1 /* $NetBSD: kern_lwp.c,v 1.252 2023/04/09 09:18:09 riastradh Exp $ */ 2 3 /*- 4 * Copyright (c) 2001, 2006, 2007, 2008, 2009, 2019, 2020 5 * The NetBSD Foundation, Inc. 6 * All rights reserved. 7 * 8 * This code is derived from software contributed to The NetBSD Foundation 9 * by Nathan J. Williams, and Andrew Doran. 10 * 11 * Redistribution and use in source and binary forms, with or without 12 * modification, are permitted provided that the following conditions 13 * are met: 14 * 1. Redistributions of source code must retain the above copyright 15 * notice, this list of conditions and the following disclaimer. 16 * 2. Redistributions in binary form must reproduce the above copyright 17 * notice, this list of conditions and the following disclaimer in the 18 * documentation and/or other materials provided with the distribution. 19 * 20 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS 21 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 22 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 23 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 24 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 25 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 26 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 27 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 28 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 29 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 30 * POSSIBILITY OF SUCH DAMAGE. 31 */ 32 33 /* 34 * Overview 35 * 36 * Lightweight processes (LWPs) are the basic unit or thread of 37 * execution within the kernel. The core state of an LWP is described 38 * by "struct lwp", also known as lwp_t. 39 * 40 * Each LWP is contained within a process (described by "struct proc"), 41 * Every process contains at least one LWP, but may contain more. The 42 * process describes attributes shared among all of its LWPs such as a 43 * private address space, global execution state (stopped, active, 44 * zombie, ...), signal disposition and so on. On a multiprocessor 45 * machine, multiple LWPs be executing concurrently in the kernel. 46 * 47 * Execution states 48 * 49 * At any given time, an LWP has overall state that is described by 50 * lwp::l_stat. The states are broken into two sets below. The first 51 * set is guaranteed to represent the absolute, current state of the 52 * LWP: 53 * 54 * LSONPROC 55 * 56 * On processor: the LWP is executing on a CPU, either in the 57 * kernel or in user space. 58 * 59 * LSRUN 60 * 61 * Runnable: the LWP is parked on a run queue, and may soon be 62 * chosen to run by an idle processor, or by a processor that 63 * has been asked to preempt a currently runnning but lower 64 * priority LWP. 65 * 66 * LSIDL 67 * 68 * Idle: the LWP has been created but has not yet executed, or 69 * it has ceased executing a unit of work and is waiting to be 70 * started again. This state exists so that the LWP can occupy 71 * a slot in the process & PID table, but without having to 72 * worry about being touched; lookups of the LWP by ID will 73 * fail while in this state. The LWP will become visible for 74 * lookup once its state transitions further. Some special 75 * kernel threads also (ab)use this state to indicate that they 76 * are idle (soft interrupts and idle LWPs). 77 * 78 * LSSUSPENDED: 79 * 80 * Suspended: the LWP has had its execution suspended by 81 * another LWP in the same process using the _lwp_suspend() 82 * system call. User-level LWPs also enter the suspended 83 * state when the system is shutting down. 84 * 85 * The second set represent a "statement of intent" on behalf of the 86 * LWP. The LWP may in fact be executing on a processor, may be 87 * sleeping or idle. It is expected to take the necessary action to 88 * stop executing or become "running" again within a short timeframe. 89 * The LP_RUNNING flag in lwp::l_pflag indicates that an LWP is running. 90 * Importantly, it indicates that its state is tied to a CPU. 91 * 92 * LSZOMB: 93 * 94 * Dead or dying: the LWP has released most of its resources 95 * and is about to switch away into oblivion, or has already 96 * switched away. When it switches away, its few remaining 97 * resources can be collected. 98 * 99 * LSSLEEP: 100 * 101 * Sleeping: the LWP has entered itself onto a sleep queue, and 102 * has switched away or will switch away shortly to allow other 103 * LWPs to run on the CPU. 104 * 105 * LSSTOP: 106 * 107 * Stopped: the LWP has been stopped as a result of a job 108 * control signal, or as a result of the ptrace() interface. 109 * 110 * Stopped LWPs may run briefly within the kernel to handle 111 * signals that they receive, but will not return to user space 112 * until their process' state is changed away from stopped. 113 * 114 * Single LWPs within a process can not be set stopped 115 * selectively: all actions that can stop or continue LWPs 116 * occur at the process level. 117 * 118 * State transitions 119 * 120 * Note that the LSSTOP state may only be set when returning to 121 * user space in userret(), or when sleeping interruptably. The 122 * LSSUSPENDED state may only be set in userret(). Before setting 123 * those states, we try to ensure that the LWPs will release all 124 * locks that they hold, and at a minimum try to ensure that the 125 * LWP can be set runnable again by a signal. 126 * 127 * LWPs may transition states in the following ways: 128 * 129 * RUN -------> ONPROC ONPROC -----> RUN 130 * > SLEEP 131 * > STOPPED 132 * > SUSPENDED 133 * > ZOMB 134 * > IDL (special cases) 135 * 136 * STOPPED ---> RUN SUSPENDED --> RUN 137 * > SLEEP 138 * 139 * SLEEP -----> ONPROC IDL --------> RUN 140 * > RUN > SUSPENDED 141 * > STOPPED > STOPPED 142 * > ONPROC (special cases) 143 * 144 * Some state transitions are only possible with kernel threads (eg 145 * ONPROC -> IDL) and happen under tightly controlled circumstances 146 * free of unwanted side effects. 147 * 148 * Migration 149 * 150 * Migration of threads from one CPU to another could be performed 151 * internally by the scheduler via sched_takecpu() or sched_catchlwp() 152 * functions. The universal lwp_migrate() function should be used for 153 * any other cases. Subsystems in the kernel must be aware that CPU 154 * of LWP may change, while it is not locked. 155 * 156 * Locking 157 * 158 * The majority of fields in 'struct lwp' are covered by a single, 159 * general spin lock pointed to by lwp::l_mutex. The locks covering 160 * each field are documented in sys/lwp.h. 161 * 162 * State transitions must be made with the LWP's general lock held, 163 * and may cause the LWP's lock pointer to change. Manipulation of 164 * the general lock is not performed directly, but through calls to 165 * lwp_lock(), lwp_unlock() and others. It should be noted that the 166 * adaptive locks are not allowed to be released while the LWP's lock 167 * is being held (unlike for other spin-locks). 168 * 169 * States and their associated locks: 170 * 171 * LSIDL, LSONPROC, LSZOMB, LSSUPENDED: 172 * 173 * Always covered by spc_lwplock, which protects LWPs not 174 * associated with any other sync object. This is a per-CPU 175 * lock and matches lwp::l_cpu. 176 * 177 * LSRUN: 178 * 179 * Always covered by spc_mutex, which protects the run queues. 180 * This is a per-CPU lock and matches lwp::l_cpu. 181 * 182 * LSSLEEP: 183 * 184 * Covered by a lock associated with the sleep queue (sometimes 185 * a turnstile sleep queue) that the LWP resides on. This can 186 * be spc_lwplock for SOBJ_SLEEPQ_NULL (an "untracked" sleep). 187 * 188 * LSSTOP: 189 * 190 * If the LWP was previously sleeping (l_wchan != NULL), then 191 * l_mutex references the sleep queue lock. If the LWP was 192 * runnable or on the CPU when halted, or has been removed from 193 * the sleep queue since halted, then the lock is spc_lwplock. 194 * 195 * The lock order is as follows: 196 * 197 * sleepq -> turnstile -> spc_lwplock -> spc_mutex 198 * 199 * Each process has a scheduler state lock (proc::p_lock), and a 200 * number of counters on LWPs and their states: p_nzlwps, p_nrlwps, and 201 * so on. When an LWP is to be entered into or removed from one of the 202 * following states, p_lock must be held and the process wide counters 203 * adjusted: 204 * 205 * LSIDL, LSZOMB, LSSTOP, LSSUSPENDED 206 * 207 * (But not always for kernel threads. There are some special cases 208 * as mentioned above: soft interrupts, and the idle loops.) 209 * 210 * Note that an LWP is considered running or likely to run soon if in 211 * one of the following states. This affects the value of p_nrlwps: 212 * 213 * LSRUN, LSONPROC, LSSLEEP 214 * 215 * p_lock does not need to be held when transitioning among these 216 * three states, hence p_lock is rarely taken for state transitions. 217 */ 218 219 #include <sys/cdefs.h> 220 __KERNEL_RCSID(0, "$NetBSD: kern_lwp.c,v 1.252 2023/04/09 09:18:09 riastradh Exp $"); 221 222 #include "opt_ddb.h" 223 #include "opt_lockdebug.h" 224 #include "opt_dtrace.h" 225 226 #define _LWP_API_PRIVATE 227 228 #include <sys/param.h> 229 #include <sys/systm.h> 230 #include <sys/cpu.h> 231 #include <sys/pool.h> 232 #include <sys/proc.h> 233 #include <sys/syscallargs.h> 234 #include <sys/syscall_stats.h> 235 #include <sys/kauth.h> 236 #include <sys/sleepq.h> 237 #include <sys/lockdebug.h> 238 #include <sys/kmem.h> 239 #include <sys/pset.h> 240 #include <sys/intr.h> 241 #include <sys/lwpctl.h> 242 #include <sys/atomic.h> 243 #include <sys/filedesc.h> 244 #include <sys/fstrans.h> 245 #include <sys/dtrace_bsd.h> 246 #include <sys/sdt.h> 247 #include <sys/ptrace.h> 248 #include <sys/xcall.h> 249 #include <sys/uidinfo.h> 250 #include <sys/sysctl.h> 251 #include <sys/psref.h> 252 #include <sys/msan.h> 253 #include <sys/kcov.h> 254 #include <sys/cprng.h> 255 #include <sys/futex.h> 256 257 #include <uvm/uvm_extern.h> 258 #include <uvm/uvm_object.h> 259 260 static pool_cache_t lwp_cache __read_mostly; 261 struct lwplist alllwp __cacheline_aligned; 262 263 static int lwp_ctor(void *, void *, int); 264 static void lwp_dtor(void *, void *); 265 266 /* DTrace proc provider probes */ 267 SDT_PROVIDER_DEFINE(proc); 268 269 SDT_PROBE_DEFINE1(proc, kernel, , lwp__create, "struct lwp *"); 270 SDT_PROBE_DEFINE1(proc, kernel, , lwp__start, "struct lwp *"); 271 SDT_PROBE_DEFINE1(proc, kernel, , lwp__exit, "struct lwp *"); 272 273 struct turnstile turnstile0 __cacheline_aligned; 274 struct lwp lwp0 __aligned(MIN_LWP_ALIGNMENT) = { 275 #ifdef LWP0_CPU_INFO 276 .l_cpu = LWP0_CPU_INFO, 277 #endif 278 #ifdef LWP0_MD_INITIALIZER 279 .l_md = LWP0_MD_INITIALIZER, 280 #endif 281 .l_proc = &proc0, 282 .l_lid = 0, /* we own proc0's slot in the pid table */ 283 .l_flag = LW_SYSTEM, 284 .l_stat = LSONPROC, 285 .l_ts = &turnstile0, 286 .l_syncobj = &sched_syncobj, 287 .l_refcnt = 0, 288 .l_priority = PRI_USER + NPRI_USER - 1, 289 .l_inheritedprio = -1, 290 .l_class = SCHED_OTHER, 291 .l_psid = PS_NONE, 292 .l_pi_lenders = SLIST_HEAD_INITIALIZER(&lwp0.l_pi_lenders), 293 .l_name = __UNCONST("swapper"), 294 .l_fd = &filedesc0, 295 }; 296 297 static int 298 lwp_maxlwp(void) 299 { 300 /* Assume 1 LWP per 1MiB. */ 301 uint64_t lwps_per = ctob(physmem) / (1024 * 1024); 302 303 return MAX(MIN(MAXMAXLWP, lwps_per), MAXLWP); 304 } 305 306 static int sysctl_kern_maxlwp(SYSCTLFN_PROTO); 307 308 /* 309 * sysctl helper routine for kern.maxlwp. Ensures that the new 310 * values are not too low or too high. 311 */ 312 static int 313 sysctl_kern_maxlwp(SYSCTLFN_ARGS) 314 { 315 int error, nmaxlwp; 316 struct sysctlnode node; 317 318 nmaxlwp = maxlwp; 319 node = *rnode; 320 node.sysctl_data = &nmaxlwp; 321 error = sysctl_lookup(SYSCTLFN_CALL(&node)); 322 if (error || newp == NULL) 323 return error; 324 325 if (nmaxlwp < 0 || nmaxlwp >= MAXMAXLWP) 326 return EINVAL; 327 if (nmaxlwp > lwp_maxlwp()) 328 return EINVAL; 329 maxlwp = nmaxlwp; 330 331 return 0; 332 } 333 334 static void 335 sysctl_kern_lwp_setup(void) 336 { 337 sysctl_createv(NULL, 0, NULL, NULL, 338 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, 339 CTLTYPE_INT, "maxlwp", 340 SYSCTL_DESCR("Maximum number of simultaneous threads"), 341 sysctl_kern_maxlwp, 0, NULL, 0, 342 CTL_KERN, CTL_CREATE, CTL_EOL); 343 } 344 345 void 346 lwpinit(void) 347 { 348 349 LIST_INIT(&alllwp); 350 lwpinit_specificdata(); 351 /* 352 * Provide a barrier to ensure that all mutex_oncpu() and rw_oncpu() 353 * calls will exit before memory of LWPs is returned to the pool, where 354 * KVA of LWP structure might be freed and re-used for other purposes. 355 * Kernel preemption is disabled around mutex_oncpu() and rw_oncpu() 356 * callers, therefore a regular passive serialization barrier will 357 * do the job. 358 */ 359 lwp_cache = pool_cache_init(sizeof(lwp_t), MIN_LWP_ALIGNMENT, 0, 360 PR_PSERIALIZE, "lwppl", NULL, IPL_NONE, lwp_ctor, lwp_dtor, NULL); 361 362 maxlwp = lwp_maxlwp(); 363 sysctl_kern_lwp_setup(); 364 } 365 366 void 367 lwp0_init(void) 368 { 369 struct lwp *l = &lwp0; 370 371 KASSERT((void *)uvm_lwp_getuarea(l) != NULL); 372 373 LIST_INSERT_HEAD(&alllwp, l, l_list); 374 375 callout_init(&l->l_timeout_ch, CALLOUT_MPSAFE); 376 callout_setfunc(&l->l_timeout_ch, sleepq_timeout, l); 377 cv_init(&l->l_sigcv, "sigwait"); 378 cv_init(&l->l_waitcv, "vfork"); 379 380 kauth_cred_hold(proc0.p_cred); 381 l->l_cred = proc0.p_cred; 382 383 kdtrace_thread_ctor(NULL, l); 384 lwp_initspecific(l); 385 386 SYSCALL_TIME_LWP_INIT(l); 387 } 388 389 /* 390 * Initialize the non-zeroed portion of an lwp_t. 391 */ 392 static int 393 lwp_ctor(void *arg, void *obj, int flags) 394 { 395 lwp_t *l = obj; 396 397 l->l_stat = LSIDL; 398 l->l_cpu = curcpu(); 399 l->l_mutex = l->l_cpu->ci_schedstate.spc_lwplock; 400 l->l_ts = pool_get(&turnstile_pool, flags); 401 402 if (l->l_ts == NULL) { 403 return ENOMEM; 404 } else { 405 turnstile_ctor(l->l_ts); 406 return 0; 407 } 408 } 409 410 static void 411 lwp_dtor(void *arg, void *obj) 412 { 413 lwp_t *l = obj; 414 415 /* 416 * The value of l->l_cpu must still be valid at this point. 417 */ 418 KASSERT(l->l_cpu != NULL); 419 420 /* 421 * We can't return turnstile0 to the pool (it didn't come from it), 422 * so if it comes up just drop it quietly and move on. 423 */ 424 if (l->l_ts != &turnstile0) 425 pool_put(&turnstile_pool, l->l_ts); 426 } 427 428 /* 429 * Set an LWP suspended. 430 * 431 * Must be called with p_lock held, and the LWP locked. Will unlock the 432 * LWP before return. 433 */ 434 int 435 lwp_suspend(struct lwp *curl, struct lwp *t) 436 { 437 int error; 438 439 KASSERT(mutex_owned(t->l_proc->p_lock)); 440 KASSERT(lwp_locked(t, NULL)); 441 442 KASSERT(curl != t || curl->l_stat == LSONPROC); 443 444 /* 445 * If the current LWP has been told to exit, we must not suspend anyone 446 * else or deadlock could occur. We won't return to userspace. 447 */ 448 if ((curl->l_flag & (LW_WEXIT | LW_WCORE)) != 0) { 449 lwp_unlock(t); 450 return (EDEADLK); 451 } 452 453 if ((t->l_flag & LW_DBGSUSPEND) != 0) { 454 lwp_unlock(t); 455 return 0; 456 } 457 458 error = 0; 459 460 switch (t->l_stat) { 461 case LSRUN: 462 case LSONPROC: 463 t->l_flag |= LW_WSUSPEND; 464 lwp_need_userret(t); 465 lwp_unlock(t); 466 break; 467 468 case LSSLEEP: 469 t->l_flag |= LW_WSUSPEND; 470 471 /* 472 * Kick the LWP and try to get it to the kernel boundary 473 * so that it will release any locks that it holds. 474 * setrunnable() will release the lock. 475 */ 476 if ((t->l_flag & LW_SINTR) != 0) 477 setrunnable(t); 478 else 479 lwp_unlock(t); 480 break; 481 482 case LSSUSPENDED: 483 lwp_unlock(t); 484 break; 485 486 case LSSTOP: 487 t->l_flag |= LW_WSUSPEND; 488 setrunnable(t); 489 break; 490 491 case LSIDL: 492 case LSZOMB: 493 error = EINTR; /* It's what Solaris does..... */ 494 lwp_unlock(t); 495 break; 496 } 497 498 return (error); 499 } 500 501 /* 502 * Restart a suspended LWP. 503 * 504 * Must be called with p_lock held, and the LWP locked. Will unlock the 505 * LWP before return. 506 */ 507 void 508 lwp_continue(struct lwp *l) 509 { 510 511 KASSERT(mutex_owned(l->l_proc->p_lock)); 512 KASSERT(lwp_locked(l, NULL)); 513 514 /* If rebooting or not suspended, then just bail out. */ 515 if ((l->l_flag & LW_WREBOOT) != 0) { 516 lwp_unlock(l); 517 return; 518 } 519 520 l->l_flag &= ~LW_WSUSPEND; 521 522 if (l->l_stat != LSSUSPENDED || (l->l_flag & LW_DBGSUSPEND) != 0) { 523 lwp_unlock(l); 524 return; 525 } 526 527 /* setrunnable() will release the lock. */ 528 setrunnable(l); 529 } 530 531 /* 532 * Restart a stopped LWP. 533 * 534 * Must be called with p_lock held, and the LWP NOT locked. Will unlock the 535 * LWP before return. 536 */ 537 void 538 lwp_unstop(struct lwp *l) 539 { 540 struct proc *p = l->l_proc; 541 542 KASSERT(mutex_owned(&proc_lock)); 543 KASSERT(mutex_owned(p->p_lock)); 544 545 lwp_lock(l); 546 547 KASSERT((l->l_flag & LW_DBGSUSPEND) == 0); 548 549 /* If not stopped, then just bail out. */ 550 if (l->l_stat != LSSTOP) { 551 lwp_unlock(l); 552 return; 553 } 554 555 p->p_stat = SACTIVE; 556 p->p_sflag &= ~PS_STOPPING; 557 558 if (!p->p_waited) 559 p->p_pptr->p_nstopchild--; 560 561 if (l->l_wchan == NULL) { 562 /* setrunnable() will release the lock. */ 563 setrunnable(l); 564 } else if (p->p_xsig && (l->l_flag & LW_SINTR) != 0) { 565 /* setrunnable() so we can receive the signal */ 566 setrunnable(l); 567 } else { 568 l->l_stat = LSSLEEP; 569 p->p_nrlwps++; 570 lwp_unlock(l); 571 } 572 } 573 574 /* 575 * Wait for an LWP within the current process to exit. If 'lid' is 576 * non-zero, we are waiting for a specific LWP. 577 * 578 * Must be called with p->p_lock held. 579 */ 580 int 581 lwp_wait(struct lwp *l, lwpid_t lid, lwpid_t *departed, bool exiting) 582 { 583 const lwpid_t curlid = l->l_lid; 584 proc_t *p = l->l_proc; 585 lwp_t *l2, *next; 586 int error; 587 588 KASSERT(mutex_owned(p->p_lock)); 589 590 p->p_nlwpwait++; 591 l->l_waitingfor = lid; 592 593 for (;;) { 594 int nfound; 595 596 /* 597 * Avoid a race between exit1() and sigexit(): if the 598 * process is dumping core, then we need to bail out: call 599 * into lwp_userret() where we will be suspended until the 600 * deed is done. 601 */ 602 if ((p->p_sflag & PS_WCORE) != 0) { 603 mutex_exit(p->p_lock); 604 lwp_userret(l); 605 KASSERT(false); 606 } 607 608 /* 609 * First off, drain any detached LWP that is waiting to be 610 * reaped. 611 */ 612 while ((l2 = p->p_zomblwp) != NULL) { 613 p->p_zomblwp = NULL; 614 lwp_free(l2, false, false);/* releases proc mutex */ 615 mutex_enter(p->p_lock); 616 } 617 618 /* 619 * Now look for an LWP to collect. If the whole process is 620 * exiting, count detached LWPs as eligible to be collected, 621 * but don't drain them here. 622 */ 623 nfound = 0; 624 error = 0; 625 626 /* 627 * If given a specific LID, go via pid_table and make sure 628 * it's not detached. 629 */ 630 if (lid != 0) { 631 l2 = proc_find_lwp(p, lid); 632 if (l2 == NULL) { 633 error = ESRCH; 634 break; 635 } 636 KASSERT(l2->l_lid == lid); 637 if ((l2->l_prflag & LPR_DETACHED) != 0) { 638 error = EINVAL; 639 break; 640 } 641 } else { 642 l2 = LIST_FIRST(&p->p_lwps); 643 } 644 for (; l2 != NULL; l2 = next) { 645 next = (lid != 0 ? NULL : LIST_NEXT(l2, l_sibling)); 646 647 /* 648 * If a specific wait and the target is waiting on 649 * us, then avoid deadlock. This also traps LWPs 650 * that try to wait on themselves. 651 * 652 * Note that this does not handle more complicated 653 * cycles, like: t1 -> t2 -> t3 -> t1. The process 654 * can still be killed so it is not a major problem. 655 */ 656 if (l2->l_lid == lid && l2->l_waitingfor == curlid) { 657 error = EDEADLK; 658 break; 659 } 660 if (l2 == l) 661 continue; 662 if ((l2->l_prflag & LPR_DETACHED) != 0) { 663 nfound += exiting; 664 continue; 665 } 666 if (lid != 0) { 667 /* 668 * Mark this LWP as the first waiter, if there 669 * is no other. 670 */ 671 if (l2->l_waiter == 0) 672 l2->l_waiter = curlid; 673 } else if (l2->l_waiter != 0) { 674 /* 675 * It already has a waiter - so don't 676 * collect it. If the waiter doesn't 677 * grab it we'll get another chance 678 * later. 679 */ 680 nfound++; 681 continue; 682 } 683 nfound++; 684 685 /* No need to lock the LWP in order to see LSZOMB. */ 686 if (l2->l_stat != LSZOMB) 687 continue; 688 689 /* 690 * We're no longer waiting. Reset the "first waiter" 691 * pointer on the target, in case it was us. 692 */ 693 l->l_waitingfor = 0; 694 l2->l_waiter = 0; 695 p->p_nlwpwait--; 696 if (departed) 697 *departed = l2->l_lid; 698 sched_lwp_collect(l2); 699 700 /* lwp_free() releases the proc lock. */ 701 lwp_free(l2, false, false); 702 mutex_enter(p->p_lock); 703 return 0; 704 } 705 706 if (error != 0) 707 break; 708 if (nfound == 0) { 709 error = ESRCH; 710 break; 711 } 712 713 /* 714 * Note: since the lock will be dropped, need to restart on 715 * wakeup to run all LWPs again, e.g. there may be new LWPs. 716 */ 717 if (exiting) { 718 KASSERT(p->p_nlwps > 1); 719 error = cv_timedwait(&p->p_lwpcv, p->p_lock, 1); 720 break; 721 } 722 723 /* 724 * Break out if all LWPs are in _lwp_wait(). There are 725 * other ways to hang the process with _lwp_wait(), but the 726 * sleep is interruptable so little point checking for them. 727 */ 728 if (p->p_nlwpwait == p->p_nlwps) { 729 error = EDEADLK; 730 break; 731 } 732 733 /* 734 * Sit around and wait for something to happen. We'll be 735 * awoken if any of the conditions examined change: if an 736 * LWP exits, is collected, or is detached. 737 */ 738 if ((error = cv_wait_sig(&p->p_lwpcv, p->p_lock)) != 0) 739 break; 740 } 741 742 /* 743 * We didn't find any LWPs to collect, we may have received a 744 * signal, or some other condition has caused us to bail out. 745 * 746 * If waiting on a specific LWP, clear the waiters marker: some 747 * other LWP may want it. Then, kick all the remaining waiters 748 * so that they can re-check for zombies and for deadlock. 749 */ 750 if (lid != 0) { 751 l2 = proc_find_lwp(p, lid); 752 KASSERT(l2 == NULL || l2->l_lid == lid); 753 754 if (l2 != NULL && l2->l_waiter == curlid) 755 l2->l_waiter = 0; 756 } 757 p->p_nlwpwait--; 758 l->l_waitingfor = 0; 759 cv_broadcast(&p->p_lwpcv); 760 761 return error; 762 } 763 764 /* 765 * Create a new LWP within process 'p2', using LWP 'l1' as a template. 766 * The new LWP is created in state LSIDL and must be set running, 767 * suspended, or stopped by the caller. 768 */ 769 int 770 lwp_create(lwp_t *l1, proc_t *p2, vaddr_t uaddr, int flags, 771 void *stack, size_t stacksize, void (*func)(void *), void *arg, 772 lwp_t **rnewlwpp, int sclass, const sigset_t *sigmask, 773 const stack_t *sigstk) 774 { 775 struct lwp *l2; 776 777 KASSERT(l1 == curlwp || l1->l_proc == &proc0); 778 779 /* 780 * Enforce limits, excluding the first lwp and kthreads. We must 781 * use the process credentials here when adjusting the limit, as 782 * they are what's tied to the accounting entity. However for 783 * authorizing the action, we'll use the LWP's credentials. 784 */ 785 mutex_enter(p2->p_lock); 786 if (p2->p_nlwps != 0 && p2 != &proc0) { 787 uid_t uid = kauth_cred_getuid(p2->p_cred); 788 int count = chglwpcnt(uid, 1); 789 if (__predict_false(count > 790 p2->p_rlimit[RLIMIT_NTHR].rlim_cur)) { 791 if (kauth_authorize_process(l1->l_cred, 792 KAUTH_PROCESS_RLIMIT, p2, 793 KAUTH_ARG(KAUTH_REQ_PROCESS_RLIMIT_BYPASS), 794 &p2->p_rlimit[RLIMIT_NTHR], KAUTH_ARG(RLIMIT_NTHR)) 795 != 0) { 796 (void)chglwpcnt(uid, -1); 797 mutex_exit(p2->p_lock); 798 return EAGAIN; 799 } 800 } 801 } 802 803 /* 804 * First off, reap any detached LWP waiting to be collected. 805 * We can re-use its LWP structure and turnstile. 806 */ 807 if ((l2 = p2->p_zomblwp) != NULL) { 808 p2->p_zomblwp = NULL; 809 lwp_free(l2, true, false); 810 /* p2 now unlocked by lwp_free() */ 811 KASSERT(l2->l_ts != NULL); 812 KASSERT(l2->l_inheritedprio == -1); 813 KASSERT(SLIST_EMPTY(&l2->l_pi_lenders)); 814 memset(&l2->l_startzero, 0, sizeof(*l2) - 815 offsetof(lwp_t, l_startzero)); 816 } else { 817 mutex_exit(p2->p_lock); 818 l2 = pool_cache_get(lwp_cache, PR_WAITOK); 819 memset(&l2->l_startzero, 0, sizeof(*l2) - 820 offsetof(lwp_t, l_startzero)); 821 SLIST_INIT(&l2->l_pi_lenders); 822 } 823 824 /* 825 * Because of lockless lookup via pid_table, the LWP can be locked 826 * and inspected briefly even after it's freed, so a few fields are 827 * kept stable. 828 */ 829 KASSERT(l2->l_stat == LSIDL); 830 KASSERT(l2->l_cpu != NULL); 831 KASSERT(l2->l_ts != NULL); 832 KASSERT(l2->l_mutex == l2->l_cpu->ci_schedstate.spc_lwplock); 833 834 l2->l_proc = p2; 835 l2->l_refcnt = 0; 836 l2->l_class = sclass; 837 838 /* 839 * Allocate a process ID for this LWP. We need to do this now 840 * while we can still unwind if it fails. Because we're marked 841 * as LSIDL, no lookups by the ID will succeed. 842 * 843 * N.B. this will always succeed for the first LWP in a process, 844 * because proc_alloc_lwpid() will usurp the slot. Also note 845 * that l2->l_proc MUST be valid so that lookups of the proc 846 * will succeed, even if the LWP itself is not visible. 847 */ 848 if (__predict_false(proc_alloc_lwpid(p2, l2) == -1)) { 849 pool_cache_put(lwp_cache, l2); 850 return EAGAIN; 851 } 852 853 /* 854 * If vfork(), we want the LWP to run fast and on the same CPU 855 * as its parent, so that it can reuse the VM context and cache 856 * footprint on the local CPU. 857 */ 858 l2->l_kpriority = ((flags & LWP_VFORK) ? true : false); 859 l2->l_kpribase = PRI_KERNEL; 860 l2->l_priority = l1->l_priority; 861 l2->l_inheritedprio = -1; 862 l2->l_protectprio = -1; 863 l2->l_auxprio = -1; 864 l2->l_flag = 0; 865 l2->l_pflag = LP_MPSAFE; 866 TAILQ_INIT(&l2->l_ld_locks); 867 l2->l_psrefs = 0; 868 kmsan_lwp_alloc(l2); 869 870 /* 871 * For vfork, borrow parent's lwpctl context if it exists. 872 * This also causes us to return via lwp_userret. 873 */ 874 if (flags & LWP_VFORK && l1->l_lwpctl) { 875 l2->l_lwpctl = l1->l_lwpctl; 876 l2->l_flag |= LW_LWPCTL; 877 } 878 879 /* 880 * If not the first LWP in the process, grab a reference to the 881 * descriptor table. 882 */ 883 l2->l_fd = p2->p_fd; 884 if (p2->p_nlwps != 0) { 885 KASSERT(l1->l_proc == p2); 886 fd_hold(l2); 887 } else { 888 KASSERT(l1->l_proc != p2); 889 } 890 891 if (p2->p_flag & PK_SYSTEM) { 892 /* Mark it as a system LWP. */ 893 l2->l_flag |= LW_SYSTEM; 894 } 895 896 kdtrace_thread_ctor(NULL, l2); 897 lwp_initspecific(l2); 898 sched_lwp_fork(l1, l2); 899 lwp_update_creds(l2); 900 callout_init(&l2->l_timeout_ch, CALLOUT_MPSAFE); 901 callout_setfunc(&l2->l_timeout_ch, sleepq_timeout, l2); 902 cv_init(&l2->l_sigcv, "sigwait"); 903 cv_init(&l2->l_waitcv, "vfork"); 904 l2->l_syncobj = &sched_syncobj; 905 PSREF_DEBUG_INIT_LWP(l2); 906 907 if (rnewlwpp != NULL) 908 *rnewlwpp = l2; 909 910 /* 911 * PCU state needs to be saved before calling uvm_lwp_fork() so that 912 * the MD cpu_lwp_fork() can copy the saved state to the new LWP. 913 */ 914 pcu_save_all(l1); 915 #if PCU_UNIT_COUNT > 0 916 l2->l_pcu_valid = l1->l_pcu_valid; 917 #endif 918 919 uvm_lwp_setuarea(l2, uaddr); 920 uvm_lwp_fork(l1, l2, stack, stacksize, func, (arg != NULL) ? arg : l2); 921 922 mutex_enter(p2->p_lock); 923 if ((flags & LWP_DETACHED) != 0) { 924 l2->l_prflag = LPR_DETACHED; 925 p2->p_ndlwps++; 926 } else 927 l2->l_prflag = 0; 928 929 if (l1->l_proc == p2) { 930 /* 931 * These flags are set while p_lock is held. Copy with 932 * p_lock held too, so the LWP doesn't sneak into the 933 * process without them being set. 934 */ 935 l2->l_flag |= (l1->l_flag & (LW_WEXIT | LW_WREBOOT | LW_WCORE)); 936 } else { 937 /* fork(): pending core/exit doesn't apply to child. */ 938 l2->l_flag |= (l1->l_flag & LW_WREBOOT); 939 } 940 941 l2->l_sigstk = *sigstk; 942 l2->l_sigmask = *sigmask; 943 TAILQ_INIT(&l2->l_sigpend.sp_info); 944 sigemptyset(&l2->l_sigpend.sp_set); 945 LIST_INSERT_HEAD(&p2->p_lwps, l2, l_sibling); 946 p2->p_nlwps++; 947 p2->p_nrlwps++; 948 949 KASSERT(l2->l_affinity == NULL); 950 951 /* Inherit the affinity mask. */ 952 if (l1->l_affinity) { 953 /* 954 * Note that we hold the state lock while inheriting 955 * the affinity to avoid race with sched_setaffinity(). 956 */ 957 lwp_lock(l1); 958 if (l1->l_affinity) { 959 kcpuset_use(l1->l_affinity); 960 l2->l_affinity = l1->l_affinity; 961 } 962 lwp_unlock(l1); 963 } 964 965 /* This marks the end of the "must be atomic" section. */ 966 mutex_exit(p2->p_lock); 967 968 SDT_PROBE(proc, kernel, , lwp__create, l2, 0, 0, 0, 0); 969 970 mutex_enter(&proc_lock); 971 LIST_INSERT_HEAD(&alllwp, l2, l_list); 972 /* Inherit a processor-set */ 973 l2->l_psid = l1->l_psid; 974 mutex_exit(&proc_lock); 975 976 SYSCALL_TIME_LWP_INIT(l2); 977 978 if (p2->p_emul->e_lwp_fork) 979 (*p2->p_emul->e_lwp_fork)(l1, l2); 980 981 return (0); 982 } 983 984 /* 985 * Set a new LWP running. If the process is stopping, then the LWP is 986 * created stopped. 987 */ 988 void 989 lwp_start(lwp_t *l, int flags) 990 { 991 proc_t *p = l->l_proc; 992 993 mutex_enter(p->p_lock); 994 lwp_lock(l); 995 KASSERT(l->l_stat == LSIDL); 996 if ((flags & LWP_SUSPENDED) != 0) { 997 /* It'll suspend itself in lwp_userret(). */ 998 l->l_flag |= LW_WSUSPEND; 999 } 1000 if (p->p_stat == SSTOP || (p->p_sflag & PS_STOPPING) != 0) { 1001 KASSERT(l->l_wchan == NULL); 1002 l->l_stat = LSSTOP; 1003 p->p_nrlwps--; 1004 lwp_unlock(l); 1005 } else { 1006 setrunnable(l); 1007 /* LWP now unlocked */ 1008 } 1009 mutex_exit(p->p_lock); 1010 } 1011 1012 /* 1013 * Called by MD code when a new LWP begins execution. Must be called 1014 * with the previous LWP locked (so at splsched), or if there is no 1015 * previous LWP, at splsched. 1016 */ 1017 void 1018 lwp_startup(struct lwp *prev, struct lwp *new_lwp) 1019 { 1020 kmutex_t *lock; 1021 1022 KASSERTMSG(new_lwp == curlwp, "l %p curlwp %p prevlwp %p", new_lwp, curlwp, prev); 1023 KASSERT(kpreempt_disabled()); 1024 KASSERT(prev != NULL); 1025 KASSERT((prev->l_pflag & LP_RUNNING) != 0); 1026 KASSERT(curcpu()->ci_mtx_count == -2); 1027 1028 /* 1029 * Immediately mark the previous LWP as no longer running and 1030 * unlock (to keep lock wait times short as possible). If a 1031 * zombie, don't touch after clearing LP_RUNNING as it could be 1032 * reaped by another CPU. Use atomic_store_release to ensure 1033 * this -- matches atomic_load_acquire in lwp_free. 1034 */ 1035 lock = prev->l_mutex; 1036 if (__predict_false(prev->l_stat == LSZOMB)) { 1037 atomic_store_release(&prev->l_pflag, 1038 prev->l_pflag & ~LP_RUNNING); 1039 } else { 1040 prev->l_pflag &= ~LP_RUNNING; 1041 } 1042 mutex_spin_exit(lock); 1043 1044 /* Correct spin mutex count after mi_switch(). */ 1045 curcpu()->ci_mtx_count = 0; 1046 1047 /* Install new VM context. */ 1048 if (__predict_true(new_lwp->l_proc->p_vmspace)) { 1049 pmap_activate(new_lwp); 1050 } 1051 1052 /* We remain at IPL_SCHED from mi_switch() - reset it. */ 1053 spl0(); 1054 1055 LOCKDEBUG_BARRIER(NULL, 0); 1056 SDT_PROBE(proc, kernel, , lwp__start, new_lwp, 0, 0, 0, 0); 1057 1058 /* For kthreads, acquire kernel lock if not MPSAFE. */ 1059 if (__predict_false((new_lwp->l_pflag & LP_MPSAFE) == 0)) { 1060 KERNEL_LOCK(1, new_lwp); 1061 } 1062 } 1063 1064 /* 1065 * Exit an LWP. 1066 * 1067 * *** WARNING *** This can be called with (l != curlwp) in error paths. 1068 */ 1069 void 1070 lwp_exit(struct lwp *l) 1071 { 1072 struct proc *p = l->l_proc; 1073 struct lwp *l2; 1074 bool current; 1075 1076 current = (l == curlwp); 1077 1078 KASSERT(current || l->l_stat == LSIDL); 1079 KASSERT(current || l->l_target_cpu == NULL); 1080 KASSERT(p == curproc); 1081 1082 SDT_PROBE(proc, kernel, , lwp__exit, l, 0, 0, 0, 0); 1083 1084 /* Verify that we hold no locks; for DIAGNOSTIC check kernel_lock. */ 1085 LOCKDEBUG_BARRIER(NULL, 0); 1086 KASSERTMSG(curcpu()->ci_biglock_count == 0, "kernel_lock leaked"); 1087 1088 /* 1089 * If we are the last live LWP in a process, we need to exit the 1090 * entire process. We do so with an exit status of zero, because 1091 * it's a "controlled" exit, and because that's what Solaris does. 1092 * 1093 * We are not quite a zombie yet, but for accounting purposes we 1094 * must increment the count of zombies here. 1095 * 1096 * Note: the last LWP's specificdata will be deleted here. 1097 */ 1098 mutex_enter(p->p_lock); 1099 if (p->p_nlwps - p->p_nzlwps == 1) { 1100 KASSERT(current == true); 1101 KASSERT(p != &proc0); 1102 exit1(l, 0, 0); 1103 /* NOTREACHED */ 1104 } 1105 p->p_nzlwps++; 1106 1107 /* 1108 * Perform any required thread cleanup. Do this early so 1109 * anyone wanting to look us up with lwp_getref_lwpid() will 1110 * fail to find us before we become a zombie. 1111 * 1112 * N.B. this will unlock p->p_lock on our behalf. 1113 */ 1114 lwp_thread_cleanup(l); 1115 1116 if (p->p_emul->e_lwp_exit) 1117 (*p->p_emul->e_lwp_exit)(l); 1118 1119 /* Drop filedesc reference. */ 1120 fd_free(); 1121 1122 /* Release fstrans private data. */ 1123 fstrans_lwp_dtor(l); 1124 1125 /* Delete the specificdata while it's still safe to sleep. */ 1126 lwp_finispecific(l); 1127 1128 /* 1129 * Release our cached credentials. 1130 */ 1131 kauth_cred_free(l->l_cred); 1132 callout_destroy(&l->l_timeout_ch); 1133 1134 /* 1135 * If traced, report LWP exit event to the debugger. 1136 * 1137 * Remove the LWP from the global list. 1138 * Free its LID from the PID namespace if needed. 1139 */ 1140 mutex_enter(&proc_lock); 1141 1142 if ((p->p_slflag & (PSL_TRACED|PSL_TRACELWP_EXIT)) == 1143 (PSL_TRACED|PSL_TRACELWP_EXIT)) { 1144 mutex_enter(p->p_lock); 1145 if (ISSET(p->p_sflag, PS_WEXIT)) { 1146 mutex_exit(p->p_lock); 1147 /* 1148 * We are exiting, bail out without informing parent 1149 * about a terminating LWP as it would deadlock. 1150 */ 1151 } else { 1152 eventswitch(TRAP_LWP, PTRACE_LWP_EXIT, l->l_lid); 1153 mutex_enter(&proc_lock); 1154 } 1155 } 1156 1157 LIST_REMOVE(l, l_list); 1158 mutex_exit(&proc_lock); 1159 1160 /* 1161 * Get rid of all references to the LWP that others (e.g. procfs) 1162 * may have, and mark the LWP as a zombie. If the LWP is detached, 1163 * mark it waiting for collection in the proc structure. Note that 1164 * before we can do that, we need to free any other dead, deatched 1165 * LWP waiting to meet its maker. 1166 * 1167 * All conditions need to be observed upon under the same hold of 1168 * p_lock, because if the lock is dropped any of them can change. 1169 */ 1170 mutex_enter(p->p_lock); 1171 for (;;) { 1172 if (lwp_drainrefs(l)) 1173 continue; 1174 if ((l->l_prflag & LPR_DETACHED) != 0) { 1175 if ((l2 = p->p_zomblwp) != NULL) { 1176 p->p_zomblwp = NULL; 1177 lwp_free(l2, false, false); 1178 /* proc now unlocked */ 1179 mutex_enter(p->p_lock); 1180 continue; 1181 } 1182 p->p_zomblwp = l; 1183 } 1184 break; 1185 } 1186 1187 /* 1188 * If we find a pending signal for the process and we have been 1189 * asked to check for signals, then we lose: arrange to have 1190 * all other LWPs in the process check for signals. 1191 */ 1192 if ((l->l_flag & LW_PENDSIG) != 0 && 1193 firstsig(&p->p_sigpend.sp_set) != 0) { 1194 LIST_FOREACH(l2, &p->p_lwps, l_sibling) { 1195 lwp_lock(l2); 1196 signotify(l2); 1197 lwp_unlock(l2); 1198 } 1199 } 1200 1201 /* 1202 * Release any PCU resources before becoming a zombie. 1203 */ 1204 pcu_discard_all(l); 1205 1206 lwp_lock(l); 1207 l->l_stat = LSZOMB; 1208 if (l->l_name != NULL) { 1209 strcpy(l->l_name, "(zombie)"); 1210 } 1211 lwp_unlock(l); 1212 p->p_nrlwps--; 1213 cv_broadcast(&p->p_lwpcv); 1214 if (l->l_lwpctl != NULL) 1215 l->l_lwpctl->lc_curcpu = LWPCTL_CPU_EXITED; 1216 mutex_exit(p->p_lock); 1217 1218 /* 1219 * We can no longer block. At this point, lwp_free() may already 1220 * be gunning for us. On a multi-CPU system, we may be off p_lwps. 1221 * 1222 * Free MD LWP resources. 1223 */ 1224 cpu_lwp_free(l, 0); 1225 1226 if (current) { 1227 /* Switch away into oblivion. */ 1228 lwp_lock(l); 1229 spc_lock(l->l_cpu); 1230 mi_switch(l); 1231 panic("lwp_exit"); 1232 } 1233 } 1234 1235 /* 1236 * Free a dead LWP's remaining resources. 1237 * 1238 * XXXLWP limits. 1239 */ 1240 void 1241 lwp_free(struct lwp *l, bool recycle, bool last) 1242 { 1243 struct proc *p = l->l_proc; 1244 struct rusage *ru; 1245 ksiginfoq_t kq; 1246 1247 KASSERT(l != curlwp); 1248 KASSERT(last || mutex_owned(p->p_lock)); 1249 1250 /* 1251 * We use the process credentials instead of the lwp credentials here 1252 * because the lwp credentials maybe cached (just after a setuid call) 1253 * and we don't want pay for syncing, since the lwp is going away 1254 * anyway 1255 */ 1256 if (p != &proc0 && p->p_nlwps != 1) 1257 (void)chglwpcnt(kauth_cred_getuid(p->p_cred), -1); 1258 1259 /* 1260 * In the unlikely event that the LWP is still on the CPU, 1261 * then spin until it has switched away. 1262 * 1263 * atomic_load_acquire matches atomic_store_release in 1264 * lwp_startup and mi_switch. 1265 */ 1266 while (__predict_false((atomic_load_acquire(&l->l_pflag) & LP_RUNNING) 1267 != 0)) { 1268 SPINLOCK_BACKOFF_HOOK; 1269 } 1270 1271 /* 1272 * Now that the LWP's known off the CPU, reset its state back to 1273 * LSIDL, which defeats anything that might have gotten a hold on 1274 * the LWP via pid_table before the ID was freed. It's important 1275 * to do this with both the LWP locked and p_lock held. 1276 * 1277 * Also reset the CPU and lock pointer back to curcpu(), since the 1278 * LWP will in all likelyhood be cached with the current CPU in 1279 * lwp_cache when we free it and later allocated from there again 1280 * (avoid incidental lock contention). 1281 */ 1282 lwp_lock(l); 1283 l->l_stat = LSIDL; 1284 l->l_cpu = curcpu(); 1285 lwp_unlock_to(l, l->l_cpu->ci_schedstate.spc_lwplock); 1286 1287 /* 1288 * If this was not the last LWP in the process, then adjust counters 1289 * and unlock. This is done differently for the last LWP in exit1(). 1290 */ 1291 if (!last) { 1292 /* 1293 * Add the LWP's run time to the process' base value. 1294 * This needs to co-incide with coming off p_lwps. 1295 */ 1296 bintime_add(&p->p_rtime, &l->l_rtime); 1297 p->p_pctcpu += l->l_pctcpu; 1298 ru = &p->p_stats->p_ru; 1299 ruadd(ru, &l->l_ru); 1300 ru->ru_nvcsw += (l->l_ncsw - l->l_nivcsw); 1301 ru->ru_nivcsw += l->l_nivcsw; 1302 LIST_REMOVE(l, l_sibling); 1303 p->p_nlwps--; 1304 p->p_nzlwps--; 1305 if ((l->l_prflag & LPR_DETACHED) != 0) 1306 p->p_ndlwps--; 1307 1308 /* 1309 * Have any LWPs sleeping in lwp_wait() recheck for 1310 * deadlock. 1311 */ 1312 cv_broadcast(&p->p_lwpcv); 1313 mutex_exit(p->p_lock); 1314 1315 /* Free the LWP ID. */ 1316 mutex_enter(&proc_lock); 1317 proc_free_lwpid(p, l->l_lid); 1318 mutex_exit(&proc_lock); 1319 } 1320 1321 /* 1322 * Destroy the LWP's remaining signal information. 1323 */ 1324 ksiginfo_queue_init(&kq); 1325 sigclear(&l->l_sigpend, NULL, &kq); 1326 ksiginfo_queue_drain(&kq); 1327 cv_destroy(&l->l_sigcv); 1328 cv_destroy(&l->l_waitcv); 1329 1330 /* 1331 * Free lwpctl structure and affinity. 1332 */ 1333 if (l->l_lwpctl) { 1334 lwp_ctl_free(l); 1335 } 1336 if (l->l_affinity) { 1337 kcpuset_unuse(l->l_affinity, NULL); 1338 l->l_affinity = NULL; 1339 } 1340 1341 /* 1342 * Free remaining data structures and the LWP itself unless the 1343 * caller wants to recycle. 1344 */ 1345 if (l->l_name != NULL) 1346 kmem_free(l->l_name, MAXCOMLEN); 1347 1348 kmsan_lwp_free(l); 1349 kcov_lwp_free(l); 1350 cpu_lwp_free2(l); 1351 uvm_lwp_exit(l); 1352 1353 KASSERT(SLIST_EMPTY(&l->l_pi_lenders)); 1354 KASSERT(l->l_inheritedprio == -1); 1355 KASSERT(l->l_blcnt == 0); 1356 kdtrace_thread_dtor(NULL, l); 1357 if (!recycle) 1358 pool_cache_put(lwp_cache, l); 1359 } 1360 1361 /* 1362 * Migrate the LWP to the another CPU. Unlocks the LWP. 1363 */ 1364 void 1365 lwp_migrate(lwp_t *l, struct cpu_info *tci) 1366 { 1367 struct schedstate_percpu *tspc; 1368 int lstat = l->l_stat; 1369 1370 KASSERT(lwp_locked(l, NULL)); 1371 KASSERT(tci != NULL); 1372 1373 /* If LWP is still on the CPU, it must be handled like LSONPROC */ 1374 if ((l->l_pflag & LP_RUNNING) != 0) { 1375 lstat = LSONPROC; 1376 } 1377 1378 /* 1379 * The destination CPU could be changed while previous migration 1380 * was not finished. 1381 */ 1382 if (l->l_target_cpu != NULL) { 1383 l->l_target_cpu = tci; 1384 lwp_unlock(l); 1385 return; 1386 } 1387 1388 /* Nothing to do if trying to migrate to the same CPU */ 1389 if (l->l_cpu == tci) { 1390 lwp_unlock(l); 1391 return; 1392 } 1393 1394 KASSERT(l->l_target_cpu == NULL); 1395 tspc = &tci->ci_schedstate; 1396 switch (lstat) { 1397 case LSRUN: 1398 l->l_target_cpu = tci; 1399 break; 1400 case LSSLEEP: 1401 l->l_cpu = tci; 1402 break; 1403 case LSIDL: 1404 case LSSTOP: 1405 case LSSUSPENDED: 1406 l->l_cpu = tci; 1407 if (l->l_wchan == NULL) { 1408 lwp_unlock_to(l, tspc->spc_lwplock); 1409 return; 1410 } 1411 break; 1412 case LSONPROC: 1413 l->l_target_cpu = tci; 1414 spc_lock(l->l_cpu); 1415 sched_resched_cpu(l->l_cpu, PRI_USER_RT, true); 1416 /* spc now unlocked */ 1417 break; 1418 } 1419 lwp_unlock(l); 1420 } 1421 1422 #define lwp_find_exclude(l) \ 1423 ((l)->l_stat == LSIDL || (l)->l_stat == LSZOMB) 1424 1425 /* 1426 * Find the LWP in the process. Arguments may be zero, in such case, 1427 * the calling process and first LWP in the list will be used. 1428 * On success - returns proc locked. 1429 * 1430 * => pid == 0 -> look in curproc. 1431 * => pid == -1 -> match any proc. 1432 * => otherwise look up the proc. 1433 * 1434 * => lid == 0 -> first LWP in the proc 1435 * => otherwise specific LWP 1436 */ 1437 struct lwp * 1438 lwp_find2(pid_t pid, lwpid_t lid) 1439 { 1440 proc_t *p; 1441 lwp_t *l; 1442 1443 /* First LWP of specified proc. */ 1444 if (lid == 0) { 1445 switch (pid) { 1446 case -1: 1447 /* No lookup keys. */ 1448 return NULL; 1449 case 0: 1450 p = curproc; 1451 mutex_enter(p->p_lock); 1452 break; 1453 default: 1454 mutex_enter(&proc_lock); 1455 p = proc_find(pid); 1456 if (__predict_false(p == NULL)) { 1457 mutex_exit(&proc_lock); 1458 return NULL; 1459 } 1460 mutex_enter(p->p_lock); 1461 mutex_exit(&proc_lock); 1462 break; 1463 } 1464 LIST_FOREACH(l, &p->p_lwps, l_sibling) { 1465 if (__predict_true(!lwp_find_exclude(l))) 1466 break; 1467 } 1468 goto out; 1469 } 1470 1471 l = proc_find_lwp_acquire_proc(lid, &p); 1472 if (l == NULL) 1473 return NULL; 1474 KASSERT(p != NULL); 1475 KASSERT(mutex_owned(p->p_lock)); 1476 1477 if (__predict_false(lwp_find_exclude(l))) { 1478 l = NULL; 1479 goto out; 1480 } 1481 1482 /* Apply proc filter, if applicable. */ 1483 switch (pid) { 1484 case -1: 1485 /* Match anything. */ 1486 break; 1487 case 0: 1488 if (p != curproc) 1489 l = NULL; 1490 break; 1491 default: 1492 if (p->p_pid != pid) 1493 l = NULL; 1494 break; 1495 } 1496 1497 out: 1498 if (__predict_false(l == NULL)) { 1499 mutex_exit(p->p_lock); 1500 } 1501 return l; 1502 } 1503 1504 /* 1505 * Look up a live LWP within the specified process. 1506 * 1507 * Must be called with p->p_lock held (as it looks at the radix tree, 1508 * and also wants to exclude idle and zombie LWPs). 1509 */ 1510 struct lwp * 1511 lwp_find(struct proc *p, lwpid_t id) 1512 { 1513 struct lwp *l; 1514 1515 KASSERT(mutex_owned(p->p_lock)); 1516 1517 l = proc_find_lwp(p, id); 1518 KASSERT(l == NULL || l->l_lid == id); 1519 1520 /* 1521 * No need to lock - all of these conditions will 1522 * be visible with the process level mutex held. 1523 */ 1524 if (__predict_false(l != NULL && lwp_find_exclude(l))) 1525 l = NULL; 1526 1527 return l; 1528 } 1529 1530 /* 1531 * Update an LWP's cached credentials to mirror the process' master copy. 1532 * 1533 * This happens early in the syscall path, on user trap, and on LWP 1534 * creation. A long-running LWP can also voluntarily choose to update 1535 * its credentials by calling this routine. This may be called from 1536 * LWP_CACHE_CREDS(), which checks l->l_prflag & LPR_CRMOD beforehand. 1537 */ 1538 void 1539 lwp_update_creds(struct lwp *l) 1540 { 1541 kauth_cred_t oc; 1542 struct proc *p; 1543 1544 p = l->l_proc; 1545 oc = l->l_cred; 1546 1547 mutex_enter(p->p_lock); 1548 kauth_cred_hold(p->p_cred); 1549 l->l_cred = p->p_cred; 1550 l->l_prflag &= ~LPR_CRMOD; 1551 mutex_exit(p->p_lock); 1552 if (oc != NULL) 1553 kauth_cred_free(oc); 1554 } 1555 1556 /* 1557 * Verify that an LWP is locked, and optionally verify that the lock matches 1558 * one we specify. 1559 */ 1560 int 1561 lwp_locked(struct lwp *l, kmutex_t *mtx) 1562 { 1563 kmutex_t *cur = l->l_mutex; 1564 1565 return mutex_owned(cur) && (mtx == cur || mtx == NULL); 1566 } 1567 1568 /* 1569 * Lend a new mutex to an LWP. The old mutex must be held. 1570 */ 1571 kmutex_t * 1572 lwp_setlock(struct lwp *l, kmutex_t *mtx) 1573 { 1574 kmutex_t *oldmtx = l->l_mutex; 1575 1576 KASSERT(mutex_owned(oldmtx)); 1577 1578 atomic_store_release(&l->l_mutex, mtx); 1579 return oldmtx; 1580 } 1581 1582 /* 1583 * Lend a new mutex to an LWP, and release the old mutex. The old mutex 1584 * must be held. 1585 */ 1586 void 1587 lwp_unlock_to(struct lwp *l, kmutex_t *mtx) 1588 { 1589 kmutex_t *old; 1590 1591 KASSERT(lwp_locked(l, NULL)); 1592 1593 old = l->l_mutex; 1594 atomic_store_release(&l->l_mutex, mtx); 1595 mutex_spin_exit(old); 1596 } 1597 1598 int 1599 lwp_trylock(struct lwp *l) 1600 { 1601 kmutex_t *old; 1602 1603 for (;;) { 1604 if (!mutex_tryenter(old = atomic_load_consume(&l->l_mutex))) 1605 return 0; 1606 if (__predict_true(atomic_load_relaxed(&l->l_mutex) == old)) 1607 return 1; 1608 mutex_spin_exit(old); 1609 } 1610 } 1611 1612 void 1613 lwp_unsleep(lwp_t *l, bool unlock) 1614 { 1615 1616 KASSERT(mutex_owned(l->l_mutex)); 1617 (*l->l_syncobj->sobj_unsleep)(l, unlock); 1618 } 1619 1620 /* 1621 * Handle exceptions for mi_userret(). Called if a member of LW_USERRET is 1622 * set. 1623 */ 1624 void 1625 lwp_userret(struct lwp *l) 1626 { 1627 struct proc *p; 1628 int sig; 1629 1630 KASSERT(l == curlwp); 1631 KASSERT(l->l_stat == LSONPROC); 1632 p = l->l_proc; 1633 1634 /* 1635 * It is safe to do this read unlocked on a MP system.. 1636 */ 1637 while ((l->l_flag & LW_USERRET) != 0) { 1638 /* 1639 * Process pending signals first, unless the process 1640 * is dumping core or exiting, where we will instead 1641 * enter the LW_WSUSPEND case below. 1642 */ 1643 if ((l->l_flag & (LW_PENDSIG | LW_WCORE | LW_WEXIT)) == 1644 LW_PENDSIG) { 1645 mutex_enter(p->p_lock); 1646 while ((sig = issignal(l)) != 0) 1647 postsig(sig); 1648 mutex_exit(p->p_lock); 1649 } 1650 1651 /* 1652 * Core-dump or suspend pending. 1653 * 1654 * In case of core dump, suspend ourselves, so that the kernel 1655 * stack and therefore the userland registers saved in the 1656 * trapframe are around for coredump() to write them out. 1657 * We also need to save any PCU resources that we have so that 1658 * they accessible for coredump(). We issue a wakeup on 1659 * p->p_lwpcv so that sigexit() will write the core file out 1660 * once all other LWPs are suspended. 1661 */ 1662 if ((l->l_flag & LW_WSUSPEND) != 0) { 1663 pcu_save_all(l); 1664 mutex_enter(p->p_lock); 1665 p->p_nrlwps--; 1666 cv_broadcast(&p->p_lwpcv); 1667 lwp_lock(l); 1668 l->l_stat = LSSUSPENDED; 1669 lwp_unlock(l); 1670 mutex_exit(p->p_lock); 1671 lwp_lock(l); 1672 spc_lock(l->l_cpu); 1673 mi_switch(l); 1674 } 1675 1676 /* Process is exiting. */ 1677 if ((l->l_flag & LW_WEXIT) != 0) { 1678 lwp_exit(l); 1679 KASSERT(0); 1680 /* NOTREACHED */ 1681 } 1682 1683 /* update lwpctl processor (for vfork child_return) */ 1684 if (l->l_flag & LW_LWPCTL) { 1685 lwp_lock(l); 1686 KASSERT(kpreempt_disabled()); 1687 l->l_lwpctl->lc_curcpu = (int)cpu_index(l->l_cpu); 1688 l->l_lwpctl->lc_pctr++; 1689 l->l_flag &= ~LW_LWPCTL; 1690 lwp_unlock(l); 1691 } 1692 } 1693 } 1694 1695 /* 1696 * Force an LWP to enter the kernel, to take a trip through lwp_userret(). 1697 */ 1698 void 1699 lwp_need_userret(struct lwp *l) 1700 { 1701 1702 KASSERT(!cpu_intr_p()); 1703 KASSERT(lwp_locked(l, NULL)); 1704 1705 /* 1706 * If the LWP is in any state other than LSONPROC, we know that it 1707 * is executing in-kernel and will hit userret() on the way out. 1708 * 1709 * If the LWP is curlwp, then we know we'll be back out to userspace 1710 * soon (can't be called from a hardware interrupt here). 1711 * 1712 * Otherwise, we can't be sure what the LWP is doing, so first make 1713 * sure the update to l_flag will be globally visible, and then 1714 * force the LWP to take a trip through trap() where it will do 1715 * userret(). 1716 */ 1717 if (l->l_stat == LSONPROC && l != curlwp) { 1718 membar_producer(); 1719 cpu_signotify(l); 1720 } 1721 } 1722 1723 /* 1724 * Add one reference to an LWP. This will prevent the LWP from 1725 * exiting, thus keep the lwp structure and PCB around to inspect. 1726 */ 1727 void 1728 lwp_addref(struct lwp *l) 1729 { 1730 KASSERT(mutex_owned(l->l_proc->p_lock)); 1731 KASSERT(l->l_stat != LSZOMB); 1732 l->l_refcnt++; 1733 } 1734 1735 /* 1736 * Remove one reference to an LWP. If this is the last reference, 1737 * then we must finalize the LWP's death. 1738 */ 1739 void 1740 lwp_delref(struct lwp *l) 1741 { 1742 struct proc *p = l->l_proc; 1743 1744 mutex_enter(p->p_lock); 1745 lwp_delref2(l); 1746 mutex_exit(p->p_lock); 1747 } 1748 1749 /* 1750 * Remove one reference to an LWP. If this is the last reference, 1751 * then we must finalize the LWP's death. The proc mutex is held 1752 * on entry. 1753 */ 1754 void 1755 lwp_delref2(struct lwp *l) 1756 { 1757 struct proc *p = l->l_proc; 1758 1759 KASSERT(mutex_owned(p->p_lock)); 1760 KASSERT(l->l_stat != LSZOMB); 1761 KASSERT(l->l_refcnt > 0); 1762 1763 if (--l->l_refcnt == 0) 1764 cv_broadcast(&p->p_lwpcv); 1765 } 1766 1767 /* 1768 * Drain all references to the current LWP. Returns true if 1769 * we blocked. 1770 */ 1771 bool 1772 lwp_drainrefs(struct lwp *l) 1773 { 1774 struct proc *p = l->l_proc; 1775 bool rv = false; 1776 1777 KASSERT(mutex_owned(p->p_lock)); 1778 1779 l->l_prflag |= LPR_DRAINING; 1780 1781 while (l->l_refcnt > 0) { 1782 rv = true; 1783 cv_wait(&p->p_lwpcv, p->p_lock); 1784 } 1785 return rv; 1786 } 1787 1788 /* 1789 * Return true if the specified LWP is 'alive'. Only p->p_lock need 1790 * be held. 1791 */ 1792 bool 1793 lwp_alive(lwp_t *l) 1794 { 1795 1796 KASSERT(mutex_owned(l->l_proc->p_lock)); 1797 1798 switch (l->l_stat) { 1799 case LSSLEEP: 1800 case LSRUN: 1801 case LSONPROC: 1802 case LSSTOP: 1803 case LSSUSPENDED: 1804 return true; 1805 default: 1806 return false; 1807 } 1808 } 1809 1810 /* 1811 * Return first live LWP in the process. 1812 */ 1813 lwp_t * 1814 lwp_find_first(proc_t *p) 1815 { 1816 lwp_t *l; 1817 1818 KASSERT(mutex_owned(p->p_lock)); 1819 1820 LIST_FOREACH(l, &p->p_lwps, l_sibling) { 1821 if (lwp_alive(l)) { 1822 return l; 1823 } 1824 } 1825 1826 return NULL; 1827 } 1828 1829 /* 1830 * Allocate a new lwpctl structure for a user LWP. 1831 */ 1832 int 1833 lwp_ctl_alloc(vaddr_t *uaddr) 1834 { 1835 lcproc_t *lp; 1836 u_int bit, i, offset; 1837 struct uvm_object *uao; 1838 int error; 1839 lcpage_t *lcp; 1840 proc_t *p; 1841 lwp_t *l; 1842 1843 l = curlwp; 1844 p = l->l_proc; 1845 1846 /* don't allow a vforked process to create lwp ctls */ 1847 if (p->p_lflag & PL_PPWAIT) 1848 return EBUSY; 1849 1850 if (l->l_lcpage != NULL) { 1851 lcp = l->l_lcpage; 1852 *uaddr = lcp->lcp_uaddr + (vaddr_t)l->l_lwpctl - lcp->lcp_kaddr; 1853 return 0; 1854 } 1855 1856 /* First time around, allocate header structure for the process. */ 1857 if ((lp = p->p_lwpctl) == NULL) { 1858 lp = kmem_alloc(sizeof(*lp), KM_SLEEP); 1859 mutex_init(&lp->lp_lock, MUTEX_DEFAULT, IPL_NONE); 1860 lp->lp_uao = NULL; 1861 TAILQ_INIT(&lp->lp_pages); 1862 mutex_enter(p->p_lock); 1863 if (p->p_lwpctl == NULL) { 1864 p->p_lwpctl = lp; 1865 mutex_exit(p->p_lock); 1866 } else { 1867 mutex_exit(p->p_lock); 1868 mutex_destroy(&lp->lp_lock); 1869 kmem_free(lp, sizeof(*lp)); 1870 lp = p->p_lwpctl; 1871 } 1872 } 1873 1874 /* 1875 * Set up an anonymous memory region to hold the shared pages. 1876 * Map them into the process' address space. The user vmspace 1877 * gets the first reference on the UAO. 1878 */ 1879 mutex_enter(&lp->lp_lock); 1880 if (lp->lp_uao == NULL) { 1881 lp->lp_uao = uao_create(LWPCTL_UAREA_SZ, 0); 1882 lp->lp_cur = 0; 1883 lp->lp_max = LWPCTL_UAREA_SZ; 1884 lp->lp_uva = p->p_emul->e_vm_default_addr(p, 1885 (vaddr_t)p->p_vmspace->vm_daddr, LWPCTL_UAREA_SZ, 1886 p->p_vmspace->vm_map.flags & VM_MAP_TOPDOWN); 1887 error = uvm_map(&p->p_vmspace->vm_map, &lp->lp_uva, 1888 LWPCTL_UAREA_SZ, lp->lp_uao, 0, 0, UVM_MAPFLAG(UVM_PROT_RW, 1889 UVM_PROT_RW, UVM_INH_NONE, UVM_ADV_NORMAL, 0)); 1890 if (error != 0) { 1891 uao_detach(lp->lp_uao); 1892 lp->lp_uao = NULL; 1893 mutex_exit(&lp->lp_lock); 1894 return error; 1895 } 1896 } 1897 1898 /* Get a free block and allocate for this LWP. */ 1899 TAILQ_FOREACH(lcp, &lp->lp_pages, lcp_chain) { 1900 if (lcp->lcp_nfree != 0) 1901 break; 1902 } 1903 if (lcp == NULL) { 1904 /* Nothing available - try to set up a free page. */ 1905 if (lp->lp_cur == lp->lp_max) { 1906 mutex_exit(&lp->lp_lock); 1907 return ENOMEM; 1908 } 1909 lcp = kmem_alloc(LWPCTL_LCPAGE_SZ, KM_SLEEP); 1910 1911 /* 1912 * Wire the next page down in kernel space. Since this 1913 * is a new mapping, we must add a reference. 1914 */ 1915 uao = lp->lp_uao; 1916 (*uao->pgops->pgo_reference)(uao); 1917 lcp->lcp_kaddr = vm_map_min(kernel_map); 1918 error = uvm_map(kernel_map, &lcp->lcp_kaddr, PAGE_SIZE, 1919 uao, lp->lp_cur, PAGE_SIZE, 1920 UVM_MAPFLAG(UVM_PROT_RW, UVM_PROT_RW, 1921 UVM_INH_NONE, UVM_ADV_RANDOM, 0)); 1922 if (error != 0) { 1923 mutex_exit(&lp->lp_lock); 1924 kmem_free(lcp, LWPCTL_LCPAGE_SZ); 1925 (*uao->pgops->pgo_detach)(uao); 1926 return error; 1927 } 1928 error = uvm_map_pageable(kernel_map, lcp->lcp_kaddr, 1929 lcp->lcp_kaddr + PAGE_SIZE, FALSE, 0); 1930 if (error != 0) { 1931 mutex_exit(&lp->lp_lock); 1932 uvm_unmap(kernel_map, lcp->lcp_kaddr, 1933 lcp->lcp_kaddr + PAGE_SIZE); 1934 kmem_free(lcp, LWPCTL_LCPAGE_SZ); 1935 return error; 1936 } 1937 /* Prepare the page descriptor and link into the list. */ 1938 lcp->lcp_uaddr = lp->lp_uva + lp->lp_cur; 1939 lp->lp_cur += PAGE_SIZE; 1940 lcp->lcp_nfree = LWPCTL_PER_PAGE; 1941 lcp->lcp_rotor = 0; 1942 memset(lcp->lcp_bitmap, 0xff, LWPCTL_BITMAP_SZ); 1943 TAILQ_INSERT_HEAD(&lp->lp_pages, lcp, lcp_chain); 1944 } 1945 for (i = lcp->lcp_rotor; lcp->lcp_bitmap[i] == 0;) { 1946 if (++i >= LWPCTL_BITMAP_ENTRIES) 1947 i = 0; 1948 } 1949 bit = ffs(lcp->lcp_bitmap[i]) - 1; 1950 lcp->lcp_bitmap[i] ^= (1U << bit); 1951 lcp->lcp_rotor = i; 1952 lcp->lcp_nfree--; 1953 l->l_lcpage = lcp; 1954 offset = (i << 5) + bit; 1955 l->l_lwpctl = (lwpctl_t *)lcp->lcp_kaddr + offset; 1956 *uaddr = lcp->lcp_uaddr + offset * sizeof(lwpctl_t); 1957 mutex_exit(&lp->lp_lock); 1958 1959 KPREEMPT_DISABLE(l); 1960 l->l_lwpctl->lc_curcpu = (int)cpu_index(curcpu()); 1961 KPREEMPT_ENABLE(l); 1962 1963 return 0; 1964 } 1965 1966 /* 1967 * Free an lwpctl structure back to the per-process list. 1968 */ 1969 void 1970 lwp_ctl_free(lwp_t *l) 1971 { 1972 struct proc *p = l->l_proc; 1973 lcproc_t *lp; 1974 lcpage_t *lcp; 1975 u_int map, offset; 1976 1977 /* don't free a lwp context we borrowed for vfork */ 1978 if (p->p_lflag & PL_PPWAIT) { 1979 l->l_lwpctl = NULL; 1980 return; 1981 } 1982 1983 lp = p->p_lwpctl; 1984 KASSERT(lp != NULL); 1985 1986 lcp = l->l_lcpage; 1987 offset = (u_int)((lwpctl_t *)l->l_lwpctl - (lwpctl_t *)lcp->lcp_kaddr); 1988 KASSERT(offset < LWPCTL_PER_PAGE); 1989 1990 mutex_enter(&lp->lp_lock); 1991 lcp->lcp_nfree++; 1992 map = offset >> 5; 1993 lcp->lcp_bitmap[map] |= (1U << (offset & 31)); 1994 if (lcp->lcp_bitmap[lcp->lcp_rotor] == 0) 1995 lcp->lcp_rotor = map; 1996 if (TAILQ_FIRST(&lp->lp_pages)->lcp_nfree == 0) { 1997 TAILQ_REMOVE(&lp->lp_pages, lcp, lcp_chain); 1998 TAILQ_INSERT_HEAD(&lp->lp_pages, lcp, lcp_chain); 1999 } 2000 mutex_exit(&lp->lp_lock); 2001 } 2002 2003 /* 2004 * Process is exiting; tear down lwpctl state. This can only be safely 2005 * called by the last LWP in the process. 2006 */ 2007 void 2008 lwp_ctl_exit(void) 2009 { 2010 lcpage_t *lcp, *next; 2011 lcproc_t *lp; 2012 proc_t *p; 2013 lwp_t *l; 2014 2015 l = curlwp; 2016 l->l_lwpctl = NULL; 2017 l->l_lcpage = NULL; 2018 p = l->l_proc; 2019 lp = p->p_lwpctl; 2020 2021 KASSERT(lp != NULL); 2022 KASSERT(p->p_nlwps == 1); 2023 2024 for (lcp = TAILQ_FIRST(&lp->lp_pages); lcp != NULL; lcp = next) { 2025 next = TAILQ_NEXT(lcp, lcp_chain); 2026 uvm_unmap(kernel_map, lcp->lcp_kaddr, 2027 lcp->lcp_kaddr + PAGE_SIZE); 2028 kmem_free(lcp, LWPCTL_LCPAGE_SZ); 2029 } 2030 2031 if (lp->lp_uao != NULL) { 2032 uvm_unmap(&p->p_vmspace->vm_map, lp->lp_uva, 2033 lp->lp_uva + LWPCTL_UAREA_SZ); 2034 } 2035 2036 mutex_destroy(&lp->lp_lock); 2037 kmem_free(lp, sizeof(*lp)); 2038 p->p_lwpctl = NULL; 2039 } 2040 2041 /* 2042 * Return the current LWP's "preemption counter". Used to detect 2043 * preemption across operations that can tolerate preemption without 2044 * crashing, but which may generate incorrect results if preempted. 2045 */ 2046 uint64_t 2047 lwp_pctr(void) 2048 { 2049 2050 return curlwp->l_ncsw; 2051 } 2052 2053 /* 2054 * Set an LWP's private data pointer. 2055 */ 2056 int 2057 lwp_setprivate(struct lwp *l, void *ptr) 2058 { 2059 int error = 0; 2060 2061 l->l_private = ptr; 2062 #ifdef __HAVE_CPU_LWP_SETPRIVATE 2063 error = cpu_lwp_setprivate(l, ptr); 2064 #endif 2065 return error; 2066 } 2067 2068 /* 2069 * Perform any thread-related cleanup on LWP exit. 2070 * N.B. l->l_proc->p_lock must be HELD on entry but will 2071 * be released before returning! 2072 */ 2073 void 2074 lwp_thread_cleanup(struct lwp *l) 2075 { 2076 2077 KASSERT(mutex_owned(l->l_proc->p_lock)); 2078 mutex_exit(l->l_proc->p_lock); 2079 2080 /* 2081 * If the LWP has robust futexes, release them all 2082 * now. 2083 */ 2084 if (__predict_false(l->l_robust_head != 0)) { 2085 futex_release_all_lwp(l); 2086 } 2087 } 2088 2089 #if defined(DDB) 2090 #include <machine/pcb.h> 2091 2092 void 2093 lwp_whatis(uintptr_t addr, void (*pr)(const char *, ...)) 2094 { 2095 lwp_t *l; 2096 2097 LIST_FOREACH(l, &alllwp, l_list) { 2098 uintptr_t stack = (uintptr_t)KSTACK_LOWEST_ADDR(l); 2099 2100 if (addr < stack || stack + KSTACK_SIZE <= addr) { 2101 continue; 2102 } 2103 (*pr)("%p is %p+%zu, LWP %p's stack\n", 2104 (void *)addr, (void *)stack, 2105 (size_t)(addr - stack), l); 2106 } 2107 } 2108 #endif /* defined(DDB) */ 2109