1 /* $NetBSD: kern_lwp.c,v 1.122 2008/07/14 01:19:37 rmind Exp $ */ 2 3 /*- 4 * Copyright (c) 2001, 2006, 2007, 2008 The NetBSD Foundation, Inc. 5 * All rights reserved. 6 * 7 * This code is derived from software contributed to The NetBSD Foundation 8 * by Nathan J. Williams, and Andrew Doran. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS 20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 29 * POSSIBILITY OF SUCH DAMAGE. 30 */ 31 32 /* 33 * Overview 34 * 35 * Lightweight processes (LWPs) are the basic unit or thread of 36 * execution within the kernel. The core state of an LWP is described 37 * by "struct lwp", also known as lwp_t. 38 * 39 * Each LWP is contained within a process (described by "struct proc"), 40 * Every process contains at least one LWP, but may contain more. The 41 * process describes attributes shared among all of its LWPs such as a 42 * private address space, global execution state (stopped, active, 43 * zombie, ...), signal disposition and so on. On a multiprocessor 44 * machine, multiple LWPs be executing concurrently in the kernel. 45 * 46 * Execution states 47 * 48 * At any given time, an LWP has overall state that is described by 49 * lwp::l_stat. The states are broken into two sets below. The first 50 * set is guaranteed to represent the absolute, current state of the 51 * LWP: 52 * 53 * LSONPROC 54 * 55 * On processor: the LWP is executing on a CPU, either in the 56 * kernel or in user space. 57 * 58 * LSRUN 59 * 60 * Runnable: the LWP is parked on a run queue, and may soon be 61 * chosen to run by an idle processor, or by a processor that 62 * has been asked to preempt a currently runnning but lower 63 * priority LWP. If the LWP is not swapped in (LW_INMEM == 0) 64 * then the LWP is not on a run queue, but may be soon. 65 * 66 * LSIDL 67 * 68 * Idle: the LWP has been created but has not yet executed, 69 * or it has ceased executing a unit of work and is waiting 70 * to be started again. 71 * 72 * LSSUSPENDED: 73 * 74 * Suspended: the LWP has had its execution suspended by 75 * another LWP in the same process using the _lwp_suspend() 76 * system call. User-level LWPs also enter the suspended 77 * state when the system is shutting down. 78 * 79 * The second set represent a "statement of intent" on behalf of the 80 * LWP. The LWP may in fact be executing on a processor, may be 81 * sleeping or idle. It is expected to take the necessary action to 82 * stop executing or become "running" again within a short timeframe. 83 * The LP_RUNNING flag in lwp::l_pflag indicates that an LWP is running. 84 * Importantly, it indicates that its state is tied to a CPU. 85 * 86 * LSZOMB: 87 * 88 * Dead or dying: the LWP has released most of its resources 89 * and is: a) about to switch away into oblivion b) has already 90 * switched away. When it switches away, its few remaining 91 * resources can be collected. 92 * 93 * LSSLEEP: 94 * 95 * Sleeping: the LWP has entered itself onto a sleep queue, and 96 * has switched away or will switch away shortly to allow other 97 * LWPs to run on the CPU. 98 * 99 * LSSTOP: 100 * 101 * Stopped: the LWP has been stopped as a result of a job 102 * control signal, or as a result of the ptrace() interface. 103 * 104 * Stopped LWPs may run briefly within the kernel to handle 105 * signals that they receive, but will not return to user space 106 * until their process' state is changed away from stopped. 107 * 108 * Single LWPs within a process can not be set stopped 109 * selectively: all actions that can stop or continue LWPs 110 * occur at the process level. 111 * 112 * State transitions 113 * 114 * Note that the LSSTOP state may only be set when returning to 115 * user space in userret(), or when sleeping interruptably. The 116 * LSSUSPENDED state may only be set in userret(). Before setting 117 * those states, we try to ensure that the LWPs will release all 118 * locks that they hold, and at a minimum try to ensure that the 119 * LWP can be set runnable again by a signal. 120 * 121 * LWPs may transition states in the following ways: 122 * 123 * RUN -------> ONPROC ONPROC -----> RUN 124 * > STOPPED > SLEEP 125 * > SUSPENDED > STOPPED 126 * > SUSPENDED 127 * > ZOMB 128 * 129 * STOPPED ---> RUN SUSPENDED --> RUN 130 * > SLEEP > SLEEP 131 * 132 * SLEEP -----> ONPROC IDL --------> RUN 133 * > RUN > SUSPENDED 134 * > STOPPED > STOPPED 135 * > SUSPENDED 136 * 137 * Other state transitions are possible with kernel threads (eg 138 * ONPROC -> IDL), but only happen under tightly controlled 139 * circumstances the side effects are understood. 140 * 141 * Migration 142 * 143 * Migration of threads from one CPU to another could be performed 144 * internally by the scheduler via sched_takecpu() or sched_catchlwp() 145 * functions. The universal lwp_migrate() function should be used for 146 * any other cases. Subsystems in the kernel must be aware that CPU 147 * of LWP may change, while it is not locked. 148 * 149 * Locking 150 * 151 * The majority of fields in 'struct lwp' are covered by a single, 152 * general spin lock pointed to by lwp::l_mutex. The locks covering 153 * each field are documented in sys/lwp.h. 154 * 155 * State transitions must be made with the LWP's general lock held, 156 * and may cause the LWP's lock pointer to change. Manipulation of 157 * the general lock is not performed directly, but through calls to 158 * lwp_lock(), lwp_relock() and similar. 159 * 160 * States and their associated locks: 161 * 162 * LSONPROC, LSZOMB: 163 * 164 * Always covered by spc_lwplock, which protects running LWPs. 165 * This is a per-CPU lock. 166 * 167 * LSIDL, LSRUN: 168 * 169 * Always covered by spc_mutex, which protects the run queues. 170 * This is a per-CPU lock. 171 * 172 * LSSLEEP: 173 * 174 * Covered by a lock associated with the sleep queue that the 175 * LWP resides on. 176 * 177 * LSSTOP, LSSUSPENDED: 178 * 179 * If the LWP was previously sleeping (l_wchan != NULL), then 180 * l_mutex references the sleep queue lock. If the LWP was 181 * runnable or on the CPU when halted, or has been removed from 182 * the sleep queue since halted, then the lock is spc_lwplock. 183 * 184 * The lock order is as follows: 185 * 186 * spc::spc_lwplock -> 187 * sleeptab::st_mutex -> 188 * tschain_t::tc_mutex -> 189 * spc::spc_mutex 190 * 191 * Each process has an scheduler state lock (proc::p_lock), and a 192 * number of counters on LWPs and their states: p_nzlwps, p_nrlwps, and 193 * so on. When an LWP is to be entered into or removed from one of the 194 * following states, p_lock must be held and the process wide counters 195 * adjusted: 196 * 197 * LSIDL, LSZOMB, LSSTOP, LSSUSPENDED 198 * 199 * Note that an LWP is considered running or likely to run soon if in 200 * one of the following states. This affects the value of p_nrlwps: 201 * 202 * LSRUN, LSONPROC, LSSLEEP 203 * 204 * p_lock does not need to be held when transitioning among these 205 * three states. 206 */ 207 208 #include <sys/cdefs.h> 209 __KERNEL_RCSID(0, "$NetBSD: kern_lwp.c,v 1.122 2008/07/14 01:19:37 rmind Exp $"); 210 211 #include "opt_ddb.h" 212 #include "opt_lockdebug.h" 213 214 #define _LWP_API_PRIVATE 215 216 #include <sys/param.h> 217 #include <sys/systm.h> 218 #include <sys/cpu.h> 219 #include <sys/pool.h> 220 #include <sys/proc.h> 221 #include <sys/syscallargs.h> 222 #include <sys/syscall_stats.h> 223 #include <sys/kauth.h> 224 #include <sys/sleepq.h> 225 #include <sys/user.h> 226 #include <sys/lockdebug.h> 227 #include <sys/kmem.h> 228 #include <sys/pset.h> 229 #include <sys/intr.h> 230 #include <sys/lwpctl.h> 231 #include <sys/atomic.h> 232 233 #include <uvm/uvm_extern.h> 234 #include <uvm/uvm_object.h> 235 236 struct lwplist alllwp = LIST_HEAD_INITIALIZER(alllwp); 237 238 POOL_INIT(lwp_uc_pool, sizeof(ucontext_t), 0, 0, 0, "lwpucpl", 239 &pool_allocator_nointr, IPL_NONE); 240 241 static pool_cache_t lwp_cache; 242 static specificdata_domain_t lwp_specificdata_domain; 243 244 void 245 lwpinit(void) 246 { 247 248 lwp_specificdata_domain = specificdata_domain_create(); 249 KASSERT(lwp_specificdata_domain != NULL); 250 lwp_sys_init(); 251 lwp_cache = pool_cache_init(sizeof(lwp_t), MIN_LWP_ALIGNMENT, 0, 0, 252 "lwppl", NULL, IPL_NONE, NULL, NULL, NULL); 253 } 254 255 /* 256 * Set an suspended. 257 * 258 * Must be called with p_lock held, and the LWP locked. Will unlock the 259 * LWP before return. 260 */ 261 int 262 lwp_suspend(struct lwp *curl, struct lwp *t) 263 { 264 int error; 265 266 KASSERT(mutex_owned(t->l_proc->p_lock)); 267 KASSERT(lwp_locked(t, NULL)); 268 269 KASSERT(curl != t || curl->l_stat == LSONPROC); 270 271 /* 272 * If the current LWP has been told to exit, we must not suspend anyone 273 * else or deadlock could occur. We won't return to userspace. 274 */ 275 if ((curl->l_flag & (LW_WEXIT | LW_WCORE)) != 0) { 276 lwp_unlock(t); 277 return (EDEADLK); 278 } 279 280 error = 0; 281 282 switch (t->l_stat) { 283 case LSRUN: 284 case LSONPROC: 285 t->l_flag |= LW_WSUSPEND; 286 lwp_need_userret(t); 287 lwp_unlock(t); 288 break; 289 290 case LSSLEEP: 291 t->l_flag |= LW_WSUSPEND; 292 293 /* 294 * Kick the LWP and try to get it to the kernel boundary 295 * so that it will release any locks that it holds. 296 * setrunnable() will release the lock. 297 */ 298 if ((t->l_flag & LW_SINTR) != 0) 299 setrunnable(t); 300 else 301 lwp_unlock(t); 302 break; 303 304 case LSSUSPENDED: 305 lwp_unlock(t); 306 break; 307 308 case LSSTOP: 309 t->l_flag |= LW_WSUSPEND; 310 setrunnable(t); 311 break; 312 313 case LSIDL: 314 case LSZOMB: 315 error = EINTR; /* It's what Solaris does..... */ 316 lwp_unlock(t); 317 break; 318 } 319 320 return (error); 321 } 322 323 /* 324 * Restart a suspended LWP. 325 * 326 * Must be called with p_lock held, and the LWP locked. Will unlock the 327 * LWP before return. 328 */ 329 void 330 lwp_continue(struct lwp *l) 331 { 332 333 KASSERT(mutex_owned(l->l_proc->p_lock)); 334 KASSERT(lwp_locked(l, NULL)); 335 336 /* If rebooting or not suspended, then just bail out. */ 337 if ((l->l_flag & LW_WREBOOT) != 0) { 338 lwp_unlock(l); 339 return; 340 } 341 342 l->l_flag &= ~LW_WSUSPEND; 343 344 if (l->l_stat != LSSUSPENDED) { 345 lwp_unlock(l); 346 return; 347 } 348 349 /* setrunnable() will release the lock. */ 350 setrunnable(l); 351 } 352 353 /* 354 * Wait for an LWP within the current process to exit. If 'lid' is 355 * non-zero, we are waiting for a specific LWP. 356 * 357 * Must be called with p->p_lock held. 358 */ 359 int 360 lwp_wait1(struct lwp *l, lwpid_t lid, lwpid_t *departed, int flags) 361 { 362 struct proc *p = l->l_proc; 363 struct lwp *l2; 364 int nfound, error; 365 lwpid_t curlid; 366 bool exiting; 367 368 KASSERT(mutex_owned(p->p_lock)); 369 370 p->p_nlwpwait++; 371 l->l_waitingfor = lid; 372 curlid = l->l_lid; 373 exiting = ((flags & LWPWAIT_EXITCONTROL) != 0); 374 375 for (;;) { 376 /* 377 * Avoid a race between exit1() and sigexit(): if the 378 * process is dumping core, then we need to bail out: call 379 * into lwp_userret() where we will be suspended until the 380 * deed is done. 381 */ 382 if ((p->p_sflag & PS_WCORE) != 0) { 383 mutex_exit(p->p_lock); 384 lwp_userret(l); 385 #ifdef DIAGNOSTIC 386 panic("lwp_wait1"); 387 #endif 388 /* NOTREACHED */ 389 } 390 391 /* 392 * First off, drain any detached LWP that is waiting to be 393 * reaped. 394 */ 395 while ((l2 = p->p_zomblwp) != NULL) { 396 p->p_zomblwp = NULL; 397 lwp_free(l2, false, false);/* releases proc mutex */ 398 mutex_enter(p->p_lock); 399 } 400 401 /* 402 * Now look for an LWP to collect. If the whole process is 403 * exiting, count detached LWPs as eligible to be collected, 404 * but don't drain them here. 405 */ 406 nfound = 0; 407 error = 0; 408 LIST_FOREACH(l2, &p->p_lwps, l_sibling) { 409 /* 410 * If a specific wait and the target is waiting on 411 * us, then avoid deadlock. This also traps LWPs 412 * that try to wait on themselves. 413 * 414 * Note that this does not handle more complicated 415 * cycles, like: t1 -> t2 -> t3 -> t1. The process 416 * can still be killed so it is not a major problem. 417 */ 418 if (l2->l_lid == lid && l2->l_waitingfor == curlid) { 419 error = EDEADLK; 420 break; 421 } 422 if (l2 == l) 423 continue; 424 if ((l2->l_prflag & LPR_DETACHED) != 0) { 425 nfound += exiting; 426 continue; 427 } 428 if (lid != 0) { 429 if (l2->l_lid != lid) 430 continue; 431 /* 432 * Mark this LWP as the first waiter, if there 433 * is no other. 434 */ 435 if (l2->l_waiter == 0) 436 l2->l_waiter = curlid; 437 } else if (l2->l_waiter != 0) { 438 /* 439 * It already has a waiter - so don't 440 * collect it. If the waiter doesn't 441 * grab it we'll get another chance 442 * later. 443 */ 444 nfound++; 445 continue; 446 } 447 nfound++; 448 449 /* No need to lock the LWP in order to see LSZOMB. */ 450 if (l2->l_stat != LSZOMB) 451 continue; 452 453 /* 454 * We're no longer waiting. Reset the "first waiter" 455 * pointer on the target, in case it was us. 456 */ 457 l->l_waitingfor = 0; 458 l2->l_waiter = 0; 459 p->p_nlwpwait--; 460 if (departed) 461 *departed = l2->l_lid; 462 sched_lwp_collect(l2); 463 464 /* lwp_free() releases the proc lock. */ 465 lwp_free(l2, false, false); 466 mutex_enter(p->p_lock); 467 return 0; 468 } 469 470 if (error != 0) 471 break; 472 if (nfound == 0) { 473 error = ESRCH; 474 break; 475 } 476 477 /* 478 * The kernel is careful to ensure that it can not deadlock 479 * when exiting - just keep waiting. 480 */ 481 if (exiting) { 482 KASSERT(p->p_nlwps > 1); 483 cv_wait(&p->p_lwpcv, p->p_lock); 484 continue; 485 } 486 487 /* 488 * If all other LWPs are waiting for exits or suspends 489 * and the supply of zombies and potential zombies is 490 * exhausted, then we are about to deadlock. 491 * 492 * If the process is exiting (and this LWP is not the one 493 * that is coordinating the exit) then bail out now. 494 */ 495 if ((p->p_sflag & PS_WEXIT) != 0 || 496 p->p_nrlwps + p->p_nzlwps - p->p_ndlwps <= p->p_nlwpwait) { 497 error = EDEADLK; 498 break; 499 } 500 501 /* 502 * Sit around and wait for something to happen. We'll be 503 * awoken if any of the conditions examined change: if an 504 * LWP exits, is collected, or is detached. 505 */ 506 if ((error = cv_wait_sig(&p->p_lwpcv, p->p_lock)) != 0) 507 break; 508 } 509 510 /* 511 * We didn't find any LWPs to collect, we may have received a 512 * signal, or some other condition has caused us to bail out. 513 * 514 * If waiting on a specific LWP, clear the waiters marker: some 515 * other LWP may want it. Then, kick all the remaining waiters 516 * so that they can re-check for zombies and for deadlock. 517 */ 518 if (lid != 0) { 519 LIST_FOREACH(l2, &p->p_lwps, l_sibling) { 520 if (l2->l_lid == lid) { 521 if (l2->l_waiter == curlid) 522 l2->l_waiter = 0; 523 break; 524 } 525 } 526 } 527 p->p_nlwpwait--; 528 l->l_waitingfor = 0; 529 cv_broadcast(&p->p_lwpcv); 530 531 return error; 532 } 533 534 /* 535 * Create a new LWP within process 'p2', using LWP 'l1' as a template. 536 * The new LWP is created in state LSIDL and must be set running, 537 * suspended, or stopped by the caller. 538 */ 539 int 540 lwp_create(lwp_t *l1, proc_t *p2, vaddr_t uaddr, bool inmem, int flags, 541 void *stack, size_t stacksize, void (*func)(void *), void *arg, 542 lwp_t **rnewlwpp, int sclass) 543 { 544 struct lwp *l2, *isfree; 545 turnstile_t *ts; 546 547 KASSERT(l1 == curlwp || l1->l_proc == &proc0); 548 549 /* 550 * First off, reap any detached LWP waiting to be collected. 551 * We can re-use its LWP structure and turnstile. 552 */ 553 isfree = NULL; 554 if (p2->p_zomblwp != NULL) { 555 mutex_enter(p2->p_lock); 556 if ((isfree = p2->p_zomblwp) != NULL) { 557 p2->p_zomblwp = NULL; 558 lwp_free(isfree, true, false);/* releases proc mutex */ 559 } else 560 mutex_exit(p2->p_lock); 561 } 562 if (isfree == NULL) { 563 l2 = pool_cache_get(lwp_cache, PR_WAITOK); 564 memset(l2, 0, sizeof(*l2)); 565 l2->l_ts = pool_cache_get(turnstile_cache, PR_WAITOK); 566 SLIST_INIT(&l2->l_pi_lenders); 567 } else { 568 l2 = isfree; 569 ts = l2->l_ts; 570 KASSERT(l2->l_inheritedprio == -1); 571 KASSERT(SLIST_EMPTY(&l2->l_pi_lenders)); 572 memset(l2, 0, sizeof(*l2)); 573 l2->l_ts = ts; 574 } 575 576 l2->l_stat = LSIDL; 577 l2->l_proc = p2; 578 l2->l_refcnt = 1; 579 l2->l_class = sclass; 580 581 /* 582 * If vfork(), we want the LWP to run fast and on the same CPU 583 * as its parent, so that it can reuse the VM context and cache 584 * footprint on the local CPU. 585 */ 586 l2->l_kpriority = ((flags & LWP_VFORK) ? true : false); 587 l2->l_kpribase = PRI_KERNEL; 588 l2->l_priority = l1->l_priority; 589 l2->l_inheritedprio = -1; 590 l2->l_flag = inmem ? LW_INMEM : 0; 591 l2->l_pflag = LP_MPSAFE; 592 l2->l_fd = p2->p_fd; 593 TAILQ_INIT(&l2->l_ld_locks); 594 595 if (p2->p_flag & PK_SYSTEM) { 596 /* Mark it as a system LWP and not a candidate for swapping */ 597 l2->l_flag |= LW_SYSTEM; 598 } 599 600 kpreempt_disable(); 601 l2->l_mutex = l1->l_cpu->ci_schedstate.spc_mutex; 602 l2->l_cpu = l1->l_cpu; 603 kpreempt_enable(); 604 605 lwp_initspecific(l2); 606 sched_lwp_fork(l1, l2); 607 lwp_update_creds(l2); 608 callout_init(&l2->l_timeout_ch, CALLOUT_MPSAFE); 609 callout_setfunc(&l2->l_timeout_ch, sleepq_timeout, l2); 610 mutex_init(&l2->l_swaplock, MUTEX_DEFAULT, IPL_NONE); 611 cv_init(&l2->l_sigcv, "sigwait"); 612 l2->l_syncobj = &sched_syncobj; 613 614 if (rnewlwpp != NULL) 615 *rnewlwpp = l2; 616 617 l2->l_addr = UAREA_TO_USER(uaddr); 618 uvm_lwp_fork(l1, l2, stack, stacksize, func, 619 (arg != NULL) ? arg : l2); 620 621 mutex_enter(p2->p_lock); 622 623 if ((flags & LWP_DETACHED) != 0) { 624 l2->l_prflag = LPR_DETACHED; 625 p2->p_ndlwps++; 626 } else 627 l2->l_prflag = 0; 628 629 l2->l_sigmask = l1->l_sigmask; 630 CIRCLEQ_INIT(&l2->l_sigpend.sp_info); 631 sigemptyset(&l2->l_sigpend.sp_set); 632 633 p2->p_nlwpid++; 634 if (p2->p_nlwpid == 0) 635 p2->p_nlwpid++; 636 l2->l_lid = p2->p_nlwpid; 637 LIST_INSERT_HEAD(&p2->p_lwps, l2, l_sibling); 638 p2->p_nlwps++; 639 640 mutex_exit(p2->p_lock); 641 642 mutex_enter(proc_lock); 643 LIST_INSERT_HEAD(&alllwp, l2, l_list); 644 mutex_exit(proc_lock); 645 646 if ((p2->p_flag & PK_SYSTEM) == 0) { 647 /* Locking is needed, since LWP is in the list of all LWPs */ 648 lwp_lock(l2); 649 /* Inherit a processor-set */ 650 l2->l_psid = l1->l_psid; 651 /* Inherit an affinity */ 652 if (l1->l_flag & LW_AFFINITY) { 653 proc_t *p = l1->l_proc; 654 655 mutex_enter(p->p_lock); 656 if (l1->l_flag & LW_AFFINITY) { 657 kcpuset_use(l1->l_affinity); 658 l2->l_affinity = l1->l_affinity; 659 l2->l_flag |= LW_AFFINITY; 660 } 661 mutex_exit(p->p_lock); 662 } 663 /* Look for a CPU to start */ 664 l2->l_cpu = sched_takecpu(l2); 665 lwp_unlock_to(l2, l2->l_cpu->ci_schedstate.spc_mutex); 666 } 667 668 SYSCALL_TIME_LWP_INIT(l2); 669 670 if (p2->p_emul->e_lwp_fork) 671 (*p2->p_emul->e_lwp_fork)(l1, l2); 672 673 return (0); 674 } 675 676 /* 677 * Called by MD code when a new LWP begins execution. Must be called 678 * with the previous LWP locked (so at splsched), or if there is no 679 * previous LWP, at splsched. 680 */ 681 void 682 lwp_startup(struct lwp *prev, struct lwp *new) 683 { 684 685 KASSERT(kpreempt_disabled()); 686 if (prev != NULL) { 687 /* 688 * Normalize the count of the spin-mutexes, it was 689 * increased in mi_switch(). Unmark the state of 690 * context switch - it is finished for previous LWP. 691 */ 692 curcpu()->ci_mtx_count++; 693 membar_exit(); 694 prev->l_ctxswtch = 0; 695 } 696 KPREEMPT_DISABLE(new); 697 spl0(); 698 pmap_activate(new); 699 LOCKDEBUG_BARRIER(NULL, 0); 700 KPREEMPT_ENABLE(new); 701 if ((new->l_pflag & LP_MPSAFE) == 0) { 702 KERNEL_LOCK(1, new); 703 } 704 } 705 706 /* 707 * Exit an LWP. 708 */ 709 void 710 lwp_exit(struct lwp *l) 711 { 712 struct proc *p = l->l_proc; 713 struct lwp *l2; 714 bool current; 715 716 current = (l == curlwp); 717 718 KASSERT(current || (l->l_stat == LSIDL && l->l_target_cpu == NULL)); 719 720 /* 721 * Verify that we hold no locks other than the kernel lock. 722 */ 723 LOCKDEBUG_BARRIER(&kernel_lock, 0); 724 725 /* 726 * If we are the last live LWP in a process, we need to exit the 727 * entire process. We do so with an exit status of zero, because 728 * it's a "controlled" exit, and because that's what Solaris does. 729 * 730 * We are not quite a zombie yet, but for accounting purposes we 731 * must increment the count of zombies here. 732 * 733 * Note: the last LWP's specificdata will be deleted here. 734 */ 735 mutex_enter(p->p_lock); 736 if (p->p_nlwps - p->p_nzlwps == 1) { 737 KASSERT(current == true); 738 /* XXXSMP kernel_lock not held */ 739 exit1(l, 0); 740 /* NOTREACHED */ 741 } 742 p->p_nzlwps++; 743 mutex_exit(p->p_lock); 744 745 if (p->p_emul->e_lwp_exit) 746 (*p->p_emul->e_lwp_exit)(l); 747 748 /* Delete the specificdata while it's still safe to sleep. */ 749 specificdata_fini(lwp_specificdata_domain, &l->l_specdataref); 750 751 /* 752 * Release our cached credentials. 753 */ 754 kauth_cred_free(l->l_cred); 755 callout_destroy(&l->l_timeout_ch); 756 757 /* 758 * While we can still block, mark the LWP as unswappable to 759 * prevent conflicts with the with the swapper. 760 */ 761 if (current) 762 uvm_lwp_hold(l); 763 764 /* 765 * Remove the LWP from the global list. 766 */ 767 mutex_enter(proc_lock); 768 LIST_REMOVE(l, l_list); 769 mutex_exit(proc_lock); 770 771 /* 772 * Get rid of all references to the LWP that others (e.g. procfs) 773 * may have, and mark the LWP as a zombie. If the LWP is detached, 774 * mark it waiting for collection in the proc structure. Note that 775 * before we can do that, we need to free any other dead, deatched 776 * LWP waiting to meet its maker. 777 */ 778 mutex_enter(p->p_lock); 779 lwp_drainrefs(l); 780 781 if ((l->l_prflag & LPR_DETACHED) != 0) { 782 while ((l2 = p->p_zomblwp) != NULL) { 783 p->p_zomblwp = NULL; 784 lwp_free(l2, false, false);/* releases proc mutex */ 785 mutex_enter(p->p_lock); 786 l->l_refcnt++; 787 lwp_drainrefs(l); 788 } 789 p->p_zomblwp = l; 790 } 791 792 /* 793 * If we find a pending signal for the process and we have been 794 * asked to check for signals, then we loose: arrange to have 795 * all other LWPs in the process check for signals. 796 */ 797 if ((l->l_flag & LW_PENDSIG) != 0 && 798 firstsig(&p->p_sigpend.sp_set) != 0) { 799 LIST_FOREACH(l2, &p->p_lwps, l_sibling) { 800 lwp_lock(l2); 801 l2->l_flag |= LW_PENDSIG; 802 lwp_unlock(l2); 803 } 804 } 805 806 lwp_lock(l); 807 l->l_stat = LSZOMB; 808 if (l->l_name != NULL) 809 strcpy(l->l_name, "(zombie)"); 810 if (l->l_flag & LW_AFFINITY) 811 l->l_flag &= ~LW_AFFINITY; 812 lwp_unlock(l); 813 p->p_nrlwps--; 814 cv_broadcast(&p->p_lwpcv); 815 if (l->l_lwpctl != NULL) 816 l->l_lwpctl->lc_curcpu = LWPCTL_CPU_EXITED; 817 mutex_exit(p->p_lock); 818 819 /* Safe without lock since LWP is in zombie state */ 820 if (l->l_affinity) { 821 kcpuset_unuse(l->l_affinity, NULL); 822 l->l_affinity = NULL; 823 } 824 825 /* 826 * We can no longer block. At this point, lwp_free() may already 827 * be gunning for us. On a multi-CPU system, we may be off p_lwps. 828 * 829 * Free MD LWP resources. 830 */ 831 #ifndef __NO_CPU_LWP_FREE 832 cpu_lwp_free(l, 0); 833 #endif 834 835 if (current) { 836 pmap_deactivate(l); 837 838 /* 839 * Release the kernel lock, and switch away into 840 * oblivion. 841 */ 842 #ifdef notyet 843 /* XXXSMP hold in lwp_userret() */ 844 KERNEL_UNLOCK_LAST(l); 845 #else 846 KERNEL_UNLOCK_ALL(l, NULL); 847 #endif 848 lwp_exit_switchaway(l); 849 } 850 } 851 852 /* 853 * Free a dead LWP's remaining resources. 854 * 855 * XXXLWP limits. 856 */ 857 void 858 lwp_free(struct lwp *l, bool recycle, bool last) 859 { 860 struct proc *p = l->l_proc; 861 struct rusage *ru; 862 ksiginfoq_t kq; 863 864 KASSERT(l != curlwp); 865 866 /* 867 * If this was not the last LWP in the process, then adjust 868 * counters and unlock. 869 */ 870 if (!last) { 871 /* 872 * Add the LWP's run time to the process' base value. 873 * This needs to co-incide with coming off p_lwps. 874 */ 875 bintime_add(&p->p_rtime, &l->l_rtime); 876 p->p_pctcpu += l->l_pctcpu; 877 ru = &p->p_stats->p_ru; 878 ruadd(ru, &l->l_ru); 879 ru->ru_nvcsw += (l->l_ncsw - l->l_nivcsw); 880 ru->ru_nivcsw += l->l_nivcsw; 881 LIST_REMOVE(l, l_sibling); 882 p->p_nlwps--; 883 p->p_nzlwps--; 884 if ((l->l_prflag & LPR_DETACHED) != 0) 885 p->p_ndlwps--; 886 887 /* 888 * Have any LWPs sleeping in lwp_wait() recheck for 889 * deadlock. 890 */ 891 cv_broadcast(&p->p_lwpcv); 892 mutex_exit(p->p_lock); 893 } 894 895 #ifdef MULTIPROCESSOR 896 /* 897 * In the unlikely event that the LWP is still on the CPU, 898 * then spin until it has switched away. We need to release 899 * all locks to avoid deadlock against interrupt handlers on 900 * the target CPU. 901 */ 902 if ((l->l_pflag & LP_RUNNING) != 0 || l->l_cpu->ci_curlwp == l) { 903 int count; 904 (void)count; /* XXXgcc */ 905 KERNEL_UNLOCK_ALL(curlwp, &count); 906 while ((l->l_pflag & LP_RUNNING) != 0 || 907 l->l_cpu->ci_curlwp == l) 908 SPINLOCK_BACKOFF_HOOK; 909 KERNEL_LOCK(count, curlwp); 910 } 911 #endif 912 913 /* 914 * Destroy the LWP's remaining signal information. 915 */ 916 ksiginfo_queue_init(&kq); 917 sigclear(&l->l_sigpend, NULL, &kq); 918 ksiginfo_queue_drain(&kq); 919 cv_destroy(&l->l_sigcv); 920 mutex_destroy(&l->l_swaplock); 921 922 /* 923 * Free the LWP's turnstile and the LWP structure itself unless the 924 * caller wants to recycle them. Also, free the scheduler specific 925 * data. 926 * 927 * We can't return turnstile0 to the pool (it didn't come from it), 928 * so if it comes up just drop it quietly and move on. 929 * 930 * We don't recycle the VM resources at this time. 931 */ 932 if (l->l_lwpctl != NULL) 933 lwp_ctl_free(l); 934 sched_lwp_exit(l); 935 936 if (!recycle && l->l_ts != &turnstile0) 937 pool_cache_put(turnstile_cache, l->l_ts); 938 if (l->l_name != NULL) 939 kmem_free(l->l_name, MAXCOMLEN); 940 #ifndef __NO_CPU_LWP_FREE 941 cpu_lwp_free2(l); 942 #endif 943 KASSERT((l->l_flag & LW_INMEM) != 0); 944 uvm_lwp_exit(l); 945 KASSERT(SLIST_EMPTY(&l->l_pi_lenders)); 946 KASSERT(l->l_inheritedprio == -1); 947 if (!recycle) 948 pool_cache_put(lwp_cache, l); 949 } 950 951 /* 952 * Migrate the LWP to the another CPU. Unlocks the LWP. 953 */ 954 void 955 lwp_migrate(lwp_t *l, struct cpu_info *tci) 956 { 957 struct schedstate_percpu *tspc; 958 int lstat = l->l_stat; 959 960 KASSERT(lwp_locked(l, NULL)); 961 KASSERT(tci != NULL); 962 963 /* If LWP is still on the CPU, it must be handled like LSONPROC */ 964 if ((l->l_pflag & LP_RUNNING) != 0) { 965 lstat = LSONPROC; 966 } 967 968 /* 969 * The destination CPU could be changed while previous migration 970 * was not finished. 971 */ 972 if (l->l_target_cpu != NULL) { 973 l->l_target_cpu = tci; 974 lwp_unlock(l); 975 return; 976 } 977 978 /* Nothing to do if trying to migrate to the same CPU */ 979 if (l->l_cpu == tci) { 980 lwp_unlock(l); 981 return; 982 } 983 984 KASSERT(l->l_target_cpu == NULL); 985 tspc = &tci->ci_schedstate; 986 switch (lstat) { 987 case LSRUN: 988 if (l->l_flag & LW_INMEM) { 989 l->l_target_cpu = tci; 990 lwp_unlock(l); 991 return; 992 } 993 case LSIDL: 994 l->l_cpu = tci; 995 lwp_unlock_to(l, tspc->spc_mutex); 996 return; 997 case LSSLEEP: 998 l->l_cpu = tci; 999 break; 1000 case LSSTOP: 1001 case LSSUSPENDED: 1002 l->l_cpu = tci; 1003 if (l->l_wchan == NULL) { 1004 lwp_unlock_to(l, tspc->spc_lwplock); 1005 return; 1006 } 1007 break; 1008 case LSONPROC: 1009 l->l_target_cpu = tci; 1010 spc_lock(l->l_cpu); 1011 cpu_need_resched(l->l_cpu, RESCHED_KPREEMPT); 1012 spc_unlock(l->l_cpu); 1013 break; 1014 } 1015 lwp_unlock(l); 1016 } 1017 1018 /* 1019 * Find the LWP in the process. Arguments may be zero, in such case, 1020 * the calling process and first LWP in the list will be used. 1021 * On success - returns proc locked. 1022 */ 1023 struct lwp * 1024 lwp_find2(pid_t pid, lwpid_t lid) 1025 { 1026 proc_t *p; 1027 lwp_t *l; 1028 1029 /* Find the process */ 1030 p = (pid == 0) ? curlwp->l_proc : p_find(pid, PFIND_UNLOCK_FAIL); 1031 if (p == NULL) 1032 return NULL; 1033 mutex_enter(p->p_lock); 1034 if (pid != 0) { 1035 /* Case of p_find */ 1036 mutex_exit(proc_lock); 1037 } 1038 1039 /* Find the thread */ 1040 l = (lid == 0) ? LIST_FIRST(&p->p_lwps) : lwp_find(p, lid); 1041 if (l == NULL) { 1042 mutex_exit(p->p_lock); 1043 } 1044 1045 return l; 1046 } 1047 1048 /* 1049 * Look up a live LWP within the speicifed process, and return it locked. 1050 * 1051 * Must be called with p->p_lock held. 1052 */ 1053 struct lwp * 1054 lwp_find(struct proc *p, int id) 1055 { 1056 struct lwp *l; 1057 1058 KASSERT(mutex_owned(p->p_lock)); 1059 1060 LIST_FOREACH(l, &p->p_lwps, l_sibling) { 1061 if (l->l_lid == id) 1062 break; 1063 } 1064 1065 /* 1066 * No need to lock - all of these conditions will 1067 * be visible with the process level mutex held. 1068 */ 1069 if (l != NULL && (l->l_stat == LSIDL || l->l_stat == LSZOMB)) 1070 l = NULL; 1071 1072 return l; 1073 } 1074 1075 /* 1076 * Update an LWP's cached credentials to mirror the process' master copy. 1077 * 1078 * This happens early in the syscall path, on user trap, and on LWP 1079 * creation. A long-running LWP can also voluntarily choose to update 1080 * it's credentials by calling this routine. This may be called from 1081 * LWP_CACHE_CREDS(), which checks l->l_cred != p->p_cred beforehand. 1082 */ 1083 void 1084 lwp_update_creds(struct lwp *l) 1085 { 1086 kauth_cred_t oc; 1087 struct proc *p; 1088 1089 p = l->l_proc; 1090 oc = l->l_cred; 1091 1092 mutex_enter(p->p_lock); 1093 kauth_cred_hold(p->p_cred); 1094 l->l_cred = p->p_cred; 1095 l->l_prflag &= ~LPR_CRMOD; 1096 mutex_exit(p->p_lock); 1097 if (oc != NULL) 1098 kauth_cred_free(oc); 1099 } 1100 1101 /* 1102 * Verify that an LWP is locked, and optionally verify that the lock matches 1103 * one we specify. 1104 */ 1105 int 1106 lwp_locked(struct lwp *l, kmutex_t *mtx) 1107 { 1108 kmutex_t *cur = l->l_mutex; 1109 1110 return mutex_owned(cur) && (mtx == cur || mtx == NULL); 1111 } 1112 1113 /* 1114 * Lock an LWP. 1115 */ 1116 kmutex_t * 1117 lwp_lock_retry(struct lwp *l, kmutex_t *old) 1118 { 1119 1120 /* 1121 * XXXgcc ignoring kmutex_t * volatile on i386 1122 * 1123 * gcc version 4.1.2 20061021 prerelease (NetBSD nb1 20061021) 1124 */ 1125 #if 1 1126 while (l->l_mutex != old) { 1127 #else 1128 for (;;) { 1129 #endif 1130 mutex_spin_exit(old); 1131 old = l->l_mutex; 1132 mutex_spin_enter(old); 1133 1134 /* 1135 * mutex_enter() will have posted a read barrier. Re-test 1136 * l->l_mutex. If it has changed, we need to try again. 1137 */ 1138 #if 1 1139 } 1140 #else 1141 } while (__predict_false(l->l_mutex != old)); 1142 #endif 1143 1144 return old; 1145 } 1146 1147 /* 1148 * Lend a new mutex to an LWP. The old mutex must be held. 1149 */ 1150 void 1151 lwp_setlock(struct lwp *l, kmutex_t *new) 1152 { 1153 1154 KASSERT(mutex_owned(l->l_mutex)); 1155 1156 membar_exit(); 1157 l->l_mutex = new; 1158 } 1159 1160 /* 1161 * Lend a new mutex to an LWP, and release the old mutex. The old mutex 1162 * must be held. 1163 */ 1164 void 1165 lwp_unlock_to(struct lwp *l, kmutex_t *new) 1166 { 1167 kmutex_t *old; 1168 1169 KASSERT(mutex_owned(l->l_mutex)); 1170 1171 old = l->l_mutex; 1172 membar_exit(); 1173 l->l_mutex = new; 1174 mutex_spin_exit(old); 1175 } 1176 1177 /* 1178 * Acquire a new mutex, and donate it to an LWP. The LWP must already be 1179 * locked. 1180 */ 1181 void 1182 lwp_relock(struct lwp *l, kmutex_t *new) 1183 { 1184 kmutex_t *old; 1185 1186 KASSERT(mutex_owned(l->l_mutex)); 1187 1188 old = l->l_mutex; 1189 if (old != new) { 1190 mutex_spin_enter(new); 1191 l->l_mutex = new; 1192 mutex_spin_exit(old); 1193 } 1194 } 1195 1196 int 1197 lwp_trylock(struct lwp *l) 1198 { 1199 kmutex_t *old; 1200 1201 for (;;) { 1202 if (!mutex_tryenter(old = l->l_mutex)) 1203 return 0; 1204 if (__predict_true(l->l_mutex == old)) 1205 return 1; 1206 mutex_spin_exit(old); 1207 } 1208 } 1209 1210 u_int 1211 lwp_unsleep(lwp_t *l, bool cleanup) 1212 { 1213 1214 KASSERT(mutex_owned(l->l_mutex)); 1215 1216 return (*l->l_syncobj->sobj_unsleep)(l, cleanup); 1217 } 1218 1219 1220 /* 1221 * Handle exceptions for mi_userret(). Called if a member of LW_USERRET is 1222 * set. 1223 */ 1224 void 1225 lwp_userret(struct lwp *l) 1226 { 1227 struct proc *p; 1228 void (*hook)(void); 1229 int sig; 1230 1231 KASSERT(l == curlwp); 1232 KASSERT(l->l_stat == LSONPROC); 1233 p = l->l_proc; 1234 1235 #ifndef __HAVE_FAST_SOFTINTS 1236 /* Run pending soft interrupts. */ 1237 if (l->l_cpu->ci_data.cpu_softints != 0) 1238 softint_overlay(); 1239 #endif 1240 1241 /* 1242 * It should be safe to do this read unlocked on a multiprocessor 1243 * system.. 1244 */ 1245 while ((l->l_flag & LW_USERRET) != 0) { 1246 /* 1247 * Process pending signals first, unless the process 1248 * is dumping core or exiting, where we will instead 1249 * enter the LW_WSUSPEND case below. 1250 */ 1251 if ((l->l_flag & (LW_PENDSIG | LW_WCORE | LW_WEXIT)) == 1252 LW_PENDSIG) { 1253 mutex_enter(p->p_lock); 1254 while ((sig = issignal(l)) != 0) 1255 postsig(sig); 1256 mutex_exit(p->p_lock); 1257 } 1258 1259 /* 1260 * Core-dump or suspend pending. 1261 * 1262 * In case of core dump, suspend ourselves, so that the 1263 * kernel stack and therefore the userland registers saved 1264 * in the trapframe are around for coredump() to write them 1265 * out. We issue a wakeup on p->p_lwpcv so that sigexit() 1266 * will write the core file out once all other LWPs are 1267 * suspended. 1268 */ 1269 if ((l->l_flag & LW_WSUSPEND) != 0) { 1270 mutex_enter(p->p_lock); 1271 p->p_nrlwps--; 1272 cv_broadcast(&p->p_lwpcv); 1273 lwp_lock(l); 1274 l->l_stat = LSSUSPENDED; 1275 lwp_unlock(l); 1276 mutex_exit(p->p_lock); 1277 lwp_lock(l); 1278 mi_switch(l); 1279 } 1280 1281 /* Process is exiting. */ 1282 if ((l->l_flag & LW_WEXIT) != 0) { 1283 lwp_exit(l); 1284 KASSERT(0); 1285 /* NOTREACHED */ 1286 } 1287 1288 /* Call userret hook; used by Linux emulation. */ 1289 if ((l->l_flag & LW_WUSERRET) != 0) { 1290 lwp_lock(l); 1291 l->l_flag &= ~LW_WUSERRET; 1292 lwp_unlock(l); 1293 hook = p->p_userret; 1294 p->p_userret = NULL; 1295 (*hook)(); 1296 } 1297 } 1298 } 1299 1300 /* 1301 * Force an LWP to enter the kernel, to take a trip through lwp_userret(). 1302 */ 1303 void 1304 lwp_need_userret(struct lwp *l) 1305 { 1306 KASSERT(lwp_locked(l, NULL)); 1307 1308 /* 1309 * Since the tests in lwp_userret() are done unlocked, make sure 1310 * that the condition will be seen before forcing the LWP to enter 1311 * kernel mode. 1312 */ 1313 membar_producer(); 1314 cpu_signotify(l); 1315 } 1316 1317 /* 1318 * Add one reference to an LWP. This will prevent the LWP from 1319 * exiting, thus keep the lwp structure and PCB around to inspect. 1320 */ 1321 void 1322 lwp_addref(struct lwp *l) 1323 { 1324 1325 KASSERT(mutex_owned(l->l_proc->p_lock)); 1326 KASSERT(l->l_stat != LSZOMB); 1327 KASSERT(l->l_refcnt != 0); 1328 1329 l->l_refcnt++; 1330 } 1331 1332 /* 1333 * Remove one reference to an LWP. If this is the last reference, 1334 * then we must finalize the LWP's death. 1335 */ 1336 void 1337 lwp_delref(struct lwp *l) 1338 { 1339 struct proc *p = l->l_proc; 1340 1341 mutex_enter(p->p_lock); 1342 KASSERT(l->l_stat != LSZOMB); 1343 KASSERT(l->l_refcnt > 0); 1344 if (--l->l_refcnt == 0) 1345 cv_broadcast(&p->p_lwpcv); 1346 mutex_exit(p->p_lock); 1347 } 1348 1349 /* 1350 * Drain all references to the current LWP. 1351 */ 1352 void 1353 lwp_drainrefs(struct lwp *l) 1354 { 1355 struct proc *p = l->l_proc; 1356 1357 KASSERT(mutex_owned(p->p_lock)); 1358 KASSERT(l->l_refcnt != 0); 1359 1360 l->l_refcnt--; 1361 while (l->l_refcnt != 0) 1362 cv_wait(&p->p_lwpcv, p->p_lock); 1363 } 1364 1365 /* 1366 * lwp_specific_key_create -- 1367 * Create a key for subsystem lwp-specific data. 1368 */ 1369 int 1370 lwp_specific_key_create(specificdata_key_t *keyp, specificdata_dtor_t dtor) 1371 { 1372 1373 return (specificdata_key_create(lwp_specificdata_domain, keyp, dtor)); 1374 } 1375 1376 /* 1377 * lwp_specific_key_delete -- 1378 * Delete a key for subsystem lwp-specific data. 1379 */ 1380 void 1381 lwp_specific_key_delete(specificdata_key_t key) 1382 { 1383 1384 specificdata_key_delete(lwp_specificdata_domain, key); 1385 } 1386 1387 /* 1388 * lwp_initspecific -- 1389 * Initialize an LWP's specificdata container. 1390 */ 1391 void 1392 lwp_initspecific(struct lwp *l) 1393 { 1394 int error; 1395 1396 error = specificdata_init(lwp_specificdata_domain, &l->l_specdataref); 1397 KASSERT(error == 0); 1398 } 1399 1400 /* 1401 * lwp_finispecific -- 1402 * Finalize an LWP's specificdata container. 1403 */ 1404 void 1405 lwp_finispecific(struct lwp *l) 1406 { 1407 1408 specificdata_fini(lwp_specificdata_domain, &l->l_specdataref); 1409 } 1410 1411 /* 1412 * lwp_getspecific -- 1413 * Return lwp-specific data corresponding to the specified key. 1414 * 1415 * Note: LWP specific data is NOT INTERLOCKED. An LWP should access 1416 * only its OWN SPECIFIC DATA. If it is necessary to access another 1417 * LWP's specifc data, care must be taken to ensure that doing so 1418 * would not cause internal data structure inconsistency (i.e. caller 1419 * can guarantee that the target LWP is not inside an lwp_getspecific() 1420 * or lwp_setspecific() call). 1421 */ 1422 void * 1423 lwp_getspecific(specificdata_key_t key) 1424 { 1425 1426 return (specificdata_getspecific_unlocked(lwp_specificdata_domain, 1427 &curlwp->l_specdataref, key)); 1428 } 1429 1430 void * 1431 _lwp_getspecific_by_lwp(struct lwp *l, specificdata_key_t key) 1432 { 1433 1434 return (specificdata_getspecific_unlocked(lwp_specificdata_domain, 1435 &l->l_specdataref, key)); 1436 } 1437 1438 /* 1439 * lwp_setspecific -- 1440 * Set lwp-specific data corresponding to the specified key. 1441 */ 1442 void 1443 lwp_setspecific(specificdata_key_t key, void *data) 1444 { 1445 1446 specificdata_setspecific(lwp_specificdata_domain, 1447 &curlwp->l_specdataref, key, data); 1448 } 1449 1450 /* 1451 * Allocate a new lwpctl structure for a user LWP. 1452 */ 1453 int 1454 lwp_ctl_alloc(vaddr_t *uaddr) 1455 { 1456 lcproc_t *lp; 1457 u_int bit, i, offset; 1458 struct uvm_object *uao; 1459 int error; 1460 lcpage_t *lcp; 1461 proc_t *p; 1462 lwp_t *l; 1463 1464 l = curlwp; 1465 p = l->l_proc; 1466 1467 if (l->l_lcpage != NULL) { 1468 lcp = l->l_lcpage; 1469 *uaddr = lcp->lcp_uaddr + (vaddr_t)l->l_lwpctl - lcp->lcp_kaddr; 1470 return (EINVAL); 1471 } 1472 1473 /* First time around, allocate header structure for the process. */ 1474 if ((lp = p->p_lwpctl) == NULL) { 1475 lp = kmem_alloc(sizeof(*lp), KM_SLEEP); 1476 mutex_init(&lp->lp_lock, MUTEX_DEFAULT, IPL_NONE); 1477 lp->lp_uao = NULL; 1478 TAILQ_INIT(&lp->lp_pages); 1479 mutex_enter(p->p_lock); 1480 if (p->p_lwpctl == NULL) { 1481 p->p_lwpctl = lp; 1482 mutex_exit(p->p_lock); 1483 } else { 1484 mutex_exit(p->p_lock); 1485 mutex_destroy(&lp->lp_lock); 1486 kmem_free(lp, sizeof(*lp)); 1487 lp = p->p_lwpctl; 1488 } 1489 } 1490 1491 /* 1492 * Set up an anonymous memory region to hold the shared pages. 1493 * Map them into the process' address space. The user vmspace 1494 * gets the first reference on the UAO. 1495 */ 1496 mutex_enter(&lp->lp_lock); 1497 if (lp->lp_uao == NULL) { 1498 lp->lp_uao = uao_create(LWPCTL_UAREA_SZ, 0); 1499 lp->lp_cur = 0; 1500 lp->lp_max = LWPCTL_UAREA_SZ; 1501 lp->lp_uva = p->p_emul->e_vm_default_addr(p, 1502 (vaddr_t)p->p_vmspace->vm_daddr, LWPCTL_UAREA_SZ); 1503 error = uvm_map(&p->p_vmspace->vm_map, &lp->lp_uva, 1504 LWPCTL_UAREA_SZ, lp->lp_uao, 0, 0, UVM_MAPFLAG(UVM_PROT_RW, 1505 UVM_PROT_RW, UVM_INH_NONE, UVM_ADV_NORMAL, 0)); 1506 if (error != 0) { 1507 uao_detach(lp->lp_uao); 1508 lp->lp_uao = NULL; 1509 mutex_exit(&lp->lp_lock); 1510 return error; 1511 } 1512 } 1513 1514 /* Get a free block and allocate for this LWP. */ 1515 TAILQ_FOREACH(lcp, &lp->lp_pages, lcp_chain) { 1516 if (lcp->lcp_nfree != 0) 1517 break; 1518 } 1519 if (lcp == NULL) { 1520 /* Nothing available - try to set up a free page. */ 1521 if (lp->lp_cur == lp->lp_max) { 1522 mutex_exit(&lp->lp_lock); 1523 return ENOMEM; 1524 } 1525 lcp = kmem_alloc(LWPCTL_LCPAGE_SZ, KM_SLEEP); 1526 if (lcp == NULL) { 1527 mutex_exit(&lp->lp_lock); 1528 return ENOMEM; 1529 } 1530 /* 1531 * Wire the next page down in kernel space. Since this 1532 * is a new mapping, we must add a reference. 1533 */ 1534 uao = lp->lp_uao; 1535 (*uao->pgops->pgo_reference)(uao); 1536 lcp->lcp_kaddr = vm_map_min(kernel_map); 1537 error = uvm_map(kernel_map, &lcp->lcp_kaddr, PAGE_SIZE, 1538 uao, lp->lp_cur, PAGE_SIZE, 1539 UVM_MAPFLAG(UVM_PROT_RW, UVM_PROT_RW, 1540 UVM_INH_NONE, UVM_ADV_RANDOM, 0)); 1541 if (error != 0) { 1542 mutex_exit(&lp->lp_lock); 1543 kmem_free(lcp, LWPCTL_LCPAGE_SZ); 1544 (*uao->pgops->pgo_detach)(uao); 1545 return error; 1546 } 1547 error = uvm_map_pageable(kernel_map, lcp->lcp_kaddr, 1548 lcp->lcp_kaddr + PAGE_SIZE, FALSE, 0); 1549 if (error != 0) { 1550 mutex_exit(&lp->lp_lock); 1551 uvm_unmap(kernel_map, lcp->lcp_kaddr, 1552 lcp->lcp_kaddr + PAGE_SIZE); 1553 kmem_free(lcp, LWPCTL_LCPAGE_SZ); 1554 return error; 1555 } 1556 /* Prepare the page descriptor and link into the list. */ 1557 lcp->lcp_uaddr = lp->lp_uva + lp->lp_cur; 1558 lp->lp_cur += PAGE_SIZE; 1559 lcp->lcp_nfree = LWPCTL_PER_PAGE; 1560 lcp->lcp_rotor = 0; 1561 memset(lcp->lcp_bitmap, 0xff, LWPCTL_BITMAP_SZ); 1562 TAILQ_INSERT_HEAD(&lp->lp_pages, lcp, lcp_chain); 1563 } 1564 for (i = lcp->lcp_rotor; lcp->lcp_bitmap[i] == 0;) { 1565 if (++i >= LWPCTL_BITMAP_ENTRIES) 1566 i = 0; 1567 } 1568 bit = ffs(lcp->lcp_bitmap[i]) - 1; 1569 lcp->lcp_bitmap[i] ^= (1 << bit); 1570 lcp->lcp_rotor = i; 1571 lcp->lcp_nfree--; 1572 l->l_lcpage = lcp; 1573 offset = (i << 5) + bit; 1574 l->l_lwpctl = (lwpctl_t *)lcp->lcp_kaddr + offset; 1575 *uaddr = lcp->lcp_uaddr + offset * sizeof(lwpctl_t); 1576 mutex_exit(&lp->lp_lock); 1577 1578 KPREEMPT_DISABLE(l); 1579 l->l_lwpctl->lc_curcpu = (int)curcpu()->ci_data.cpu_index; 1580 KPREEMPT_ENABLE(l); 1581 1582 return 0; 1583 } 1584 1585 /* 1586 * Free an lwpctl structure back to the per-process list. 1587 */ 1588 void 1589 lwp_ctl_free(lwp_t *l) 1590 { 1591 lcproc_t *lp; 1592 lcpage_t *lcp; 1593 u_int map, offset; 1594 1595 lp = l->l_proc->p_lwpctl; 1596 KASSERT(lp != NULL); 1597 1598 lcp = l->l_lcpage; 1599 offset = (u_int)((lwpctl_t *)l->l_lwpctl - (lwpctl_t *)lcp->lcp_kaddr); 1600 KASSERT(offset < LWPCTL_PER_PAGE); 1601 1602 mutex_enter(&lp->lp_lock); 1603 lcp->lcp_nfree++; 1604 map = offset >> 5; 1605 lcp->lcp_bitmap[map] |= (1 << (offset & 31)); 1606 if (lcp->lcp_bitmap[lcp->lcp_rotor] == 0) 1607 lcp->lcp_rotor = map; 1608 if (TAILQ_FIRST(&lp->lp_pages)->lcp_nfree == 0) { 1609 TAILQ_REMOVE(&lp->lp_pages, lcp, lcp_chain); 1610 TAILQ_INSERT_HEAD(&lp->lp_pages, lcp, lcp_chain); 1611 } 1612 mutex_exit(&lp->lp_lock); 1613 } 1614 1615 /* 1616 * Process is exiting; tear down lwpctl state. This can only be safely 1617 * called by the last LWP in the process. 1618 */ 1619 void 1620 lwp_ctl_exit(void) 1621 { 1622 lcpage_t *lcp, *next; 1623 lcproc_t *lp; 1624 proc_t *p; 1625 lwp_t *l; 1626 1627 l = curlwp; 1628 l->l_lwpctl = NULL; 1629 l->l_lcpage = NULL; 1630 p = l->l_proc; 1631 lp = p->p_lwpctl; 1632 1633 KASSERT(lp != NULL); 1634 KASSERT(p->p_nlwps == 1); 1635 1636 for (lcp = TAILQ_FIRST(&lp->lp_pages); lcp != NULL; lcp = next) { 1637 next = TAILQ_NEXT(lcp, lcp_chain); 1638 uvm_unmap(kernel_map, lcp->lcp_kaddr, 1639 lcp->lcp_kaddr + PAGE_SIZE); 1640 kmem_free(lcp, LWPCTL_LCPAGE_SZ); 1641 } 1642 1643 if (lp->lp_uao != NULL) { 1644 uvm_unmap(&p->p_vmspace->vm_map, lp->lp_uva, 1645 lp->lp_uva + LWPCTL_UAREA_SZ); 1646 } 1647 1648 mutex_destroy(&lp->lp_lock); 1649 kmem_free(lp, sizeof(*lp)); 1650 p->p_lwpctl = NULL; 1651 } 1652 1653 #if defined(DDB) 1654 void 1655 lwp_whatis(uintptr_t addr, void (*pr)(const char *, ...)) 1656 { 1657 lwp_t *l; 1658 1659 LIST_FOREACH(l, &alllwp, l_list) { 1660 uintptr_t stack = (uintptr_t)KSTACK_LOWEST_ADDR(l); 1661 1662 if (addr < stack || stack + KSTACK_SIZE <= addr) { 1663 continue; 1664 } 1665 (*pr)("%p is %p+%zu, LWP %p's stack\n", 1666 (void *)addr, (void *)stack, 1667 (size_t)(addr - stack), l); 1668 } 1669 } 1670 #endif /* defined(DDB) */ 1671