1 /* $NetBSD: kern_lwp.c,v 1.165 2011/12/15 00:05:18 jmcneill Exp $ */ 2 3 /*- 4 * Copyright (c) 2001, 2006, 2007, 2008, 2009 The NetBSD Foundation, Inc. 5 * All rights reserved. 6 * 7 * This code is derived from software contributed to The NetBSD Foundation 8 * by Nathan J. Williams, and Andrew Doran. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS 20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 29 * POSSIBILITY OF SUCH DAMAGE. 30 */ 31 32 /* 33 * Overview 34 * 35 * Lightweight processes (LWPs) are the basic unit or thread of 36 * execution within the kernel. The core state of an LWP is described 37 * by "struct lwp", also known as lwp_t. 38 * 39 * Each LWP is contained within a process (described by "struct proc"), 40 * Every process contains at least one LWP, but may contain more. The 41 * process describes attributes shared among all of its LWPs such as a 42 * private address space, global execution state (stopped, active, 43 * zombie, ...), signal disposition and so on. On a multiprocessor 44 * machine, multiple LWPs be executing concurrently in the kernel. 45 * 46 * Execution states 47 * 48 * At any given time, an LWP has overall state that is described by 49 * lwp::l_stat. The states are broken into two sets below. The first 50 * set is guaranteed to represent the absolute, current state of the 51 * LWP: 52 * 53 * LSONPROC 54 * 55 * On processor: the LWP is executing on a CPU, either in the 56 * kernel or in user space. 57 * 58 * LSRUN 59 * 60 * Runnable: the LWP is parked on a run queue, and may soon be 61 * chosen to run by an idle processor, or by a processor that 62 * has been asked to preempt a currently runnning but lower 63 * priority LWP. 64 * 65 * LSIDL 66 * 67 * Idle: the LWP has been created but has not yet executed, 68 * or it has ceased executing a unit of work and is waiting 69 * to be started again. 70 * 71 * LSSUSPENDED: 72 * 73 * Suspended: the LWP has had its execution suspended by 74 * another LWP in the same process using the _lwp_suspend() 75 * system call. User-level LWPs also enter the suspended 76 * state when the system is shutting down. 77 * 78 * The second set represent a "statement of intent" on behalf of the 79 * LWP. The LWP may in fact be executing on a processor, may be 80 * sleeping or idle. It is expected to take the necessary action to 81 * stop executing or become "running" again within a short timeframe. 82 * The LP_RUNNING flag in lwp::l_pflag indicates that an LWP is running. 83 * Importantly, it indicates that its state is tied to a CPU. 84 * 85 * LSZOMB: 86 * 87 * Dead or dying: the LWP has released most of its resources 88 * and is about to switch away into oblivion, or has already 89 * switched away. When it switches away, its few remaining 90 * resources can be collected. 91 * 92 * LSSLEEP: 93 * 94 * Sleeping: the LWP has entered itself onto a sleep queue, and 95 * has switched away or will switch away shortly to allow other 96 * LWPs to run on the CPU. 97 * 98 * LSSTOP: 99 * 100 * Stopped: the LWP has been stopped as a result of a job 101 * control signal, or as a result of the ptrace() interface. 102 * 103 * Stopped LWPs may run briefly within the kernel to handle 104 * signals that they receive, but will not return to user space 105 * until their process' state is changed away from stopped. 106 * 107 * Single LWPs within a process can not be set stopped 108 * selectively: all actions that can stop or continue LWPs 109 * occur at the process level. 110 * 111 * State transitions 112 * 113 * Note that the LSSTOP state may only be set when returning to 114 * user space in userret(), or when sleeping interruptably. The 115 * LSSUSPENDED state may only be set in userret(). Before setting 116 * those states, we try to ensure that the LWPs will release all 117 * locks that they hold, and at a minimum try to ensure that the 118 * LWP can be set runnable again by a signal. 119 * 120 * LWPs may transition states in the following ways: 121 * 122 * RUN -------> ONPROC ONPROC -----> RUN 123 * > SLEEP 124 * > STOPPED 125 * > SUSPENDED 126 * > ZOMB 127 * > IDL (special cases) 128 * 129 * STOPPED ---> RUN SUSPENDED --> RUN 130 * > SLEEP 131 * 132 * SLEEP -----> ONPROC IDL --------> RUN 133 * > RUN > SUSPENDED 134 * > STOPPED > STOPPED 135 * > ONPROC (special cases) 136 * 137 * Some state transitions are only possible with kernel threads (eg 138 * ONPROC -> IDL) and happen under tightly controlled circumstances 139 * free of unwanted side effects. 140 * 141 * Migration 142 * 143 * Migration of threads from one CPU to another could be performed 144 * internally by the scheduler via sched_takecpu() or sched_catchlwp() 145 * functions. The universal lwp_migrate() function should be used for 146 * any other cases. Subsystems in the kernel must be aware that CPU 147 * of LWP may change, while it is not locked. 148 * 149 * Locking 150 * 151 * The majority of fields in 'struct lwp' are covered by a single, 152 * general spin lock pointed to by lwp::l_mutex. The locks covering 153 * each field are documented in sys/lwp.h. 154 * 155 * State transitions must be made with the LWP's general lock held, 156 * and may cause the LWP's lock pointer to change. Manipulation of 157 * the general lock is not performed directly, but through calls to 158 * lwp_lock(), lwp_unlock() and others. It should be noted that the 159 * adaptive locks are not allowed to be released while the LWP's lock 160 * is being held (unlike for other spin-locks). 161 * 162 * States and their associated locks: 163 * 164 * LSONPROC, LSZOMB: 165 * 166 * Always covered by spc_lwplock, which protects running LWPs. 167 * This is a per-CPU lock and matches lwp::l_cpu. 168 * 169 * LSIDL, LSRUN: 170 * 171 * Always covered by spc_mutex, which protects the run queues. 172 * This is a per-CPU lock and matches lwp::l_cpu. 173 * 174 * LSSLEEP: 175 * 176 * Covered by a lock associated with the sleep queue that the 177 * LWP resides on. Matches lwp::l_sleepq::sq_mutex. 178 * 179 * LSSTOP, LSSUSPENDED: 180 * 181 * If the LWP was previously sleeping (l_wchan != NULL), then 182 * l_mutex references the sleep queue lock. If the LWP was 183 * runnable or on the CPU when halted, or has been removed from 184 * the sleep queue since halted, then the lock is spc_lwplock. 185 * 186 * The lock order is as follows: 187 * 188 * spc::spc_lwplock -> 189 * sleeptab::st_mutex -> 190 * tschain_t::tc_mutex -> 191 * spc::spc_mutex 192 * 193 * Each process has an scheduler state lock (proc::p_lock), and a 194 * number of counters on LWPs and their states: p_nzlwps, p_nrlwps, and 195 * so on. When an LWP is to be entered into or removed from one of the 196 * following states, p_lock must be held and the process wide counters 197 * adjusted: 198 * 199 * LSIDL, LSZOMB, LSSTOP, LSSUSPENDED 200 * 201 * (But not always for kernel threads. There are some special cases 202 * as mentioned above. See kern_softint.c.) 203 * 204 * Note that an LWP is considered running or likely to run soon if in 205 * one of the following states. This affects the value of p_nrlwps: 206 * 207 * LSRUN, LSONPROC, LSSLEEP 208 * 209 * p_lock does not need to be held when transitioning among these 210 * three states, hence p_lock is rarely taken for state transitions. 211 */ 212 213 #include <sys/cdefs.h> 214 __KERNEL_RCSID(0, "$NetBSD: kern_lwp.c,v 1.165 2011/12/15 00:05:18 jmcneill Exp $"); 215 216 #include "opt_ddb.h" 217 #include "opt_lockdebug.h" 218 #include "opt_sa.h" 219 #include "opt_dtrace.h" 220 221 #define _LWP_API_PRIVATE 222 223 #include <sys/param.h> 224 #include <sys/systm.h> 225 #include <sys/cpu.h> 226 #include <sys/pool.h> 227 #include <sys/proc.h> 228 #include <sys/sa.h> 229 #include <sys/savar.h> 230 #include <sys/syscallargs.h> 231 #include <sys/syscall_stats.h> 232 #include <sys/kauth.h> 233 #include <sys/pserialize.h> 234 #include <sys/sleepq.h> 235 #include <sys/lockdebug.h> 236 #include <sys/kmem.h> 237 #include <sys/pset.h> 238 #include <sys/intr.h> 239 #include <sys/lwpctl.h> 240 #include <sys/atomic.h> 241 #include <sys/filedesc.h> 242 #include <sys/dtrace_bsd.h> 243 #include <sys/sdt.h> 244 #include <sys/xcall.h> 245 246 #include <uvm/uvm_extern.h> 247 #include <uvm/uvm_object.h> 248 249 static pool_cache_t lwp_cache __read_mostly; 250 struct lwplist alllwp __cacheline_aligned; 251 252 static void lwp_dtor(void *, void *); 253 254 /* DTrace proc provider probes */ 255 SDT_PROBE_DEFINE(proc,,,lwp_create, 256 "struct lwp *", NULL, 257 NULL, NULL, NULL, NULL, 258 NULL, NULL, NULL, NULL); 259 SDT_PROBE_DEFINE(proc,,,lwp_start, 260 "struct lwp *", NULL, 261 NULL, NULL, NULL, NULL, 262 NULL, NULL, NULL, NULL); 263 SDT_PROBE_DEFINE(proc,,,lwp_exit, 264 "struct lwp *", NULL, 265 NULL, NULL, NULL, NULL, 266 NULL, NULL, NULL, NULL); 267 268 struct turnstile turnstile0; 269 struct lwp lwp0 __aligned(MIN_LWP_ALIGNMENT) = { 270 #ifdef LWP0_CPU_INFO 271 .l_cpu = LWP0_CPU_INFO, 272 #endif 273 #ifdef LWP0_MD_INITIALIZER 274 .l_md = LWP0_MD_INITIALIZER, 275 #endif 276 .l_proc = &proc0, 277 .l_lid = 1, 278 .l_flag = LW_SYSTEM, 279 .l_stat = LSONPROC, 280 .l_ts = &turnstile0, 281 .l_syncobj = &sched_syncobj, 282 .l_refcnt = 1, 283 .l_priority = PRI_USER + NPRI_USER - 1, 284 .l_inheritedprio = -1, 285 .l_class = SCHED_OTHER, 286 .l_psid = PS_NONE, 287 .l_pi_lenders = SLIST_HEAD_INITIALIZER(&lwp0.l_pi_lenders), 288 .l_name = __UNCONST("swapper"), 289 .l_fd = &filedesc0, 290 }; 291 292 void 293 lwpinit(void) 294 { 295 296 LIST_INIT(&alllwp); 297 lwpinit_specificdata(); 298 lwp_sys_init(); 299 lwp_cache = pool_cache_init(sizeof(lwp_t), MIN_LWP_ALIGNMENT, 0, 0, 300 "lwppl", NULL, IPL_NONE, NULL, lwp_dtor, NULL); 301 } 302 303 void 304 lwp0_init(void) 305 { 306 struct lwp *l = &lwp0; 307 308 KASSERT((void *)uvm_lwp_getuarea(l) != NULL); 309 KASSERT(l->l_lid == proc0.p_nlwpid); 310 311 LIST_INSERT_HEAD(&alllwp, l, l_list); 312 313 callout_init(&l->l_timeout_ch, CALLOUT_MPSAFE); 314 callout_setfunc(&l->l_timeout_ch, sleepq_timeout, l); 315 cv_init(&l->l_sigcv, "sigwait"); 316 317 kauth_cred_hold(proc0.p_cred); 318 l->l_cred = proc0.p_cred; 319 320 kdtrace_thread_ctor(NULL, l); 321 lwp_initspecific(l); 322 323 SYSCALL_TIME_LWP_INIT(l); 324 } 325 326 static void 327 lwp_dtor(void *arg, void *obj) 328 { 329 lwp_t *l = obj; 330 uint64_t where; 331 (void)l; 332 333 /* 334 * Provide a barrier to ensure that all mutex_oncpu() and rw_oncpu() 335 * calls will exit before memory of LWP is returned to the pool, where 336 * KVA of LWP structure might be freed and re-used for other purposes. 337 * Kernel preemption is disabled around mutex_oncpu() and rw_oncpu() 338 * callers, therefore cross-call to all CPUs will do the job. Also, 339 * the value of l->l_cpu must be still valid at this point. 340 */ 341 KASSERT(l->l_cpu != NULL); 342 where = xc_broadcast(0, (xcfunc_t)nullop, NULL, NULL); 343 xc_wait(where); 344 } 345 346 /* 347 * Set an suspended. 348 * 349 * Must be called with p_lock held, and the LWP locked. Will unlock the 350 * LWP before return. 351 */ 352 int 353 lwp_suspend(struct lwp *curl, struct lwp *t) 354 { 355 int error; 356 357 KASSERT(mutex_owned(t->l_proc->p_lock)); 358 KASSERT(lwp_locked(t, NULL)); 359 360 KASSERT(curl != t || curl->l_stat == LSONPROC); 361 362 /* 363 * If the current LWP has been told to exit, we must not suspend anyone 364 * else or deadlock could occur. We won't return to userspace. 365 */ 366 if ((curl->l_flag & (LW_WEXIT | LW_WCORE)) != 0) { 367 lwp_unlock(t); 368 return (EDEADLK); 369 } 370 371 error = 0; 372 373 switch (t->l_stat) { 374 case LSRUN: 375 case LSONPROC: 376 t->l_flag |= LW_WSUSPEND; 377 lwp_need_userret(t); 378 lwp_unlock(t); 379 break; 380 381 case LSSLEEP: 382 t->l_flag |= LW_WSUSPEND; 383 384 /* 385 * Kick the LWP and try to get it to the kernel boundary 386 * so that it will release any locks that it holds. 387 * setrunnable() will release the lock. 388 */ 389 if ((t->l_flag & LW_SINTR) != 0) 390 setrunnable(t); 391 else 392 lwp_unlock(t); 393 break; 394 395 case LSSUSPENDED: 396 lwp_unlock(t); 397 break; 398 399 case LSSTOP: 400 t->l_flag |= LW_WSUSPEND; 401 setrunnable(t); 402 break; 403 404 case LSIDL: 405 case LSZOMB: 406 error = EINTR; /* It's what Solaris does..... */ 407 lwp_unlock(t); 408 break; 409 } 410 411 return (error); 412 } 413 414 /* 415 * Restart a suspended LWP. 416 * 417 * Must be called with p_lock held, and the LWP locked. Will unlock the 418 * LWP before return. 419 */ 420 void 421 lwp_continue(struct lwp *l) 422 { 423 424 KASSERT(mutex_owned(l->l_proc->p_lock)); 425 KASSERT(lwp_locked(l, NULL)); 426 427 /* If rebooting or not suspended, then just bail out. */ 428 if ((l->l_flag & LW_WREBOOT) != 0) { 429 lwp_unlock(l); 430 return; 431 } 432 433 l->l_flag &= ~LW_WSUSPEND; 434 435 if (l->l_stat != LSSUSPENDED) { 436 lwp_unlock(l); 437 return; 438 } 439 440 /* setrunnable() will release the lock. */ 441 setrunnable(l); 442 } 443 444 /* 445 * Restart a stopped LWP. 446 * 447 * Must be called with p_lock held, and the LWP NOT locked. Will unlock the 448 * LWP before return. 449 */ 450 void 451 lwp_unstop(struct lwp *l) 452 { 453 struct proc *p = l->l_proc; 454 455 KASSERT(mutex_owned(proc_lock)); 456 KASSERT(mutex_owned(p->p_lock)); 457 458 lwp_lock(l); 459 460 /* If not stopped, then just bail out. */ 461 if (l->l_stat != LSSTOP) { 462 lwp_unlock(l); 463 return; 464 } 465 466 p->p_stat = SACTIVE; 467 p->p_sflag &= ~PS_STOPPING; 468 469 if (!p->p_waited) 470 p->p_pptr->p_nstopchild--; 471 472 if (l->l_wchan == NULL) { 473 /* setrunnable() will release the lock. */ 474 setrunnable(l); 475 } else if (p->p_xstat && (l->l_flag & LW_SINTR) != 0) { 476 /* setrunnable() so we can receive the signal */ 477 setrunnable(l); 478 } else { 479 l->l_stat = LSSLEEP; 480 p->p_nrlwps++; 481 lwp_unlock(l); 482 } 483 } 484 485 /* 486 * Wait for an LWP within the current process to exit. If 'lid' is 487 * non-zero, we are waiting for a specific LWP. 488 * 489 * Must be called with p->p_lock held. 490 */ 491 int 492 lwp_wait1(struct lwp *l, lwpid_t lid, lwpid_t *departed, int flags) 493 { 494 struct proc *p = l->l_proc; 495 struct lwp *l2; 496 int nfound, error; 497 lwpid_t curlid; 498 bool exiting; 499 500 KASSERT(mutex_owned(p->p_lock)); 501 502 p->p_nlwpwait++; 503 l->l_waitingfor = lid; 504 curlid = l->l_lid; 505 exiting = ((flags & LWPWAIT_EXITCONTROL) != 0); 506 507 for (;;) { 508 /* 509 * Avoid a race between exit1() and sigexit(): if the 510 * process is dumping core, then we need to bail out: call 511 * into lwp_userret() where we will be suspended until the 512 * deed is done. 513 */ 514 if ((p->p_sflag & PS_WCORE) != 0) { 515 mutex_exit(p->p_lock); 516 lwp_userret(l); 517 #ifdef DIAGNOSTIC 518 panic("lwp_wait1"); 519 #endif 520 /* NOTREACHED */ 521 } 522 523 /* 524 * First off, drain any detached LWP that is waiting to be 525 * reaped. 526 */ 527 while ((l2 = p->p_zomblwp) != NULL) { 528 p->p_zomblwp = NULL; 529 lwp_free(l2, false, false);/* releases proc mutex */ 530 mutex_enter(p->p_lock); 531 } 532 533 /* 534 * Now look for an LWP to collect. If the whole process is 535 * exiting, count detached LWPs as eligible to be collected, 536 * but don't drain them here. 537 */ 538 nfound = 0; 539 error = 0; 540 LIST_FOREACH(l2, &p->p_lwps, l_sibling) { 541 /* 542 * If a specific wait and the target is waiting on 543 * us, then avoid deadlock. This also traps LWPs 544 * that try to wait on themselves. 545 * 546 * Note that this does not handle more complicated 547 * cycles, like: t1 -> t2 -> t3 -> t1. The process 548 * can still be killed so it is not a major problem. 549 */ 550 if (l2->l_lid == lid && l2->l_waitingfor == curlid) { 551 error = EDEADLK; 552 break; 553 } 554 if (l2 == l) 555 continue; 556 if ((l2->l_prflag & LPR_DETACHED) != 0) { 557 nfound += exiting; 558 continue; 559 } 560 if (lid != 0) { 561 if (l2->l_lid != lid) 562 continue; 563 /* 564 * Mark this LWP as the first waiter, if there 565 * is no other. 566 */ 567 if (l2->l_waiter == 0) 568 l2->l_waiter = curlid; 569 } else if (l2->l_waiter != 0) { 570 /* 571 * It already has a waiter - so don't 572 * collect it. If the waiter doesn't 573 * grab it we'll get another chance 574 * later. 575 */ 576 nfound++; 577 continue; 578 } 579 nfound++; 580 581 /* No need to lock the LWP in order to see LSZOMB. */ 582 if (l2->l_stat != LSZOMB) 583 continue; 584 585 /* 586 * We're no longer waiting. Reset the "first waiter" 587 * pointer on the target, in case it was us. 588 */ 589 l->l_waitingfor = 0; 590 l2->l_waiter = 0; 591 p->p_nlwpwait--; 592 if (departed) 593 *departed = l2->l_lid; 594 sched_lwp_collect(l2); 595 596 /* lwp_free() releases the proc lock. */ 597 lwp_free(l2, false, false); 598 mutex_enter(p->p_lock); 599 return 0; 600 } 601 602 if (error != 0) 603 break; 604 if (nfound == 0) { 605 error = ESRCH; 606 break; 607 } 608 609 /* 610 * The kernel is careful to ensure that it can not deadlock 611 * when exiting - just keep waiting. 612 */ 613 if (exiting) { 614 KASSERT(p->p_nlwps > 1); 615 cv_wait(&p->p_lwpcv, p->p_lock); 616 continue; 617 } 618 619 /* 620 * If all other LWPs are waiting for exits or suspends 621 * and the supply of zombies and potential zombies is 622 * exhausted, then we are about to deadlock. 623 * 624 * If the process is exiting (and this LWP is not the one 625 * that is coordinating the exit) then bail out now. 626 */ 627 if ((p->p_sflag & PS_WEXIT) != 0 || 628 p->p_nrlwps + p->p_nzlwps - p->p_ndlwps <= p->p_nlwpwait) { 629 error = EDEADLK; 630 break; 631 } 632 633 /* 634 * Sit around and wait for something to happen. We'll be 635 * awoken if any of the conditions examined change: if an 636 * LWP exits, is collected, or is detached. 637 */ 638 if ((error = cv_wait_sig(&p->p_lwpcv, p->p_lock)) != 0) 639 break; 640 } 641 642 /* 643 * We didn't find any LWPs to collect, we may have received a 644 * signal, or some other condition has caused us to bail out. 645 * 646 * If waiting on a specific LWP, clear the waiters marker: some 647 * other LWP may want it. Then, kick all the remaining waiters 648 * so that they can re-check for zombies and for deadlock. 649 */ 650 if (lid != 0) { 651 LIST_FOREACH(l2, &p->p_lwps, l_sibling) { 652 if (l2->l_lid == lid) { 653 if (l2->l_waiter == curlid) 654 l2->l_waiter = 0; 655 break; 656 } 657 } 658 } 659 p->p_nlwpwait--; 660 l->l_waitingfor = 0; 661 cv_broadcast(&p->p_lwpcv); 662 663 return error; 664 } 665 666 /* 667 * Create a new LWP within process 'p2', using LWP 'l1' as a template. 668 * The new LWP is created in state LSIDL and must be set running, 669 * suspended, or stopped by the caller. 670 */ 671 int 672 lwp_create(lwp_t *l1, proc_t *p2, vaddr_t uaddr, int flags, 673 void *stack, size_t stacksize, void (*func)(void *), void *arg, 674 lwp_t **rnewlwpp, int sclass) 675 { 676 struct lwp *l2, *isfree; 677 turnstile_t *ts; 678 lwpid_t lid; 679 680 KASSERT(l1 == curlwp || l1->l_proc == &proc0); 681 682 /* 683 * First off, reap any detached LWP waiting to be collected. 684 * We can re-use its LWP structure and turnstile. 685 */ 686 isfree = NULL; 687 if (p2->p_zomblwp != NULL) { 688 mutex_enter(p2->p_lock); 689 if ((isfree = p2->p_zomblwp) != NULL) { 690 p2->p_zomblwp = NULL; 691 lwp_free(isfree, true, false);/* releases proc mutex */ 692 } else 693 mutex_exit(p2->p_lock); 694 } 695 if (isfree == NULL) { 696 l2 = pool_cache_get(lwp_cache, PR_WAITOK); 697 memset(l2, 0, sizeof(*l2)); 698 l2->l_ts = pool_cache_get(turnstile_cache, PR_WAITOK); 699 SLIST_INIT(&l2->l_pi_lenders); 700 } else { 701 l2 = isfree; 702 ts = l2->l_ts; 703 KASSERT(l2->l_inheritedprio == -1); 704 KASSERT(SLIST_EMPTY(&l2->l_pi_lenders)); 705 memset(l2, 0, sizeof(*l2)); 706 l2->l_ts = ts; 707 } 708 709 l2->l_stat = LSIDL; 710 l2->l_proc = p2; 711 l2->l_refcnt = 1; 712 l2->l_class = sclass; 713 714 /* 715 * If vfork(), we want the LWP to run fast and on the same CPU 716 * as its parent, so that it can reuse the VM context and cache 717 * footprint on the local CPU. 718 */ 719 l2->l_kpriority = ((flags & LWP_VFORK) ? true : false); 720 l2->l_kpribase = PRI_KERNEL; 721 l2->l_priority = l1->l_priority; 722 l2->l_inheritedprio = -1; 723 l2->l_flag = 0; 724 l2->l_pflag = LP_MPSAFE; 725 TAILQ_INIT(&l2->l_ld_locks); 726 727 /* 728 * For vfork, borrow parent's lwpctl context if it exists. 729 * This also causes us to return via lwp_userret. 730 */ 731 if (flags & LWP_VFORK && l1->l_lwpctl) { 732 l2->l_lwpctl = l1->l_lwpctl; 733 l2->l_flag |= LW_LWPCTL; 734 } 735 736 /* 737 * If not the first LWP in the process, grab a reference to the 738 * descriptor table. 739 */ 740 l2->l_fd = p2->p_fd; 741 if (p2->p_nlwps != 0) { 742 KASSERT(l1->l_proc == p2); 743 fd_hold(l2); 744 } else { 745 KASSERT(l1->l_proc != p2); 746 } 747 748 if (p2->p_flag & PK_SYSTEM) { 749 /* Mark it as a system LWP. */ 750 l2->l_flag |= LW_SYSTEM; 751 } 752 753 kpreempt_disable(); 754 l2->l_mutex = l1->l_cpu->ci_schedstate.spc_mutex; 755 l2->l_cpu = l1->l_cpu; 756 kpreempt_enable(); 757 758 kdtrace_thread_ctor(NULL, l2); 759 lwp_initspecific(l2); 760 sched_lwp_fork(l1, l2); 761 lwp_update_creds(l2); 762 callout_init(&l2->l_timeout_ch, CALLOUT_MPSAFE); 763 callout_setfunc(&l2->l_timeout_ch, sleepq_timeout, l2); 764 cv_init(&l2->l_sigcv, "sigwait"); 765 l2->l_syncobj = &sched_syncobj; 766 767 if (rnewlwpp != NULL) 768 *rnewlwpp = l2; 769 770 /* 771 * PCU state needs to be saved before calling uvm_lwp_fork() so that 772 * the MD cpu_lwp_fork() can copy the saved state to the new LWP. 773 */ 774 pcu_save_all(l1); 775 776 uvm_lwp_setuarea(l2, uaddr); 777 uvm_lwp_fork(l1, l2, stack, stacksize, func, 778 (arg != NULL) ? arg : l2); 779 780 if ((flags & LWP_PIDLID) != 0) { 781 lid = proc_alloc_pid(p2); 782 l2->l_pflag |= LP_PIDLID; 783 } else { 784 lid = 0; 785 } 786 787 mutex_enter(p2->p_lock); 788 789 if ((flags & LWP_DETACHED) != 0) { 790 l2->l_prflag = LPR_DETACHED; 791 p2->p_ndlwps++; 792 } else 793 l2->l_prflag = 0; 794 795 l2->l_sigstk = l1->l_sigstk; 796 l2->l_sigmask = l1->l_sigmask; 797 CIRCLEQ_INIT(&l2->l_sigpend.sp_info); 798 sigemptyset(&l2->l_sigpend.sp_set); 799 800 if (lid == 0) { 801 p2->p_nlwpid++; 802 if (p2->p_nlwpid == 0) 803 p2->p_nlwpid++; 804 lid = p2->p_nlwpid; 805 } 806 l2->l_lid = lid; 807 LIST_INSERT_HEAD(&p2->p_lwps, l2, l_sibling); 808 p2->p_nlwps++; 809 p2->p_nrlwps++; 810 811 KASSERT(l2->l_affinity == NULL); 812 813 if ((p2->p_flag & PK_SYSTEM) == 0) { 814 /* Inherit the affinity mask. */ 815 if (l1->l_affinity) { 816 /* 817 * Note that we hold the state lock while inheriting 818 * the affinity to avoid race with sched_setaffinity(). 819 */ 820 lwp_lock(l1); 821 if (l1->l_affinity) { 822 kcpuset_use(l1->l_affinity); 823 l2->l_affinity = l1->l_affinity; 824 } 825 lwp_unlock(l1); 826 } 827 lwp_lock(l2); 828 /* Inherit a processor-set */ 829 l2->l_psid = l1->l_psid; 830 /* Look for a CPU to start */ 831 l2->l_cpu = sched_takecpu(l2); 832 lwp_unlock_to(l2, l2->l_cpu->ci_schedstate.spc_mutex); 833 } 834 mutex_exit(p2->p_lock); 835 836 SDT_PROBE(proc,,,lwp_create, l2, 0,0,0,0); 837 838 mutex_enter(proc_lock); 839 LIST_INSERT_HEAD(&alllwp, l2, l_list); 840 mutex_exit(proc_lock); 841 842 SYSCALL_TIME_LWP_INIT(l2); 843 844 if (p2->p_emul->e_lwp_fork) 845 (*p2->p_emul->e_lwp_fork)(l1, l2); 846 847 return (0); 848 } 849 850 /* 851 * Called by MD code when a new LWP begins execution. Must be called 852 * with the previous LWP locked (so at splsched), or if there is no 853 * previous LWP, at splsched. 854 */ 855 void 856 lwp_startup(struct lwp *prev, struct lwp *new) 857 { 858 859 SDT_PROBE(proc,,,lwp_start, new, 0,0,0,0); 860 861 KASSERT(kpreempt_disabled()); 862 if (prev != NULL) { 863 /* 864 * Normalize the count of the spin-mutexes, it was 865 * increased in mi_switch(). Unmark the state of 866 * context switch - it is finished for previous LWP. 867 */ 868 curcpu()->ci_mtx_count++; 869 membar_exit(); 870 prev->l_ctxswtch = 0; 871 } 872 KPREEMPT_DISABLE(new); 873 spl0(); 874 pmap_activate(new); 875 876 /* Note trip through cpu_switchto(). */ 877 pserialize_switchpoint(); 878 879 LOCKDEBUG_BARRIER(NULL, 0); 880 KPREEMPT_ENABLE(new); 881 if ((new->l_pflag & LP_MPSAFE) == 0) { 882 KERNEL_LOCK(1, new); 883 } 884 } 885 886 /* 887 * Exit an LWP. 888 */ 889 void 890 lwp_exit(struct lwp *l) 891 { 892 struct proc *p = l->l_proc; 893 struct lwp *l2; 894 bool current; 895 896 current = (l == curlwp); 897 898 KASSERT(current || (l->l_stat == LSIDL && l->l_target_cpu == NULL)); 899 KASSERT(p == curproc); 900 901 SDT_PROBE(proc,,,lwp_exit, l, 0,0,0,0); 902 903 /* 904 * Verify that we hold no locks other than the kernel lock. 905 */ 906 LOCKDEBUG_BARRIER(&kernel_lock, 0); 907 908 /* 909 * If we are the last live LWP in a process, we need to exit the 910 * entire process. We do so with an exit status of zero, because 911 * it's a "controlled" exit, and because that's what Solaris does. 912 * 913 * We are not quite a zombie yet, but for accounting purposes we 914 * must increment the count of zombies here. 915 * 916 * Note: the last LWP's specificdata will be deleted here. 917 */ 918 mutex_enter(p->p_lock); 919 if (p->p_nlwps - p->p_nzlwps == 1) { 920 KASSERT(current == true); 921 /* XXXSMP kernel_lock not held */ 922 exit1(l, 0); 923 /* NOTREACHED */ 924 } 925 p->p_nzlwps++; 926 mutex_exit(p->p_lock); 927 928 if (p->p_emul->e_lwp_exit) 929 (*p->p_emul->e_lwp_exit)(l); 930 931 /* Drop filedesc reference. */ 932 fd_free(); 933 934 /* Delete the specificdata while it's still safe to sleep. */ 935 lwp_finispecific(l); 936 937 /* 938 * Release our cached credentials. 939 */ 940 kauth_cred_free(l->l_cred); 941 callout_destroy(&l->l_timeout_ch); 942 943 /* 944 * Remove the LWP from the global list. 945 * Free its LID from the PID namespace if needed. 946 */ 947 mutex_enter(proc_lock); 948 LIST_REMOVE(l, l_list); 949 if ((l->l_pflag & LP_PIDLID) != 0 && l->l_lid != p->p_pid) { 950 proc_free_pid(l->l_lid); 951 } 952 mutex_exit(proc_lock); 953 954 /* 955 * Get rid of all references to the LWP that others (e.g. procfs) 956 * may have, and mark the LWP as a zombie. If the LWP is detached, 957 * mark it waiting for collection in the proc structure. Note that 958 * before we can do that, we need to free any other dead, deatched 959 * LWP waiting to meet its maker. 960 */ 961 mutex_enter(p->p_lock); 962 lwp_drainrefs(l); 963 964 if ((l->l_prflag & LPR_DETACHED) != 0) { 965 while ((l2 = p->p_zomblwp) != NULL) { 966 p->p_zomblwp = NULL; 967 lwp_free(l2, false, false);/* releases proc mutex */ 968 mutex_enter(p->p_lock); 969 l->l_refcnt++; 970 lwp_drainrefs(l); 971 } 972 p->p_zomblwp = l; 973 } 974 975 /* 976 * If we find a pending signal for the process and we have been 977 * asked to check for signals, then we lose: arrange to have 978 * all other LWPs in the process check for signals. 979 */ 980 if ((l->l_flag & LW_PENDSIG) != 0 && 981 firstsig(&p->p_sigpend.sp_set) != 0) { 982 LIST_FOREACH(l2, &p->p_lwps, l_sibling) { 983 lwp_lock(l2); 984 l2->l_flag |= LW_PENDSIG; 985 lwp_unlock(l2); 986 } 987 } 988 989 /* 990 * Release any PCU resources before becoming a zombie. 991 */ 992 pcu_discard_all(l); 993 994 lwp_lock(l); 995 l->l_stat = LSZOMB; 996 if (l->l_name != NULL) { 997 strcpy(l->l_name, "(zombie)"); 998 } 999 lwp_unlock(l); 1000 p->p_nrlwps--; 1001 cv_broadcast(&p->p_lwpcv); 1002 if (l->l_lwpctl != NULL) 1003 l->l_lwpctl->lc_curcpu = LWPCTL_CPU_EXITED; 1004 mutex_exit(p->p_lock); 1005 1006 /* 1007 * We can no longer block. At this point, lwp_free() may already 1008 * be gunning for us. On a multi-CPU system, we may be off p_lwps. 1009 * 1010 * Free MD LWP resources. 1011 */ 1012 cpu_lwp_free(l, 0); 1013 1014 if (current) { 1015 pmap_deactivate(l); 1016 1017 /* 1018 * Release the kernel lock, and switch away into 1019 * oblivion. 1020 */ 1021 #ifdef notyet 1022 /* XXXSMP hold in lwp_userret() */ 1023 KERNEL_UNLOCK_LAST(l); 1024 #else 1025 KERNEL_UNLOCK_ALL(l, NULL); 1026 #endif 1027 lwp_exit_switchaway(l); 1028 } 1029 } 1030 1031 /* 1032 * Free a dead LWP's remaining resources. 1033 * 1034 * XXXLWP limits. 1035 */ 1036 void 1037 lwp_free(struct lwp *l, bool recycle, bool last) 1038 { 1039 struct proc *p = l->l_proc; 1040 struct rusage *ru; 1041 ksiginfoq_t kq; 1042 1043 KASSERT(l != curlwp); 1044 KASSERT(last || mutex_owned(p->p_lock)); 1045 1046 /* 1047 * If this was not the last LWP in the process, then adjust 1048 * counters and unlock. 1049 */ 1050 if (!last) { 1051 /* 1052 * Add the LWP's run time to the process' base value. 1053 * This needs to co-incide with coming off p_lwps. 1054 */ 1055 bintime_add(&p->p_rtime, &l->l_rtime); 1056 p->p_pctcpu += l->l_pctcpu; 1057 ru = &p->p_stats->p_ru; 1058 ruadd(ru, &l->l_ru); 1059 ru->ru_nvcsw += (l->l_ncsw - l->l_nivcsw); 1060 ru->ru_nivcsw += l->l_nivcsw; 1061 LIST_REMOVE(l, l_sibling); 1062 p->p_nlwps--; 1063 p->p_nzlwps--; 1064 if ((l->l_prflag & LPR_DETACHED) != 0) 1065 p->p_ndlwps--; 1066 1067 /* 1068 * Have any LWPs sleeping in lwp_wait() recheck for 1069 * deadlock. 1070 */ 1071 cv_broadcast(&p->p_lwpcv); 1072 mutex_exit(p->p_lock); 1073 } 1074 1075 #ifdef MULTIPROCESSOR 1076 /* 1077 * In the unlikely event that the LWP is still on the CPU, 1078 * then spin until it has switched away. We need to release 1079 * all locks to avoid deadlock against interrupt handlers on 1080 * the target CPU. 1081 */ 1082 if ((l->l_pflag & LP_RUNNING) != 0 || l->l_cpu->ci_curlwp == l) { 1083 int count; 1084 (void)count; /* XXXgcc */ 1085 KERNEL_UNLOCK_ALL(curlwp, &count); 1086 while ((l->l_pflag & LP_RUNNING) != 0 || 1087 l->l_cpu->ci_curlwp == l) 1088 SPINLOCK_BACKOFF_HOOK; 1089 KERNEL_LOCK(count, curlwp); 1090 } 1091 #endif 1092 1093 /* 1094 * Destroy the LWP's remaining signal information. 1095 */ 1096 ksiginfo_queue_init(&kq); 1097 sigclear(&l->l_sigpend, NULL, &kq); 1098 ksiginfo_queue_drain(&kq); 1099 cv_destroy(&l->l_sigcv); 1100 1101 /* 1102 * Free lwpctl structure and affinity. 1103 */ 1104 if (l->l_lwpctl) { 1105 lwp_ctl_free(l); 1106 } 1107 if (l->l_affinity) { 1108 kcpuset_unuse(l->l_affinity, NULL); 1109 l->l_affinity = NULL; 1110 } 1111 1112 /* 1113 * Free the LWP's turnstile and the LWP structure itself unless the 1114 * caller wants to recycle them. Also, free the scheduler specific 1115 * data. 1116 * 1117 * We can't return turnstile0 to the pool (it didn't come from it), 1118 * so if it comes up just drop it quietly and move on. 1119 * 1120 * We don't recycle the VM resources at this time. 1121 */ 1122 1123 if (!recycle && l->l_ts != &turnstile0) 1124 pool_cache_put(turnstile_cache, l->l_ts); 1125 if (l->l_name != NULL) 1126 kmem_free(l->l_name, MAXCOMLEN); 1127 1128 cpu_lwp_free2(l); 1129 uvm_lwp_exit(l); 1130 1131 KASSERT(SLIST_EMPTY(&l->l_pi_lenders)); 1132 KASSERT(l->l_inheritedprio == -1); 1133 KASSERT(l->l_blcnt == 0); 1134 kdtrace_thread_dtor(NULL, l); 1135 if (!recycle) 1136 pool_cache_put(lwp_cache, l); 1137 } 1138 1139 /* 1140 * Migrate the LWP to the another CPU. Unlocks the LWP. 1141 */ 1142 void 1143 lwp_migrate(lwp_t *l, struct cpu_info *tci) 1144 { 1145 struct schedstate_percpu *tspc; 1146 int lstat = l->l_stat; 1147 1148 KASSERT(lwp_locked(l, NULL)); 1149 KASSERT(tci != NULL); 1150 1151 /* If LWP is still on the CPU, it must be handled like LSONPROC */ 1152 if ((l->l_pflag & LP_RUNNING) != 0) { 1153 lstat = LSONPROC; 1154 } 1155 1156 /* 1157 * The destination CPU could be changed while previous migration 1158 * was not finished. 1159 */ 1160 if (l->l_target_cpu != NULL) { 1161 l->l_target_cpu = tci; 1162 lwp_unlock(l); 1163 return; 1164 } 1165 1166 /* Nothing to do if trying to migrate to the same CPU */ 1167 if (l->l_cpu == tci) { 1168 lwp_unlock(l); 1169 return; 1170 } 1171 1172 KASSERT(l->l_target_cpu == NULL); 1173 tspc = &tci->ci_schedstate; 1174 switch (lstat) { 1175 case LSRUN: 1176 l->l_target_cpu = tci; 1177 break; 1178 case LSIDL: 1179 l->l_cpu = tci; 1180 lwp_unlock_to(l, tspc->spc_mutex); 1181 return; 1182 case LSSLEEP: 1183 l->l_cpu = tci; 1184 break; 1185 case LSSTOP: 1186 case LSSUSPENDED: 1187 l->l_cpu = tci; 1188 if (l->l_wchan == NULL) { 1189 lwp_unlock_to(l, tspc->spc_lwplock); 1190 return; 1191 } 1192 break; 1193 case LSONPROC: 1194 l->l_target_cpu = tci; 1195 spc_lock(l->l_cpu); 1196 cpu_need_resched(l->l_cpu, RESCHED_KPREEMPT); 1197 spc_unlock(l->l_cpu); 1198 break; 1199 } 1200 lwp_unlock(l); 1201 } 1202 1203 /* 1204 * Find the LWP in the process. Arguments may be zero, in such case, 1205 * the calling process and first LWP in the list will be used. 1206 * On success - returns proc locked. 1207 */ 1208 struct lwp * 1209 lwp_find2(pid_t pid, lwpid_t lid) 1210 { 1211 proc_t *p; 1212 lwp_t *l; 1213 1214 /* Find the process. */ 1215 if (pid != 0) { 1216 mutex_enter(proc_lock); 1217 p = proc_find(pid); 1218 if (p == NULL) { 1219 mutex_exit(proc_lock); 1220 return NULL; 1221 } 1222 mutex_enter(p->p_lock); 1223 mutex_exit(proc_lock); 1224 } else { 1225 p = curlwp->l_proc; 1226 mutex_enter(p->p_lock); 1227 } 1228 /* Find the thread. */ 1229 if (lid != 0) { 1230 l = lwp_find(p, lid); 1231 } else { 1232 l = LIST_FIRST(&p->p_lwps); 1233 } 1234 if (l == NULL) { 1235 mutex_exit(p->p_lock); 1236 } 1237 return l; 1238 } 1239 1240 /* 1241 * Look up a live LWP within the specified process, and return it locked. 1242 * 1243 * Must be called with p->p_lock held. 1244 */ 1245 struct lwp * 1246 lwp_find(struct proc *p, lwpid_t id) 1247 { 1248 struct lwp *l; 1249 1250 KASSERT(mutex_owned(p->p_lock)); 1251 1252 LIST_FOREACH(l, &p->p_lwps, l_sibling) { 1253 if (l->l_lid == id) 1254 break; 1255 } 1256 1257 /* 1258 * No need to lock - all of these conditions will 1259 * be visible with the process level mutex held. 1260 */ 1261 if (l != NULL && (l->l_stat == LSIDL || l->l_stat == LSZOMB)) 1262 l = NULL; 1263 1264 return l; 1265 } 1266 1267 /* 1268 * Update an LWP's cached credentials to mirror the process' master copy. 1269 * 1270 * This happens early in the syscall path, on user trap, and on LWP 1271 * creation. A long-running LWP can also voluntarily choose to update 1272 * it's credentials by calling this routine. This may be called from 1273 * LWP_CACHE_CREDS(), which checks l->l_cred != p->p_cred beforehand. 1274 */ 1275 void 1276 lwp_update_creds(struct lwp *l) 1277 { 1278 kauth_cred_t oc; 1279 struct proc *p; 1280 1281 p = l->l_proc; 1282 oc = l->l_cred; 1283 1284 mutex_enter(p->p_lock); 1285 kauth_cred_hold(p->p_cred); 1286 l->l_cred = p->p_cred; 1287 l->l_prflag &= ~LPR_CRMOD; 1288 mutex_exit(p->p_lock); 1289 if (oc != NULL) 1290 kauth_cred_free(oc); 1291 } 1292 1293 /* 1294 * Verify that an LWP is locked, and optionally verify that the lock matches 1295 * one we specify. 1296 */ 1297 int 1298 lwp_locked(struct lwp *l, kmutex_t *mtx) 1299 { 1300 kmutex_t *cur = l->l_mutex; 1301 1302 return mutex_owned(cur) && (mtx == cur || mtx == NULL); 1303 } 1304 1305 /* 1306 * Lend a new mutex to an LWP. The old mutex must be held. 1307 */ 1308 void 1309 lwp_setlock(struct lwp *l, kmutex_t *new) 1310 { 1311 1312 KASSERT(mutex_owned(l->l_mutex)); 1313 1314 membar_exit(); 1315 l->l_mutex = new; 1316 } 1317 1318 /* 1319 * Lend a new mutex to an LWP, and release the old mutex. The old mutex 1320 * must be held. 1321 */ 1322 void 1323 lwp_unlock_to(struct lwp *l, kmutex_t *new) 1324 { 1325 kmutex_t *old; 1326 1327 KASSERT(lwp_locked(l, NULL)); 1328 1329 old = l->l_mutex; 1330 membar_exit(); 1331 l->l_mutex = new; 1332 mutex_spin_exit(old); 1333 } 1334 1335 int 1336 lwp_trylock(struct lwp *l) 1337 { 1338 kmutex_t *old; 1339 1340 for (;;) { 1341 if (!mutex_tryenter(old = l->l_mutex)) 1342 return 0; 1343 if (__predict_true(l->l_mutex == old)) 1344 return 1; 1345 mutex_spin_exit(old); 1346 } 1347 } 1348 1349 void 1350 lwp_unsleep(lwp_t *l, bool cleanup) 1351 { 1352 1353 KASSERT(mutex_owned(l->l_mutex)); 1354 (*l->l_syncobj->sobj_unsleep)(l, cleanup); 1355 } 1356 1357 /* 1358 * Handle exceptions for mi_userret(). Called if a member of LW_USERRET is 1359 * set. 1360 */ 1361 void 1362 lwp_userret(struct lwp *l) 1363 { 1364 struct proc *p; 1365 int sig; 1366 1367 KASSERT(l == curlwp); 1368 KASSERT(l->l_stat == LSONPROC); 1369 p = l->l_proc; 1370 1371 #ifndef __HAVE_FAST_SOFTINTS 1372 /* Run pending soft interrupts. */ 1373 if (l->l_cpu->ci_data.cpu_softints != 0) 1374 softint_overlay(); 1375 #endif 1376 1377 #ifdef KERN_SA 1378 /* Generate UNBLOCKED upcall if needed */ 1379 if (l->l_flag & LW_SA_BLOCKING) { 1380 sa_unblock_userret(l); 1381 /* NOTREACHED */ 1382 } 1383 #endif 1384 1385 /* 1386 * It should be safe to do this read unlocked on a multiprocessor 1387 * system.. 1388 * 1389 * LW_SA_UPCALL will be handled after the while() loop, so don't 1390 * consider it now. 1391 */ 1392 while ((l->l_flag & (LW_USERRET & ~(LW_SA_UPCALL))) != 0) { 1393 /* 1394 * Process pending signals first, unless the process 1395 * is dumping core or exiting, where we will instead 1396 * enter the LW_WSUSPEND case below. 1397 */ 1398 if ((l->l_flag & (LW_PENDSIG | LW_WCORE | LW_WEXIT)) == 1399 LW_PENDSIG) { 1400 mutex_enter(p->p_lock); 1401 while ((sig = issignal(l)) != 0) 1402 postsig(sig); 1403 mutex_exit(p->p_lock); 1404 } 1405 1406 /* 1407 * Core-dump or suspend pending. 1408 * 1409 * In case of core dump, suspend ourselves, so that the kernel 1410 * stack and therefore the userland registers saved in the 1411 * trapframe are around for coredump() to write them out. 1412 * We also need to save any PCU resources that we have so that 1413 * they accessible for coredump(). We issue a wakeup on 1414 * p->p_lwpcv so that sigexit() will write the core file out 1415 * once all other LWPs are suspended. 1416 */ 1417 if ((l->l_flag & LW_WSUSPEND) != 0) { 1418 pcu_save_all(l); 1419 mutex_enter(p->p_lock); 1420 p->p_nrlwps--; 1421 cv_broadcast(&p->p_lwpcv); 1422 lwp_lock(l); 1423 l->l_stat = LSSUSPENDED; 1424 lwp_unlock(l); 1425 mutex_exit(p->p_lock); 1426 lwp_lock(l); 1427 mi_switch(l); 1428 } 1429 1430 /* Process is exiting. */ 1431 if ((l->l_flag & LW_WEXIT) != 0) { 1432 lwp_exit(l); 1433 KASSERT(0); 1434 /* NOTREACHED */ 1435 } 1436 1437 /* update lwpctl processor (for vfork child_return) */ 1438 if (l->l_flag & LW_LWPCTL) { 1439 lwp_lock(l); 1440 KASSERT(kpreempt_disabled()); 1441 l->l_lwpctl->lc_curcpu = (int)cpu_index(l->l_cpu); 1442 l->l_lwpctl->lc_pctr++; 1443 l->l_flag &= ~LW_LWPCTL; 1444 lwp_unlock(l); 1445 } 1446 } 1447 1448 #ifdef KERN_SA 1449 /* 1450 * Timer events are handled specially. We only try once to deliver 1451 * pending timer upcalls; if if fails, we can try again on the next 1452 * loop around. If we need to re-enter lwp_userret(), MD code will 1453 * bounce us back here through the trap path after we return. 1454 */ 1455 if (p->p_timerpend) 1456 timerupcall(l); 1457 if (l->l_flag & LW_SA_UPCALL) 1458 sa_upcall_userret(l); 1459 #endif /* KERN_SA */ 1460 } 1461 1462 /* 1463 * Force an LWP to enter the kernel, to take a trip through lwp_userret(). 1464 */ 1465 void 1466 lwp_need_userret(struct lwp *l) 1467 { 1468 KASSERT(lwp_locked(l, NULL)); 1469 1470 /* 1471 * Since the tests in lwp_userret() are done unlocked, make sure 1472 * that the condition will be seen before forcing the LWP to enter 1473 * kernel mode. 1474 */ 1475 membar_producer(); 1476 cpu_signotify(l); 1477 } 1478 1479 /* 1480 * Add one reference to an LWP. This will prevent the LWP from 1481 * exiting, thus keep the lwp structure and PCB around to inspect. 1482 */ 1483 void 1484 lwp_addref(struct lwp *l) 1485 { 1486 1487 KASSERT(mutex_owned(l->l_proc->p_lock)); 1488 KASSERT(l->l_stat != LSZOMB); 1489 KASSERT(l->l_refcnt != 0); 1490 1491 l->l_refcnt++; 1492 } 1493 1494 /* 1495 * Remove one reference to an LWP. If this is the last reference, 1496 * then we must finalize the LWP's death. 1497 */ 1498 void 1499 lwp_delref(struct lwp *l) 1500 { 1501 struct proc *p = l->l_proc; 1502 1503 mutex_enter(p->p_lock); 1504 lwp_delref2(l); 1505 mutex_exit(p->p_lock); 1506 } 1507 1508 /* 1509 * Remove one reference to an LWP. If this is the last reference, 1510 * then we must finalize the LWP's death. The proc mutex is held 1511 * on entry. 1512 */ 1513 void 1514 lwp_delref2(struct lwp *l) 1515 { 1516 struct proc *p = l->l_proc; 1517 1518 KASSERT(mutex_owned(p->p_lock)); 1519 KASSERT(l->l_stat != LSZOMB); 1520 KASSERT(l->l_refcnt > 0); 1521 if (--l->l_refcnt == 0) 1522 cv_broadcast(&p->p_lwpcv); 1523 } 1524 1525 /* 1526 * Drain all references to the current LWP. 1527 */ 1528 void 1529 lwp_drainrefs(struct lwp *l) 1530 { 1531 struct proc *p = l->l_proc; 1532 1533 KASSERT(mutex_owned(p->p_lock)); 1534 KASSERT(l->l_refcnt != 0); 1535 1536 l->l_refcnt--; 1537 while (l->l_refcnt != 0) 1538 cv_wait(&p->p_lwpcv, p->p_lock); 1539 } 1540 1541 /* 1542 * Return true if the specified LWP is 'alive'. Only p->p_lock need 1543 * be held. 1544 */ 1545 bool 1546 lwp_alive(lwp_t *l) 1547 { 1548 1549 KASSERT(mutex_owned(l->l_proc->p_lock)); 1550 1551 switch (l->l_stat) { 1552 case LSSLEEP: 1553 case LSRUN: 1554 case LSONPROC: 1555 case LSSTOP: 1556 case LSSUSPENDED: 1557 return true; 1558 default: 1559 return false; 1560 } 1561 } 1562 1563 /* 1564 * Return first live LWP in the process. 1565 */ 1566 lwp_t * 1567 lwp_find_first(proc_t *p) 1568 { 1569 lwp_t *l; 1570 1571 KASSERT(mutex_owned(p->p_lock)); 1572 1573 LIST_FOREACH(l, &p->p_lwps, l_sibling) { 1574 if (lwp_alive(l)) { 1575 return l; 1576 } 1577 } 1578 1579 return NULL; 1580 } 1581 1582 /* 1583 * Allocate a new lwpctl structure for a user LWP. 1584 */ 1585 int 1586 lwp_ctl_alloc(vaddr_t *uaddr) 1587 { 1588 lcproc_t *lp; 1589 u_int bit, i, offset; 1590 struct uvm_object *uao; 1591 int error; 1592 lcpage_t *lcp; 1593 proc_t *p; 1594 lwp_t *l; 1595 1596 l = curlwp; 1597 p = l->l_proc; 1598 1599 /* don't allow a vforked process to create lwp ctls */ 1600 if (p->p_lflag & PL_PPWAIT) 1601 return EBUSY; 1602 1603 if (l->l_lcpage != NULL) { 1604 lcp = l->l_lcpage; 1605 *uaddr = lcp->lcp_uaddr + (vaddr_t)l->l_lwpctl - lcp->lcp_kaddr; 1606 return 0; 1607 } 1608 1609 /* First time around, allocate header structure for the process. */ 1610 if ((lp = p->p_lwpctl) == NULL) { 1611 lp = kmem_alloc(sizeof(*lp), KM_SLEEP); 1612 mutex_init(&lp->lp_lock, MUTEX_DEFAULT, IPL_NONE); 1613 lp->lp_uao = NULL; 1614 TAILQ_INIT(&lp->lp_pages); 1615 mutex_enter(p->p_lock); 1616 if (p->p_lwpctl == NULL) { 1617 p->p_lwpctl = lp; 1618 mutex_exit(p->p_lock); 1619 } else { 1620 mutex_exit(p->p_lock); 1621 mutex_destroy(&lp->lp_lock); 1622 kmem_free(lp, sizeof(*lp)); 1623 lp = p->p_lwpctl; 1624 } 1625 } 1626 1627 /* 1628 * Set up an anonymous memory region to hold the shared pages. 1629 * Map them into the process' address space. The user vmspace 1630 * gets the first reference on the UAO. 1631 */ 1632 mutex_enter(&lp->lp_lock); 1633 if (lp->lp_uao == NULL) { 1634 lp->lp_uao = uao_create(LWPCTL_UAREA_SZ, 0); 1635 lp->lp_cur = 0; 1636 lp->lp_max = LWPCTL_UAREA_SZ; 1637 lp->lp_uva = p->p_emul->e_vm_default_addr(p, 1638 (vaddr_t)p->p_vmspace->vm_daddr, LWPCTL_UAREA_SZ); 1639 error = uvm_map(&p->p_vmspace->vm_map, &lp->lp_uva, 1640 LWPCTL_UAREA_SZ, lp->lp_uao, 0, 0, UVM_MAPFLAG(UVM_PROT_RW, 1641 UVM_PROT_RW, UVM_INH_NONE, UVM_ADV_NORMAL, 0)); 1642 if (error != 0) { 1643 uao_detach(lp->lp_uao); 1644 lp->lp_uao = NULL; 1645 mutex_exit(&lp->lp_lock); 1646 return error; 1647 } 1648 } 1649 1650 /* Get a free block and allocate for this LWP. */ 1651 TAILQ_FOREACH(lcp, &lp->lp_pages, lcp_chain) { 1652 if (lcp->lcp_nfree != 0) 1653 break; 1654 } 1655 if (lcp == NULL) { 1656 /* Nothing available - try to set up a free page. */ 1657 if (lp->lp_cur == lp->lp_max) { 1658 mutex_exit(&lp->lp_lock); 1659 return ENOMEM; 1660 } 1661 lcp = kmem_alloc(LWPCTL_LCPAGE_SZ, KM_SLEEP); 1662 if (lcp == NULL) { 1663 mutex_exit(&lp->lp_lock); 1664 return ENOMEM; 1665 } 1666 /* 1667 * Wire the next page down in kernel space. Since this 1668 * is a new mapping, we must add a reference. 1669 */ 1670 uao = lp->lp_uao; 1671 (*uao->pgops->pgo_reference)(uao); 1672 lcp->lcp_kaddr = vm_map_min(kernel_map); 1673 error = uvm_map(kernel_map, &lcp->lcp_kaddr, PAGE_SIZE, 1674 uao, lp->lp_cur, PAGE_SIZE, 1675 UVM_MAPFLAG(UVM_PROT_RW, UVM_PROT_RW, 1676 UVM_INH_NONE, UVM_ADV_RANDOM, 0)); 1677 if (error != 0) { 1678 mutex_exit(&lp->lp_lock); 1679 kmem_free(lcp, LWPCTL_LCPAGE_SZ); 1680 (*uao->pgops->pgo_detach)(uao); 1681 return error; 1682 } 1683 error = uvm_map_pageable(kernel_map, lcp->lcp_kaddr, 1684 lcp->lcp_kaddr + PAGE_SIZE, FALSE, 0); 1685 if (error != 0) { 1686 mutex_exit(&lp->lp_lock); 1687 uvm_unmap(kernel_map, lcp->lcp_kaddr, 1688 lcp->lcp_kaddr + PAGE_SIZE); 1689 kmem_free(lcp, LWPCTL_LCPAGE_SZ); 1690 return error; 1691 } 1692 /* Prepare the page descriptor and link into the list. */ 1693 lcp->lcp_uaddr = lp->lp_uva + lp->lp_cur; 1694 lp->lp_cur += PAGE_SIZE; 1695 lcp->lcp_nfree = LWPCTL_PER_PAGE; 1696 lcp->lcp_rotor = 0; 1697 memset(lcp->lcp_bitmap, 0xff, LWPCTL_BITMAP_SZ); 1698 TAILQ_INSERT_HEAD(&lp->lp_pages, lcp, lcp_chain); 1699 } 1700 for (i = lcp->lcp_rotor; lcp->lcp_bitmap[i] == 0;) { 1701 if (++i >= LWPCTL_BITMAP_ENTRIES) 1702 i = 0; 1703 } 1704 bit = ffs(lcp->lcp_bitmap[i]) - 1; 1705 lcp->lcp_bitmap[i] ^= (1 << bit); 1706 lcp->lcp_rotor = i; 1707 lcp->lcp_nfree--; 1708 l->l_lcpage = lcp; 1709 offset = (i << 5) + bit; 1710 l->l_lwpctl = (lwpctl_t *)lcp->lcp_kaddr + offset; 1711 *uaddr = lcp->lcp_uaddr + offset * sizeof(lwpctl_t); 1712 mutex_exit(&lp->lp_lock); 1713 1714 KPREEMPT_DISABLE(l); 1715 l->l_lwpctl->lc_curcpu = (int)curcpu()->ci_data.cpu_index; 1716 KPREEMPT_ENABLE(l); 1717 1718 return 0; 1719 } 1720 1721 /* 1722 * Free an lwpctl structure back to the per-process list. 1723 */ 1724 void 1725 lwp_ctl_free(lwp_t *l) 1726 { 1727 struct proc *p = l->l_proc; 1728 lcproc_t *lp; 1729 lcpage_t *lcp; 1730 u_int map, offset; 1731 1732 /* don't free a lwp context we borrowed for vfork */ 1733 if (p->p_lflag & PL_PPWAIT) { 1734 l->l_lwpctl = NULL; 1735 return; 1736 } 1737 1738 lp = p->p_lwpctl; 1739 KASSERT(lp != NULL); 1740 1741 lcp = l->l_lcpage; 1742 offset = (u_int)((lwpctl_t *)l->l_lwpctl - (lwpctl_t *)lcp->lcp_kaddr); 1743 KASSERT(offset < LWPCTL_PER_PAGE); 1744 1745 mutex_enter(&lp->lp_lock); 1746 lcp->lcp_nfree++; 1747 map = offset >> 5; 1748 lcp->lcp_bitmap[map] |= (1 << (offset & 31)); 1749 if (lcp->lcp_bitmap[lcp->lcp_rotor] == 0) 1750 lcp->lcp_rotor = map; 1751 if (TAILQ_FIRST(&lp->lp_pages)->lcp_nfree == 0) { 1752 TAILQ_REMOVE(&lp->lp_pages, lcp, lcp_chain); 1753 TAILQ_INSERT_HEAD(&lp->lp_pages, lcp, lcp_chain); 1754 } 1755 mutex_exit(&lp->lp_lock); 1756 } 1757 1758 /* 1759 * Process is exiting; tear down lwpctl state. This can only be safely 1760 * called by the last LWP in the process. 1761 */ 1762 void 1763 lwp_ctl_exit(void) 1764 { 1765 lcpage_t *lcp, *next; 1766 lcproc_t *lp; 1767 proc_t *p; 1768 lwp_t *l; 1769 1770 l = curlwp; 1771 l->l_lwpctl = NULL; 1772 l->l_lcpage = NULL; 1773 p = l->l_proc; 1774 lp = p->p_lwpctl; 1775 1776 KASSERT(lp != NULL); 1777 KASSERT(p->p_nlwps == 1); 1778 1779 for (lcp = TAILQ_FIRST(&lp->lp_pages); lcp != NULL; lcp = next) { 1780 next = TAILQ_NEXT(lcp, lcp_chain); 1781 uvm_unmap(kernel_map, lcp->lcp_kaddr, 1782 lcp->lcp_kaddr + PAGE_SIZE); 1783 kmem_free(lcp, LWPCTL_LCPAGE_SZ); 1784 } 1785 1786 if (lp->lp_uao != NULL) { 1787 uvm_unmap(&p->p_vmspace->vm_map, lp->lp_uva, 1788 lp->lp_uva + LWPCTL_UAREA_SZ); 1789 } 1790 1791 mutex_destroy(&lp->lp_lock); 1792 kmem_free(lp, sizeof(*lp)); 1793 p->p_lwpctl = NULL; 1794 } 1795 1796 /* 1797 * Return the current LWP's "preemption counter". Used to detect 1798 * preemption across operations that can tolerate preemption without 1799 * crashing, but which may generate incorrect results if preempted. 1800 */ 1801 uint64_t 1802 lwp_pctr(void) 1803 { 1804 1805 return curlwp->l_ncsw; 1806 } 1807 1808 /* 1809 * Set an LWP's private data pointer. 1810 */ 1811 int 1812 lwp_setprivate(struct lwp *l, void *ptr) 1813 { 1814 int error = 0; 1815 1816 l->l_private = ptr; 1817 #ifdef __HAVE_CPU_LWP_SETPRIVATE 1818 error = cpu_lwp_setprivate(l, ptr); 1819 #endif 1820 return error; 1821 } 1822 1823 #if defined(DDB) 1824 #include <machine/pcb.h> 1825 1826 void 1827 lwp_whatis(uintptr_t addr, void (*pr)(const char *, ...)) 1828 { 1829 lwp_t *l; 1830 1831 LIST_FOREACH(l, &alllwp, l_list) { 1832 uintptr_t stack = (uintptr_t)KSTACK_LOWEST_ADDR(l); 1833 1834 if (addr < stack || stack + KSTACK_SIZE <= addr) { 1835 continue; 1836 } 1837 (*pr)("%p is %p+%zu, LWP %p's stack\n", 1838 (void *)addr, (void *)stack, 1839 (size_t)(addr - stack), l); 1840 } 1841 } 1842 #endif /* defined(DDB) */ 1843