1 /* $NetBSD: kern_lwp.c,v 1.191 2017/12/02 22:51:22 christos Exp $ */ 2 3 /*- 4 * Copyright (c) 2001, 2006, 2007, 2008, 2009 The NetBSD Foundation, Inc. 5 * All rights reserved. 6 * 7 * This code is derived from software contributed to The NetBSD Foundation 8 * by Nathan J. Williams, and Andrew Doran. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS 20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 29 * POSSIBILITY OF SUCH DAMAGE. 30 */ 31 32 /* 33 * Overview 34 * 35 * Lightweight processes (LWPs) are the basic unit or thread of 36 * execution within the kernel. The core state of an LWP is described 37 * by "struct lwp", also known as lwp_t. 38 * 39 * Each LWP is contained within a process (described by "struct proc"), 40 * Every process contains at least one LWP, but may contain more. The 41 * process describes attributes shared among all of its LWPs such as a 42 * private address space, global execution state (stopped, active, 43 * zombie, ...), signal disposition and so on. On a multiprocessor 44 * machine, multiple LWPs be executing concurrently in the kernel. 45 * 46 * Execution states 47 * 48 * At any given time, an LWP has overall state that is described by 49 * lwp::l_stat. The states are broken into two sets below. The first 50 * set is guaranteed to represent the absolute, current state of the 51 * LWP: 52 * 53 * LSONPROC 54 * 55 * On processor: the LWP is executing on a CPU, either in the 56 * kernel or in user space. 57 * 58 * LSRUN 59 * 60 * Runnable: the LWP is parked on a run queue, and may soon be 61 * chosen to run by an idle processor, or by a processor that 62 * has been asked to preempt a currently runnning but lower 63 * priority LWP. 64 * 65 * LSIDL 66 * 67 * Idle: the LWP has been created but has not yet executed, 68 * or it has ceased executing a unit of work and is waiting 69 * to be started again. 70 * 71 * LSSUSPENDED: 72 * 73 * Suspended: the LWP has had its execution suspended by 74 * another LWP in the same process using the _lwp_suspend() 75 * system call. User-level LWPs also enter the suspended 76 * state when the system is shutting down. 77 * 78 * The second set represent a "statement of intent" on behalf of the 79 * LWP. The LWP may in fact be executing on a processor, may be 80 * sleeping or idle. It is expected to take the necessary action to 81 * stop executing or become "running" again within a short timeframe. 82 * The LP_RUNNING flag in lwp::l_pflag indicates that an LWP is running. 83 * Importantly, it indicates that its state is tied to a CPU. 84 * 85 * LSZOMB: 86 * 87 * Dead or dying: the LWP has released most of its resources 88 * and is about to switch away into oblivion, or has already 89 * switched away. When it switches away, its few remaining 90 * resources can be collected. 91 * 92 * LSSLEEP: 93 * 94 * Sleeping: the LWP has entered itself onto a sleep queue, and 95 * has switched away or will switch away shortly to allow other 96 * LWPs to run on the CPU. 97 * 98 * LSSTOP: 99 * 100 * Stopped: the LWP has been stopped as a result of a job 101 * control signal, or as a result of the ptrace() interface. 102 * 103 * Stopped LWPs may run briefly within the kernel to handle 104 * signals that they receive, but will not return to user space 105 * until their process' state is changed away from stopped. 106 * 107 * Single LWPs within a process can not be set stopped 108 * selectively: all actions that can stop or continue LWPs 109 * occur at the process level. 110 * 111 * State transitions 112 * 113 * Note that the LSSTOP state may only be set when returning to 114 * user space in userret(), or when sleeping interruptably. The 115 * LSSUSPENDED state may only be set in userret(). Before setting 116 * those states, we try to ensure that the LWPs will release all 117 * locks that they hold, and at a minimum try to ensure that the 118 * LWP can be set runnable again by a signal. 119 * 120 * LWPs may transition states in the following ways: 121 * 122 * RUN -------> ONPROC ONPROC -----> RUN 123 * > SLEEP 124 * > STOPPED 125 * > SUSPENDED 126 * > ZOMB 127 * > IDL (special cases) 128 * 129 * STOPPED ---> RUN SUSPENDED --> RUN 130 * > SLEEP 131 * 132 * SLEEP -----> ONPROC IDL --------> RUN 133 * > RUN > SUSPENDED 134 * > STOPPED > STOPPED 135 * > ONPROC (special cases) 136 * 137 * Some state transitions are only possible with kernel threads (eg 138 * ONPROC -> IDL) and happen under tightly controlled circumstances 139 * free of unwanted side effects. 140 * 141 * Migration 142 * 143 * Migration of threads from one CPU to another could be performed 144 * internally by the scheduler via sched_takecpu() or sched_catchlwp() 145 * functions. The universal lwp_migrate() function should be used for 146 * any other cases. Subsystems in the kernel must be aware that CPU 147 * of LWP may change, while it is not locked. 148 * 149 * Locking 150 * 151 * The majority of fields in 'struct lwp' are covered by a single, 152 * general spin lock pointed to by lwp::l_mutex. The locks covering 153 * each field are documented in sys/lwp.h. 154 * 155 * State transitions must be made with the LWP's general lock held, 156 * and may cause the LWP's lock pointer to change. Manipulation of 157 * the general lock is not performed directly, but through calls to 158 * lwp_lock(), lwp_unlock() and others. It should be noted that the 159 * adaptive locks are not allowed to be released while the LWP's lock 160 * is being held (unlike for other spin-locks). 161 * 162 * States and their associated locks: 163 * 164 * LSONPROC, LSZOMB: 165 * 166 * Always covered by spc_lwplock, which protects running LWPs. 167 * This is a per-CPU lock and matches lwp::l_cpu. 168 * 169 * LSIDL, LSRUN: 170 * 171 * Always covered by spc_mutex, which protects the run queues. 172 * This is a per-CPU lock and matches lwp::l_cpu. 173 * 174 * LSSLEEP: 175 * 176 * Covered by a lock associated with the sleep queue that the 177 * LWP resides on. Matches lwp::l_sleepq::sq_mutex. 178 * 179 * LSSTOP, LSSUSPENDED: 180 * 181 * If the LWP was previously sleeping (l_wchan != NULL), then 182 * l_mutex references the sleep queue lock. If the LWP was 183 * runnable or on the CPU when halted, or has been removed from 184 * the sleep queue since halted, then the lock is spc_lwplock. 185 * 186 * The lock order is as follows: 187 * 188 * spc::spc_lwplock -> 189 * sleeptab::st_mutex -> 190 * tschain_t::tc_mutex -> 191 * spc::spc_mutex 192 * 193 * Each process has an scheduler state lock (proc::p_lock), and a 194 * number of counters on LWPs and their states: p_nzlwps, p_nrlwps, and 195 * so on. When an LWP is to be entered into or removed from one of the 196 * following states, p_lock must be held and the process wide counters 197 * adjusted: 198 * 199 * LSIDL, LSZOMB, LSSTOP, LSSUSPENDED 200 * 201 * (But not always for kernel threads. There are some special cases 202 * as mentioned above. See kern_softint.c.) 203 * 204 * Note that an LWP is considered running or likely to run soon if in 205 * one of the following states. This affects the value of p_nrlwps: 206 * 207 * LSRUN, LSONPROC, LSSLEEP 208 * 209 * p_lock does not need to be held when transitioning among these 210 * three states, hence p_lock is rarely taken for state transitions. 211 */ 212 213 #include <sys/cdefs.h> 214 __KERNEL_RCSID(0, "$NetBSD: kern_lwp.c,v 1.191 2017/12/02 22:51:22 christos Exp $"); 215 216 #include "opt_ddb.h" 217 #include "opt_lockdebug.h" 218 #include "opt_dtrace.h" 219 220 #define _LWP_API_PRIVATE 221 222 #include <sys/param.h> 223 #include <sys/systm.h> 224 #include <sys/cpu.h> 225 #include <sys/pool.h> 226 #include <sys/proc.h> 227 #include <sys/syscallargs.h> 228 #include <sys/syscall_stats.h> 229 #include <sys/kauth.h> 230 #include <sys/pserialize.h> 231 #include <sys/sleepq.h> 232 #include <sys/lockdebug.h> 233 #include <sys/kmem.h> 234 #include <sys/pset.h> 235 #include <sys/intr.h> 236 #include <sys/lwpctl.h> 237 #include <sys/atomic.h> 238 #include <sys/filedesc.h> 239 #include <sys/dtrace_bsd.h> 240 #include <sys/sdt.h> 241 #include <sys/xcall.h> 242 #include <sys/uidinfo.h> 243 #include <sys/sysctl.h> 244 245 #include <uvm/uvm_extern.h> 246 #include <uvm/uvm_object.h> 247 248 static pool_cache_t lwp_cache __read_mostly; 249 struct lwplist alllwp __cacheline_aligned; 250 251 static void lwp_dtor(void *, void *); 252 253 /* DTrace proc provider probes */ 254 SDT_PROVIDER_DEFINE(proc); 255 256 SDT_PROBE_DEFINE1(proc, kernel, , lwp__create, "struct lwp *"); 257 SDT_PROBE_DEFINE1(proc, kernel, , lwp__start, "struct lwp *"); 258 SDT_PROBE_DEFINE1(proc, kernel, , lwp__exit, "struct lwp *"); 259 260 struct turnstile turnstile0; 261 struct lwp lwp0 __aligned(MIN_LWP_ALIGNMENT) = { 262 #ifdef LWP0_CPU_INFO 263 .l_cpu = LWP0_CPU_INFO, 264 #endif 265 #ifdef LWP0_MD_INITIALIZER 266 .l_md = LWP0_MD_INITIALIZER, 267 #endif 268 .l_proc = &proc0, 269 .l_lid = 1, 270 .l_flag = LW_SYSTEM, 271 .l_stat = LSONPROC, 272 .l_ts = &turnstile0, 273 .l_syncobj = &sched_syncobj, 274 .l_refcnt = 1, 275 .l_priority = PRI_USER + NPRI_USER - 1, 276 .l_inheritedprio = -1, 277 .l_class = SCHED_OTHER, 278 .l_psid = PS_NONE, 279 .l_pi_lenders = SLIST_HEAD_INITIALIZER(&lwp0.l_pi_lenders), 280 .l_name = __UNCONST("swapper"), 281 .l_fd = &filedesc0, 282 }; 283 284 static int sysctl_kern_maxlwp(SYSCTLFN_PROTO); 285 286 /* 287 * sysctl helper routine for kern.maxlwp. Ensures that the new 288 * values are not too low or too high. 289 */ 290 static int 291 sysctl_kern_maxlwp(SYSCTLFN_ARGS) 292 { 293 int error, nmaxlwp; 294 struct sysctlnode node; 295 296 nmaxlwp = maxlwp; 297 node = *rnode; 298 node.sysctl_data = &nmaxlwp; 299 error = sysctl_lookup(SYSCTLFN_CALL(&node)); 300 if (error || newp == NULL) 301 return error; 302 303 if (nmaxlwp < 0 || nmaxlwp >= 65536) 304 return EINVAL; 305 if (nmaxlwp > cpu_maxlwp()) 306 return EINVAL; 307 maxlwp = nmaxlwp; 308 309 return 0; 310 } 311 312 static void 313 sysctl_kern_lwp_setup(void) 314 { 315 struct sysctllog *clog = NULL; 316 317 sysctl_createv(&clog, 0, NULL, NULL, 318 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, 319 CTLTYPE_INT, "maxlwp", 320 SYSCTL_DESCR("Maximum number of simultaneous threads"), 321 sysctl_kern_maxlwp, 0, NULL, 0, 322 CTL_KERN, CTL_CREATE, CTL_EOL); 323 } 324 325 void 326 lwpinit(void) 327 { 328 329 LIST_INIT(&alllwp); 330 lwpinit_specificdata(); 331 lwp_sys_init(); 332 lwp_cache = pool_cache_init(sizeof(lwp_t), MIN_LWP_ALIGNMENT, 0, 0, 333 "lwppl", NULL, IPL_NONE, NULL, lwp_dtor, NULL); 334 335 maxlwp = cpu_maxlwp(); 336 sysctl_kern_lwp_setup(); 337 } 338 339 void 340 lwp0_init(void) 341 { 342 struct lwp *l = &lwp0; 343 344 KASSERT((void *)uvm_lwp_getuarea(l) != NULL); 345 KASSERT(l->l_lid == proc0.p_nlwpid); 346 347 LIST_INSERT_HEAD(&alllwp, l, l_list); 348 349 callout_init(&l->l_timeout_ch, CALLOUT_MPSAFE); 350 callout_setfunc(&l->l_timeout_ch, sleepq_timeout, l); 351 cv_init(&l->l_sigcv, "sigwait"); 352 cv_init(&l->l_waitcv, "vfork"); 353 354 kauth_cred_hold(proc0.p_cred); 355 l->l_cred = proc0.p_cred; 356 357 kdtrace_thread_ctor(NULL, l); 358 lwp_initspecific(l); 359 360 SYSCALL_TIME_LWP_INIT(l); 361 } 362 363 static void 364 lwp_dtor(void *arg, void *obj) 365 { 366 lwp_t *l = obj; 367 uint64_t where; 368 (void)l; 369 370 /* 371 * Provide a barrier to ensure that all mutex_oncpu() and rw_oncpu() 372 * calls will exit before memory of LWP is returned to the pool, where 373 * KVA of LWP structure might be freed and re-used for other purposes. 374 * Kernel preemption is disabled around mutex_oncpu() and rw_oncpu() 375 * callers, therefore cross-call to all CPUs will do the job. Also, 376 * the value of l->l_cpu must be still valid at this point. 377 */ 378 KASSERT(l->l_cpu != NULL); 379 where = xc_broadcast(0, (xcfunc_t)nullop, NULL, NULL); 380 xc_wait(where); 381 } 382 383 /* 384 * Set an suspended. 385 * 386 * Must be called with p_lock held, and the LWP locked. Will unlock the 387 * LWP before return. 388 */ 389 int 390 lwp_suspend(struct lwp *curl, struct lwp *t) 391 { 392 int error; 393 394 KASSERT(mutex_owned(t->l_proc->p_lock)); 395 KASSERT(lwp_locked(t, NULL)); 396 397 KASSERT(curl != t || curl->l_stat == LSONPROC); 398 399 /* 400 * If the current LWP has been told to exit, we must not suspend anyone 401 * else or deadlock could occur. We won't return to userspace. 402 */ 403 if ((curl->l_flag & (LW_WEXIT | LW_WCORE)) != 0) { 404 lwp_unlock(t); 405 return (EDEADLK); 406 } 407 408 error = 0; 409 410 switch (t->l_stat) { 411 case LSRUN: 412 case LSONPROC: 413 t->l_flag |= LW_WSUSPEND; 414 lwp_need_userret(t); 415 lwp_unlock(t); 416 break; 417 418 case LSSLEEP: 419 t->l_flag |= LW_WSUSPEND; 420 421 /* 422 * Kick the LWP and try to get it to the kernel boundary 423 * so that it will release any locks that it holds. 424 * setrunnable() will release the lock. 425 */ 426 if ((t->l_flag & LW_SINTR) != 0) 427 setrunnable(t); 428 else 429 lwp_unlock(t); 430 break; 431 432 case LSSUSPENDED: 433 lwp_unlock(t); 434 break; 435 436 case LSSTOP: 437 t->l_flag |= LW_WSUSPEND; 438 setrunnable(t); 439 break; 440 441 case LSIDL: 442 case LSZOMB: 443 error = EINTR; /* It's what Solaris does..... */ 444 lwp_unlock(t); 445 break; 446 } 447 448 return (error); 449 } 450 451 /* 452 * Restart a suspended LWP. 453 * 454 * Must be called with p_lock held, and the LWP locked. Will unlock the 455 * LWP before return. 456 */ 457 void 458 lwp_continue(struct lwp *l) 459 { 460 461 KASSERT(mutex_owned(l->l_proc->p_lock)); 462 KASSERT(lwp_locked(l, NULL)); 463 464 /* If rebooting or not suspended, then just bail out. */ 465 if ((l->l_flag & LW_WREBOOT) != 0) { 466 lwp_unlock(l); 467 return; 468 } 469 470 l->l_flag &= ~LW_WSUSPEND; 471 472 if (l->l_stat != LSSUSPENDED) { 473 lwp_unlock(l); 474 return; 475 } 476 477 /* setrunnable() will release the lock. */ 478 setrunnable(l); 479 } 480 481 /* 482 * Restart a stopped LWP. 483 * 484 * Must be called with p_lock held, and the LWP NOT locked. Will unlock the 485 * LWP before return. 486 */ 487 void 488 lwp_unstop(struct lwp *l) 489 { 490 struct proc *p = l->l_proc; 491 492 KASSERT(mutex_owned(proc_lock)); 493 KASSERT(mutex_owned(p->p_lock)); 494 495 lwp_lock(l); 496 497 /* If not stopped, then just bail out. */ 498 if (l->l_stat != LSSTOP) { 499 lwp_unlock(l); 500 return; 501 } 502 503 p->p_stat = SACTIVE; 504 p->p_sflag &= ~PS_STOPPING; 505 506 if (!p->p_waited) 507 p->p_pptr->p_nstopchild--; 508 509 if (l->l_wchan == NULL) { 510 /* setrunnable() will release the lock. */ 511 setrunnable(l); 512 } else if (p->p_xsig && (l->l_flag & LW_SINTR) != 0) { 513 /* setrunnable() so we can receive the signal */ 514 setrunnable(l); 515 } else { 516 l->l_stat = LSSLEEP; 517 p->p_nrlwps++; 518 lwp_unlock(l); 519 } 520 } 521 522 /* 523 * Wait for an LWP within the current process to exit. If 'lid' is 524 * non-zero, we are waiting for a specific LWP. 525 * 526 * Must be called with p->p_lock held. 527 */ 528 int 529 lwp_wait(struct lwp *l, lwpid_t lid, lwpid_t *departed, bool exiting) 530 { 531 const lwpid_t curlid = l->l_lid; 532 proc_t *p = l->l_proc; 533 lwp_t *l2; 534 int error; 535 536 KASSERT(mutex_owned(p->p_lock)); 537 538 p->p_nlwpwait++; 539 l->l_waitingfor = lid; 540 541 for (;;) { 542 int nfound; 543 544 /* 545 * Avoid a race between exit1() and sigexit(): if the 546 * process is dumping core, then we need to bail out: call 547 * into lwp_userret() where we will be suspended until the 548 * deed is done. 549 */ 550 if ((p->p_sflag & PS_WCORE) != 0) { 551 mutex_exit(p->p_lock); 552 lwp_userret(l); 553 KASSERT(false); 554 } 555 556 /* 557 * First off, drain any detached LWP that is waiting to be 558 * reaped. 559 */ 560 while ((l2 = p->p_zomblwp) != NULL) { 561 p->p_zomblwp = NULL; 562 lwp_free(l2, false, false);/* releases proc mutex */ 563 mutex_enter(p->p_lock); 564 } 565 566 /* 567 * Now look for an LWP to collect. If the whole process is 568 * exiting, count detached LWPs as eligible to be collected, 569 * but don't drain them here. 570 */ 571 nfound = 0; 572 error = 0; 573 LIST_FOREACH(l2, &p->p_lwps, l_sibling) { 574 /* 575 * If a specific wait and the target is waiting on 576 * us, then avoid deadlock. This also traps LWPs 577 * that try to wait on themselves. 578 * 579 * Note that this does not handle more complicated 580 * cycles, like: t1 -> t2 -> t3 -> t1. The process 581 * can still be killed so it is not a major problem. 582 */ 583 if (l2->l_lid == lid && l2->l_waitingfor == curlid) { 584 error = EDEADLK; 585 break; 586 } 587 if (l2 == l) 588 continue; 589 if ((l2->l_prflag & LPR_DETACHED) != 0) { 590 nfound += exiting; 591 continue; 592 } 593 if (lid != 0) { 594 if (l2->l_lid != lid) 595 continue; 596 /* 597 * Mark this LWP as the first waiter, if there 598 * is no other. 599 */ 600 if (l2->l_waiter == 0) 601 l2->l_waiter = curlid; 602 } else if (l2->l_waiter != 0) { 603 /* 604 * It already has a waiter - so don't 605 * collect it. If the waiter doesn't 606 * grab it we'll get another chance 607 * later. 608 */ 609 nfound++; 610 continue; 611 } 612 nfound++; 613 614 /* No need to lock the LWP in order to see LSZOMB. */ 615 if (l2->l_stat != LSZOMB) 616 continue; 617 618 /* 619 * We're no longer waiting. Reset the "first waiter" 620 * pointer on the target, in case it was us. 621 */ 622 l->l_waitingfor = 0; 623 l2->l_waiter = 0; 624 p->p_nlwpwait--; 625 if (departed) 626 *departed = l2->l_lid; 627 sched_lwp_collect(l2); 628 629 /* lwp_free() releases the proc lock. */ 630 lwp_free(l2, false, false); 631 mutex_enter(p->p_lock); 632 return 0; 633 } 634 635 if (error != 0) 636 break; 637 if (nfound == 0) { 638 error = ESRCH; 639 break; 640 } 641 642 /* 643 * Note: since the lock will be dropped, need to restart on 644 * wakeup to run all LWPs again, e.g. there may be new LWPs. 645 */ 646 if (exiting) { 647 KASSERT(p->p_nlwps > 1); 648 error = cv_wait_sig(&p->p_lwpcv, p->p_lock); 649 if (error == 0) 650 error = EAGAIN; 651 break; 652 } 653 654 /* 655 * If all other LWPs are waiting for exits or suspends 656 * and the supply of zombies and potential zombies is 657 * exhausted, then we are about to deadlock. 658 * 659 * If the process is exiting (and this LWP is not the one 660 * that is coordinating the exit) then bail out now. 661 */ 662 if ((p->p_sflag & PS_WEXIT) != 0 || 663 p->p_nrlwps + p->p_nzlwps - p->p_ndlwps <= p->p_nlwpwait) { 664 error = EDEADLK; 665 break; 666 } 667 668 /* 669 * Sit around and wait for something to happen. We'll be 670 * awoken if any of the conditions examined change: if an 671 * LWP exits, is collected, or is detached. 672 */ 673 if ((error = cv_wait_sig(&p->p_lwpcv, p->p_lock)) != 0) 674 break; 675 } 676 677 /* 678 * We didn't find any LWPs to collect, we may have received a 679 * signal, or some other condition has caused us to bail out. 680 * 681 * If waiting on a specific LWP, clear the waiters marker: some 682 * other LWP may want it. Then, kick all the remaining waiters 683 * so that they can re-check for zombies and for deadlock. 684 */ 685 if (lid != 0) { 686 LIST_FOREACH(l2, &p->p_lwps, l_sibling) { 687 if (l2->l_lid == lid) { 688 if (l2->l_waiter == curlid) 689 l2->l_waiter = 0; 690 break; 691 } 692 } 693 } 694 p->p_nlwpwait--; 695 l->l_waitingfor = 0; 696 cv_broadcast(&p->p_lwpcv); 697 698 return error; 699 } 700 701 static lwpid_t 702 lwp_find_free_lid(lwpid_t try_lid, lwp_t * new_lwp, proc_t *p) 703 { 704 #define LID_SCAN (1u << 31) 705 lwp_t *scan, *free_before; 706 lwpid_t nxt_lid; 707 708 /* 709 * We want the first unused lid greater than or equal to 710 * try_lid (modulo 2^31). 711 * (If nothing else ld.elf_so doesn't want lwpid with the top bit set.) 712 * We must not return 0, and avoiding 'LID_SCAN - 1' makes 713 * the outer test easier. 714 * This would be much easier if the list were sorted in 715 * increasing order. 716 * The list is kept sorted in decreasing order. 717 * This code is only used after a process has generated 2^31 lwp. 718 * 719 * Code assumes it can always find an id. 720 */ 721 722 try_lid &= LID_SCAN - 1; 723 if (try_lid <= 1) 724 try_lid = 2; 725 726 free_before = NULL; 727 nxt_lid = LID_SCAN - 1; 728 LIST_FOREACH(scan, &p->p_lwps, l_sibling) { 729 if (scan->l_lid != nxt_lid) { 730 /* There are available lid before this entry */ 731 free_before = scan; 732 if (try_lid > scan->l_lid) 733 break; 734 } 735 if (try_lid == scan->l_lid) { 736 /* The ideal lid is busy, take a higher one */ 737 if (free_before != NULL) { 738 try_lid = free_before->l_lid + 1; 739 break; 740 } 741 /* No higher ones, reuse low numbers */ 742 try_lid = 2; 743 } 744 745 nxt_lid = scan->l_lid - 1; 746 if (LIST_NEXT(scan, l_sibling) == NULL) { 747 /* The value we have is lower than any existing lwp */ 748 LIST_INSERT_AFTER(scan, new_lwp, l_sibling); 749 return try_lid; 750 } 751 } 752 753 LIST_INSERT_BEFORE(free_before, new_lwp, l_sibling); 754 return try_lid; 755 } 756 757 /* 758 * Create a new LWP within process 'p2', using LWP 'l1' as a template. 759 * The new LWP is created in state LSIDL and must be set running, 760 * suspended, or stopped by the caller. 761 */ 762 int 763 lwp_create(lwp_t *l1, proc_t *p2, vaddr_t uaddr, int flags, 764 void *stack, size_t stacksize, void (*func)(void *), void *arg, 765 lwp_t **rnewlwpp, int sclass, const sigset_t *sigmask, 766 const stack_t *sigstk) 767 { 768 struct lwp *l2, *isfree; 769 turnstile_t *ts; 770 lwpid_t lid; 771 772 KASSERT(l1 == curlwp || l1->l_proc == &proc0); 773 774 /* 775 * Enforce limits, excluding the first lwp and kthreads. 776 */ 777 if (p2->p_nlwps != 0 && p2 != &proc0) { 778 uid_t uid = kauth_cred_getuid(l1->l_cred); 779 int count = chglwpcnt(uid, 1); 780 if (__predict_false(count > 781 p2->p_rlimit[RLIMIT_NTHR].rlim_cur)) { 782 if (kauth_authorize_process(l1->l_cred, 783 KAUTH_PROCESS_RLIMIT, p2, 784 KAUTH_ARG(KAUTH_REQ_PROCESS_RLIMIT_BYPASS), 785 &p2->p_rlimit[RLIMIT_NTHR], KAUTH_ARG(RLIMIT_NTHR)) 786 != 0) { 787 (void)chglwpcnt(uid, -1); 788 return EAGAIN; 789 } 790 } 791 } 792 793 /* 794 * First off, reap any detached LWP waiting to be collected. 795 * We can re-use its LWP structure and turnstile. 796 */ 797 isfree = NULL; 798 if (p2->p_zomblwp != NULL) { 799 mutex_enter(p2->p_lock); 800 if ((isfree = p2->p_zomblwp) != NULL) { 801 p2->p_zomblwp = NULL; 802 lwp_free(isfree, true, false);/* releases proc mutex */ 803 } else 804 mutex_exit(p2->p_lock); 805 } 806 if (isfree == NULL) { 807 l2 = pool_cache_get(lwp_cache, PR_WAITOK); 808 memset(l2, 0, sizeof(*l2)); 809 l2->l_ts = pool_cache_get(turnstile_cache, PR_WAITOK); 810 SLIST_INIT(&l2->l_pi_lenders); 811 } else { 812 l2 = isfree; 813 ts = l2->l_ts; 814 KASSERT(l2->l_inheritedprio == -1); 815 KASSERT(SLIST_EMPTY(&l2->l_pi_lenders)); 816 memset(l2, 0, sizeof(*l2)); 817 l2->l_ts = ts; 818 } 819 820 l2->l_stat = LSIDL; 821 l2->l_proc = p2; 822 l2->l_refcnt = 1; 823 l2->l_class = sclass; 824 825 /* 826 * If vfork(), we want the LWP to run fast and on the same CPU 827 * as its parent, so that it can reuse the VM context and cache 828 * footprint on the local CPU. 829 */ 830 l2->l_kpriority = ((flags & LWP_VFORK) ? true : false); 831 l2->l_kpribase = PRI_KERNEL; 832 l2->l_priority = l1->l_priority; 833 l2->l_inheritedprio = -1; 834 l2->l_protectprio = -1; 835 l2->l_auxprio = -1; 836 l2->l_flag = 0; 837 l2->l_pflag = LP_MPSAFE; 838 TAILQ_INIT(&l2->l_ld_locks); 839 840 /* 841 * For vfork, borrow parent's lwpctl context if it exists. 842 * This also causes us to return via lwp_userret. 843 */ 844 if (flags & LWP_VFORK && l1->l_lwpctl) { 845 l2->l_lwpctl = l1->l_lwpctl; 846 l2->l_flag |= LW_LWPCTL; 847 } 848 849 /* 850 * If not the first LWP in the process, grab a reference to the 851 * descriptor table. 852 */ 853 l2->l_fd = p2->p_fd; 854 if (p2->p_nlwps != 0) { 855 KASSERT(l1->l_proc == p2); 856 fd_hold(l2); 857 } else { 858 KASSERT(l1->l_proc != p2); 859 } 860 861 if (p2->p_flag & PK_SYSTEM) { 862 /* Mark it as a system LWP. */ 863 l2->l_flag |= LW_SYSTEM; 864 } 865 866 kpreempt_disable(); 867 l2->l_mutex = l1->l_cpu->ci_schedstate.spc_mutex; 868 l2->l_cpu = l1->l_cpu; 869 kpreempt_enable(); 870 871 kdtrace_thread_ctor(NULL, l2); 872 lwp_initspecific(l2); 873 sched_lwp_fork(l1, l2); 874 lwp_update_creds(l2); 875 callout_init(&l2->l_timeout_ch, CALLOUT_MPSAFE); 876 callout_setfunc(&l2->l_timeout_ch, sleepq_timeout, l2); 877 cv_init(&l2->l_sigcv, "sigwait"); 878 cv_init(&l2->l_waitcv, "vfork"); 879 l2->l_syncobj = &sched_syncobj; 880 881 if (rnewlwpp != NULL) 882 *rnewlwpp = l2; 883 884 /* 885 * PCU state needs to be saved before calling uvm_lwp_fork() so that 886 * the MD cpu_lwp_fork() can copy the saved state to the new LWP. 887 */ 888 pcu_save_all(l1); 889 890 uvm_lwp_setuarea(l2, uaddr); 891 uvm_lwp_fork(l1, l2, stack, stacksize, func, (arg != NULL) ? arg : l2); 892 893 if ((flags & LWP_PIDLID) != 0) { 894 lid = proc_alloc_pid(p2); 895 l2->l_pflag |= LP_PIDLID; 896 } else { 897 lid = 0; 898 } 899 900 mutex_enter(p2->p_lock); 901 902 if ((flags & LWP_DETACHED) != 0) { 903 l2->l_prflag = LPR_DETACHED; 904 p2->p_ndlwps++; 905 } else 906 l2->l_prflag = 0; 907 908 l2->l_sigstk = *sigstk; 909 l2->l_sigmask = *sigmask; 910 TAILQ_INIT(&l2->l_sigpend.sp_info); 911 sigemptyset(&l2->l_sigpend.sp_set); 912 913 if (__predict_true(lid == 0)) { 914 /* 915 * XXX: l_lid are expected to be unique (for a process) 916 * if LWP_PIDLID is sometimes set this won't be true. 917 * Once 2^31 threads have been allocated we have to 918 * scan to ensure we allocate a unique value. 919 */ 920 lid = ++p2->p_nlwpid; 921 if (__predict_false(lid & LID_SCAN)) { 922 lid = lwp_find_free_lid(lid, l2, p2); 923 p2->p_nlwpid = lid | LID_SCAN; 924 /* l2 as been inserted into p_lwps in order */ 925 goto skip_insert; 926 } 927 p2->p_nlwpid = lid; 928 } 929 LIST_INSERT_HEAD(&p2->p_lwps, l2, l_sibling); 930 skip_insert: 931 l2->l_lid = lid; 932 p2->p_nlwps++; 933 p2->p_nrlwps++; 934 935 KASSERT(l2->l_affinity == NULL); 936 937 if ((p2->p_flag & PK_SYSTEM) == 0) { 938 /* Inherit the affinity mask. */ 939 if (l1->l_affinity) { 940 /* 941 * Note that we hold the state lock while inheriting 942 * the affinity to avoid race with sched_setaffinity(). 943 */ 944 lwp_lock(l1); 945 if (l1->l_affinity) { 946 kcpuset_use(l1->l_affinity); 947 l2->l_affinity = l1->l_affinity; 948 } 949 lwp_unlock(l1); 950 } 951 lwp_lock(l2); 952 /* Inherit a processor-set */ 953 l2->l_psid = l1->l_psid; 954 /* Look for a CPU to start */ 955 l2->l_cpu = sched_takecpu(l2); 956 lwp_unlock_to(l2, l2->l_cpu->ci_schedstate.spc_mutex); 957 } 958 mutex_exit(p2->p_lock); 959 960 SDT_PROBE(proc, kernel, , lwp__create, l2, 0, 0, 0, 0); 961 962 mutex_enter(proc_lock); 963 LIST_INSERT_HEAD(&alllwp, l2, l_list); 964 mutex_exit(proc_lock); 965 966 SYSCALL_TIME_LWP_INIT(l2); 967 968 if (p2->p_emul->e_lwp_fork) 969 (*p2->p_emul->e_lwp_fork)(l1, l2); 970 971 /* If the process is traced, report lwp creation to a debugger */ 972 if ((p2->p_slflag & (PSL_TRACED|PSL_TRACELWP_CREATE|PSL_SYSCALL)) == 973 (PSL_TRACED|PSL_TRACELWP_CREATE)) { 974 ksiginfo_t ksi; 975 976 /* Tracing */ 977 KASSERT((l2->l_flag & LW_SYSTEM) == 0); 978 979 p2->p_lwp_created = l2->l_lid; 980 981 KSI_INIT_EMPTY(&ksi); 982 ksi.ksi_signo = SIGTRAP; 983 ksi.ksi_code = TRAP_LWP; 984 mutex_enter(proc_lock); 985 kpsignal(p2, &ksi, NULL); 986 mutex_exit(proc_lock); 987 } 988 989 return (0); 990 } 991 992 /* 993 * Called by MD code when a new LWP begins execution. Must be called 994 * with the previous LWP locked (so at splsched), or if there is no 995 * previous LWP, at splsched. 996 */ 997 void 998 lwp_startup(struct lwp *prev, struct lwp *new_lwp) 999 { 1000 KASSERTMSG(new_lwp == curlwp, "l %p curlwp %p prevlwp %p", new_lwp, curlwp, prev); 1001 1002 SDT_PROBE(proc, kernel, , lwp__start, new_lwp, 0, 0, 0, 0); 1003 1004 KASSERT(kpreempt_disabled()); 1005 if (prev != NULL) { 1006 /* 1007 * Normalize the count of the spin-mutexes, it was 1008 * increased in mi_switch(). Unmark the state of 1009 * context switch - it is finished for previous LWP. 1010 */ 1011 curcpu()->ci_mtx_count++; 1012 membar_exit(); 1013 prev->l_ctxswtch = 0; 1014 } 1015 KPREEMPT_DISABLE(new_lwp); 1016 if (__predict_true(new_lwp->l_proc->p_vmspace)) 1017 pmap_activate(new_lwp); 1018 spl0(); 1019 1020 /* Note trip through cpu_switchto(). */ 1021 pserialize_switchpoint(); 1022 1023 LOCKDEBUG_BARRIER(NULL, 0); 1024 KPREEMPT_ENABLE(new_lwp); 1025 if ((new_lwp->l_pflag & LP_MPSAFE) == 0) { 1026 KERNEL_LOCK(1, new_lwp); 1027 } 1028 } 1029 1030 /* 1031 * Exit an LWP. 1032 */ 1033 void 1034 lwp_exit(struct lwp *l) 1035 { 1036 struct proc *p = l->l_proc; 1037 struct lwp *l2; 1038 bool current; 1039 1040 current = (l == curlwp); 1041 1042 KASSERT(current || (l->l_stat == LSIDL && l->l_target_cpu == NULL)); 1043 KASSERT(p == curproc); 1044 1045 SDT_PROBE(proc, kernel, , lwp__exit, l, 0, 0, 0, 0); 1046 1047 /* 1048 * Verify that we hold no locks other than the kernel lock. 1049 */ 1050 LOCKDEBUG_BARRIER(&kernel_lock, 0); 1051 1052 /* If the process is traced, report lwp termination to a debugger */ 1053 if ((p->p_slflag & (PSL_TRACED|PSL_TRACELWP_EXIT|PSL_SYSCALL)) == 1054 (PSL_TRACED|PSL_TRACELWP_EXIT)) { 1055 ksiginfo_t ksi; 1056 1057 /* Tracing */ 1058 KASSERT((l->l_flag & LW_SYSTEM) == 0); 1059 1060 p->p_lwp_exited = l->l_lid; 1061 1062 KSI_INIT_EMPTY(&ksi); 1063 ksi.ksi_signo = SIGTRAP; 1064 ksi.ksi_code = TRAP_LWP; 1065 mutex_enter(proc_lock); 1066 kpsignal(p, &ksi, NULL); 1067 mutex_exit(proc_lock); 1068 } 1069 1070 /* 1071 * If we are the last live LWP in a process, we need to exit the 1072 * entire process. We do so with an exit status of zero, because 1073 * it's a "controlled" exit, and because that's what Solaris does. 1074 * 1075 * We are not quite a zombie yet, but for accounting purposes we 1076 * must increment the count of zombies here. 1077 * 1078 * Note: the last LWP's specificdata will be deleted here. 1079 */ 1080 mutex_enter(p->p_lock); 1081 if (p->p_nlwps - p->p_nzlwps == 1) { 1082 KASSERT(current == true); 1083 KASSERT(p != &proc0); 1084 /* XXXSMP kernel_lock not held */ 1085 exit1(l, 0, 0); 1086 /* NOTREACHED */ 1087 } 1088 p->p_nzlwps++; 1089 mutex_exit(p->p_lock); 1090 1091 if (p->p_emul->e_lwp_exit) 1092 (*p->p_emul->e_lwp_exit)(l); 1093 1094 /* Drop filedesc reference. */ 1095 fd_free(); 1096 1097 /* Delete the specificdata while it's still safe to sleep. */ 1098 lwp_finispecific(l); 1099 1100 /* 1101 * Release our cached credentials. 1102 */ 1103 kauth_cred_free(l->l_cred); 1104 callout_destroy(&l->l_timeout_ch); 1105 1106 /* 1107 * Remove the LWP from the global list. 1108 * Free its LID from the PID namespace if needed. 1109 */ 1110 mutex_enter(proc_lock); 1111 LIST_REMOVE(l, l_list); 1112 if ((l->l_pflag & LP_PIDLID) != 0 && l->l_lid != p->p_pid) { 1113 proc_free_pid(l->l_lid); 1114 } 1115 mutex_exit(proc_lock); 1116 1117 /* 1118 * Get rid of all references to the LWP that others (e.g. procfs) 1119 * may have, and mark the LWP as a zombie. If the LWP is detached, 1120 * mark it waiting for collection in the proc structure. Note that 1121 * before we can do that, we need to free any other dead, deatched 1122 * LWP waiting to meet its maker. 1123 */ 1124 mutex_enter(p->p_lock); 1125 lwp_drainrefs(l); 1126 1127 if ((l->l_prflag & LPR_DETACHED) != 0) { 1128 while ((l2 = p->p_zomblwp) != NULL) { 1129 p->p_zomblwp = NULL; 1130 lwp_free(l2, false, false);/* releases proc mutex */ 1131 mutex_enter(p->p_lock); 1132 l->l_refcnt++; 1133 lwp_drainrefs(l); 1134 } 1135 p->p_zomblwp = l; 1136 } 1137 1138 /* 1139 * If we find a pending signal for the process and we have been 1140 * asked to check for signals, then we lose: arrange to have 1141 * all other LWPs in the process check for signals. 1142 */ 1143 if ((l->l_flag & LW_PENDSIG) != 0 && 1144 firstsig(&p->p_sigpend.sp_set) != 0) { 1145 LIST_FOREACH(l2, &p->p_lwps, l_sibling) { 1146 lwp_lock(l2); 1147 l2->l_flag |= LW_PENDSIG; 1148 lwp_unlock(l2); 1149 } 1150 } 1151 1152 /* 1153 * Release any PCU resources before becoming a zombie. 1154 */ 1155 pcu_discard_all(l); 1156 1157 lwp_lock(l); 1158 l->l_stat = LSZOMB; 1159 if (l->l_name != NULL) { 1160 strcpy(l->l_name, "(zombie)"); 1161 } 1162 lwp_unlock(l); 1163 p->p_nrlwps--; 1164 cv_broadcast(&p->p_lwpcv); 1165 if (l->l_lwpctl != NULL) 1166 l->l_lwpctl->lc_curcpu = LWPCTL_CPU_EXITED; 1167 mutex_exit(p->p_lock); 1168 1169 /* 1170 * We can no longer block. At this point, lwp_free() may already 1171 * be gunning for us. On a multi-CPU system, we may be off p_lwps. 1172 * 1173 * Free MD LWP resources. 1174 */ 1175 cpu_lwp_free(l, 0); 1176 1177 if (current) { 1178 pmap_deactivate(l); 1179 1180 /* 1181 * Release the kernel lock, and switch away into 1182 * oblivion. 1183 */ 1184 #ifdef notyet 1185 /* XXXSMP hold in lwp_userret() */ 1186 KERNEL_UNLOCK_LAST(l); 1187 #else 1188 KERNEL_UNLOCK_ALL(l, NULL); 1189 #endif 1190 lwp_exit_switchaway(l); 1191 } 1192 } 1193 1194 /* 1195 * Free a dead LWP's remaining resources. 1196 * 1197 * XXXLWP limits. 1198 */ 1199 void 1200 lwp_free(struct lwp *l, bool recycle, bool last) 1201 { 1202 struct proc *p = l->l_proc; 1203 struct rusage *ru; 1204 ksiginfoq_t kq; 1205 1206 KASSERT(l != curlwp); 1207 KASSERT(last || mutex_owned(p->p_lock)); 1208 1209 /* 1210 * We use the process credentials instead of the lwp credentials here 1211 * because the lwp credentials maybe cached (just after a setuid call) 1212 * and we don't want pay for syncing, since the lwp is going away 1213 * anyway 1214 */ 1215 if (p != &proc0 && p->p_nlwps != 1) 1216 (void)chglwpcnt(kauth_cred_getuid(p->p_cred), -1); 1217 /* 1218 * If this was not the last LWP in the process, then adjust 1219 * counters and unlock. 1220 */ 1221 if (!last) { 1222 /* 1223 * Add the LWP's run time to the process' base value. 1224 * This needs to co-incide with coming off p_lwps. 1225 */ 1226 bintime_add(&p->p_rtime, &l->l_rtime); 1227 p->p_pctcpu += l->l_pctcpu; 1228 ru = &p->p_stats->p_ru; 1229 ruadd(ru, &l->l_ru); 1230 ru->ru_nvcsw += (l->l_ncsw - l->l_nivcsw); 1231 ru->ru_nivcsw += l->l_nivcsw; 1232 LIST_REMOVE(l, l_sibling); 1233 p->p_nlwps--; 1234 p->p_nzlwps--; 1235 if ((l->l_prflag & LPR_DETACHED) != 0) 1236 p->p_ndlwps--; 1237 1238 /* 1239 * Have any LWPs sleeping in lwp_wait() recheck for 1240 * deadlock. 1241 */ 1242 cv_broadcast(&p->p_lwpcv); 1243 mutex_exit(p->p_lock); 1244 } 1245 1246 #ifdef MULTIPROCESSOR 1247 /* 1248 * In the unlikely event that the LWP is still on the CPU, 1249 * then spin until it has switched away. We need to release 1250 * all locks to avoid deadlock against interrupt handlers on 1251 * the target CPU. 1252 */ 1253 if ((l->l_pflag & LP_RUNNING) != 0 || l->l_cpu->ci_curlwp == l) { 1254 int count; 1255 (void)count; /* XXXgcc */ 1256 KERNEL_UNLOCK_ALL(curlwp, &count); 1257 while ((l->l_pflag & LP_RUNNING) != 0 || 1258 l->l_cpu->ci_curlwp == l) 1259 SPINLOCK_BACKOFF_HOOK; 1260 KERNEL_LOCK(count, curlwp); 1261 } 1262 #endif 1263 1264 /* 1265 * Destroy the LWP's remaining signal information. 1266 */ 1267 ksiginfo_queue_init(&kq); 1268 sigclear(&l->l_sigpend, NULL, &kq); 1269 ksiginfo_queue_drain(&kq); 1270 cv_destroy(&l->l_sigcv); 1271 cv_destroy(&l->l_waitcv); 1272 1273 /* 1274 * Free lwpctl structure and affinity. 1275 */ 1276 if (l->l_lwpctl) { 1277 lwp_ctl_free(l); 1278 } 1279 if (l->l_affinity) { 1280 kcpuset_unuse(l->l_affinity, NULL); 1281 l->l_affinity = NULL; 1282 } 1283 1284 /* 1285 * Free the LWP's turnstile and the LWP structure itself unless the 1286 * caller wants to recycle them. Also, free the scheduler specific 1287 * data. 1288 * 1289 * We can't return turnstile0 to the pool (it didn't come from it), 1290 * so if it comes up just drop it quietly and move on. 1291 * 1292 * We don't recycle the VM resources at this time. 1293 */ 1294 1295 if (!recycle && l->l_ts != &turnstile0) 1296 pool_cache_put(turnstile_cache, l->l_ts); 1297 if (l->l_name != NULL) 1298 kmem_free(l->l_name, MAXCOMLEN); 1299 1300 cpu_lwp_free2(l); 1301 uvm_lwp_exit(l); 1302 1303 KASSERT(SLIST_EMPTY(&l->l_pi_lenders)); 1304 KASSERT(l->l_inheritedprio == -1); 1305 KASSERT(l->l_blcnt == 0); 1306 kdtrace_thread_dtor(NULL, l); 1307 if (!recycle) 1308 pool_cache_put(lwp_cache, l); 1309 } 1310 1311 /* 1312 * Migrate the LWP to the another CPU. Unlocks the LWP. 1313 */ 1314 void 1315 lwp_migrate(lwp_t *l, struct cpu_info *tci) 1316 { 1317 struct schedstate_percpu *tspc; 1318 int lstat = l->l_stat; 1319 1320 KASSERT(lwp_locked(l, NULL)); 1321 KASSERT(tci != NULL); 1322 1323 /* If LWP is still on the CPU, it must be handled like LSONPROC */ 1324 if ((l->l_pflag & LP_RUNNING) != 0) { 1325 lstat = LSONPROC; 1326 } 1327 1328 /* 1329 * The destination CPU could be changed while previous migration 1330 * was not finished. 1331 */ 1332 if (l->l_target_cpu != NULL) { 1333 l->l_target_cpu = tci; 1334 lwp_unlock(l); 1335 return; 1336 } 1337 1338 /* Nothing to do if trying to migrate to the same CPU */ 1339 if (l->l_cpu == tci) { 1340 lwp_unlock(l); 1341 return; 1342 } 1343 1344 KASSERT(l->l_target_cpu == NULL); 1345 tspc = &tci->ci_schedstate; 1346 switch (lstat) { 1347 case LSRUN: 1348 l->l_target_cpu = tci; 1349 break; 1350 case LSIDL: 1351 l->l_cpu = tci; 1352 lwp_unlock_to(l, tspc->spc_mutex); 1353 return; 1354 case LSSLEEP: 1355 l->l_cpu = tci; 1356 break; 1357 case LSSTOP: 1358 case LSSUSPENDED: 1359 l->l_cpu = tci; 1360 if (l->l_wchan == NULL) { 1361 lwp_unlock_to(l, tspc->spc_lwplock); 1362 return; 1363 } 1364 break; 1365 case LSONPROC: 1366 l->l_target_cpu = tci; 1367 spc_lock(l->l_cpu); 1368 cpu_need_resched(l->l_cpu, RESCHED_KPREEMPT); 1369 spc_unlock(l->l_cpu); 1370 break; 1371 } 1372 lwp_unlock(l); 1373 } 1374 1375 /* 1376 * Find the LWP in the process. Arguments may be zero, in such case, 1377 * the calling process and first LWP in the list will be used. 1378 * On success - returns proc locked. 1379 */ 1380 struct lwp * 1381 lwp_find2(pid_t pid, lwpid_t lid) 1382 { 1383 proc_t *p; 1384 lwp_t *l; 1385 1386 /* Find the process. */ 1387 if (pid != 0) { 1388 mutex_enter(proc_lock); 1389 p = proc_find(pid); 1390 if (p == NULL) { 1391 mutex_exit(proc_lock); 1392 return NULL; 1393 } 1394 mutex_enter(p->p_lock); 1395 mutex_exit(proc_lock); 1396 } else { 1397 p = curlwp->l_proc; 1398 mutex_enter(p->p_lock); 1399 } 1400 /* Find the thread. */ 1401 if (lid != 0) { 1402 l = lwp_find(p, lid); 1403 } else { 1404 l = LIST_FIRST(&p->p_lwps); 1405 } 1406 if (l == NULL) { 1407 mutex_exit(p->p_lock); 1408 } 1409 return l; 1410 } 1411 1412 /* 1413 * Look up a live LWP within the specified process. 1414 * 1415 * Must be called with p->p_lock held. 1416 */ 1417 struct lwp * 1418 lwp_find(struct proc *p, lwpid_t id) 1419 { 1420 struct lwp *l; 1421 1422 KASSERT(mutex_owned(p->p_lock)); 1423 1424 LIST_FOREACH(l, &p->p_lwps, l_sibling) { 1425 if (l->l_lid == id) 1426 break; 1427 } 1428 1429 /* 1430 * No need to lock - all of these conditions will 1431 * be visible with the process level mutex held. 1432 */ 1433 if (l != NULL && (l->l_stat == LSIDL || l->l_stat == LSZOMB)) 1434 l = NULL; 1435 1436 return l; 1437 } 1438 1439 /* 1440 * Update an LWP's cached credentials to mirror the process' master copy. 1441 * 1442 * This happens early in the syscall path, on user trap, and on LWP 1443 * creation. A long-running LWP can also voluntarily choose to update 1444 * its credentials by calling this routine. This may be called from 1445 * LWP_CACHE_CREDS(), which checks l->l_cred != p->p_cred beforehand. 1446 */ 1447 void 1448 lwp_update_creds(struct lwp *l) 1449 { 1450 kauth_cred_t oc; 1451 struct proc *p; 1452 1453 p = l->l_proc; 1454 oc = l->l_cred; 1455 1456 mutex_enter(p->p_lock); 1457 kauth_cred_hold(p->p_cred); 1458 l->l_cred = p->p_cred; 1459 l->l_prflag &= ~LPR_CRMOD; 1460 mutex_exit(p->p_lock); 1461 if (oc != NULL) 1462 kauth_cred_free(oc); 1463 } 1464 1465 /* 1466 * Verify that an LWP is locked, and optionally verify that the lock matches 1467 * one we specify. 1468 */ 1469 int 1470 lwp_locked(struct lwp *l, kmutex_t *mtx) 1471 { 1472 kmutex_t *cur = l->l_mutex; 1473 1474 return mutex_owned(cur) && (mtx == cur || mtx == NULL); 1475 } 1476 1477 /* 1478 * Lend a new mutex to an LWP. The old mutex must be held. 1479 */ 1480 void 1481 lwp_setlock(struct lwp *l, kmutex_t *mtx) 1482 { 1483 1484 KASSERT(mutex_owned(l->l_mutex)); 1485 1486 membar_exit(); 1487 l->l_mutex = mtx; 1488 } 1489 1490 /* 1491 * Lend a new mutex to an LWP, and release the old mutex. The old mutex 1492 * must be held. 1493 */ 1494 void 1495 lwp_unlock_to(struct lwp *l, kmutex_t *mtx) 1496 { 1497 kmutex_t *old; 1498 1499 KASSERT(lwp_locked(l, NULL)); 1500 1501 old = l->l_mutex; 1502 membar_exit(); 1503 l->l_mutex = mtx; 1504 mutex_spin_exit(old); 1505 } 1506 1507 int 1508 lwp_trylock(struct lwp *l) 1509 { 1510 kmutex_t *old; 1511 1512 for (;;) { 1513 if (!mutex_tryenter(old = l->l_mutex)) 1514 return 0; 1515 if (__predict_true(l->l_mutex == old)) 1516 return 1; 1517 mutex_spin_exit(old); 1518 } 1519 } 1520 1521 void 1522 lwp_unsleep(lwp_t *l, bool cleanup) 1523 { 1524 1525 KASSERT(mutex_owned(l->l_mutex)); 1526 (*l->l_syncobj->sobj_unsleep)(l, cleanup); 1527 } 1528 1529 /* 1530 * Handle exceptions for mi_userret(). Called if a member of LW_USERRET is 1531 * set. 1532 */ 1533 void 1534 lwp_userret(struct lwp *l) 1535 { 1536 struct proc *p; 1537 int sig; 1538 1539 KASSERT(l == curlwp); 1540 KASSERT(l->l_stat == LSONPROC); 1541 p = l->l_proc; 1542 1543 #ifndef __HAVE_FAST_SOFTINTS 1544 /* Run pending soft interrupts. */ 1545 if (l->l_cpu->ci_data.cpu_softints != 0) 1546 softint_overlay(); 1547 #endif 1548 1549 /* 1550 * It is safe to do this read unlocked on a MP system.. 1551 */ 1552 while ((l->l_flag & LW_USERRET) != 0) { 1553 /* 1554 * Process pending signals first, unless the process 1555 * is dumping core or exiting, where we will instead 1556 * enter the LW_WSUSPEND case below. 1557 */ 1558 if ((l->l_flag & (LW_PENDSIG | LW_WCORE | LW_WEXIT)) == 1559 LW_PENDSIG) { 1560 mutex_enter(p->p_lock); 1561 while ((sig = issignal(l)) != 0) 1562 postsig(sig); 1563 mutex_exit(p->p_lock); 1564 } 1565 1566 /* 1567 * Core-dump or suspend pending. 1568 * 1569 * In case of core dump, suspend ourselves, so that the kernel 1570 * stack and therefore the userland registers saved in the 1571 * trapframe are around for coredump() to write them out. 1572 * We also need to save any PCU resources that we have so that 1573 * they accessible for coredump(). We issue a wakeup on 1574 * p->p_lwpcv so that sigexit() will write the core file out 1575 * once all other LWPs are suspended. 1576 */ 1577 if ((l->l_flag & LW_WSUSPEND) != 0) { 1578 pcu_save_all(l); 1579 mutex_enter(p->p_lock); 1580 p->p_nrlwps--; 1581 cv_broadcast(&p->p_lwpcv); 1582 lwp_lock(l); 1583 l->l_stat = LSSUSPENDED; 1584 lwp_unlock(l); 1585 mutex_exit(p->p_lock); 1586 lwp_lock(l); 1587 mi_switch(l); 1588 } 1589 1590 /* Process is exiting. */ 1591 if ((l->l_flag & LW_WEXIT) != 0) { 1592 lwp_exit(l); 1593 KASSERT(0); 1594 /* NOTREACHED */ 1595 } 1596 1597 /* update lwpctl processor (for vfork child_return) */ 1598 if (l->l_flag & LW_LWPCTL) { 1599 lwp_lock(l); 1600 KASSERT(kpreempt_disabled()); 1601 l->l_lwpctl->lc_curcpu = (int)cpu_index(l->l_cpu); 1602 l->l_lwpctl->lc_pctr++; 1603 l->l_flag &= ~LW_LWPCTL; 1604 lwp_unlock(l); 1605 } 1606 } 1607 } 1608 1609 /* 1610 * Force an LWP to enter the kernel, to take a trip through lwp_userret(). 1611 */ 1612 void 1613 lwp_need_userret(struct lwp *l) 1614 { 1615 KASSERT(lwp_locked(l, NULL)); 1616 1617 /* 1618 * Since the tests in lwp_userret() are done unlocked, make sure 1619 * that the condition will be seen before forcing the LWP to enter 1620 * kernel mode. 1621 */ 1622 membar_producer(); 1623 cpu_signotify(l); 1624 } 1625 1626 /* 1627 * Add one reference to an LWP. This will prevent the LWP from 1628 * exiting, thus keep the lwp structure and PCB around to inspect. 1629 */ 1630 void 1631 lwp_addref(struct lwp *l) 1632 { 1633 1634 KASSERT(mutex_owned(l->l_proc->p_lock)); 1635 KASSERT(l->l_stat != LSZOMB); 1636 KASSERT(l->l_refcnt != 0); 1637 1638 l->l_refcnt++; 1639 } 1640 1641 /* 1642 * Remove one reference to an LWP. If this is the last reference, 1643 * then we must finalize the LWP's death. 1644 */ 1645 void 1646 lwp_delref(struct lwp *l) 1647 { 1648 struct proc *p = l->l_proc; 1649 1650 mutex_enter(p->p_lock); 1651 lwp_delref2(l); 1652 mutex_exit(p->p_lock); 1653 } 1654 1655 /* 1656 * Remove one reference to an LWP. If this is the last reference, 1657 * then we must finalize the LWP's death. The proc mutex is held 1658 * on entry. 1659 */ 1660 void 1661 lwp_delref2(struct lwp *l) 1662 { 1663 struct proc *p = l->l_proc; 1664 1665 KASSERT(mutex_owned(p->p_lock)); 1666 KASSERT(l->l_stat != LSZOMB); 1667 KASSERT(l->l_refcnt > 0); 1668 if (--l->l_refcnt == 0) 1669 cv_broadcast(&p->p_lwpcv); 1670 } 1671 1672 /* 1673 * Drain all references to the current LWP. 1674 */ 1675 void 1676 lwp_drainrefs(struct lwp *l) 1677 { 1678 struct proc *p = l->l_proc; 1679 1680 KASSERT(mutex_owned(p->p_lock)); 1681 KASSERT(l->l_refcnt != 0); 1682 1683 l->l_refcnt--; 1684 while (l->l_refcnt != 0) 1685 cv_wait(&p->p_lwpcv, p->p_lock); 1686 } 1687 1688 /* 1689 * Return true if the specified LWP is 'alive'. Only p->p_lock need 1690 * be held. 1691 */ 1692 bool 1693 lwp_alive(lwp_t *l) 1694 { 1695 1696 KASSERT(mutex_owned(l->l_proc->p_lock)); 1697 1698 switch (l->l_stat) { 1699 case LSSLEEP: 1700 case LSRUN: 1701 case LSONPROC: 1702 case LSSTOP: 1703 case LSSUSPENDED: 1704 return true; 1705 default: 1706 return false; 1707 } 1708 } 1709 1710 /* 1711 * Return first live LWP in the process. 1712 */ 1713 lwp_t * 1714 lwp_find_first(proc_t *p) 1715 { 1716 lwp_t *l; 1717 1718 KASSERT(mutex_owned(p->p_lock)); 1719 1720 LIST_FOREACH(l, &p->p_lwps, l_sibling) { 1721 if (lwp_alive(l)) { 1722 return l; 1723 } 1724 } 1725 1726 return NULL; 1727 } 1728 1729 /* 1730 * Allocate a new lwpctl structure for a user LWP. 1731 */ 1732 int 1733 lwp_ctl_alloc(vaddr_t *uaddr) 1734 { 1735 lcproc_t *lp; 1736 u_int bit, i, offset; 1737 struct uvm_object *uao; 1738 int error; 1739 lcpage_t *lcp; 1740 proc_t *p; 1741 lwp_t *l; 1742 1743 l = curlwp; 1744 p = l->l_proc; 1745 1746 /* don't allow a vforked process to create lwp ctls */ 1747 if (p->p_lflag & PL_PPWAIT) 1748 return EBUSY; 1749 1750 if (l->l_lcpage != NULL) { 1751 lcp = l->l_lcpage; 1752 *uaddr = lcp->lcp_uaddr + (vaddr_t)l->l_lwpctl - lcp->lcp_kaddr; 1753 return 0; 1754 } 1755 1756 /* First time around, allocate header structure for the process. */ 1757 if ((lp = p->p_lwpctl) == NULL) { 1758 lp = kmem_alloc(sizeof(*lp), KM_SLEEP); 1759 mutex_init(&lp->lp_lock, MUTEX_DEFAULT, IPL_NONE); 1760 lp->lp_uao = NULL; 1761 TAILQ_INIT(&lp->lp_pages); 1762 mutex_enter(p->p_lock); 1763 if (p->p_lwpctl == NULL) { 1764 p->p_lwpctl = lp; 1765 mutex_exit(p->p_lock); 1766 } else { 1767 mutex_exit(p->p_lock); 1768 mutex_destroy(&lp->lp_lock); 1769 kmem_free(lp, sizeof(*lp)); 1770 lp = p->p_lwpctl; 1771 } 1772 } 1773 1774 /* 1775 * Set up an anonymous memory region to hold the shared pages. 1776 * Map them into the process' address space. The user vmspace 1777 * gets the first reference on the UAO. 1778 */ 1779 mutex_enter(&lp->lp_lock); 1780 if (lp->lp_uao == NULL) { 1781 lp->lp_uao = uao_create(LWPCTL_UAREA_SZ, 0); 1782 lp->lp_cur = 0; 1783 lp->lp_max = LWPCTL_UAREA_SZ; 1784 lp->lp_uva = p->p_emul->e_vm_default_addr(p, 1785 (vaddr_t)p->p_vmspace->vm_daddr, LWPCTL_UAREA_SZ, 1786 p->p_vmspace->vm_map.flags & VM_MAP_TOPDOWN); 1787 error = uvm_map(&p->p_vmspace->vm_map, &lp->lp_uva, 1788 LWPCTL_UAREA_SZ, lp->lp_uao, 0, 0, UVM_MAPFLAG(UVM_PROT_RW, 1789 UVM_PROT_RW, UVM_INH_NONE, UVM_ADV_NORMAL, 0)); 1790 if (error != 0) { 1791 uao_detach(lp->lp_uao); 1792 lp->lp_uao = NULL; 1793 mutex_exit(&lp->lp_lock); 1794 return error; 1795 } 1796 } 1797 1798 /* Get a free block and allocate for this LWP. */ 1799 TAILQ_FOREACH(lcp, &lp->lp_pages, lcp_chain) { 1800 if (lcp->lcp_nfree != 0) 1801 break; 1802 } 1803 if (lcp == NULL) { 1804 /* Nothing available - try to set up a free page. */ 1805 if (lp->lp_cur == lp->lp_max) { 1806 mutex_exit(&lp->lp_lock); 1807 return ENOMEM; 1808 } 1809 lcp = kmem_alloc(LWPCTL_LCPAGE_SZ, KM_SLEEP); 1810 1811 /* 1812 * Wire the next page down in kernel space. Since this 1813 * is a new mapping, we must add a reference. 1814 */ 1815 uao = lp->lp_uao; 1816 (*uao->pgops->pgo_reference)(uao); 1817 lcp->lcp_kaddr = vm_map_min(kernel_map); 1818 error = uvm_map(kernel_map, &lcp->lcp_kaddr, PAGE_SIZE, 1819 uao, lp->lp_cur, PAGE_SIZE, 1820 UVM_MAPFLAG(UVM_PROT_RW, UVM_PROT_RW, 1821 UVM_INH_NONE, UVM_ADV_RANDOM, 0)); 1822 if (error != 0) { 1823 mutex_exit(&lp->lp_lock); 1824 kmem_free(lcp, LWPCTL_LCPAGE_SZ); 1825 (*uao->pgops->pgo_detach)(uao); 1826 return error; 1827 } 1828 error = uvm_map_pageable(kernel_map, lcp->lcp_kaddr, 1829 lcp->lcp_kaddr + PAGE_SIZE, FALSE, 0); 1830 if (error != 0) { 1831 mutex_exit(&lp->lp_lock); 1832 uvm_unmap(kernel_map, lcp->lcp_kaddr, 1833 lcp->lcp_kaddr + PAGE_SIZE); 1834 kmem_free(lcp, LWPCTL_LCPAGE_SZ); 1835 return error; 1836 } 1837 /* Prepare the page descriptor and link into the list. */ 1838 lcp->lcp_uaddr = lp->lp_uva + lp->lp_cur; 1839 lp->lp_cur += PAGE_SIZE; 1840 lcp->lcp_nfree = LWPCTL_PER_PAGE; 1841 lcp->lcp_rotor = 0; 1842 memset(lcp->lcp_bitmap, 0xff, LWPCTL_BITMAP_SZ); 1843 TAILQ_INSERT_HEAD(&lp->lp_pages, lcp, lcp_chain); 1844 } 1845 for (i = lcp->lcp_rotor; lcp->lcp_bitmap[i] == 0;) { 1846 if (++i >= LWPCTL_BITMAP_ENTRIES) 1847 i = 0; 1848 } 1849 bit = ffs(lcp->lcp_bitmap[i]) - 1; 1850 lcp->lcp_bitmap[i] ^= (1 << bit); 1851 lcp->lcp_rotor = i; 1852 lcp->lcp_nfree--; 1853 l->l_lcpage = lcp; 1854 offset = (i << 5) + bit; 1855 l->l_lwpctl = (lwpctl_t *)lcp->lcp_kaddr + offset; 1856 *uaddr = lcp->lcp_uaddr + offset * sizeof(lwpctl_t); 1857 mutex_exit(&lp->lp_lock); 1858 1859 KPREEMPT_DISABLE(l); 1860 l->l_lwpctl->lc_curcpu = (int)curcpu()->ci_data.cpu_index; 1861 KPREEMPT_ENABLE(l); 1862 1863 return 0; 1864 } 1865 1866 /* 1867 * Free an lwpctl structure back to the per-process list. 1868 */ 1869 void 1870 lwp_ctl_free(lwp_t *l) 1871 { 1872 struct proc *p = l->l_proc; 1873 lcproc_t *lp; 1874 lcpage_t *lcp; 1875 u_int map, offset; 1876 1877 /* don't free a lwp context we borrowed for vfork */ 1878 if (p->p_lflag & PL_PPWAIT) { 1879 l->l_lwpctl = NULL; 1880 return; 1881 } 1882 1883 lp = p->p_lwpctl; 1884 KASSERT(lp != NULL); 1885 1886 lcp = l->l_lcpage; 1887 offset = (u_int)((lwpctl_t *)l->l_lwpctl - (lwpctl_t *)lcp->lcp_kaddr); 1888 KASSERT(offset < LWPCTL_PER_PAGE); 1889 1890 mutex_enter(&lp->lp_lock); 1891 lcp->lcp_nfree++; 1892 map = offset >> 5; 1893 lcp->lcp_bitmap[map] |= (1 << (offset & 31)); 1894 if (lcp->lcp_bitmap[lcp->lcp_rotor] == 0) 1895 lcp->lcp_rotor = map; 1896 if (TAILQ_FIRST(&lp->lp_pages)->lcp_nfree == 0) { 1897 TAILQ_REMOVE(&lp->lp_pages, lcp, lcp_chain); 1898 TAILQ_INSERT_HEAD(&lp->lp_pages, lcp, lcp_chain); 1899 } 1900 mutex_exit(&lp->lp_lock); 1901 } 1902 1903 /* 1904 * Process is exiting; tear down lwpctl state. This can only be safely 1905 * called by the last LWP in the process. 1906 */ 1907 void 1908 lwp_ctl_exit(void) 1909 { 1910 lcpage_t *lcp, *next; 1911 lcproc_t *lp; 1912 proc_t *p; 1913 lwp_t *l; 1914 1915 l = curlwp; 1916 l->l_lwpctl = NULL; 1917 l->l_lcpage = NULL; 1918 p = l->l_proc; 1919 lp = p->p_lwpctl; 1920 1921 KASSERT(lp != NULL); 1922 KASSERT(p->p_nlwps == 1); 1923 1924 for (lcp = TAILQ_FIRST(&lp->lp_pages); lcp != NULL; lcp = next) { 1925 next = TAILQ_NEXT(lcp, lcp_chain); 1926 uvm_unmap(kernel_map, lcp->lcp_kaddr, 1927 lcp->lcp_kaddr + PAGE_SIZE); 1928 kmem_free(lcp, LWPCTL_LCPAGE_SZ); 1929 } 1930 1931 if (lp->lp_uao != NULL) { 1932 uvm_unmap(&p->p_vmspace->vm_map, lp->lp_uva, 1933 lp->lp_uva + LWPCTL_UAREA_SZ); 1934 } 1935 1936 mutex_destroy(&lp->lp_lock); 1937 kmem_free(lp, sizeof(*lp)); 1938 p->p_lwpctl = NULL; 1939 } 1940 1941 /* 1942 * Return the current LWP's "preemption counter". Used to detect 1943 * preemption across operations that can tolerate preemption without 1944 * crashing, but which may generate incorrect results if preempted. 1945 */ 1946 uint64_t 1947 lwp_pctr(void) 1948 { 1949 1950 return curlwp->l_ncsw; 1951 } 1952 1953 /* 1954 * Set an LWP's private data pointer. 1955 */ 1956 int 1957 lwp_setprivate(struct lwp *l, void *ptr) 1958 { 1959 int error = 0; 1960 1961 l->l_private = ptr; 1962 #ifdef __HAVE_CPU_LWP_SETPRIVATE 1963 error = cpu_lwp_setprivate(l, ptr); 1964 #endif 1965 return error; 1966 } 1967 1968 #if defined(DDB) 1969 #include <machine/pcb.h> 1970 1971 void 1972 lwp_whatis(uintptr_t addr, void (*pr)(const char *, ...)) 1973 { 1974 lwp_t *l; 1975 1976 LIST_FOREACH(l, &alllwp, l_list) { 1977 uintptr_t stack = (uintptr_t)KSTACK_LOWEST_ADDR(l); 1978 1979 if (addr < stack || stack + KSTACK_SIZE <= addr) { 1980 continue; 1981 } 1982 (*pr)("%p is %p+%zu, LWP %p's stack\n", 1983 (void *)addr, (void *)stack, 1984 (size_t)(addr - stack), l); 1985 } 1986 } 1987 #endif /* defined(DDB) */ 1988