1 /* $NetBSD: kern_malloc.c,v 1.73 2002/09/15 16:54:26 chs Exp $ */ 2 3 /* 4 * Copyright (c) 1996 Christopher G. Demetriou. All rights reserved. 5 * Copyright (c) 1987, 1991, 1993 6 * The Regents of the University of California. All rights reserved. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 3. All advertising materials mentioning features or use of this software 17 * must display the following acknowledgement: 18 * This product includes software developed by the University of 19 * California, Berkeley and its contributors. 20 * 4. Neither the name of the University nor the names of its contributors 21 * may be used to endorse or promote products derived from this software 22 * without specific prior written permission. 23 * 24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 27 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 34 * SUCH DAMAGE. 35 * 36 * @(#)kern_malloc.c 8.4 (Berkeley) 5/20/95 37 */ 38 39 #include <sys/cdefs.h> 40 __KERNEL_RCSID(0, "$NetBSD: kern_malloc.c,v 1.73 2002/09/15 16:54:26 chs Exp $"); 41 42 #include "opt_lockdebug.h" 43 44 #include <sys/param.h> 45 #include <sys/proc.h> 46 #include <sys/map.h> 47 #include <sys/kernel.h> 48 #include <sys/malloc.h> 49 #include <sys/systm.h> 50 51 #include <uvm/uvm_extern.h> 52 53 static struct vm_map kmem_map_store; 54 struct vm_map *kmem_map = NULL; 55 56 #include "opt_kmempages.h" 57 58 #ifdef NKMEMCLUSTERS 59 #error NKMEMCLUSTERS is obsolete; remove it from your kernel config file and use NKMEMPAGES instead or let the kernel auto-size 60 #endif 61 62 /* 63 * Default number of pages in kmem_map. We attempt to calculate this 64 * at run-time, but allow it to be either patched or set in the kernel 65 * config file. 66 */ 67 #ifndef NKMEMPAGES 68 #define NKMEMPAGES 0 69 #endif 70 int nkmempages = NKMEMPAGES; 71 72 /* 73 * Defaults for lower- and upper-bounds for the kmem_map page count. 74 * Can be overridden by kernel config options. 75 */ 76 #ifndef NKMEMPAGES_MIN 77 #define NKMEMPAGES_MIN NKMEMPAGES_MIN_DEFAULT 78 #endif 79 80 #ifndef NKMEMPAGES_MAX 81 #define NKMEMPAGES_MAX NKMEMPAGES_MAX_DEFAULT 82 #endif 83 84 #include "opt_kmemstats.h" 85 #include "opt_malloclog.h" 86 #include "opt_malloc_debug.h" 87 88 struct kmembuckets bucket[MINBUCKET + 16]; 89 struct kmemstats kmemstats[M_LAST]; 90 struct kmemusage *kmemusage; 91 char *kmembase, *kmemlimit; 92 const char * const memname[] = INITKMEMNAMES; 93 94 #ifdef MALLOCLOG 95 #ifndef MALLOCLOGSIZE 96 #define MALLOCLOGSIZE 100000 97 #endif 98 99 struct malloclog { 100 void *addr; 101 long size; 102 int type; 103 int action; 104 const char *file; 105 long line; 106 } malloclog[MALLOCLOGSIZE]; 107 108 long malloclogptr; 109 110 static void domlog(void *, long, int, int, const char *, long); 111 static void hitmlog(void *); 112 113 static void 114 domlog(void *a, long size, int type, int action, const char *file, long line) 115 { 116 117 malloclog[malloclogptr].addr = a; 118 malloclog[malloclogptr].size = size; 119 malloclog[malloclogptr].type = type; 120 malloclog[malloclogptr].action = action; 121 malloclog[malloclogptr].file = file; 122 malloclog[malloclogptr].line = line; 123 malloclogptr++; 124 if (malloclogptr >= MALLOCLOGSIZE) 125 malloclogptr = 0; 126 } 127 128 static void 129 hitmlog(void *a) 130 { 131 struct malloclog *lp; 132 long l; 133 134 #define PRT do { \ 135 if (malloclog[l].addr == a && malloclog[l].action) { \ 136 lp = &malloclog[l]; \ 137 printf("malloc log entry %ld:\n", l); \ 138 printf("\taddr = %p\n", lp->addr); \ 139 printf("\tsize = %ld\n", lp->size); \ 140 printf("\ttype = %s\n", memname[lp->type]); \ 141 printf("\taction = %s\n", lp->action == 1 ? "alloc" : "free"); \ 142 printf("\tfile = %s\n", lp->file); \ 143 printf("\tline = %ld\n", lp->line); \ 144 } \ 145 } while (/* CONSTCOND */0) 146 147 for (l = malloclogptr; l < MALLOCLOGSIZE; l++) 148 PRT; 149 150 for (l = 0; l < malloclogptr; l++) 151 PRT; 152 } 153 #endif /* MALLOCLOG */ 154 155 #ifdef DIAGNOSTIC 156 /* 157 * This structure provides a set of masks to catch unaligned frees. 158 */ 159 const long addrmask[] = { 0, 160 0x00000001, 0x00000003, 0x00000007, 0x0000000f, 161 0x0000001f, 0x0000003f, 0x0000007f, 0x000000ff, 162 0x000001ff, 0x000003ff, 0x000007ff, 0x00000fff, 163 0x00001fff, 0x00003fff, 0x00007fff, 0x0000ffff, 164 }; 165 166 /* 167 * The WEIRD_ADDR is used as known text to copy into free objects so 168 * that modifications after frees can be detected. 169 */ 170 #define WEIRD_ADDR ((unsigned) 0xdeadbeef) 171 #ifdef DEBUG 172 #define MAX_COPY PAGE_SIZE 173 #else 174 #define MAX_COPY 32 175 #endif 176 177 /* 178 * Normally the freelist structure is used only to hold the list pointer 179 * for free objects. However, when running with diagnostics, the first 180 * 8 bytes of the structure is unused except for diagnostic information, 181 * and the free list pointer is at offst 8 in the structure. Since the 182 * first 8 bytes is the portion of the structure most often modified, this 183 * helps to detect memory reuse problems and avoid free list corruption. 184 */ 185 struct freelist { 186 int32_t spare0; 187 int16_t type; 188 int16_t spare1; 189 caddr_t next; 190 }; 191 #else /* !DIAGNOSTIC */ 192 struct freelist { 193 caddr_t next; 194 }; 195 #endif /* DIAGNOSTIC */ 196 197 /* 198 * Allocate a block of memory 199 */ 200 #ifdef MALLOCLOG 201 void * 202 _malloc(unsigned long size, int type, int flags, const char *file, long line) 203 #else 204 void * 205 malloc(unsigned long size, int type, int flags) 206 #endif /* MALLOCLOG */ 207 { 208 struct kmembuckets *kbp; 209 struct kmemusage *kup; 210 struct freelist *freep; 211 long indx, npg, allocsize; 212 int s; 213 caddr_t va, cp, savedlist; 214 #ifdef DIAGNOSTIC 215 int32_t *end, *lp; 216 int copysize; 217 const char *savedtype; 218 #endif 219 #ifdef KMEMSTATS 220 struct kmemstats *ksp = &kmemstats[type]; 221 222 if (__predict_false(((unsigned long)type) > M_LAST)) 223 panic("malloc - bogus type"); 224 #endif 225 #ifdef LOCKDEBUG 226 if ((flags & M_NOWAIT) == 0) 227 simple_lock_only_held(NULL, "malloc"); 228 #endif 229 #ifdef MALLOC_DEBUG 230 if (debug_malloc(size, type, flags, (void **) &va)) 231 return ((void *) va); 232 #endif 233 indx = BUCKETINDX(size); 234 kbp = &bucket[indx]; 235 s = splvm(); 236 #ifdef KMEMSTATS 237 while (ksp->ks_memuse >= ksp->ks_limit) { 238 if (flags & M_NOWAIT) { 239 splx(s); 240 return ((void *) NULL); 241 } 242 if (ksp->ks_limblocks < 65535) 243 ksp->ks_limblocks++; 244 tsleep((caddr_t)ksp, PSWP+2, memname[type], 0); 245 } 246 ksp->ks_size |= 1 << indx; 247 #endif 248 #ifdef DIAGNOSTIC 249 copysize = 1 << indx < MAX_COPY ? 1 << indx : MAX_COPY; 250 #endif 251 if (kbp->kb_next == NULL) { 252 kbp->kb_last = NULL; 253 if (size > MAXALLOCSAVE) 254 allocsize = round_page(size); 255 else 256 allocsize = 1 << indx; 257 npg = btoc(allocsize); 258 va = (caddr_t) uvm_km_kmemalloc(kmem_map, NULL, 259 (vsize_t)ctob(npg), 260 ((flags & M_NOWAIT) ? UVM_KMF_NOWAIT : 0) | 261 ((flags & M_CANFAIL) ? UVM_KMF_CANFAIL : 0)); 262 if (__predict_false(va == NULL)) { 263 /* 264 * Kmem_malloc() can return NULL, even if it can 265 * wait, if there is no map space avaiable, because 266 * it can't fix that problem. Neither can we, 267 * right now. (We should release pages which 268 * are completely free and which are in buckets 269 * with too many free elements.) 270 */ 271 if ((flags & (M_NOWAIT|M_CANFAIL)) == 0) 272 panic("malloc: out of space in kmem_map"); 273 splx(s); 274 return (NULL); 275 } 276 #ifdef KMEMSTATS 277 kbp->kb_total += kbp->kb_elmpercl; 278 #endif 279 kup = btokup(va); 280 kup->ku_indx = indx; 281 if (allocsize > MAXALLOCSAVE) { 282 if (npg > 65535) 283 panic("malloc: allocation too large"); 284 kup->ku_pagecnt = npg; 285 #ifdef KMEMSTATS 286 ksp->ks_memuse += allocsize; 287 #endif 288 goto out; 289 } 290 #ifdef KMEMSTATS 291 kup->ku_freecnt = kbp->kb_elmpercl; 292 kbp->kb_totalfree += kbp->kb_elmpercl; 293 #endif 294 /* 295 * Just in case we blocked while allocating memory, 296 * and someone else also allocated memory for this 297 * bucket, don't assume the list is still empty. 298 */ 299 savedlist = kbp->kb_next; 300 kbp->kb_next = cp = va + (npg << PAGE_SHIFT) - allocsize; 301 for (;;) { 302 freep = (struct freelist *)cp; 303 #ifdef DIAGNOSTIC 304 /* 305 * Copy in known text to detect modification 306 * after freeing. 307 */ 308 end = (int32_t *)&cp[copysize]; 309 for (lp = (int32_t *)cp; lp < end; lp++) 310 *lp = WEIRD_ADDR; 311 freep->type = M_FREE; 312 #endif /* DIAGNOSTIC */ 313 if (cp <= va) 314 break; 315 cp -= allocsize; 316 freep->next = cp; 317 } 318 freep->next = savedlist; 319 if (kbp->kb_last == NULL) 320 kbp->kb_last = (caddr_t)freep; 321 } 322 va = kbp->kb_next; 323 kbp->kb_next = ((struct freelist *)va)->next; 324 #ifdef DIAGNOSTIC 325 freep = (struct freelist *)va; 326 savedtype = (unsigned)freep->type < M_LAST ? 327 memname[freep->type] : "???"; 328 if (kbp->kb_next) { 329 int rv; 330 vaddr_t addr = (vaddr_t)kbp->kb_next; 331 332 vm_map_lock(kmem_map); 333 rv = uvm_map_checkprot(kmem_map, addr, 334 addr + sizeof(struct freelist), VM_PROT_WRITE); 335 vm_map_unlock(kmem_map); 336 337 if (__predict_false(rv == 0)) { 338 printf("Data modified on freelist: " 339 "word %ld of object %p size %ld previous type %s " 340 "(invalid addr %p)\n", 341 (long)((int32_t *)&kbp->kb_next - (int32_t *)kbp), 342 va, size, savedtype, kbp->kb_next); 343 #ifdef MALLOCLOG 344 hitmlog(va); 345 #endif 346 kbp->kb_next = NULL; 347 } 348 } 349 350 /* Fill the fields that we've used with WEIRD_ADDR */ 351 #if BYTE_ORDER == BIG_ENDIAN 352 freep->type = WEIRD_ADDR >> 16; 353 #endif 354 #if BYTE_ORDER == LITTLE_ENDIAN 355 freep->type = (short)WEIRD_ADDR; 356 #endif 357 end = (int32_t *)&freep->next + 358 (sizeof(freep->next) / sizeof(int32_t)); 359 for (lp = (int32_t *)&freep->next; lp < end; lp++) 360 *lp = WEIRD_ADDR; 361 362 /* and check that the data hasn't been modified. */ 363 end = (int32_t *)&va[copysize]; 364 for (lp = (int32_t *)va; lp < end; lp++) { 365 if (__predict_true(*lp == WEIRD_ADDR)) 366 continue; 367 printf("Data modified on freelist: " 368 "word %ld of object %p size %ld previous type %s " 369 "(0x%x != 0x%x)\n", 370 (long)(lp - (int32_t *)va), va, size, 371 savedtype, *lp, WEIRD_ADDR); 372 #ifdef MALLOCLOG 373 hitmlog(va); 374 #endif 375 break; 376 } 377 378 freep->spare0 = 0; 379 #endif /* DIAGNOSTIC */ 380 #ifdef KMEMSTATS 381 kup = btokup(va); 382 if (kup->ku_indx != indx) 383 panic("malloc: wrong bucket"); 384 if (kup->ku_freecnt == 0) 385 panic("malloc: lost data"); 386 kup->ku_freecnt--; 387 kbp->kb_totalfree--; 388 ksp->ks_memuse += 1 << indx; 389 out: 390 kbp->kb_calls++; 391 ksp->ks_inuse++; 392 ksp->ks_calls++; 393 if (ksp->ks_memuse > ksp->ks_maxused) 394 ksp->ks_maxused = ksp->ks_memuse; 395 #else 396 out: 397 #endif 398 #ifdef MALLOCLOG 399 domlog(va, size, type, 1, file, line); 400 #endif 401 splx(s); 402 if ((flags & M_ZERO) != 0) 403 memset(va, 0, size); 404 return ((void *) va); 405 } 406 407 /* 408 * Free a block of memory allocated by malloc. 409 */ 410 #ifdef MALLOCLOG 411 void 412 _free(void *addr, int type, const char *file, long line) 413 #else 414 void 415 free(void *addr, int type) 416 #endif /* MALLOCLOG */ 417 { 418 struct kmembuckets *kbp; 419 struct kmemusage *kup; 420 struct freelist *freep; 421 long size; 422 int s; 423 #ifdef DIAGNOSTIC 424 caddr_t cp; 425 int32_t *end, *lp; 426 long alloc, copysize; 427 #endif 428 #ifdef KMEMSTATS 429 struct kmemstats *ksp = &kmemstats[type]; 430 #endif 431 432 #ifdef MALLOC_DEBUG 433 if (debug_free(addr, type)) 434 return; 435 #endif 436 437 #ifdef DIAGNOSTIC 438 /* 439 * Ensure that we're free'ing something that we could 440 * have allocated in the first place. That is, check 441 * to see that the address is within kmem_map. 442 */ 443 if (__predict_false((vaddr_t)addr < kmem_map->header.start || 444 (vaddr_t)addr >= kmem_map->header.end)) 445 panic("free: addr %p not within kmem_map", addr); 446 #endif 447 448 kup = btokup(addr); 449 size = 1 << kup->ku_indx; 450 kbp = &bucket[kup->ku_indx]; 451 s = splvm(); 452 #ifdef MALLOCLOG 453 domlog(addr, 0, type, 2, file, line); 454 #endif 455 #ifdef DIAGNOSTIC 456 /* 457 * Check for returns of data that do not point to the 458 * beginning of the allocation. 459 */ 460 if (size > PAGE_SIZE) 461 alloc = addrmask[BUCKETINDX(PAGE_SIZE)]; 462 else 463 alloc = addrmask[kup->ku_indx]; 464 if (((u_long)addr & alloc) != 0) 465 panic("free: unaligned addr %p, size %ld, type %s, mask %ld\n", 466 addr, size, memname[type], alloc); 467 #endif /* DIAGNOSTIC */ 468 if (size > MAXALLOCSAVE) { 469 uvm_km_free(kmem_map, (vaddr_t)addr, ctob(kup->ku_pagecnt)); 470 #ifdef KMEMSTATS 471 size = kup->ku_pagecnt << PGSHIFT; 472 ksp->ks_memuse -= size; 473 kup->ku_indx = 0; 474 kup->ku_pagecnt = 0; 475 if (ksp->ks_memuse + size >= ksp->ks_limit && 476 ksp->ks_memuse < ksp->ks_limit) 477 wakeup((caddr_t)ksp); 478 ksp->ks_inuse--; 479 kbp->kb_total -= 1; 480 #endif 481 splx(s); 482 return; 483 } 484 freep = (struct freelist *)addr; 485 #ifdef DIAGNOSTIC 486 /* 487 * Check for multiple frees. Use a quick check to see if 488 * it looks free before laboriously searching the freelist. 489 */ 490 if (__predict_false(freep->spare0 == WEIRD_ADDR)) { 491 for (cp = kbp->kb_next; cp; 492 cp = ((struct freelist *)cp)->next) { 493 if (addr != cp) 494 continue; 495 printf("multiply freed item %p\n", addr); 496 #ifdef MALLOCLOG 497 hitmlog(addr); 498 #endif 499 panic("free: duplicated free"); 500 } 501 } 502 #ifdef LOCKDEBUG 503 /* 504 * Check if we're freeing a locked simple lock. 505 */ 506 simple_lock_freecheck(addr, (char *)addr + size); 507 #endif 508 /* 509 * Copy in known text to detect modification after freeing 510 * and to make it look free. Also, save the type being freed 511 * so we can list likely culprit if modification is detected 512 * when the object is reallocated. 513 */ 514 copysize = size < MAX_COPY ? size : MAX_COPY; 515 end = (int32_t *)&((caddr_t)addr)[copysize]; 516 for (lp = (int32_t *)addr; lp < end; lp++) 517 *lp = WEIRD_ADDR; 518 freep->type = type; 519 #endif /* DIAGNOSTIC */ 520 #ifdef KMEMSTATS 521 kup->ku_freecnt++; 522 if (kup->ku_freecnt >= kbp->kb_elmpercl) { 523 if (kup->ku_freecnt > kbp->kb_elmpercl) 524 panic("free: multiple frees"); 525 else if (kbp->kb_totalfree > kbp->kb_highwat) 526 kbp->kb_couldfree++; 527 } 528 kbp->kb_totalfree++; 529 ksp->ks_memuse -= size; 530 if (ksp->ks_memuse + size >= ksp->ks_limit && 531 ksp->ks_memuse < ksp->ks_limit) 532 wakeup((caddr_t)ksp); 533 ksp->ks_inuse--; 534 #endif 535 if (kbp->kb_next == NULL) 536 kbp->kb_next = addr; 537 else 538 ((struct freelist *)kbp->kb_last)->next = addr; 539 freep->next = NULL; 540 kbp->kb_last = addr; 541 splx(s); 542 } 543 544 /* 545 * Change the size of a block of memory. 546 */ 547 void * 548 realloc(void *curaddr, unsigned long newsize, int type, int flags) 549 { 550 struct kmemusage *kup; 551 unsigned long cursize; 552 void *newaddr; 553 #ifdef DIAGNOSTIC 554 long alloc; 555 #endif 556 557 /* 558 * realloc() with a NULL pointer is the same as malloc(). 559 */ 560 if (curaddr == NULL) 561 return (malloc(newsize, type, flags)); 562 563 /* 564 * realloc() with zero size is the same as free(). 565 */ 566 if (newsize == 0) { 567 free(curaddr, type); 568 return (NULL); 569 } 570 571 #ifdef LOCKDEBUG 572 if ((flags & M_NOWAIT) == 0) 573 simple_lock_only_held(NULL, "realloc"); 574 #endif 575 576 /* 577 * Find out how large the old allocation was (and do some 578 * sanity checking). 579 */ 580 kup = btokup(curaddr); 581 cursize = 1 << kup->ku_indx; 582 583 #ifdef DIAGNOSTIC 584 /* 585 * Check for returns of data that do not point to the 586 * beginning of the allocation. 587 */ 588 if (cursize > PAGE_SIZE) 589 alloc = addrmask[BUCKETINDX(PAGE_SIZE)]; 590 else 591 alloc = addrmask[kup->ku_indx]; 592 if (((u_long)curaddr & alloc) != 0) 593 panic("realloc: " 594 "unaligned addr %p, size %ld, type %s, mask %ld\n", 595 curaddr, cursize, memname[type], alloc); 596 #endif /* DIAGNOSTIC */ 597 598 if (cursize > MAXALLOCSAVE) 599 cursize = ctob(kup->ku_pagecnt); 600 601 /* 602 * If we already actually have as much as they want, we're done. 603 */ 604 if (newsize <= cursize) 605 return (curaddr); 606 607 /* 608 * Can't satisfy the allocation with the existing block. 609 * Allocate a new one and copy the data. 610 */ 611 newaddr = malloc(newsize, type, flags); 612 if (__predict_false(newaddr == NULL)) { 613 /* 614 * malloc() failed, because flags included M_NOWAIT. 615 * Return NULL to indicate that failure. The old 616 * pointer is still valid. 617 */ 618 return (NULL); 619 } 620 memcpy(newaddr, curaddr, cursize); 621 622 /* 623 * We were successful: free the old allocation and return 624 * the new one. 625 */ 626 free(curaddr, type); 627 return (newaddr); 628 } 629 630 /* 631 * Roundup size to the actual allocation size. 632 */ 633 unsigned long 634 malloc_roundup(unsigned long size) 635 { 636 637 if (size > MAXALLOCSAVE) 638 return (roundup(size, PAGE_SIZE)); 639 else 640 return (1 << BUCKETINDX(size)); 641 } 642 643 /* 644 * Compute the number of pages that kmem_map will map, that is, 645 * the size of the kernel malloc arena. 646 */ 647 void 648 kmeminit_nkmempages(void) 649 { 650 int npages; 651 652 if (nkmempages != 0) { 653 /* 654 * It's already been set (by us being here before, or 655 * by patching or kernel config options), bail out now. 656 */ 657 return; 658 } 659 660 /* 661 * We use the following (simple) formula: 662 * 663 * - Starting point is physical memory / 4. 664 * 665 * - Clamp it down to NKMEMPAGES_MAX. 666 * 667 * - Round it up to NKMEMPAGES_MIN. 668 */ 669 npages = physmem / 4; 670 671 if (npages > NKMEMPAGES_MAX) 672 npages = NKMEMPAGES_MAX; 673 674 if (npages < NKMEMPAGES_MIN) 675 npages = NKMEMPAGES_MIN; 676 677 nkmempages = npages; 678 } 679 680 /* 681 * Initialize the kernel memory allocator 682 */ 683 void 684 kmeminit(void) 685 { 686 #ifdef KMEMSTATS 687 long indx; 688 #endif 689 690 #if ((MAXALLOCSAVE & (MAXALLOCSAVE - 1)) != 0) 691 ERROR!_kmeminit:_MAXALLOCSAVE_not_power_of_2 692 #endif 693 #if (MAXALLOCSAVE > MINALLOCSIZE * 32768) 694 ERROR!_kmeminit:_MAXALLOCSAVE_too_big 695 #endif 696 #if (MAXALLOCSAVE < NBPG) 697 ERROR!_kmeminit:_MAXALLOCSAVE_too_small 698 #endif 699 700 if (sizeof(struct freelist) > (1 << MINBUCKET)) 701 panic("minbucket too small/struct freelist too big"); 702 703 /* 704 * Compute the number of kmem_map pages, if we have not 705 * done so already. 706 */ 707 kmeminit_nkmempages(); 708 709 kmemusage = (struct kmemusage *) uvm_km_zalloc(kernel_map, 710 (vsize_t)(nkmempages * sizeof(struct kmemusage))); 711 kmem_map = uvm_km_suballoc(kernel_map, (vaddr_t *)&kmembase, 712 (vaddr_t *)&kmemlimit, (vsize_t)(nkmempages << PAGE_SHIFT), 713 VM_MAP_INTRSAFE, FALSE, &kmem_map_store); 714 #ifdef KMEMSTATS 715 for (indx = 0; indx < MINBUCKET + 16; indx++) { 716 if (1 << indx >= PAGE_SIZE) 717 bucket[indx].kb_elmpercl = 1; 718 else 719 bucket[indx].kb_elmpercl = PAGE_SIZE / (1 << indx); 720 bucket[indx].kb_highwat = 5 * bucket[indx].kb_elmpercl; 721 } 722 for (indx = 0; indx < M_LAST; indx++) 723 kmemstats[indx].ks_limit = 724 ((u_long)nkmempages << PAGE_SHIFT) * 6U / 10U; 725 #endif 726 #ifdef MALLOC_DEBUG 727 debug_malloc_init(); 728 #endif 729 } 730 731 #ifdef DDB 732 #include <ddb/db_output.h> 733 734 /* 735 * Dump kmem statistics from ddb. 736 * 737 * usage: call dump_kmemstats 738 */ 739 void dump_kmemstats(void); 740 741 void 742 dump_kmemstats(void) 743 { 744 #ifdef KMEMSTATS 745 const char *name; 746 int i; 747 748 for (i = 0; i < M_LAST; i++) { 749 name = memname[i] ? memname[i] : ""; 750 751 db_printf("%2d %s%.*s %ld\n", i, name, 752 (int)(20 - strlen(name)), " ", 753 kmemstats[i].ks_memuse); 754 } 755 #else 756 db_printf("Kmem stats are not being collected.\n"); 757 #endif /* KMEMSTATS */ 758 } 759 #endif /* DDB */ 760