1 /* $NetBSD: kern_lwp.c,v 1.185 2016/07/03 14:24:58 christos Exp $ */ 2 3 /*- 4 * Copyright (c) 2001, 2006, 2007, 2008, 2009 The NetBSD Foundation, Inc. 5 * All rights reserved. 6 * 7 * This code is derived from software contributed to The NetBSD Foundation 8 * by Nathan J. Williams, and Andrew Doran. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS 20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 29 * POSSIBILITY OF SUCH DAMAGE. 30 */ 31 32 /* 33 * Overview 34 * 35 * Lightweight processes (LWPs) are the basic unit or thread of 36 * execution within the kernel. The core state of an LWP is described 37 * by "struct lwp", also known as lwp_t. 38 * 39 * Each LWP is contained within a process (described by "struct proc"), 40 * Every process contains at least one LWP, but may contain more. The 41 * process describes attributes shared among all of its LWPs such as a 42 * private address space, global execution state (stopped, active, 43 * zombie, ...), signal disposition and so on. On a multiprocessor 44 * machine, multiple LWPs be executing concurrently in the kernel. 45 * 46 * Execution states 47 * 48 * At any given time, an LWP has overall state that is described by 49 * lwp::l_stat. The states are broken into two sets below. The first 50 * set is guaranteed to represent the absolute, current state of the 51 * LWP: 52 * 53 * LSONPROC 54 * 55 * On processor: the LWP is executing on a CPU, either in the 56 * kernel or in user space. 57 * 58 * LSRUN 59 * 60 * Runnable: the LWP is parked on a run queue, and may soon be 61 * chosen to run by an idle processor, or by a processor that 62 * has been asked to preempt a currently runnning but lower 63 * priority LWP. 64 * 65 * LSIDL 66 * 67 * Idle: the LWP has been created but has not yet executed, 68 * or it has ceased executing a unit of work and is waiting 69 * to be started again. 70 * 71 * LSSUSPENDED: 72 * 73 * Suspended: the LWP has had its execution suspended by 74 * another LWP in the same process using the _lwp_suspend() 75 * system call. User-level LWPs also enter the suspended 76 * state when the system is shutting down. 77 * 78 * The second set represent a "statement of intent" on behalf of the 79 * LWP. The LWP may in fact be executing on a processor, may be 80 * sleeping or idle. It is expected to take the necessary action to 81 * stop executing or become "running" again within a short timeframe. 82 * The LP_RUNNING flag in lwp::l_pflag indicates that an LWP is running. 83 * Importantly, it indicates that its state is tied to a CPU. 84 * 85 * LSZOMB: 86 * 87 * Dead or dying: the LWP has released most of its resources 88 * and is about to switch away into oblivion, or has already 89 * switched away. When it switches away, its few remaining 90 * resources can be collected. 91 * 92 * LSSLEEP: 93 * 94 * Sleeping: the LWP has entered itself onto a sleep queue, and 95 * has switched away or will switch away shortly to allow other 96 * LWPs to run on the CPU. 97 * 98 * LSSTOP: 99 * 100 * Stopped: the LWP has been stopped as a result of a job 101 * control signal, or as a result of the ptrace() interface. 102 * 103 * Stopped LWPs may run briefly within the kernel to handle 104 * signals that they receive, but will not return to user space 105 * until their process' state is changed away from stopped. 106 * 107 * Single LWPs within a process can not be set stopped 108 * selectively: all actions that can stop or continue LWPs 109 * occur at the process level. 110 * 111 * State transitions 112 * 113 * Note that the LSSTOP state may only be set when returning to 114 * user space in userret(), or when sleeping interruptably. The 115 * LSSUSPENDED state may only be set in userret(). Before setting 116 * those states, we try to ensure that the LWPs will release all 117 * locks that they hold, and at a minimum try to ensure that the 118 * LWP can be set runnable again by a signal. 119 * 120 * LWPs may transition states in the following ways: 121 * 122 * RUN -------> ONPROC ONPROC -----> RUN 123 * > SLEEP 124 * > STOPPED 125 * > SUSPENDED 126 * > ZOMB 127 * > IDL (special cases) 128 * 129 * STOPPED ---> RUN SUSPENDED --> RUN 130 * > SLEEP 131 * 132 * SLEEP -----> ONPROC IDL --------> RUN 133 * > RUN > SUSPENDED 134 * > STOPPED > STOPPED 135 * > ONPROC (special cases) 136 * 137 * Some state transitions are only possible with kernel threads (eg 138 * ONPROC -> IDL) and happen under tightly controlled circumstances 139 * free of unwanted side effects. 140 * 141 * Migration 142 * 143 * Migration of threads from one CPU to another could be performed 144 * internally by the scheduler via sched_takecpu() or sched_catchlwp() 145 * functions. The universal lwp_migrate() function should be used for 146 * any other cases. Subsystems in the kernel must be aware that CPU 147 * of LWP may change, while it is not locked. 148 * 149 * Locking 150 * 151 * The majority of fields in 'struct lwp' are covered by a single, 152 * general spin lock pointed to by lwp::l_mutex. The locks covering 153 * each field are documented in sys/lwp.h. 154 * 155 * State transitions must be made with the LWP's general lock held, 156 * and may cause the LWP's lock pointer to change. Manipulation of 157 * the general lock is not performed directly, but through calls to 158 * lwp_lock(), lwp_unlock() and others. It should be noted that the 159 * adaptive locks are not allowed to be released while the LWP's lock 160 * is being held (unlike for other spin-locks). 161 * 162 * States and their associated locks: 163 * 164 * LSONPROC, LSZOMB: 165 * 166 * Always covered by spc_lwplock, which protects running LWPs. 167 * This is a per-CPU lock and matches lwp::l_cpu. 168 * 169 * LSIDL, LSRUN: 170 * 171 * Always covered by spc_mutex, which protects the run queues. 172 * This is a per-CPU lock and matches lwp::l_cpu. 173 * 174 * LSSLEEP: 175 * 176 * Covered by a lock associated with the sleep queue that the 177 * LWP resides on. Matches lwp::l_sleepq::sq_mutex. 178 * 179 * LSSTOP, LSSUSPENDED: 180 * 181 * If the LWP was previously sleeping (l_wchan != NULL), then 182 * l_mutex references the sleep queue lock. If the LWP was 183 * runnable or on the CPU when halted, or has been removed from 184 * the sleep queue since halted, then the lock is spc_lwplock. 185 * 186 * The lock order is as follows: 187 * 188 * spc::spc_lwplock -> 189 * sleeptab::st_mutex -> 190 * tschain_t::tc_mutex -> 191 * spc::spc_mutex 192 * 193 * Each process has an scheduler state lock (proc::p_lock), and a 194 * number of counters on LWPs and their states: p_nzlwps, p_nrlwps, and 195 * so on. When an LWP is to be entered into or removed from one of the 196 * following states, p_lock must be held and the process wide counters 197 * adjusted: 198 * 199 * LSIDL, LSZOMB, LSSTOP, LSSUSPENDED 200 * 201 * (But not always for kernel threads. There are some special cases 202 * as mentioned above. See kern_softint.c.) 203 * 204 * Note that an LWP is considered running or likely to run soon if in 205 * one of the following states. This affects the value of p_nrlwps: 206 * 207 * LSRUN, LSONPROC, LSSLEEP 208 * 209 * p_lock does not need to be held when transitioning among these 210 * three states, hence p_lock is rarely taken for state transitions. 211 */ 212 213 #include <sys/cdefs.h> 214 __KERNEL_RCSID(0, "$NetBSD: kern_lwp.c,v 1.185 2016/07/03 14:24:58 christos Exp $"); 215 216 #include "opt_ddb.h" 217 #include "opt_lockdebug.h" 218 #include "opt_dtrace.h" 219 220 #define _LWP_API_PRIVATE 221 222 #include <sys/param.h> 223 #include <sys/systm.h> 224 #include <sys/cpu.h> 225 #include <sys/pool.h> 226 #include <sys/proc.h> 227 #include <sys/syscallargs.h> 228 #include <sys/syscall_stats.h> 229 #include <sys/kauth.h> 230 #include <sys/pserialize.h> 231 #include <sys/sleepq.h> 232 #include <sys/lockdebug.h> 233 #include <sys/kmem.h> 234 #include <sys/pset.h> 235 #include <sys/intr.h> 236 #include <sys/lwpctl.h> 237 #include <sys/atomic.h> 238 #include <sys/filedesc.h> 239 #include <sys/dtrace_bsd.h> 240 #include <sys/sdt.h> 241 #include <sys/xcall.h> 242 #include <sys/uidinfo.h> 243 #include <sys/sysctl.h> 244 245 #include <uvm/uvm_extern.h> 246 #include <uvm/uvm_object.h> 247 248 static pool_cache_t lwp_cache __read_mostly; 249 struct lwplist alllwp __cacheline_aligned; 250 251 static void lwp_dtor(void *, void *); 252 253 /* DTrace proc provider probes */ 254 SDT_PROVIDER_DEFINE(proc); 255 256 SDT_PROBE_DEFINE1(proc, kernel, , lwp__create, "struct lwp *"); 257 SDT_PROBE_DEFINE1(proc, kernel, , lwp__start, "struct lwp *"); 258 SDT_PROBE_DEFINE1(proc, kernel, , lwp__exit, "struct lwp *"); 259 260 struct turnstile turnstile0; 261 struct lwp lwp0 __aligned(MIN_LWP_ALIGNMENT) = { 262 #ifdef LWP0_CPU_INFO 263 .l_cpu = LWP0_CPU_INFO, 264 #endif 265 #ifdef LWP0_MD_INITIALIZER 266 .l_md = LWP0_MD_INITIALIZER, 267 #endif 268 .l_proc = &proc0, 269 .l_lid = 1, 270 .l_flag = LW_SYSTEM, 271 .l_stat = LSONPROC, 272 .l_ts = &turnstile0, 273 .l_syncobj = &sched_syncobj, 274 .l_refcnt = 1, 275 .l_priority = PRI_USER + NPRI_USER - 1, 276 .l_inheritedprio = -1, 277 .l_class = SCHED_OTHER, 278 .l_psid = PS_NONE, 279 .l_pi_lenders = SLIST_HEAD_INITIALIZER(&lwp0.l_pi_lenders), 280 .l_name = __UNCONST("swapper"), 281 .l_fd = &filedesc0, 282 }; 283 284 static int sysctl_kern_maxlwp(SYSCTLFN_PROTO); 285 286 /* 287 * sysctl helper routine for kern.maxlwp. Ensures that the new 288 * values are not too low or too high. 289 */ 290 static int 291 sysctl_kern_maxlwp(SYSCTLFN_ARGS) 292 { 293 int error, nmaxlwp; 294 struct sysctlnode node; 295 296 nmaxlwp = maxlwp; 297 node = *rnode; 298 node.sysctl_data = &nmaxlwp; 299 error = sysctl_lookup(SYSCTLFN_CALL(&node)); 300 if (error || newp == NULL) 301 return error; 302 303 if (nmaxlwp < 0 || nmaxlwp >= 65536) 304 return EINVAL; 305 if (nmaxlwp > cpu_maxlwp()) 306 return EINVAL; 307 maxlwp = nmaxlwp; 308 309 return 0; 310 } 311 312 static void 313 sysctl_kern_lwp_setup(void) 314 { 315 struct sysctllog *clog = NULL; 316 317 sysctl_createv(&clog, 0, NULL, NULL, 318 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, 319 CTLTYPE_INT, "maxlwp", 320 SYSCTL_DESCR("Maximum number of simultaneous threads"), 321 sysctl_kern_maxlwp, 0, NULL, 0, 322 CTL_KERN, CTL_CREATE, CTL_EOL); 323 } 324 325 void 326 lwpinit(void) 327 { 328 329 LIST_INIT(&alllwp); 330 lwpinit_specificdata(); 331 lwp_sys_init(); 332 lwp_cache = pool_cache_init(sizeof(lwp_t), MIN_LWP_ALIGNMENT, 0, 0, 333 "lwppl", NULL, IPL_NONE, NULL, lwp_dtor, NULL); 334 335 maxlwp = cpu_maxlwp(); 336 sysctl_kern_lwp_setup(); 337 } 338 339 void 340 lwp0_init(void) 341 { 342 struct lwp *l = &lwp0; 343 344 KASSERT((void *)uvm_lwp_getuarea(l) != NULL); 345 KASSERT(l->l_lid == proc0.p_nlwpid); 346 347 LIST_INSERT_HEAD(&alllwp, l, l_list); 348 349 callout_init(&l->l_timeout_ch, CALLOUT_MPSAFE); 350 callout_setfunc(&l->l_timeout_ch, sleepq_timeout, l); 351 cv_init(&l->l_sigcv, "sigwait"); 352 cv_init(&l->l_waitcv, "vfork"); 353 354 kauth_cred_hold(proc0.p_cred); 355 l->l_cred = proc0.p_cred; 356 357 kdtrace_thread_ctor(NULL, l); 358 lwp_initspecific(l); 359 360 SYSCALL_TIME_LWP_INIT(l); 361 } 362 363 static void 364 lwp_dtor(void *arg, void *obj) 365 { 366 lwp_t *l = obj; 367 uint64_t where; 368 (void)l; 369 370 /* 371 * Provide a barrier to ensure that all mutex_oncpu() and rw_oncpu() 372 * calls will exit before memory of LWP is returned to the pool, where 373 * KVA of LWP structure might be freed and re-used for other purposes. 374 * Kernel preemption is disabled around mutex_oncpu() and rw_oncpu() 375 * callers, therefore cross-call to all CPUs will do the job. Also, 376 * the value of l->l_cpu must be still valid at this point. 377 */ 378 KASSERT(l->l_cpu != NULL); 379 where = xc_broadcast(0, (xcfunc_t)nullop, NULL, NULL); 380 xc_wait(where); 381 } 382 383 /* 384 * Set an suspended. 385 * 386 * Must be called with p_lock held, and the LWP locked. Will unlock the 387 * LWP before return. 388 */ 389 int 390 lwp_suspend(struct lwp *curl, struct lwp *t) 391 { 392 int error; 393 394 KASSERT(mutex_owned(t->l_proc->p_lock)); 395 KASSERT(lwp_locked(t, NULL)); 396 397 KASSERT(curl != t || curl->l_stat == LSONPROC); 398 399 /* 400 * If the current LWP has been told to exit, we must not suspend anyone 401 * else or deadlock could occur. We won't return to userspace. 402 */ 403 if ((curl->l_flag & (LW_WEXIT | LW_WCORE)) != 0) { 404 lwp_unlock(t); 405 return (EDEADLK); 406 } 407 408 error = 0; 409 410 switch (t->l_stat) { 411 case LSRUN: 412 case LSONPROC: 413 t->l_flag |= LW_WSUSPEND; 414 lwp_need_userret(t); 415 lwp_unlock(t); 416 break; 417 418 case LSSLEEP: 419 t->l_flag |= LW_WSUSPEND; 420 421 /* 422 * Kick the LWP and try to get it to the kernel boundary 423 * so that it will release any locks that it holds. 424 * setrunnable() will release the lock. 425 */ 426 if ((t->l_flag & LW_SINTR) != 0) 427 setrunnable(t); 428 else 429 lwp_unlock(t); 430 break; 431 432 case LSSUSPENDED: 433 lwp_unlock(t); 434 break; 435 436 case LSSTOP: 437 t->l_flag |= LW_WSUSPEND; 438 setrunnable(t); 439 break; 440 441 case LSIDL: 442 case LSZOMB: 443 error = EINTR; /* It's what Solaris does..... */ 444 lwp_unlock(t); 445 break; 446 } 447 448 return (error); 449 } 450 451 /* 452 * Restart a suspended LWP. 453 * 454 * Must be called with p_lock held, and the LWP locked. Will unlock the 455 * LWP before return. 456 */ 457 void 458 lwp_continue(struct lwp *l) 459 { 460 461 KASSERT(mutex_owned(l->l_proc->p_lock)); 462 KASSERT(lwp_locked(l, NULL)); 463 464 /* If rebooting or not suspended, then just bail out. */ 465 if ((l->l_flag & LW_WREBOOT) != 0) { 466 lwp_unlock(l); 467 return; 468 } 469 470 l->l_flag &= ~LW_WSUSPEND; 471 472 if (l->l_stat != LSSUSPENDED) { 473 lwp_unlock(l); 474 return; 475 } 476 477 /* setrunnable() will release the lock. */ 478 setrunnable(l); 479 } 480 481 /* 482 * Restart a stopped LWP. 483 * 484 * Must be called with p_lock held, and the LWP NOT locked. Will unlock the 485 * LWP before return. 486 */ 487 void 488 lwp_unstop(struct lwp *l) 489 { 490 struct proc *p = l->l_proc; 491 492 KASSERT(mutex_owned(proc_lock)); 493 KASSERT(mutex_owned(p->p_lock)); 494 495 lwp_lock(l); 496 497 /* If not stopped, then just bail out. */ 498 if (l->l_stat != LSSTOP) { 499 lwp_unlock(l); 500 return; 501 } 502 503 p->p_stat = SACTIVE; 504 p->p_sflag &= ~PS_STOPPING; 505 506 if (!p->p_waited) 507 p->p_pptr->p_nstopchild--; 508 509 if (l->l_wchan == NULL) { 510 /* setrunnable() will release the lock. */ 511 setrunnable(l); 512 } else if (p->p_xsig && (l->l_flag & LW_SINTR) != 0) { 513 /* setrunnable() so we can receive the signal */ 514 setrunnable(l); 515 } else { 516 l->l_stat = LSSLEEP; 517 p->p_nrlwps++; 518 lwp_unlock(l); 519 } 520 } 521 522 /* 523 * Wait for an LWP within the current process to exit. If 'lid' is 524 * non-zero, we are waiting for a specific LWP. 525 * 526 * Must be called with p->p_lock held. 527 */ 528 int 529 lwp_wait(struct lwp *l, lwpid_t lid, lwpid_t *departed, bool exiting) 530 { 531 const lwpid_t curlid = l->l_lid; 532 proc_t *p = l->l_proc; 533 lwp_t *l2; 534 int error; 535 536 KASSERT(mutex_owned(p->p_lock)); 537 538 p->p_nlwpwait++; 539 l->l_waitingfor = lid; 540 541 for (;;) { 542 int nfound; 543 544 /* 545 * Avoid a race between exit1() and sigexit(): if the 546 * process is dumping core, then we need to bail out: call 547 * into lwp_userret() where we will be suspended until the 548 * deed is done. 549 */ 550 if ((p->p_sflag & PS_WCORE) != 0) { 551 mutex_exit(p->p_lock); 552 lwp_userret(l); 553 KASSERT(false); 554 } 555 556 /* 557 * First off, drain any detached LWP that is waiting to be 558 * reaped. 559 */ 560 while ((l2 = p->p_zomblwp) != NULL) { 561 p->p_zomblwp = NULL; 562 lwp_free(l2, false, false);/* releases proc mutex */ 563 mutex_enter(p->p_lock); 564 } 565 566 /* 567 * Now look for an LWP to collect. If the whole process is 568 * exiting, count detached LWPs as eligible to be collected, 569 * but don't drain them here. 570 */ 571 nfound = 0; 572 error = 0; 573 LIST_FOREACH(l2, &p->p_lwps, l_sibling) { 574 /* 575 * If a specific wait and the target is waiting on 576 * us, then avoid deadlock. This also traps LWPs 577 * that try to wait on themselves. 578 * 579 * Note that this does not handle more complicated 580 * cycles, like: t1 -> t2 -> t3 -> t1. The process 581 * can still be killed so it is not a major problem. 582 */ 583 if (l2->l_lid == lid && l2->l_waitingfor == curlid) { 584 error = EDEADLK; 585 break; 586 } 587 if (l2 == l) 588 continue; 589 if ((l2->l_prflag & LPR_DETACHED) != 0) { 590 nfound += exiting; 591 continue; 592 } 593 if (lid != 0) { 594 if (l2->l_lid != lid) 595 continue; 596 /* 597 * Mark this LWP as the first waiter, if there 598 * is no other. 599 */ 600 if (l2->l_waiter == 0) 601 l2->l_waiter = curlid; 602 } else if (l2->l_waiter != 0) { 603 /* 604 * It already has a waiter - so don't 605 * collect it. If the waiter doesn't 606 * grab it we'll get another chance 607 * later. 608 */ 609 nfound++; 610 continue; 611 } 612 nfound++; 613 614 /* No need to lock the LWP in order to see LSZOMB. */ 615 if (l2->l_stat != LSZOMB) 616 continue; 617 618 /* 619 * We're no longer waiting. Reset the "first waiter" 620 * pointer on the target, in case it was us. 621 */ 622 l->l_waitingfor = 0; 623 l2->l_waiter = 0; 624 p->p_nlwpwait--; 625 if (departed) 626 *departed = l2->l_lid; 627 sched_lwp_collect(l2); 628 629 /* lwp_free() releases the proc lock. */ 630 lwp_free(l2, false, false); 631 mutex_enter(p->p_lock); 632 return 0; 633 } 634 635 if (error != 0) 636 break; 637 if (nfound == 0) { 638 error = ESRCH; 639 break; 640 } 641 642 /* 643 * Note: since the lock will be dropped, need to restart on 644 * wakeup to run all LWPs again, e.g. there may be new LWPs. 645 */ 646 if (exiting) { 647 KASSERT(p->p_nlwps > 1); 648 cv_wait(&p->p_lwpcv, p->p_lock); 649 error = EAGAIN; 650 break; 651 } 652 653 /* 654 * If all other LWPs are waiting for exits or suspends 655 * and the supply of zombies and potential zombies is 656 * exhausted, then we are about to deadlock. 657 * 658 * If the process is exiting (and this LWP is not the one 659 * that is coordinating the exit) then bail out now. 660 */ 661 if ((p->p_sflag & PS_WEXIT) != 0 || 662 p->p_nrlwps + p->p_nzlwps - p->p_ndlwps <= p->p_nlwpwait) { 663 error = EDEADLK; 664 break; 665 } 666 667 /* 668 * Sit around and wait for something to happen. We'll be 669 * awoken if any of the conditions examined change: if an 670 * LWP exits, is collected, or is detached. 671 */ 672 if ((error = cv_wait_sig(&p->p_lwpcv, p->p_lock)) != 0) 673 break; 674 } 675 676 /* 677 * We didn't find any LWPs to collect, we may have received a 678 * signal, or some other condition has caused us to bail out. 679 * 680 * If waiting on a specific LWP, clear the waiters marker: some 681 * other LWP may want it. Then, kick all the remaining waiters 682 * so that they can re-check for zombies and for deadlock. 683 */ 684 if (lid != 0) { 685 LIST_FOREACH(l2, &p->p_lwps, l_sibling) { 686 if (l2->l_lid == lid) { 687 if (l2->l_waiter == curlid) 688 l2->l_waiter = 0; 689 break; 690 } 691 } 692 } 693 p->p_nlwpwait--; 694 l->l_waitingfor = 0; 695 cv_broadcast(&p->p_lwpcv); 696 697 return error; 698 } 699 700 static lwpid_t 701 lwp_find_free_lid(lwpid_t try_lid, lwp_t * new_lwp, proc_t *p) 702 { 703 #define LID_SCAN (1u << 31) 704 lwp_t *scan, *free_before; 705 lwpid_t nxt_lid; 706 707 /* 708 * We want the first unused lid greater than or equal to 709 * try_lid (modulo 2^31). 710 * (If nothing else ld.elf_so doesn't want lwpid with the top bit set.) 711 * We must not return 0, and avoiding 'LID_SCAN - 1' makes 712 * the outer test easier. 713 * This would be much easier if the list were sorted in 714 * increasing order. 715 * The list is kept sorted in decreasing order. 716 * This code is only used after a process has generated 2^31 lwp. 717 * 718 * Code assumes it can always find an id. 719 */ 720 721 try_lid &= LID_SCAN - 1; 722 if (try_lid <= 1) 723 try_lid = 2; 724 725 free_before = NULL; 726 nxt_lid = LID_SCAN - 1; 727 LIST_FOREACH(scan, &p->p_lwps, l_sibling) { 728 if (scan->l_lid != nxt_lid) { 729 /* There are available lid before this entry */ 730 free_before = scan; 731 if (try_lid > scan->l_lid) 732 break; 733 } 734 if (try_lid == scan->l_lid) { 735 /* The ideal lid is busy, take a higher one */ 736 if (free_before != NULL) { 737 try_lid = free_before->l_lid + 1; 738 break; 739 } 740 /* No higher ones, reuse low numbers */ 741 try_lid = 2; 742 } 743 744 nxt_lid = scan->l_lid - 1; 745 if (LIST_NEXT(scan, l_sibling) == NULL) { 746 /* The value we have is lower than any existing lwp */ 747 LIST_INSERT_AFTER(scan, new_lwp, l_sibling); 748 return try_lid; 749 } 750 } 751 752 LIST_INSERT_BEFORE(free_before, new_lwp, l_sibling); 753 return try_lid; 754 } 755 756 /* 757 * Create a new LWP within process 'p2', using LWP 'l1' as a template. 758 * The new LWP is created in state LSIDL and must be set running, 759 * suspended, or stopped by the caller. 760 */ 761 int 762 lwp_create(lwp_t *l1, proc_t *p2, vaddr_t uaddr, int flags, 763 void *stack, size_t stacksize, void (*func)(void *), void *arg, 764 lwp_t **rnewlwpp, int sclass) 765 { 766 struct lwp *l2, *isfree; 767 turnstile_t *ts; 768 lwpid_t lid; 769 770 KASSERT(l1 == curlwp || l1->l_proc == &proc0); 771 772 /* 773 * Enforce limits, excluding the first lwp and kthreads. 774 */ 775 if (p2->p_nlwps != 0 && p2 != &proc0) { 776 uid_t uid = kauth_cred_getuid(l1->l_cred); 777 int count = chglwpcnt(uid, 1); 778 if (__predict_false(count > 779 p2->p_rlimit[RLIMIT_NTHR].rlim_cur)) { 780 if (kauth_authorize_process(l1->l_cred, 781 KAUTH_PROCESS_RLIMIT, p2, 782 KAUTH_ARG(KAUTH_REQ_PROCESS_RLIMIT_BYPASS), 783 &p2->p_rlimit[RLIMIT_NTHR], KAUTH_ARG(RLIMIT_NTHR)) 784 != 0) { 785 (void)chglwpcnt(uid, -1); 786 return EAGAIN; 787 } 788 } 789 } 790 791 /* 792 * First off, reap any detached LWP waiting to be collected. 793 * We can re-use its LWP structure and turnstile. 794 */ 795 isfree = NULL; 796 if (p2->p_zomblwp != NULL) { 797 mutex_enter(p2->p_lock); 798 if ((isfree = p2->p_zomblwp) != NULL) { 799 p2->p_zomblwp = NULL; 800 lwp_free(isfree, true, false);/* releases proc mutex */ 801 } else 802 mutex_exit(p2->p_lock); 803 } 804 if (isfree == NULL) { 805 l2 = pool_cache_get(lwp_cache, PR_WAITOK); 806 memset(l2, 0, sizeof(*l2)); 807 l2->l_ts = pool_cache_get(turnstile_cache, PR_WAITOK); 808 SLIST_INIT(&l2->l_pi_lenders); 809 } else { 810 l2 = isfree; 811 ts = l2->l_ts; 812 KASSERT(l2->l_inheritedprio == -1); 813 KASSERT(SLIST_EMPTY(&l2->l_pi_lenders)); 814 memset(l2, 0, sizeof(*l2)); 815 l2->l_ts = ts; 816 } 817 818 l2->l_stat = LSIDL; 819 l2->l_proc = p2; 820 l2->l_refcnt = 1; 821 l2->l_class = sclass; 822 823 /* 824 * If vfork(), we want the LWP to run fast and on the same CPU 825 * as its parent, so that it can reuse the VM context and cache 826 * footprint on the local CPU. 827 */ 828 l2->l_kpriority = ((flags & LWP_VFORK) ? true : false); 829 l2->l_kpribase = PRI_KERNEL; 830 l2->l_priority = l1->l_priority; 831 l2->l_inheritedprio = -1; 832 l2->l_protectprio = -1; 833 l2->l_auxprio = -1; 834 l2->l_flag = 0; 835 l2->l_pflag = LP_MPSAFE; 836 TAILQ_INIT(&l2->l_ld_locks); 837 838 /* 839 * For vfork, borrow parent's lwpctl context if it exists. 840 * This also causes us to return via lwp_userret. 841 */ 842 if (flags & LWP_VFORK && l1->l_lwpctl) { 843 l2->l_lwpctl = l1->l_lwpctl; 844 l2->l_flag |= LW_LWPCTL; 845 } 846 847 /* 848 * If not the first LWP in the process, grab a reference to the 849 * descriptor table. 850 */ 851 l2->l_fd = p2->p_fd; 852 if (p2->p_nlwps != 0) { 853 KASSERT(l1->l_proc == p2); 854 fd_hold(l2); 855 } else { 856 KASSERT(l1->l_proc != p2); 857 } 858 859 if (p2->p_flag & PK_SYSTEM) { 860 /* Mark it as a system LWP. */ 861 l2->l_flag |= LW_SYSTEM; 862 } 863 864 kpreempt_disable(); 865 l2->l_mutex = l1->l_cpu->ci_schedstate.spc_mutex; 866 l2->l_cpu = l1->l_cpu; 867 kpreempt_enable(); 868 869 kdtrace_thread_ctor(NULL, l2); 870 lwp_initspecific(l2); 871 sched_lwp_fork(l1, l2); 872 lwp_update_creds(l2); 873 callout_init(&l2->l_timeout_ch, CALLOUT_MPSAFE); 874 callout_setfunc(&l2->l_timeout_ch, sleepq_timeout, l2); 875 cv_init(&l2->l_sigcv, "sigwait"); 876 cv_init(&l2->l_waitcv, "vfork"); 877 l2->l_syncobj = &sched_syncobj; 878 879 if (rnewlwpp != NULL) 880 *rnewlwpp = l2; 881 882 /* 883 * PCU state needs to be saved before calling uvm_lwp_fork() so that 884 * the MD cpu_lwp_fork() can copy the saved state to the new LWP. 885 */ 886 pcu_save_all(l1); 887 888 uvm_lwp_setuarea(l2, uaddr); 889 uvm_lwp_fork(l1, l2, stack, stacksize, func, 890 (arg != NULL) ? arg : l2); 891 892 if ((flags & LWP_PIDLID) != 0) { 893 lid = proc_alloc_pid(p2); 894 l2->l_pflag |= LP_PIDLID; 895 } else { 896 lid = 0; 897 } 898 899 mutex_enter(p2->p_lock); 900 901 if ((flags & LWP_DETACHED) != 0) { 902 l2->l_prflag = LPR_DETACHED; 903 p2->p_ndlwps++; 904 } else 905 l2->l_prflag = 0; 906 907 l2->l_sigstk = l1->l_sigstk; 908 l2->l_sigmask = l1->l_sigmask; 909 TAILQ_INIT(&l2->l_sigpend.sp_info); 910 sigemptyset(&l2->l_sigpend.sp_set); 911 912 if (__predict_true(lid == 0)) { 913 /* 914 * XXX: l_lid are expected to be unique (for a process) 915 * if LWP_PIDLID is sometimes set this won't be true. 916 * Once 2^31 threads have been allocated we have to 917 * scan to ensure we allocate a unique value. 918 */ 919 lid = ++p2->p_nlwpid; 920 if (__predict_false(lid & LID_SCAN)) { 921 lid = lwp_find_free_lid(lid, l2, p2); 922 p2->p_nlwpid = lid | LID_SCAN; 923 /* l2 as been inserted into p_lwps in order */ 924 goto skip_insert; 925 } 926 p2->p_nlwpid = lid; 927 } 928 LIST_INSERT_HEAD(&p2->p_lwps, l2, l_sibling); 929 skip_insert: 930 l2->l_lid = lid; 931 p2->p_nlwps++; 932 p2->p_nrlwps++; 933 934 KASSERT(l2->l_affinity == NULL); 935 936 if ((p2->p_flag & PK_SYSTEM) == 0) { 937 /* Inherit the affinity mask. */ 938 if (l1->l_affinity) { 939 /* 940 * Note that we hold the state lock while inheriting 941 * the affinity to avoid race with sched_setaffinity(). 942 */ 943 lwp_lock(l1); 944 if (l1->l_affinity) { 945 kcpuset_use(l1->l_affinity); 946 l2->l_affinity = l1->l_affinity; 947 } 948 lwp_unlock(l1); 949 } 950 lwp_lock(l2); 951 /* Inherit a processor-set */ 952 l2->l_psid = l1->l_psid; 953 /* Look for a CPU to start */ 954 l2->l_cpu = sched_takecpu(l2); 955 lwp_unlock_to(l2, l2->l_cpu->ci_schedstate.spc_mutex); 956 } 957 mutex_exit(p2->p_lock); 958 959 SDT_PROBE(proc, kernel, , lwp__create, l2, 0, 0, 0, 0); 960 961 mutex_enter(proc_lock); 962 LIST_INSERT_HEAD(&alllwp, l2, l_list); 963 mutex_exit(proc_lock); 964 965 SYSCALL_TIME_LWP_INIT(l2); 966 967 if (p2->p_emul->e_lwp_fork) 968 (*p2->p_emul->e_lwp_fork)(l1, l2); 969 970 return (0); 971 } 972 973 /* 974 * Called by MD code when a new LWP begins execution. Must be called 975 * with the previous LWP locked (so at splsched), or if there is no 976 * previous LWP, at splsched. 977 */ 978 void 979 lwp_startup(struct lwp *prev, struct lwp *new_lwp) 980 { 981 KASSERTMSG(new_lwp == curlwp, "l %p curlwp %p prevlwp %p", new_lwp, curlwp, prev); 982 983 SDT_PROBE(proc, kernel, , lwp__start, new_lwp, 0, 0, 0, 0); 984 985 KASSERT(kpreempt_disabled()); 986 if (prev != NULL) { 987 /* 988 * Normalize the count of the spin-mutexes, it was 989 * increased in mi_switch(). Unmark the state of 990 * context switch - it is finished for previous LWP. 991 */ 992 curcpu()->ci_mtx_count++; 993 membar_exit(); 994 prev->l_ctxswtch = 0; 995 } 996 KPREEMPT_DISABLE(new_lwp); 997 if (__predict_true(new_lwp->l_proc->p_vmspace)) 998 pmap_activate(new_lwp); 999 spl0(); 1000 1001 /* Note trip through cpu_switchto(). */ 1002 pserialize_switchpoint(); 1003 1004 LOCKDEBUG_BARRIER(NULL, 0); 1005 KPREEMPT_ENABLE(new_lwp); 1006 if ((new_lwp->l_pflag & LP_MPSAFE) == 0) { 1007 KERNEL_LOCK(1, new_lwp); 1008 } 1009 } 1010 1011 /* 1012 * Exit an LWP. 1013 */ 1014 void 1015 lwp_exit(struct lwp *l) 1016 { 1017 struct proc *p = l->l_proc; 1018 struct lwp *l2; 1019 bool current; 1020 1021 current = (l == curlwp); 1022 1023 KASSERT(current || (l->l_stat == LSIDL && l->l_target_cpu == NULL)); 1024 KASSERT(p == curproc); 1025 1026 SDT_PROBE(proc, kernel, , lwp__exit, l, 0, 0, 0, 0); 1027 1028 /* 1029 * Verify that we hold no locks other than the kernel lock. 1030 */ 1031 LOCKDEBUG_BARRIER(&kernel_lock, 0); 1032 1033 /* 1034 * If we are the last live LWP in a process, we need to exit the 1035 * entire process. We do so with an exit status of zero, because 1036 * it's a "controlled" exit, and because that's what Solaris does. 1037 * 1038 * We are not quite a zombie yet, but for accounting purposes we 1039 * must increment the count of zombies here. 1040 * 1041 * Note: the last LWP's specificdata will be deleted here. 1042 */ 1043 mutex_enter(p->p_lock); 1044 if (p->p_nlwps - p->p_nzlwps == 1) { 1045 KASSERT(current == true); 1046 KASSERT(p != &proc0); 1047 /* XXXSMP kernel_lock not held */ 1048 exit1(l, 0, 0); 1049 /* NOTREACHED */ 1050 } 1051 p->p_nzlwps++; 1052 mutex_exit(p->p_lock); 1053 1054 if (p->p_emul->e_lwp_exit) 1055 (*p->p_emul->e_lwp_exit)(l); 1056 1057 /* Drop filedesc reference. */ 1058 fd_free(); 1059 1060 /* Delete the specificdata while it's still safe to sleep. */ 1061 lwp_finispecific(l); 1062 1063 /* 1064 * Release our cached credentials. 1065 */ 1066 kauth_cred_free(l->l_cred); 1067 callout_destroy(&l->l_timeout_ch); 1068 1069 /* 1070 * Remove the LWP from the global list. 1071 * Free its LID from the PID namespace if needed. 1072 */ 1073 mutex_enter(proc_lock); 1074 LIST_REMOVE(l, l_list); 1075 if ((l->l_pflag & LP_PIDLID) != 0 && l->l_lid != p->p_pid) { 1076 proc_free_pid(l->l_lid); 1077 } 1078 mutex_exit(proc_lock); 1079 1080 /* 1081 * Get rid of all references to the LWP that others (e.g. procfs) 1082 * may have, and mark the LWP as a zombie. If the LWP is detached, 1083 * mark it waiting for collection in the proc structure. Note that 1084 * before we can do that, we need to free any other dead, deatched 1085 * LWP waiting to meet its maker. 1086 */ 1087 mutex_enter(p->p_lock); 1088 lwp_drainrefs(l); 1089 1090 if ((l->l_prflag & LPR_DETACHED) != 0) { 1091 while ((l2 = p->p_zomblwp) != NULL) { 1092 p->p_zomblwp = NULL; 1093 lwp_free(l2, false, false);/* releases proc mutex */ 1094 mutex_enter(p->p_lock); 1095 l->l_refcnt++; 1096 lwp_drainrefs(l); 1097 } 1098 p->p_zomblwp = l; 1099 } 1100 1101 /* 1102 * If we find a pending signal for the process and we have been 1103 * asked to check for signals, then we lose: arrange to have 1104 * all other LWPs in the process check for signals. 1105 */ 1106 if ((l->l_flag & LW_PENDSIG) != 0 && 1107 firstsig(&p->p_sigpend.sp_set) != 0) { 1108 LIST_FOREACH(l2, &p->p_lwps, l_sibling) { 1109 lwp_lock(l2); 1110 l2->l_flag |= LW_PENDSIG; 1111 lwp_unlock(l2); 1112 } 1113 } 1114 1115 /* 1116 * Release any PCU resources before becoming a zombie. 1117 */ 1118 pcu_discard_all(l); 1119 1120 lwp_lock(l); 1121 l->l_stat = LSZOMB; 1122 if (l->l_name != NULL) { 1123 strcpy(l->l_name, "(zombie)"); 1124 } 1125 lwp_unlock(l); 1126 p->p_nrlwps--; 1127 cv_broadcast(&p->p_lwpcv); 1128 if (l->l_lwpctl != NULL) 1129 l->l_lwpctl->lc_curcpu = LWPCTL_CPU_EXITED; 1130 mutex_exit(p->p_lock); 1131 1132 /* 1133 * We can no longer block. At this point, lwp_free() may already 1134 * be gunning for us. On a multi-CPU system, we may be off p_lwps. 1135 * 1136 * Free MD LWP resources. 1137 */ 1138 cpu_lwp_free(l, 0); 1139 1140 if (current) { 1141 pmap_deactivate(l); 1142 1143 /* 1144 * Release the kernel lock, and switch away into 1145 * oblivion. 1146 */ 1147 #ifdef notyet 1148 /* XXXSMP hold in lwp_userret() */ 1149 KERNEL_UNLOCK_LAST(l); 1150 #else 1151 KERNEL_UNLOCK_ALL(l, NULL); 1152 #endif 1153 lwp_exit_switchaway(l); 1154 } 1155 } 1156 1157 /* 1158 * Free a dead LWP's remaining resources. 1159 * 1160 * XXXLWP limits. 1161 */ 1162 void 1163 lwp_free(struct lwp *l, bool recycle, bool last) 1164 { 1165 struct proc *p = l->l_proc; 1166 struct rusage *ru; 1167 ksiginfoq_t kq; 1168 1169 KASSERT(l != curlwp); 1170 KASSERT(last || mutex_owned(p->p_lock)); 1171 1172 /* 1173 * We use the process credentials instead of the lwp credentials here 1174 * because the lwp credentials maybe cached (just after a setuid call) 1175 * and we don't want pay for syncing, since the lwp is going away 1176 * anyway 1177 */ 1178 if (p != &proc0 && p->p_nlwps != 1) 1179 (void)chglwpcnt(kauth_cred_getuid(p->p_cred), -1); 1180 /* 1181 * If this was not the last LWP in the process, then adjust 1182 * counters and unlock. 1183 */ 1184 if (!last) { 1185 /* 1186 * Add the LWP's run time to the process' base value. 1187 * This needs to co-incide with coming off p_lwps. 1188 */ 1189 bintime_add(&p->p_rtime, &l->l_rtime); 1190 p->p_pctcpu += l->l_pctcpu; 1191 ru = &p->p_stats->p_ru; 1192 ruadd(ru, &l->l_ru); 1193 ru->ru_nvcsw += (l->l_ncsw - l->l_nivcsw); 1194 ru->ru_nivcsw += l->l_nivcsw; 1195 LIST_REMOVE(l, l_sibling); 1196 p->p_nlwps--; 1197 p->p_nzlwps--; 1198 if ((l->l_prflag & LPR_DETACHED) != 0) 1199 p->p_ndlwps--; 1200 1201 /* 1202 * Have any LWPs sleeping in lwp_wait() recheck for 1203 * deadlock. 1204 */ 1205 cv_broadcast(&p->p_lwpcv); 1206 mutex_exit(p->p_lock); 1207 } 1208 1209 #ifdef MULTIPROCESSOR 1210 /* 1211 * In the unlikely event that the LWP is still on the CPU, 1212 * then spin until it has switched away. We need to release 1213 * all locks to avoid deadlock against interrupt handlers on 1214 * the target CPU. 1215 */ 1216 if ((l->l_pflag & LP_RUNNING) != 0 || l->l_cpu->ci_curlwp == l) { 1217 int count; 1218 (void)count; /* XXXgcc */ 1219 KERNEL_UNLOCK_ALL(curlwp, &count); 1220 while ((l->l_pflag & LP_RUNNING) != 0 || 1221 l->l_cpu->ci_curlwp == l) 1222 SPINLOCK_BACKOFF_HOOK; 1223 KERNEL_LOCK(count, curlwp); 1224 } 1225 #endif 1226 1227 /* 1228 * Destroy the LWP's remaining signal information. 1229 */ 1230 ksiginfo_queue_init(&kq); 1231 sigclear(&l->l_sigpend, NULL, &kq); 1232 ksiginfo_queue_drain(&kq); 1233 cv_destroy(&l->l_sigcv); 1234 cv_destroy(&l->l_waitcv); 1235 1236 /* 1237 * Free lwpctl structure and affinity. 1238 */ 1239 if (l->l_lwpctl) { 1240 lwp_ctl_free(l); 1241 } 1242 if (l->l_affinity) { 1243 kcpuset_unuse(l->l_affinity, NULL); 1244 l->l_affinity = NULL; 1245 } 1246 1247 /* 1248 * Free the LWP's turnstile and the LWP structure itself unless the 1249 * caller wants to recycle them. Also, free the scheduler specific 1250 * data. 1251 * 1252 * We can't return turnstile0 to the pool (it didn't come from it), 1253 * so if it comes up just drop it quietly and move on. 1254 * 1255 * We don't recycle the VM resources at this time. 1256 */ 1257 1258 if (!recycle && l->l_ts != &turnstile0) 1259 pool_cache_put(turnstile_cache, l->l_ts); 1260 if (l->l_name != NULL) 1261 kmem_free(l->l_name, MAXCOMLEN); 1262 1263 cpu_lwp_free2(l); 1264 uvm_lwp_exit(l); 1265 1266 KASSERT(SLIST_EMPTY(&l->l_pi_lenders)); 1267 KASSERT(l->l_inheritedprio == -1); 1268 KASSERT(l->l_blcnt == 0); 1269 kdtrace_thread_dtor(NULL, l); 1270 if (!recycle) 1271 pool_cache_put(lwp_cache, l); 1272 } 1273 1274 /* 1275 * Migrate the LWP to the another CPU. Unlocks the LWP. 1276 */ 1277 void 1278 lwp_migrate(lwp_t *l, struct cpu_info *tci) 1279 { 1280 struct schedstate_percpu *tspc; 1281 int lstat = l->l_stat; 1282 1283 KASSERT(lwp_locked(l, NULL)); 1284 KASSERT(tci != NULL); 1285 1286 /* If LWP is still on the CPU, it must be handled like LSONPROC */ 1287 if ((l->l_pflag & LP_RUNNING) != 0) { 1288 lstat = LSONPROC; 1289 } 1290 1291 /* 1292 * The destination CPU could be changed while previous migration 1293 * was not finished. 1294 */ 1295 if (l->l_target_cpu != NULL) { 1296 l->l_target_cpu = tci; 1297 lwp_unlock(l); 1298 return; 1299 } 1300 1301 /* Nothing to do if trying to migrate to the same CPU */ 1302 if (l->l_cpu == tci) { 1303 lwp_unlock(l); 1304 return; 1305 } 1306 1307 KASSERT(l->l_target_cpu == NULL); 1308 tspc = &tci->ci_schedstate; 1309 switch (lstat) { 1310 case LSRUN: 1311 l->l_target_cpu = tci; 1312 break; 1313 case LSIDL: 1314 l->l_cpu = tci; 1315 lwp_unlock_to(l, tspc->spc_mutex); 1316 return; 1317 case LSSLEEP: 1318 l->l_cpu = tci; 1319 break; 1320 case LSSTOP: 1321 case LSSUSPENDED: 1322 l->l_cpu = tci; 1323 if (l->l_wchan == NULL) { 1324 lwp_unlock_to(l, tspc->spc_lwplock); 1325 return; 1326 } 1327 break; 1328 case LSONPROC: 1329 l->l_target_cpu = tci; 1330 spc_lock(l->l_cpu); 1331 cpu_need_resched(l->l_cpu, RESCHED_KPREEMPT); 1332 spc_unlock(l->l_cpu); 1333 break; 1334 } 1335 lwp_unlock(l); 1336 } 1337 1338 /* 1339 * Find the LWP in the process. Arguments may be zero, in such case, 1340 * the calling process and first LWP in the list will be used. 1341 * On success - returns proc locked. 1342 */ 1343 struct lwp * 1344 lwp_find2(pid_t pid, lwpid_t lid) 1345 { 1346 proc_t *p; 1347 lwp_t *l; 1348 1349 /* Find the process. */ 1350 if (pid != 0) { 1351 mutex_enter(proc_lock); 1352 p = proc_find(pid); 1353 if (p == NULL) { 1354 mutex_exit(proc_lock); 1355 return NULL; 1356 } 1357 mutex_enter(p->p_lock); 1358 mutex_exit(proc_lock); 1359 } else { 1360 p = curlwp->l_proc; 1361 mutex_enter(p->p_lock); 1362 } 1363 /* Find the thread. */ 1364 if (lid != 0) { 1365 l = lwp_find(p, lid); 1366 } else { 1367 l = LIST_FIRST(&p->p_lwps); 1368 } 1369 if (l == NULL) { 1370 mutex_exit(p->p_lock); 1371 } 1372 return l; 1373 } 1374 1375 /* 1376 * Look up a live LWP within the specified process. 1377 * 1378 * Must be called with p->p_lock held. 1379 */ 1380 struct lwp * 1381 lwp_find(struct proc *p, lwpid_t id) 1382 { 1383 struct lwp *l; 1384 1385 KASSERT(mutex_owned(p->p_lock)); 1386 1387 LIST_FOREACH(l, &p->p_lwps, l_sibling) { 1388 if (l->l_lid == id) 1389 break; 1390 } 1391 1392 /* 1393 * No need to lock - all of these conditions will 1394 * be visible with the process level mutex held. 1395 */ 1396 if (l != NULL && (l->l_stat == LSIDL || l->l_stat == LSZOMB)) 1397 l = NULL; 1398 1399 return l; 1400 } 1401 1402 /* 1403 * Update an LWP's cached credentials to mirror the process' master copy. 1404 * 1405 * This happens early in the syscall path, on user trap, and on LWP 1406 * creation. A long-running LWP can also voluntarily choose to update 1407 * its credentials by calling this routine. This may be called from 1408 * LWP_CACHE_CREDS(), which checks l->l_cred != p->p_cred beforehand. 1409 */ 1410 void 1411 lwp_update_creds(struct lwp *l) 1412 { 1413 kauth_cred_t oc; 1414 struct proc *p; 1415 1416 p = l->l_proc; 1417 oc = l->l_cred; 1418 1419 mutex_enter(p->p_lock); 1420 kauth_cred_hold(p->p_cred); 1421 l->l_cred = p->p_cred; 1422 l->l_prflag &= ~LPR_CRMOD; 1423 mutex_exit(p->p_lock); 1424 if (oc != NULL) 1425 kauth_cred_free(oc); 1426 } 1427 1428 /* 1429 * Verify that an LWP is locked, and optionally verify that the lock matches 1430 * one we specify. 1431 */ 1432 int 1433 lwp_locked(struct lwp *l, kmutex_t *mtx) 1434 { 1435 kmutex_t *cur = l->l_mutex; 1436 1437 return mutex_owned(cur) && (mtx == cur || mtx == NULL); 1438 } 1439 1440 /* 1441 * Lend a new mutex to an LWP. The old mutex must be held. 1442 */ 1443 void 1444 lwp_setlock(struct lwp *l, kmutex_t *mtx) 1445 { 1446 1447 KASSERT(mutex_owned(l->l_mutex)); 1448 1449 membar_exit(); 1450 l->l_mutex = mtx; 1451 } 1452 1453 /* 1454 * Lend a new mutex to an LWP, and release the old mutex. The old mutex 1455 * must be held. 1456 */ 1457 void 1458 lwp_unlock_to(struct lwp *l, kmutex_t *mtx) 1459 { 1460 kmutex_t *old; 1461 1462 KASSERT(lwp_locked(l, NULL)); 1463 1464 old = l->l_mutex; 1465 membar_exit(); 1466 l->l_mutex = mtx; 1467 mutex_spin_exit(old); 1468 } 1469 1470 int 1471 lwp_trylock(struct lwp *l) 1472 { 1473 kmutex_t *old; 1474 1475 for (;;) { 1476 if (!mutex_tryenter(old = l->l_mutex)) 1477 return 0; 1478 if (__predict_true(l->l_mutex == old)) 1479 return 1; 1480 mutex_spin_exit(old); 1481 } 1482 } 1483 1484 void 1485 lwp_unsleep(lwp_t *l, bool cleanup) 1486 { 1487 1488 KASSERT(mutex_owned(l->l_mutex)); 1489 (*l->l_syncobj->sobj_unsleep)(l, cleanup); 1490 } 1491 1492 /* 1493 * Handle exceptions for mi_userret(). Called if a member of LW_USERRET is 1494 * set. 1495 */ 1496 void 1497 lwp_userret(struct lwp *l) 1498 { 1499 struct proc *p; 1500 int sig; 1501 1502 KASSERT(l == curlwp); 1503 KASSERT(l->l_stat == LSONPROC); 1504 p = l->l_proc; 1505 1506 #ifndef __HAVE_FAST_SOFTINTS 1507 /* Run pending soft interrupts. */ 1508 if (l->l_cpu->ci_data.cpu_softints != 0) 1509 softint_overlay(); 1510 #endif 1511 1512 /* 1513 * It is safe to do this read unlocked on a MP system.. 1514 */ 1515 while ((l->l_flag & LW_USERRET) != 0) { 1516 /* 1517 * Process pending signals first, unless the process 1518 * is dumping core or exiting, where we will instead 1519 * enter the LW_WSUSPEND case below. 1520 */ 1521 if ((l->l_flag & (LW_PENDSIG | LW_WCORE | LW_WEXIT)) == 1522 LW_PENDSIG) { 1523 mutex_enter(p->p_lock); 1524 while ((sig = issignal(l)) != 0) 1525 postsig(sig); 1526 mutex_exit(p->p_lock); 1527 } 1528 1529 /* 1530 * Core-dump or suspend pending. 1531 * 1532 * In case of core dump, suspend ourselves, so that the kernel 1533 * stack and therefore the userland registers saved in the 1534 * trapframe are around for coredump() to write them out. 1535 * We also need to save any PCU resources that we have so that 1536 * they accessible for coredump(). We issue a wakeup on 1537 * p->p_lwpcv so that sigexit() will write the core file out 1538 * once all other LWPs are suspended. 1539 */ 1540 if ((l->l_flag & LW_WSUSPEND) != 0) { 1541 pcu_save_all(l); 1542 mutex_enter(p->p_lock); 1543 p->p_nrlwps--; 1544 cv_broadcast(&p->p_lwpcv); 1545 lwp_lock(l); 1546 l->l_stat = LSSUSPENDED; 1547 lwp_unlock(l); 1548 mutex_exit(p->p_lock); 1549 lwp_lock(l); 1550 mi_switch(l); 1551 } 1552 1553 /* Process is exiting. */ 1554 if ((l->l_flag & LW_WEXIT) != 0) { 1555 lwp_exit(l); 1556 KASSERT(0); 1557 /* NOTREACHED */ 1558 } 1559 1560 /* update lwpctl processor (for vfork child_return) */ 1561 if (l->l_flag & LW_LWPCTL) { 1562 lwp_lock(l); 1563 KASSERT(kpreempt_disabled()); 1564 l->l_lwpctl->lc_curcpu = (int)cpu_index(l->l_cpu); 1565 l->l_lwpctl->lc_pctr++; 1566 l->l_flag &= ~LW_LWPCTL; 1567 lwp_unlock(l); 1568 } 1569 } 1570 } 1571 1572 /* 1573 * Force an LWP to enter the kernel, to take a trip through lwp_userret(). 1574 */ 1575 void 1576 lwp_need_userret(struct lwp *l) 1577 { 1578 KASSERT(lwp_locked(l, NULL)); 1579 1580 /* 1581 * Since the tests in lwp_userret() are done unlocked, make sure 1582 * that the condition will be seen before forcing the LWP to enter 1583 * kernel mode. 1584 */ 1585 membar_producer(); 1586 cpu_signotify(l); 1587 } 1588 1589 /* 1590 * Add one reference to an LWP. This will prevent the LWP from 1591 * exiting, thus keep the lwp structure and PCB around to inspect. 1592 */ 1593 void 1594 lwp_addref(struct lwp *l) 1595 { 1596 1597 KASSERT(mutex_owned(l->l_proc->p_lock)); 1598 KASSERT(l->l_stat != LSZOMB); 1599 KASSERT(l->l_refcnt != 0); 1600 1601 l->l_refcnt++; 1602 } 1603 1604 /* 1605 * Remove one reference to an LWP. If this is the last reference, 1606 * then we must finalize the LWP's death. 1607 */ 1608 void 1609 lwp_delref(struct lwp *l) 1610 { 1611 struct proc *p = l->l_proc; 1612 1613 mutex_enter(p->p_lock); 1614 lwp_delref2(l); 1615 mutex_exit(p->p_lock); 1616 } 1617 1618 /* 1619 * Remove one reference to an LWP. If this is the last reference, 1620 * then we must finalize the LWP's death. The proc mutex is held 1621 * on entry. 1622 */ 1623 void 1624 lwp_delref2(struct lwp *l) 1625 { 1626 struct proc *p = l->l_proc; 1627 1628 KASSERT(mutex_owned(p->p_lock)); 1629 KASSERT(l->l_stat != LSZOMB); 1630 KASSERT(l->l_refcnt > 0); 1631 if (--l->l_refcnt == 0) 1632 cv_broadcast(&p->p_lwpcv); 1633 } 1634 1635 /* 1636 * Drain all references to the current LWP. 1637 */ 1638 void 1639 lwp_drainrefs(struct lwp *l) 1640 { 1641 struct proc *p = l->l_proc; 1642 1643 KASSERT(mutex_owned(p->p_lock)); 1644 KASSERT(l->l_refcnt != 0); 1645 1646 l->l_refcnt--; 1647 while (l->l_refcnt != 0) 1648 cv_wait(&p->p_lwpcv, p->p_lock); 1649 } 1650 1651 /* 1652 * Return true if the specified LWP is 'alive'. Only p->p_lock need 1653 * be held. 1654 */ 1655 bool 1656 lwp_alive(lwp_t *l) 1657 { 1658 1659 KASSERT(mutex_owned(l->l_proc->p_lock)); 1660 1661 switch (l->l_stat) { 1662 case LSSLEEP: 1663 case LSRUN: 1664 case LSONPROC: 1665 case LSSTOP: 1666 case LSSUSPENDED: 1667 return true; 1668 default: 1669 return false; 1670 } 1671 } 1672 1673 /* 1674 * Return first live LWP in the process. 1675 */ 1676 lwp_t * 1677 lwp_find_first(proc_t *p) 1678 { 1679 lwp_t *l; 1680 1681 KASSERT(mutex_owned(p->p_lock)); 1682 1683 LIST_FOREACH(l, &p->p_lwps, l_sibling) { 1684 if (lwp_alive(l)) { 1685 return l; 1686 } 1687 } 1688 1689 return NULL; 1690 } 1691 1692 /* 1693 * Allocate a new lwpctl structure for a user LWP. 1694 */ 1695 int 1696 lwp_ctl_alloc(vaddr_t *uaddr) 1697 { 1698 lcproc_t *lp; 1699 u_int bit, i, offset; 1700 struct uvm_object *uao; 1701 int error; 1702 lcpage_t *lcp; 1703 proc_t *p; 1704 lwp_t *l; 1705 1706 l = curlwp; 1707 p = l->l_proc; 1708 1709 /* don't allow a vforked process to create lwp ctls */ 1710 if (p->p_lflag & PL_PPWAIT) 1711 return EBUSY; 1712 1713 if (l->l_lcpage != NULL) { 1714 lcp = l->l_lcpage; 1715 *uaddr = lcp->lcp_uaddr + (vaddr_t)l->l_lwpctl - lcp->lcp_kaddr; 1716 return 0; 1717 } 1718 1719 /* First time around, allocate header structure for the process. */ 1720 if ((lp = p->p_lwpctl) == NULL) { 1721 lp = kmem_alloc(sizeof(*lp), KM_SLEEP); 1722 mutex_init(&lp->lp_lock, MUTEX_DEFAULT, IPL_NONE); 1723 lp->lp_uao = NULL; 1724 TAILQ_INIT(&lp->lp_pages); 1725 mutex_enter(p->p_lock); 1726 if (p->p_lwpctl == NULL) { 1727 p->p_lwpctl = lp; 1728 mutex_exit(p->p_lock); 1729 } else { 1730 mutex_exit(p->p_lock); 1731 mutex_destroy(&lp->lp_lock); 1732 kmem_free(lp, sizeof(*lp)); 1733 lp = p->p_lwpctl; 1734 } 1735 } 1736 1737 /* 1738 * Set up an anonymous memory region to hold the shared pages. 1739 * Map them into the process' address space. The user vmspace 1740 * gets the first reference on the UAO. 1741 */ 1742 mutex_enter(&lp->lp_lock); 1743 if (lp->lp_uao == NULL) { 1744 lp->lp_uao = uao_create(LWPCTL_UAREA_SZ, 0); 1745 lp->lp_cur = 0; 1746 lp->lp_max = LWPCTL_UAREA_SZ; 1747 lp->lp_uva = p->p_emul->e_vm_default_addr(p, 1748 (vaddr_t)p->p_vmspace->vm_daddr, LWPCTL_UAREA_SZ, 1749 p->p_vmspace->vm_map.flags & VM_MAP_TOPDOWN); 1750 error = uvm_map(&p->p_vmspace->vm_map, &lp->lp_uva, 1751 LWPCTL_UAREA_SZ, lp->lp_uao, 0, 0, UVM_MAPFLAG(UVM_PROT_RW, 1752 UVM_PROT_RW, UVM_INH_NONE, UVM_ADV_NORMAL, 0)); 1753 if (error != 0) { 1754 uao_detach(lp->lp_uao); 1755 lp->lp_uao = NULL; 1756 mutex_exit(&lp->lp_lock); 1757 return error; 1758 } 1759 } 1760 1761 /* Get a free block and allocate for this LWP. */ 1762 TAILQ_FOREACH(lcp, &lp->lp_pages, lcp_chain) { 1763 if (lcp->lcp_nfree != 0) 1764 break; 1765 } 1766 if (lcp == NULL) { 1767 /* Nothing available - try to set up a free page. */ 1768 if (lp->lp_cur == lp->lp_max) { 1769 mutex_exit(&lp->lp_lock); 1770 return ENOMEM; 1771 } 1772 lcp = kmem_alloc(LWPCTL_LCPAGE_SZ, KM_SLEEP); 1773 if (lcp == NULL) { 1774 mutex_exit(&lp->lp_lock); 1775 return ENOMEM; 1776 } 1777 /* 1778 * Wire the next page down in kernel space. Since this 1779 * is a new mapping, we must add a reference. 1780 */ 1781 uao = lp->lp_uao; 1782 (*uao->pgops->pgo_reference)(uao); 1783 lcp->lcp_kaddr = vm_map_min(kernel_map); 1784 error = uvm_map(kernel_map, &lcp->lcp_kaddr, PAGE_SIZE, 1785 uao, lp->lp_cur, PAGE_SIZE, 1786 UVM_MAPFLAG(UVM_PROT_RW, UVM_PROT_RW, 1787 UVM_INH_NONE, UVM_ADV_RANDOM, 0)); 1788 if (error != 0) { 1789 mutex_exit(&lp->lp_lock); 1790 kmem_free(lcp, LWPCTL_LCPAGE_SZ); 1791 (*uao->pgops->pgo_detach)(uao); 1792 return error; 1793 } 1794 error = uvm_map_pageable(kernel_map, lcp->lcp_kaddr, 1795 lcp->lcp_kaddr + PAGE_SIZE, FALSE, 0); 1796 if (error != 0) { 1797 mutex_exit(&lp->lp_lock); 1798 uvm_unmap(kernel_map, lcp->lcp_kaddr, 1799 lcp->lcp_kaddr + PAGE_SIZE); 1800 kmem_free(lcp, LWPCTL_LCPAGE_SZ); 1801 return error; 1802 } 1803 /* Prepare the page descriptor and link into the list. */ 1804 lcp->lcp_uaddr = lp->lp_uva + lp->lp_cur; 1805 lp->lp_cur += PAGE_SIZE; 1806 lcp->lcp_nfree = LWPCTL_PER_PAGE; 1807 lcp->lcp_rotor = 0; 1808 memset(lcp->lcp_bitmap, 0xff, LWPCTL_BITMAP_SZ); 1809 TAILQ_INSERT_HEAD(&lp->lp_pages, lcp, lcp_chain); 1810 } 1811 for (i = lcp->lcp_rotor; lcp->lcp_bitmap[i] == 0;) { 1812 if (++i >= LWPCTL_BITMAP_ENTRIES) 1813 i = 0; 1814 } 1815 bit = ffs(lcp->lcp_bitmap[i]) - 1; 1816 lcp->lcp_bitmap[i] ^= (1 << bit); 1817 lcp->lcp_rotor = i; 1818 lcp->lcp_nfree--; 1819 l->l_lcpage = lcp; 1820 offset = (i << 5) + bit; 1821 l->l_lwpctl = (lwpctl_t *)lcp->lcp_kaddr + offset; 1822 *uaddr = lcp->lcp_uaddr + offset * sizeof(lwpctl_t); 1823 mutex_exit(&lp->lp_lock); 1824 1825 KPREEMPT_DISABLE(l); 1826 l->l_lwpctl->lc_curcpu = (int)curcpu()->ci_data.cpu_index; 1827 KPREEMPT_ENABLE(l); 1828 1829 return 0; 1830 } 1831 1832 /* 1833 * Free an lwpctl structure back to the per-process list. 1834 */ 1835 void 1836 lwp_ctl_free(lwp_t *l) 1837 { 1838 struct proc *p = l->l_proc; 1839 lcproc_t *lp; 1840 lcpage_t *lcp; 1841 u_int map, offset; 1842 1843 /* don't free a lwp context we borrowed for vfork */ 1844 if (p->p_lflag & PL_PPWAIT) { 1845 l->l_lwpctl = NULL; 1846 return; 1847 } 1848 1849 lp = p->p_lwpctl; 1850 KASSERT(lp != NULL); 1851 1852 lcp = l->l_lcpage; 1853 offset = (u_int)((lwpctl_t *)l->l_lwpctl - (lwpctl_t *)lcp->lcp_kaddr); 1854 KASSERT(offset < LWPCTL_PER_PAGE); 1855 1856 mutex_enter(&lp->lp_lock); 1857 lcp->lcp_nfree++; 1858 map = offset >> 5; 1859 lcp->lcp_bitmap[map] |= (1 << (offset & 31)); 1860 if (lcp->lcp_bitmap[lcp->lcp_rotor] == 0) 1861 lcp->lcp_rotor = map; 1862 if (TAILQ_FIRST(&lp->lp_pages)->lcp_nfree == 0) { 1863 TAILQ_REMOVE(&lp->lp_pages, lcp, lcp_chain); 1864 TAILQ_INSERT_HEAD(&lp->lp_pages, lcp, lcp_chain); 1865 } 1866 mutex_exit(&lp->lp_lock); 1867 } 1868 1869 /* 1870 * Process is exiting; tear down lwpctl state. This can only be safely 1871 * called by the last LWP in the process. 1872 */ 1873 void 1874 lwp_ctl_exit(void) 1875 { 1876 lcpage_t *lcp, *next; 1877 lcproc_t *lp; 1878 proc_t *p; 1879 lwp_t *l; 1880 1881 l = curlwp; 1882 l->l_lwpctl = NULL; 1883 l->l_lcpage = NULL; 1884 p = l->l_proc; 1885 lp = p->p_lwpctl; 1886 1887 KASSERT(lp != NULL); 1888 KASSERT(p->p_nlwps == 1); 1889 1890 for (lcp = TAILQ_FIRST(&lp->lp_pages); lcp != NULL; lcp = next) { 1891 next = TAILQ_NEXT(lcp, lcp_chain); 1892 uvm_unmap(kernel_map, lcp->lcp_kaddr, 1893 lcp->lcp_kaddr + PAGE_SIZE); 1894 kmem_free(lcp, LWPCTL_LCPAGE_SZ); 1895 } 1896 1897 if (lp->lp_uao != NULL) { 1898 uvm_unmap(&p->p_vmspace->vm_map, lp->lp_uva, 1899 lp->lp_uva + LWPCTL_UAREA_SZ); 1900 } 1901 1902 mutex_destroy(&lp->lp_lock); 1903 kmem_free(lp, sizeof(*lp)); 1904 p->p_lwpctl = NULL; 1905 } 1906 1907 /* 1908 * Return the current LWP's "preemption counter". Used to detect 1909 * preemption across operations that can tolerate preemption without 1910 * crashing, but which may generate incorrect results if preempted. 1911 */ 1912 uint64_t 1913 lwp_pctr(void) 1914 { 1915 1916 return curlwp->l_ncsw; 1917 } 1918 1919 /* 1920 * Set an LWP's private data pointer. 1921 */ 1922 int 1923 lwp_setprivate(struct lwp *l, void *ptr) 1924 { 1925 int error = 0; 1926 1927 l->l_private = ptr; 1928 #ifdef __HAVE_CPU_LWP_SETPRIVATE 1929 error = cpu_lwp_setprivate(l, ptr); 1930 #endif 1931 return error; 1932 } 1933 1934 #if defined(DDB) 1935 #include <machine/pcb.h> 1936 1937 void 1938 lwp_whatis(uintptr_t addr, void (*pr)(const char *, ...)) 1939 { 1940 lwp_t *l; 1941 1942 LIST_FOREACH(l, &alllwp, l_list) { 1943 uintptr_t stack = (uintptr_t)KSTACK_LOWEST_ADDR(l); 1944 1945 if (addr < stack || stack + KSTACK_SIZE <= addr) { 1946 continue; 1947 } 1948 (*pr)("%p is %p+%zu, LWP %p's stack\n", 1949 (void *)addr, (void *)stack, 1950 (size_t)(addr - stack), l); 1951 } 1952 } 1953 #endif /* defined(DDB) */ 1954