end = (int32_t *)&cp[copysize];
194 			for (lp = (int32_t *)cp; lp < end; lp++)
195 				*lp = WEIRD_ADDR;
196 			freep->type = M_FREE;
197 #endif /* DIAGNOSTIC */
198 			if (cp <= va)
199 				break;
200 			cp -= allocsize;
201 			freep->next = cp;
202 		}
203 		freep->next = savedlist;
204 		if (kbp->kb_last == NULL)
205 			kbp->kb_last = (caddr_t)freep;
206 	}
207 	va = kbp->kb_next;
208 	kbp->kb_next = ((struct freelist *)va)->next;
209 #ifdef DIAGNOSTIC
210 	freep = (struct freelist *)va;
211 	savedtype = (unsigned)freep->type < M_LAST ?
212 		memname[freep->type] : "???";
213 	if (kbp->kb_next &&
214 	    !kernacc(kbp->kb_next, sizeof(struct freelist), 0)) {
215 		printf(
216 		    "%s %ld of object %p size %ld %s %s (invalid addr %p)\n",
217 		    "Data modified on freelist: word",
218 		    (long)((int32_t *)&kbp->kb_next - (int32_t *)kbp),
219 		    va, size, "previous type", savedtype, kbp->kb_next);
220 		kbp->kb_next = NULL;
221 	}
222 
223 	/* Fill the fields that we've used with WEIRD_ADDR */
224 #if BYTE_ORDER == BIG_ENDIAN
225 	freep->type = WEIRD_ADDR >> 16;
226 #endif
227 #if BYTE_ORDER == LITTLE_ENDIAN
228 	freep->type = (short)WEIRD_ADDR;
229 #endif
230 	end = (int32_t *)&freep->next +
231 	    (sizeof(freep->next) / sizeof(int32_t));
232 	for (lp = (int32_t *)&freep->next; lp < end; lp++)
233 		*lp = WEIRD_ADDR;
234 
235 	/* and check that the data hasn't been modified. */
236 	end = (int32_t *)&va[copysize];
237 	for (lp = (int32_t *)va; lp < end; lp++) {
238 		if (*lp == WEIRD_ADDR)
239 			continue;
240 		printf("%s %ld of object %p size %ld %s %s (0x%x != 0x%x)\n",
241 		    "Data modified on freelist: word",
242 		    (long)(lp - (int32_t *)va), va, size, "previous type",
243 		    savedtype, *lp, WEIRD_ADDR);
244 		break;
245 	}
246 
247 	freep->spare0 = 0;
248 #endif /* DIAGNOSTIC */
249 #ifdef KMEMSTATS
250 	kup = btokup(va);
251 	if (kup->ku_indx != indx)
252 		panic("malloc: wrong bucket");
253 	if (kup->ku_freecnt == 0)
254 		panic("malloc: lost data");
255 	kup->ku_freecnt--;
256 	kbp->kb_totalfree--;
257 	ksp->ks_memuse += 1 << indx;
258 out:
259 	kbp->kb_calls++;
260 	ksp->ks_inuse++;
261 	ksp->ks_calls++;
262 	if (ksp->ks_memuse > ksp->ks_maxused)
263 		ksp->ks_maxused = ksp->ks_memuse;
264 #else
265 out:
266 #endif
267 	splx(s);
268 	return ((void *) va);
269 }
270 
271 /*
272  * Free a block of memory allocated by malloc.
273  */
274 void
275 free(addr, type)
276 	void *addr;
277 	int type;
278 {
279 	register struct kmembuckets *kbp;
280 	register struct kmemusage *kup;
281 	register struct freelist *freep;
282 	long size;
283 	int s;
284 #ifdef DIAGNOSTIC
285 	caddr_t cp;
286 	int32_t *end, *lp;
287 	long alloc, copysize;
288 #endif
289 #ifdef KMEMSTATS
290 	register struct kmemstats *ksp = &kmemstats[type];
291 #endif
292 
293 	kup = btokup(addr);
294 	size = 1 << kup->ku_indx;
295 	kbp = &bucket[kup->ku_indx];
296 	s = splimp();
297 #ifdef DIAGNOSTIC
298 	/*
299 	 * Check for returns of data that do not point to the
300 	 * beginning of the allocation.
301 	 */
302 	if (size > NBPG * CLSIZE)
303 		alloc = addrmask[BUCKETINDX(NBPG * CLSIZE)];
304 	else
305 		alloc = addrmask[kup->ku_indx];
306 	if (((u_long)addr & alloc) != 0)
307 		panic("free: unaligned addr %p, size %ld, type %s, mask %ld\n",
308 			addr, size, memname[type], alloc);
309 #endif /* DIAGNOSTIC */
310 	if (size > MAXALLOCSAVE) {
311 		kmem_free(kmem_map, (vm_offset_t)addr, ctob(kup->ku_pagecnt));
312 #ifdef KMEMSTATS
313 		size = kup->ku_pagecnt << PGSHIFT;
314 		ksp->ks_memuse -= size;
315 		kup->ku_indx = 0;
316 		kup->ku_pagecnt = 0;
317 		if (ksp->ks_memuse + size >= ksp->ks_limit &&
318 		    ksp->ks_memuse < ksp->ks_limit)
319 			wakeup((caddr_t)ksp);
320 		ksp->ks_inuse--;
321 		kbp->kb_total -= 1;
322 #endif
323 		splx(s);
324 		return;
325 	}
326 	freep = (struct freelist *)addr;
327 #ifdef DIAGNOSTIC
328 	/*
329 	 * Check for multiple frees. Use a quick check to see if
330 	 * it looks free before laboriously searching the freelist.
331 	 */
332 	if (freep->spare0 == WEIRD_ADDR) {
333 		for (cp = kbp->kb_next; cp;
334 		    cp = ((struct freelist *)cp)->next) {
335 			if (addr != cp)
336 				continue;
337 			printf("multiply freed item %p\n", addr);
338 			panic("free: duplicated free");
339 		}
340 	}
341 	/*
342 	 * Copy in known text to detect modification after freeing
343 	 * and to make it look free. Also, save the type being freed
344 	 * so we can list likely culprit if modification is detected
345 	 * when the object is reallocated.
346 	 */
347 	copysize = size < MAX_COPY ? size : MAX_COPY;
348 	end = (int32_t *)&((caddr_t)addr)[copysize];
349 	for (lp = (int32_t *)addr; lp < end; lp++)
350 		*lp = WEIRD_ADDR;
351 	freep->type = type;
352 #endif /* DIAGNOSTIC */
353 #ifdef KMEMSTATS
354 	kup->ku_freecnt++;
355 	if (kup->ku_freecnt >= kbp->kb_elmpercl)
356 		if (kup->ku_freecnt > kbp->kb_elmpercl)
357 			panic("free: multiple frees");
358 		else if (kbp->kb_totalfree > kbp->kb_highwat)
359 			kbp->kb_couldfree++;
360 	kbp->kb_totalfree++;
361 	ksp->ks_memuse -= size;
362 	if (ksp->ks_memuse + size >= ksp->ks_limit &&
363 	    ksp->ks_memuse < ksp->ks_limit)
364 		wakeup((caddr_t)ksp);
365 	ksp->ks_inuse--;
366 #endif
367 	if (kbp->kb_next == NULL)
368 		kbp->kb_next = addr;
369 	else
370 		((struct freelist *)kbp->kb_last)->next = addr;
371 	freep->next = NULL;
372 	kbp->kb_last = addr;
373 	splx(s);
374 }
375 
376 /*
377  * Change the size of a block of memory.
378  */
379 void *
380 realloc(curaddr, newsize, type, flags)
381 	void *curaddr;
382 	unsigned long newsize;
383 	int type, flags;
384 {
385 	register struct kmemusage *kup;
386 	long cursize;
387 	void *newaddr;
388 #ifdef DIAGNOSTIC
389 	long alloc;
390 #endif
391 
392 	/*
393 	 * Realloc() with a NULL pointer is the same as malloc().
394 	 */
395 	if (curaddr == NULL)
396 		return (malloc(newsize, type, flags));
397 
398 	/*
399 	 * Realloc() with zero size is the same as free().
400 	 */
401 	if (newsize == 0) {
402 		free(curaddr, type);
403 		return (NULL);
404 	}
405 
406 	/*
407 	 * Find out how large the old allocation was (and do some
408 	 * sanity checking).
409 	 */
410 	kup = btokup(curaddr);
411 	cursize = 1 << kup->ku_indx;
412 
413 #ifdef DIAGNOSTIC
414 	/*
415 	 * Check for returns of data that do not point to the
416 	 * beginning of the allocation.
417 	 */
418 	if (cursize > NBPG * CLSIZE)
419 		alloc = addrmask[BUCKETINDX(NBPG * CLSIZE)];
420 	else
421 		alloc = addrmask[kup->ku_indx];
422 	if (((u_long)curaddr & alloc) != 0)
423 		panic("realloc: unaligned addr %p, size %ld, type %s, mask %ld\n",
424 			curaddr, cursize, memname[type], alloc);
425 #endif /* DIAGNOSTIC */
426 
427 	if (cursize > MAXALLOCSAVE)
428 		cursize = ctob(kup->ku_pagecnt);
429 
430 	/*
431 	 * If we already actually have as much as they want, we're done.
432 	 */
433 	if (newsize <= cursize)
434 		return (curaddr);
435 
436 	/*
437 	 * Can't satisfy the allocation with the existing block.
438 	 * Allocate a new one and copy the data.
439 	 */
440 	newaddr = malloc(newsize, type, flags);
441 	if (newaddr == NULL) {
442 		/*
443 		 * Malloc() failed, because flags included M_NOWAIT.
444 		 * Return NULL to indicate that failure.  The old
445 		 * pointer is still valid.
446 		 */
447 		return NULL;
448 	}
449 	bcopy(curaddr, newaddr, cursize);
450 
451 	/*
452 	 * We were successful: free the old allocation and return
453 	 * the new one.
454 	 */
455 	free(curaddr, type);
456 	return (newaddr);
457 }
458 
459 /*
460  * Initialize the kernel memory allocator
461  */
462 void
463 kmeminit()
464 {
465 #ifdef KMEMSTATS
466 	register long indx;
467 #endif
468 	int npg;
469 
470 #if	((MAXALLOCSAVE & (MAXALLOCSAVE - 1)) != 0)
471 		ERROR!_kmeminit:_MAXALLOCSAVE_not_power_of_2
472 #endif
473 #if	(MAXALLOCSAVE > MINALLOCSIZE * 32768)
474 		ERROR!_kmeminit:_MAXALLOCSAVE_too_big
475 #endif
476 #if	(MAXALLOCSAVE < CLBYTES)
477 		ERROR!_kmeminit:_MAXALLOCSAVE_too_small
478 #endif
479 
480 	if (sizeof(struct freelist) > (1 << MINBUCKET))
481 		panic("minbucket too small/struct freelist too big");
482 
483 	npg = VM_KMEM_SIZE/ NBPG;
484 	kmemusage = (struct kmemusage *) kmem_alloc(kernel_map,
485 		(vm_size_t)(npg * sizeof(struct kmemusage)));
486 	kmem_map = kmem_suballoc(kernel_map, (vm_offset_t *)&kmembase,
487 		(vm_offset_t *)&kmemlimit, (vm_size_t)(npg * NBPG), FALSE);
488 #ifdef KMEMSTATS
489 	for (indx = 0; indx < MINBUCKET + 16; indx++) {
490 		if (1 << indx >= CLBYTES)
491 			bucket[indx].kb_elmpercl = 1;
492 		else
493 			bucket[indx].kb_elmpercl = CLBYTES / (1 << indx);
494 		bucket[indx].kb_highwat = 5 * bucket[indx].kb_elmpercl;
495 	}
496 	for (indx = 0; indx < M_LAST; indx++)
497 		kmemstats[indx].ks_limit = npg * NBPG * 6 / 10;
498 #endif
499 }
500