xref: /netbsd-src/sys/kern/kern_lwp.c (revision cac8e449158efc7261bebc8657cbb0125a2cfdde)
1 /*	$NetBSD: kern_lwp.c,v 1.122 2008/07/14 01:19:37 rmind Exp $	*/
2 
3 /*-
4  * Copyright (c) 2001, 2006, 2007, 2008 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Nathan J. Williams, and Andrew Doran.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29  * POSSIBILITY OF SUCH DAMAGE.
30  */
31 
32 /*
33  * Overview
34  *
35  *	Lightweight processes (LWPs) are the basic unit or thread of
36  *	execution within the kernel.  The core state of an LWP is described
37  *	by "struct lwp", also known as lwp_t.
38  *
39  *	Each LWP is contained within a process (described by "struct proc"),
40  *	Every process contains at least one LWP, but may contain more.  The
41  *	process describes attributes shared among all of its LWPs such as a
42  *	private address space, global execution state (stopped, active,
43  *	zombie, ...), signal disposition and so on.  On a multiprocessor
44  *	machine, multiple LWPs be executing concurrently in the kernel.
45  *
46  * Execution states
47  *
48  *	At any given time, an LWP has overall state that is described by
49  *	lwp::l_stat.  The states are broken into two sets below.  The first
50  *	set is guaranteed to represent the absolute, current state of the
51  *	LWP:
52  *
53  *	LSONPROC
54  *
55  *		On processor: the LWP is executing on a CPU, either in the
56  *		kernel or in user space.
57  *
58  *	LSRUN
59  *
60  *		Runnable: the LWP is parked on a run queue, and may soon be
61  *		chosen to run by an idle processor, or by a processor that
62  *		has been asked to preempt a currently runnning but lower
63  *		priority LWP.  If the LWP is not swapped in (LW_INMEM == 0)
64  *		then the LWP is not on a run queue, but may be soon.
65  *
66  *	LSIDL
67  *
68  *		Idle: the LWP has been created but has not yet executed,
69  *		or it has ceased executing a unit of work and is waiting
70  *		to be started again.
71  *
72  *	LSSUSPENDED:
73  *
74  *		Suspended: the LWP has had its execution suspended by
75  *		another LWP in the same process using the _lwp_suspend()
76  *		system call.  User-level LWPs also enter the suspended
77  *		state when the system is shutting down.
78  *
79  *	The second set represent a "statement of intent" on behalf of the
80  *	LWP.  The LWP may in fact be executing on a processor, may be
81  *	sleeping or idle. It is expected to take the necessary action to
82  *	stop executing or become "running" again within a short timeframe.
83  *	The LP_RUNNING flag in lwp::l_pflag indicates that an LWP is running.
84  *	Importantly, it indicates that its state is tied to a CPU.
85  *
86  *	LSZOMB:
87  *
88  *		Dead or dying: the LWP has released most of its resources
89  *		and is: a) about to switch away into oblivion b) has already
90  *		switched away.  When it switches away, its few remaining
91  *		resources can be collected.
92  *
93  *	LSSLEEP:
94  *
95  *		Sleeping: the LWP has entered itself onto a sleep queue, and
96  *		has switched away or will switch away shortly to allow other
97  *		LWPs to run on the CPU.
98  *
99  *	LSSTOP:
100  *
101  *		Stopped: the LWP has been stopped as a result of a job
102  *		control signal, or as a result of the ptrace() interface.
103  *
104  *		Stopped LWPs may run briefly within the kernel to handle
105  *		signals that they receive, but will not return to user space
106  *		until their process' state is changed away from stopped.
107  *
108  *		Single LWPs within a process can not be set stopped
109  *		selectively: all actions that can stop or continue LWPs
110  *		occur at the process level.
111  *
112  * State transitions
113  *
114  *	Note that the LSSTOP state may only be set when returning to
115  *	user space in userret(), or when sleeping interruptably.  The
116  *	LSSUSPENDED state may only be set in userret().  Before setting
117  *	those states, we try to ensure that the LWPs will release all
118  *	locks that they hold, and at a minimum try to ensure that the
119  *	LWP can be set runnable again by a signal.
120  *
121  *	LWPs may transition states in the following ways:
122  *
123  *	 RUN -------> ONPROC		ONPROC -----> RUN
124  *		    > STOPPED			    > SLEEP
125  *		    > SUSPENDED			    > STOPPED
126  *						    > SUSPENDED
127  *						    > ZOMB
128  *
129  *	 STOPPED ---> RUN		SUSPENDED --> RUN
130  *	            > SLEEP			    > SLEEP
131  *
132  *	 SLEEP -----> ONPROC		IDL --------> RUN
133  *		    > RUN			    > SUSPENDED
134  *		    > STOPPED			    > STOPPED
135  *		    > SUSPENDED
136  *
137  *	Other state transitions are possible with kernel threads (eg
138  *	ONPROC -> IDL), but only happen under tightly controlled
139  *	circumstances the side effects are understood.
140  *
141  * Migration
142  *
143  *	Migration of threads from one CPU to another could be performed
144  *	internally by the scheduler via sched_takecpu() or sched_catchlwp()
145  *	functions.  The universal lwp_migrate() function should be used for
146  *	any other cases.  Subsystems in the kernel must be aware that CPU
147  *	of LWP may change, while it is not locked.
148  *
149  * Locking
150  *
151  *	The majority of fields in 'struct lwp' are covered by a single,
152  *	general spin lock pointed to by lwp::l_mutex.  The locks covering
153  *	each field are documented in sys/lwp.h.
154  *
155  *	State transitions must be made with the LWP's general lock held,
156  *	and may cause the LWP's lock pointer to change. Manipulation of
157  *	the general lock is not performed directly, but through calls to
158  *	lwp_lock(), lwp_relock() and similar.
159  *
160  *	States and their associated locks:
161  *
162  *	LSONPROC, LSZOMB:
163  *
164  *		Always covered by spc_lwplock, which protects running LWPs.
165  *		This is a per-CPU lock.
166  *
167  *	LSIDL, LSRUN:
168  *
169  *		Always covered by spc_mutex, which protects the run queues.
170  *		This is a per-CPU lock.
171  *
172  *	LSSLEEP:
173  *
174  *		Covered by a lock associated with the sleep queue that the
175  *		LWP resides on.
176  *
177  *	LSSTOP, LSSUSPENDED:
178  *
179  *		If the LWP was previously sleeping (l_wchan != NULL), then
180  *		l_mutex references the sleep queue lock.  If the LWP was
181  *		runnable or on the CPU when halted, or has been removed from
182  *		the sleep queue since halted, then the lock is spc_lwplock.
183  *
184  *	The lock order is as follows:
185  *
186  *		spc::spc_lwplock ->
187  *		    sleeptab::st_mutex ->
188  *			tschain_t::tc_mutex ->
189  *			    spc::spc_mutex
190  *
191  *	Each process has an scheduler state lock (proc::p_lock), and a
192  *	number of counters on LWPs and their states: p_nzlwps, p_nrlwps, and
193  *	so on.  When an LWP is to be entered into or removed from one of the
194  *	following states, p_lock must be held and the process wide counters
195  *	adjusted:
196  *
197  *		LSIDL, LSZOMB, LSSTOP, LSSUSPENDED
198  *
199  *	Note that an LWP is considered running or likely to run soon if in
200  *	one of the following states.  This affects the value of p_nrlwps:
201  *
202  *		LSRUN, LSONPROC, LSSLEEP
203  *
204  *	p_lock does not need to be held when transitioning among these
205  *	three states.
206  */
207 
208 #include <sys/cdefs.h>
209 __KERNEL_RCSID(0, "$NetBSD: kern_lwp.c,v 1.122 2008/07/14 01:19:37 rmind Exp $");
210 
211 #include "opt_ddb.h"
212 #include "opt_lockdebug.h"
213 
214 #define _LWP_API_PRIVATE
215 
216 #include <sys/param.h>
217 #include <sys/systm.h>
218 #include <sys/cpu.h>
219 #include <sys/pool.h>
220 #include <sys/proc.h>
221 #include <sys/syscallargs.h>
222 #include <sys/syscall_stats.h>
223 #include <sys/kauth.h>
224 #include <sys/sleepq.h>
225 #include <sys/user.h>
226 #include <sys/lockdebug.h>
227 #include <sys/kmem.h>
228 #include <sys/pset.h>
229 #include <sys/intr.h>
230 #include <sys/lwpctl.h>
231 #include <sys/atomic.h>
232 
233 #include <uvm/uvm_extern.h>
234 #include <uvm/uvm_object.h>
235 
236 struct lwplist	alllwp = LIST_HEAD_INITIALIZER(alllwp);
237 
238 POOL_INIT(lwp_uc_pool, sizeof(ucontext_t), 0, 0, 0, "lwpucpl",
239     &pool_allocator_nointr, IPL_NONE);
240 
241 static pool_cache_t lwp_cache;
242 static specificdata_domain_t lwp_specificdata_domain;
243 
244 void
245 lwpinit(void)
246 {
247 
248 	lwp_specificdata_domain = specificdata_domain_create();
249 	KASSERT(lwp_specificdata_domain != NULL);
250 	lwp_sys_init();
251 	lwp_cache = pool_cache_init(sizeof(lwp_t), MIN_LWP_ALIGNMENT, 0, 0,
252 	    "lwppl", NULL, IPL_NONE, NULL, NULL, NULL);
253 }
254 
255 /*
256  * Set an suspended.
257  *
258  * Must be called with p_lock held, and the LWP locked.  Will unlock the
259  * LWP before return.
260  */
261 int
262 lwp_suspend(struct lwp *curl, struct lwp *t)
263 {
264 	int error;
265 
266 	KASSERT(mutex_owned(t->l_proc->p_lock));
267 	KASSERT(lwp_locked(t, NULL));
268 
269 	KASSERT(curl != t || curl->l_stat == LSONPROC);
270 
271 	/*
272 	 * If the current LWP has been told to exit, we must not suspend anyone
273 	 * else or deadlock could occur.  We won't return to userspace.
274 	 */
275 	if ((curl->l_flag & (LW_WEXIT | LW_WCORE)) != 0) {
276 		lwp_unlock(t);
277 		return (EDEADLK);
278 	}
279 
280 	error = 0;
281 
282 	switch (t->l_stat) {
283 	case LSRUN:
284 	case LSONPROC:
285 		t->l_flag |= LW_WSUSPEND;
286 		lwp_need_userret(t);
287 		lwp_unlock(t);
288 		break;
289 
290 	case LSSLEEP:
291 		t->l_flag |= LW_WSUSPEND;
292 
293 		/*
294 		 * Kick the LWP and try to get it to the kernel boundary
295 		 * so that it will release any locks that it holds.
296 		 * setrunnable() will release the lock.
297 		 */
298 		if ((t->l_flag & LW_SINTR) != 0)
299 			setrunnable(t);
300 		else
301 			lwp_unlock(t);
302 		break;
303 
304 	case LSSUSPENDED:
305 		lwp_unlock(t);
306 		break;
307 
308 	case LSSTOP:
309 		t->l_flag |= LW_WSUSPEND;
310 		setrunnable(t);
311 		break;
312 
313 	case LSIDL:
314 	case LSZOMB:
315 		error = EINTR; /* It's what Solaris does..... */
316 		lwp_unlock(t);
317 		break;
318 	}
319 
320 	return (error);
321 }
322 
323 /*
324  * Restart a suspended LWP.
325  *
326  * Must be called with p_lock held, and the LWP locked.  Will unlock the
327  * LWP before return.
328  */
329 void
330 lwp_continue(struct lwp *l)
331 {
332 
333 	KASSERT(mutex_owned(l->l_proc->p_lock));
334 	KASSERT(lwp_locked(l, NULL));
335 
336 	/* If rebooting or not suspended, then just bail out. */
337 	if ((l->l_flag & LW_WREBOOT) != 0) {
338 		lwp_unlock(l);
339 		return;
340 	}
341 
342 	l->l_flag &= ~LW_WSUSPEND;
343 
344 	if (l->l_stat != LSSUSPENDED) {
345 		lwp_unlock(l);
346 		return;
347 	}
348 
349 	/* setrunnable() will release the lock. */
350 	setrunnable(l);
351 }
352 
353 /*
354  * Wait for an LWP within the current process to exit.  If 'lid' is
355  * non-zero, we are waiting for a specific LWP.
356  *
357  * Must be called with p->p_lock held.
358  */
359 int
360 lwp_wait1(struct lwp *l, lwpid_t lid, lwpid_t *departed, int flags)
361 {
362 	struct proc *p = l->l_proc;
363 	struct lwp *l2;
364 	int nfound, error;
365 	lwpid_t curlid;
366 	bool exiting;
367 
368 	KASSERT(mutex_owned(p->p_lock));
369 
370 	p->p_nlwpwait++;
371 	l->l_waitingfor = lid;
372 	curlid = l->l_lid;
373 	exiting = ((flags & LWPWAIT_EXITCONTROL) != 0);
374 
375 	for (;;) {
376 		/*
377 		 * Avoid a race between exit1() and sigexit(): if the
378 		 * process is dumping core, then we need to bail out: call
379 		 * into lwp_userret() where we will be suspended until the
380 		 * deed is done.
381 		 */
382 		if ((p->p_sflag & PS_WCORE) != 0) {
383 			mutex_exit(p->p_lock);
384 			lwp_userret(l);
385 #ifdef DIAGNOSTIC
386 			panic("lwp_wait1");
387 #endif
388 			/* NOTREACHED */
389 		}
390 
391 		/*
392 		 * First off, drain any detached LWP that is waiting to be
393 		 * reaped.
394 		 */
395 		while ((l2 = p->p_zomblwp) != NULL) {
396 			p->p_zomblwp = NULL;
397 			lwp_free(l2, false, false);/* releases proc mutex */
398 			mutex_enter(p->p_lock);
399 		}
400 
401 		/*
402 		 * Now look for an LWP to collect.  If the whole process is
403 		 * exiting, count detached LWPs as eligible to be collected,
404 		 * but don't drain them here.
405 		 */
406 		nfound = 0;
407 		error = 0;
408 		LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
409 			/*
410 			 * If a specific wait and the target is waiting on
411 			 * us, then avoid deadlock.  This also traps LWPs
412 			 * that try to wait on themselves.
413 			 *
414 			 * Note that this does not handle more complicated
415 			 * cycles, like: t1 -> t2 -> t3 -> t1.  The process
416 			 * can still be killed so it is not a major problem.
417 			 */
418 			if (l2->l_lid == lid && l2->l_waitingfor == curlid) {
419 				error = EDEADLK;
420 				break;
421 			}
422 			if (l2 == l)
423 				continue;
424 			if ((l2->l_prflag & LPR_DETACHED) != 0) {
425 				nfound += exiting;
426 				continue;
427 			}
428 			if (lid != 0) {
429 				if (l2->l_lid != lid)
430 					continue;
431 				/*
432 				 * Mark this LWP as the first waiter, if there
433 				 * is no other.
434 				 */
435 				if (l2->l_waiter == 0)
436 					l2->l_waiter = curlid;
437 			} else if (l2->l_waiter != 0) {
438 				/*
439 				 * It already has a waiter - so don't
440 				 * collect it.  If the waiter doesn't
441 				 * grab it we'll get another chance
442 				 * later.
443 				 */
444 				nfound++;
445 				continue;
446 			}
447 			nfound++;
448 
449 			/* No need to lock the LWP in order to see LSZOMB. */
450 			if (l2->l_stat != LSZOMB)
451 				continue;
452 
453 			/*
454 			 * We're no longer waiting.  Reset the "first waiter"
455 			 * pointer on the target, in case it was us.
456 			 */
457 			l->l_waitingfor = 0;
458 			l2->l_waiter = 0;
459 			p->p_nlwpwait--;
460 			if (departed)
461 				*departed = l2->l_lid;
462 			sched_lwp_collect(l2);
463 
464 			/* lwp_free() releases the proc lock. */
465 			lwp_free(l2, false, false);
466 			mutex_enter(p->p_lock);
467 			return 0;
468 		}
469 
470 		if (error != 0)
471 			break;
472 		if (nfound == 0) {
473 			error = ESRCH;
474 			break;
475 		}
476 
477 		/*
478 		 * The kernel is careful to ensure that it can not deadlock
479 		 * when exiting - just keep waiting.
480 		 */
481 		if (exiting) {
482 			KASSERT(p->p_nlwps > 1);
483 			cv_wait(&p->p_lwpcv, p->p_lock);
484 			continue;
485 		}
486 
487 		/*
488 		 * If all other LWPs are waiting for exits or suspends
489 		 * and the supply of zombies and potential zombies is
490 		 * exhausted, then we are about to deadlock.
491 		 *
492 		 * If the process is exiting (and this LWP is not the one
493 		 * that is coordinating the exit) then bail out now.
494 		 */
495 		if ((p->p_sflag & PS_WEXIT) != 0 ||
496 		    p->p_nrlwps + p->p_nzlwps - p->p_ndlwps <= p->p_nlwpwait) {
497 			error = EDEADLK;
498 			break;
499 		}
500 
501 		/*
502 		 * Sit around and wait for something to happen.  We'll be
503 		 * awoken if any of the conditions examined change: if an
504 		 * LWP exits, is collected, or is detached.
505 		 */
506 		if ((error = cv_wait_sig(&p->p_lwpcv, p->p_lock)) != 0)
507 			break;
508 	}
509 
510 	/*
511 	 * We didn't find any LWPs to collect, we may have received a
512 	 * signal, or some other condition has caused us to bail out.
513 	 *
514 	 * If waiting on a specific LWP, clear the waiters marker: some
515 	 * other LWP may want it.  Then, kick all the remaining waiters
516 	 * so that they can re-check for zombies and for deadlock.
517 	 */
518 	if (lid != 0) {
519 		LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
520 			if (l2->l_lid == lid) {
521 				if (l2->l_waiter == curlid)
522 					l2->l_waiter = 0;
523 				break;
524 			}
525 		}
526 	}
527 	p->p_nlwpwait--;
528 	l->l_waitingfor = 0;
529 	cv_broadcast(&p->p_lwpcv);
530 
531 	return error;
532 }
533 
534 /*
535  * Create a new LWP within process 'p2', using LWP 'l1' as a template.
536  * The new LWP is created in state LSIDL and must be set running,
537  * suspended, or stopped by the caller.
538  */
539 int
540 lwp_create(lwp_t *l1, proc_t *p2, vaddr_t uaddr, bool inmem, int flags,
541 	   void *stack, size_t stacksize, void (*func)(void *), void *arg,
542 	   lwp_t **rnewlwpp, int sclass)
543 {
544 	struct lwp *l2, *isfree;
545 	turnstile_t *ts;
546 
547 	KASSERT(l1 == curlwp || l1->l_proc == &proc0);
548 
549 	/*
550 	 * First off, reap any detached LWP waiting to be collected.
551 	 * We can re-use its LWP structure and turnstile.
552 	 */
553 	isfree = NULL;
554 	if (p2->p_zomblwp != NULL) {
555 		mutex_enter(p2->p_lock);
556 		if ((isfree = p2->p_zomblwp) != NULL) {
557 			p2->p_zomblwp = NULL;
558 			lwp_free(isfree, true, false);/* releases proc mutex */
559 		} else
560 			mutex_exit(p2->p_lock);
561 	}
562 	if (isfree == NULL) {
563 		l2 = pool_cache_get(lwp_cache, PR_WAITOK);
564 		memset(l2, 0, sizeof(*l2));
565 		l2->l_ts = pool_cache_get(turnstile_cache, PR_WAITOK);
566 		SLIST_INIT(&l2->l_pi_lenders);
567 	} else {
568 		l2 = isfree;
569 		ts = l2->l_ts;
570 		KASSERT(l2->l_inheritedprio == -1);
571 		KASSERT(SLIST_EMPTY(&l2->l_pi_lenders));
572 		memset(l2, 0, sizeof(*l2));
573 		l2->l_ts = ts;
574 	}
575 
576 	l2->l_stat = LSIDL;
577 	l2->l_proc = p2;
578 	l2->l_refcnt = 1;
579 	l2->l_class = sclass;
580 
581 	/*
582 	 * If vfork(), we want the LWP to run fast and on the same CPU
583 	 * as its parent, so that it can reuse the VM context and cache
584 	 * footprint on the local CPU.
585 	 */
586 	l2->l_kpriority = ((flags & LWP_VFORK) ? true : false);
587 	l2->l_kpribase = PRI_KERNEL;
588 	l2->l_priority = l1->l_priority;
589 	l2->l_inheritedprio = -1;
590 	l2->l_flag = inmem ? LW_INMEM : 0;
591 	l2->l_pflag = LP_MPSAFE;
592 	l2->l_fd = p2->p_fd;
593 	TAILQ_INIT(&l2->l_ld_locks);
594 
595 	if (p2->p_flag & PK_SYSTEM) {
596 		/* Mark it as a system LWP and not a candidate for swapping */
597 		l2->l_flag |= LW_SYSTEM;
598 	}
599 
600 	kpreempt_disable();
601 	l2->l_mutex = l1->l_cpu->ci_schedstate.spc_mutex;
602 	l2->l_cpu = l1->l_cpu;
603 	kpreempt_enable();
604 
605 	lwp_initspecific(l2);
606 	sched_lwp_fork(l1, l2);
607 	lwp_update_creds(l2);
608 	callout_init(&l2->l_timeout_ch, CALLOUT_MPSAFE);
609 	callout_setfunc(&l2->l_timeout_ch, sleepq_timeout, l2);
610 	mutex_init(&l2->l_swaplock, MUTEX_DEFAULT, IPL_NONE);
611 	cv_init(&l2->l_sigcv, "sigwait");
612 	l2->l_syncobj = &sched_syncobj;
613 
614 	if (rnewlwpp != NULL)
615 		*rnewlwpp = l2;
616 
617 	l2->l_addr = UAREA_TO_USER(uaddr);
618 	uvm_lwp_fork(l1, l2, stack, stacksize, func,
619 	    (arg != NULL) ? arg : l2);
620 
621 	mutex_enter(p2->p_lock);
622 
623 	if ((flags & LWP_DETACHED) != 0) {
624 		l2->l_prflag = LPR_DETACHED;
625 		p2->p_ndlwps++;
626 	} else
627 		l2->l_prflag = 0;
628 
629 	l2->l_sigmask = l1->l_sigmask;
630 	CIRCLEQ_INIT(&l2->l_sigpend.sp_info);
631 	sigemptyset(&l2->l_sigpend.sp_set);
632 
633 	p2->p_nlwpid++;
634 	if (p2->p_nlwpid == 0)
635 		p2->p_nlwpid++;
636 	l2->l_lid = p2->p_nlwpid;
637 	LIST_INSERT_HEAD(&p2->p_lwps, l2, l_sibling);
638 	p2->p_nlwps++;
639 
640 	mutex_exit(p2->p_lock);
641 
642 	mutex_enter(proc_lock);
643 	LIST_INSERT_HEAD(&alllwp, l2, l_list);
644 	mutex_exit(proc_lock);
645 
646 	if ((p2->p_flag & PK_SYSTEM) == 0) {
647 		/* Locking is needed, since LWP is in the list of all LWPs */
648 		lwp_lock(l2);
649 		/* Inherit a processor-set */
650 		l2->l_psid = l1->l_psid;
651 		/* Inherit an affinity */
652 		if (l1->l_flag & LW_AFFINITY) {
653 			proc_t *p = l1->l_proc;
654 
655 			mutex_enter(p->p_lock);
656 			if (l1->l_flag & LW_AFFINITY) {
657 				kcpuset_use(l1->l_affinity);
658 				l2->l_affinity = l1->l_affinity;
659 				l2->l_flag |= LW_AFFINITY;
660 			}
661 			mutex_exit(p->p_lock);
662 		}
663 		/* Look for a CPU to start */
664 		l2->l_cpu = sched_takecpu(l2);
665 		lwp_unlock_to(l2, l2->l_cpu->ci_schedstate.spc_mutex);
666 	}
667 
668 	SYSCALL_TIME_LWP_INIT(l2);
669 
670 	if (p2->p_emul->e_lwp_fork)
671 		(*p2->p_emul->e_lwp_fork)(l1, l2);
672 
673 	return (0);
674 }
675 
676 /*
677  * Called by MD code when a new LWP begins execution.  Must be called
678  * with the previous LWP locked (so at splsched), or if there is no
679  * previous LWP, at splsched.
680  */
681 void
682 lwp_startup(struct lwp *prev, struct lwp *new)
683 {
684 
685 	KASSERT(kpreempt_disabled());
686 	if (prev != NULL) {
687 		/*
688 		 * Normalize the count of the spin-mutexes, it was
689 		 * increased in mi_switch().  Unmark the state of
690 		 * context switch - it is finished for previous LWP.
691 		 */
692 		curcpu()->ci_mtx_count++;
693 		membar_exit();
694 		prev->l_ctxswtch = 0;
695 	}
696 	KPREEMPT_DISABLE(new);
697 	spl0();
698 	pmap_activate(new);
699 	LOCKDEBUG_BARRIER(NULL, 0);
700 	KPREEMPT_ENABLE(new);
701 	if ((new->l_pflag & LP_MPSAFE) == 0) {
702 		KERNEL_LOCK(1, new);
703 	}
704 }
705 
706 /*
707  * Exit an LWP.
708  */
709 void
710 lwp_exit(struct lwp *l)
711 {
712 	struct proc *p = l->l_proc;
713 	struct lwp *l2;
714 	bool current;
715 
716 	current = (l == curlwp);
717 
718 	KASSERT(current || (l->l_stat == LSIDL && l->l_target_cpu == NULL));
719 
720 	/*
721 	 * Verify that we hold no locks other than the kernel lock.
722 	 */
723 	LOCKDEBUG_BARRIER(&kernel_lock, 0);
724 
725 	/*
726 	 * If we are the last live LWP in a process, we need to exit the
727 	 * entire process.  We do so with an exit status of zero, because
728 	 * it's a "controlled" exit, and because that's what Solaris does.
729 	 *
730 	 * We are not quite a zombie yet, but for accounting purposes we
731 	 * must increment the count of zombies here.
732 	 *
733 	 * Note: the last LWP's specificdata will be deleted here.
734 	 */
735 	mutex_enter(p->p_lock);
736 	if (p->p_nlwps - p->p_nzlwps == 1) {
737 		KASSERT(current == true);
738 		/* XXXSMP kernel_lock not held */
739 		exit1(l, 0);
740 		/* NOTREACHED */
741 	}
742 	p->p_nzlwps++;
743 	mutex_exit(p->p_lock);
744 
745 	if (p->p_emul->e_lwp_exit)
746 		(*p->p_emul->e_lwp_exit)(l);
747 
748 	/* Delete the specificdata while it's still safe to sleep. */
749 	specificdata_fini(lwp_specificdata_domain, &l->l_specdataref);
750 
751 	/*
752 	 * Release our cached credentials.
753 	 */
754 	kauth_cred_free(l->l_cred);
755 	callout_destroy(&l->l_timeout_ch);
756 
757 	/*
758 	 * While we can still block, mark the LWP as unswappable to
759 	 * prevent conflicts with the with the swapper.
760 	 */
761 	if (current)
762 		uvm_lwp_hold(l);
763 
764 	/*
765 	 * Remove the LWP from the global list.
766 	 */
767 	mutex_enter(proc_lock);
768 	LIST_REMOVE(l, l_list);
769 	mutex_exit(proc_lock);
770 
771 	/*
772 	 * Get rid of all references to the LWP that others (e.g. procfs)
773 	 * may have, and mark the LWP as a zombie.  If the LWP is detached,
774 	 * mark it waiting for collection in the proc structure.  Note that
775 	 * before we can do that, we need to free any other dead, deatched
776 	 * LWP waiting to meet its maker.
777 	 */
778 	mutex_enter(p->p_lock);
779 	lwp_drainrefs(l);
780 
781 	if ((l->l_prflag & LPR_DETACHED) != 0) {
782 		while ((l2 = p->p_zomblwp) != NULL) {
783 			p->p_zomblwp = NULL;
784 			lwp_free(l2, false, false);/* releases proc mutex */
785 			mutex_enter(p->p_lock);
786 			l->l_refcnt++;
787 			lwp_drainrefs(l);
788 		}
789 		p->p_zomblwp = l;
790 	}
791 
792 	/*
793 	 * If we find a pending signal for the process and we have been
794 	 * asked to check for signals, then we loose: arrange to have
795 	 * all other LWPs in the process check for signals.
796 	 */
797 	if ((l->l_flag & LW_PENDSIG) != 0 &&
798 	    firstsig(&p->p_sigpend.sp_set) != 0) {
799 		LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
800 			lwp_lock(l2);
801 			l2->l_flag |= LW_PENDSIG;
802 			lwp_unlock(l2);
803 		}
804 	}
805 
806 	lwp_lock(l);
807 	l->l_stat = LSZOMB;
808 	if (l->l_name != NULL)
809 		strcpy(l->l_name, "(zombie)");
810 	if (l->l_flag & LW_AFFINITY)
811 		l->l_flag &= ~LW_AFFINITY;
812 	lwp_unlock(l);
813 	p->p_nrlwps--;
814 	cv_broadcast(&p->p_lwpcv);
815 	if (l->l_lwpctl != NULL)
816 		l->l_lwpctl->lc_curcpu = LWPCTL_CPU_EXITED;
817 	mutex_exit(p->p_lock);
818 
819 	/* Safe without lock since LWP is in zombie state */
820 	if (l->l_affinity) {
821 		kcpuset_unuse(l->l_affinity, NULL);
822 		l->l_affinity = NULL;
823 	}
824 
825 	/*
826 	 * We can no longer block.  At this point, lwp_free() may already
827 	 * be gunning for us.  On a multi-CPU system, we may be off p_lwps.
828 	 *
829 	 * Free MD LWP resources.
830 	 */
831 #ifndef __NO_CPU_LWP_FREE
832 	cpu_lwp_free(l, 0);
833 #endif
834 
835 	if (current) {
836 		pmap_deactivate(l);
837 
838 		/*
839 		 * Release the kernel lock, and switch away into
840 		 * oblivion.
841 		 */
842 #ifdef notyet
843 		/* XXXSMP hold in lwp_userret() */
844 		KERNEL_UNLOCK_LAST(l);
845 #else
846 		KERNEL_UNLOCK_ALL(l, NULL);
847 #endif
848 		lwp_exit_switchaway(l);
849 	}
850 }
851 
852 /*
853  * Free a dead LWP's remaining resources.
854  *
855  * XXXLWP limits.
856  */
857 void
858 lwp_free(struct lwp *l, bool recycle, bool last)
859 {
860 	struct proc *p = l->l_proc;
861 	struct rusage *ru;
862 	ksiginfoq_t kq;
863 
864 	KASSERT(l != curlwp);
865 
866 	/*
867 	 * If this was not the last LWP in the process, then adjust
868 	 * counters and unlock.
869 	 */
870 	if (!last) {
871 		/*
872 		 * Add the LWP's run time to the process' base value.
873 		 * This needs to co-incide with coming off p_lwps.
874 		 */
875 		bintime_add(&p->p_rtime, &l->l_rtime);
876 		p->p_pctcpu += l->l_pctcpu;
877 		ru = &p->p_stats->p_ru;
878 		ruadd(ru, &l->l_ru);
879 		ru->ru_nvcsw += (l->l_ncsw - l->l_nivcsw);
880 		ru->ru_nivcsw += l->l_nivcsw;
881 		LIST_REMOVE(l, l_sibling);
882 		p->p_nlwps--;
883 		p->p_nzlwps--;
884 		if ((l->l_prflag & LPR_DETACHED) != 0)
885 			p->p_ndlwps--;
886 
887 		/*
888 		 * Have any LWPs sleeping in lwp_wait() recheck for
889 		 * deadlock.
890 		 */
891 		cv_broadcast(&p->p_lwpcv);
892 		mutex_exit(p->p_lock);
893 	}
894 
895 #ifdef MULTIPROCESSOR
896 	/*
897 	 * In the unlikely event that the LWP is still on the CPU,
898 	 * then spin until it has switched away.  We need to release
899 	 * all locks to avoid deadlock against interrupt handlers on
900 	 * the target CPU.
901 	 */
902 	if ((l->l_pflag & LP_RUNNING) != 0 || l->l_cpu->ci_curlwp == l) {
903 		int count;
904 		(void)count; /* XXXgcc */
905 		KERNEL_UNLOCK_ALL(curlwp, &count);
906 		while ((l->l_pflag & LP_RUNNING) != 0 ||
907 		    l->l_cpu->ci_curlwp == l)
908 			SPINLOCK_BACKOFF_HOOK;
909 		KERNEL_LOCK(count, curlwp);
910 	}
911 #endif
912 
913 	/*
914 	 * Destroy the LWP's remaining signal information.
915 	 */
916 	ksiginfo_queue_init(&kq);
917 	sigclear(&l->l_sigpend, NULL, &kq);
918 	ksiginfo_queue_drain(&kq);
919 	cv_destroy(&l->l_sigcv);
920 	mutex_destroy(&l->l_swaplock);
921 
922 	/*
923 	 * Free the LWP's turnstile and the LWP structure itself unless the
924 	 * caller wants to recycle them.  Also, free the scheduler specific
925 	 * data.
926 	 *
927 	 * We can't return turnstile0 to the pool (it didn't come from it),
928 	 * so if it comes up just drop it quietly and move on.
929 	 *
930 	 * We don't recycle the VM resources at this time.
931 	 */
932 	if (l->l_lwpctl != NULL)
933 		lwp_ctl_free(l);
934 	sched_lwp_exit(l);
935 
936 	if (!recycle && l->l_ts != &turnstile0)
937 		pool_cache_put(turnstile_cache, l->l_ts);
938 	if (l->l_name != NULL)
939 		kmem_free(l->l_name, MAXCOMLEN);
940 #ifndef __NO_CPU_LWP_FREE
941 	cpu_lwp_free2(l);
942 #endif
943 	KASSERT((l->l_flag & LW_INMEM) != 0);
944 	uvm_lwp_exit(l);
945 	KASSERT(SLIST_EMPTY(&l->l_pi_lenders));
946 	KASSERT(l->l_inheritedprio == -1);
947 	if (!recycle)
948 		pool_cache_put(lwp_cache, l);
949 }
950 
951 /*
952  * Migrate the LWP to the another CPU.  Unlocks the LWP.
953  */
954 void
955 lwp_migrate(lwp_t *l, struct cpu_info *tci)
956 {
957 	struct schedstate_percpu *tspc;
958 	int lstat = l->l_stat;
959 
960 	KASSERT(lwp_locked(l, NULL));
961 	KASSERT(tci != NULL);
962 
963 	/* If LWP is still on the CPU, it must be handled like LSONPROC */
964 	if ((l->l_pflag & LP_RUNNING) != 0) {
965 		lstat = LSONPROC;
966 	}
967 
968 	/*
969 	 * The destination CPU could be changed while previous migration
970 	 * was not finished.
971 	 */
972 	if (l->l_target_cpu != NULL) {
973 		l->l_target_cpu = tci;
974 		lwp_unlock(l);
975 		return;
976 	}
977 
978 	/* Nothing to do if trying to migrate to the same CPU */
979 	if (l->l_cpu == tci) {
980 		lwp_unlock(l);
981 		return;
982 	}
983 
984 	KASSERT(l->l_target_cpu == NULL);
985 	tspc = &tci->ci_schedstate;
986 	switch (lstat) {
987 	case LSRUN:
988 		if (l->l_flag & LW_INMEM) {
989 			l->l_target_cpu = tci;
990 			lwp_unlock(l);
991 			return;
992 		}
993 	case LSIDL:
994 		l->l_cpu = tci;
995 		lwp_unlock_to(l, tspc->spc_mutex);
996 		return;
997 	case LSSLEEP:
998 		l->l_cpu = tci;
999 		break;
1000 	case LSSTOP:
1001 	case LSSUSPENDED:
1002 		l->l_cpu = tci;
1003 		if (l->l_wchan == NULL) {
1004 			lwp_unlock_to(l, tspc->spc_lwplock);
1005 			return;
1006 		}
1007 		break;
1008 	case LSONPROC:
1009 		l->l_target_cpu = tci;
1010 		spc_lock(l->l_cpu);
1011 		cpu_need_resched(l->l_cpu, RESCHED_KPREEMPT);
1012 		spc_unlock(l->l_cpu);
1013 		break;
1014 	}
1015 	lwp_unlock(l);
1016 }
1017 
1018 /*
1019  * Find the LWP in the process.  Arguments may be zero, in such case,
1020  * the calling process and first LWP in the list will be used.
1021  * On success - returns proc locked.
1022  */
1023 struct lwp *
1024 lwp_find2(pid_t pid, lwpid_t lid)
1025 {
1026 	proc_t *p;
1027 	lwp_t *l;
1028 
1029 	/* Find the process */
1030 	p = (pid == 0) ? curlwp->l_proc : p_find(pid, PFIND_UNLOCK_FAIL);
1031 	if (p == NULL)
1032 		return NULL;
1033 	mutex_enter(p->p_lock);
1034 	if (pid != 0) {
1035 		/* Case of p_find */
1036 		mutex_exit(proc_lock);
1037 	}
1038 
1039 	/* Find the thread */
1040 	l = (lid == 0) ? LIST_FIRST(&p->p_lwps) : lwp_find(p, lid);
1041 	if (l == NULL) {
1042 		mutex_exit(p->p_lock);
1043 	}
1044 
1045 	return l;
1046 }
1047 
1048 /*
1049  * Look up a live LWP within the speicifed process, and return it locked.
1050  *
1051  * Must be called with p->p_lock held.
1052  */
1053 struct lwp *
1054 lwp_find(struct proc *p, int id)
1055 {
1056 	struct lwp *l;
1057 
1058 	KASSERT(mutex_owned(p->p_lock));
1059 
1060 	LIST_FOREACH(l, &p->p_lwps, l_sibling) {
1061 		if (l->l_lid == id)
1062 			break;
1063 	}
1064 
1065 	/*
1066 	 * No need to lock - all of these conditions will
1067 	 * be visible with the process level mutex held.
1068 	 */
1069 	if (l != NULL && (l->l_stat == LSIDL || l->l_stat == LSZOMB))
1070 		l = NULL;
1071 
1072 	return l;
1073 }
1074 
1075 /*
1076  * Update an LWP's cached credentials to mirror the process' master copy.
1077  *
1078  * This happens early in the syscall path, on user trap, and on LWP
1079  * creation.  A long-running LWP can also voluntarily choose to update
1080  * it's credentials by calling this routine.  This may be called from
1081  * LWP_CACHE_CREDS(), which checks l->l_cred != p->p_cred beforehand.
1082  */
1083 void
1084 lwp_update_creds(struct lwp *l)
1085 {
1086 	kauth_cred_t oc;
1087 	struct proc *p;
1088 
1089 	p = l->l_proc;
1090 	oc = l->l_cred;
1091 
1092 	mutex_enter(p->p_lock);
1093 	kauth_cred_hold(p->p_cred);
1094 	l->l_cred = p->p_cred;
1095 	l->l_prflag &= ~LPR_CRMOD;
1096 	mutex_exit(p->p_lock);
1097 	if (oc != NULL)
1098 		kauth_cred_free(oc);
1099 }
1100 
1101 /*
1102  * Verify that an LWP is locked, and optionally verify that the lock matches
1103  * one we specify.
1104  */
1105 int
1106 lwp_locked(struct lwp *l, kmutex_t *mtx)
1107 {
1108 	kmutex_t *cur = l->l_mutex;
1109 
1110 	return mutex_owned(cur) && (mtx == cur || mtx == NULL);
1111 }
1112 
1113 /*
1114  * Lock an LWP.
1115  */
1116 kmutex_t *
1117 lwp_lock_retry(struct lwp *l, kmutex_t *old)
1118 {
1119 
1120 	/*
1121 	 * XXXgcc ignoring kmutex_t * volatile on i386
1122 	 *
1123 	 * gcc version 4.1.2 20061021 prerelease (NetBSD nb1 20061021)
1124 	 */
1125 #if 1
1126 	while (l->l_mutex != old) {
1127 #else
1128 	for (;;) {
1129 #endif
1130 		mutex_spin_exit(old);
1131 		old = l->l_mutex;
1132 		mutex_spin_enter(old);
1133 
1134 		/*
1135 		 * mutex_enter() will have posted a read barrier.  Re-test
1136 		 * l->l_mutex.  If it has changed, we need to try again.
1137 		 */
1138 #if 1
1139 	}
1140 #else
1141 	} while (__predict_false(l->l_mutex != old));
1142 #endif
1143 
1144 	return old;
1145 }
1146 
1147 /*
1148  * Lend a new mutex to an LWP.  The old mutex must be held.
1149  */
1150 void
1151 lwp_setlock(struct lwp *l, kmutex_t *new)
1152 {
1153 
1154 	KASSERT(mutex_owned(l->l_mutex));
1155 
1156 	membar_exit();
1157 	l->l_mutex = new;
1158 }
1159 
1160 /*
1161  * Lend a new mutex to an LWP, and release the old mutex.  The old mutex
1162  * must be held.
1163  */
1164 void
1165 lwp_unlock_to(struct lwp *l, kmutex_t *new)
1166 {
1167 	kmutex_t *old;
1168 
1169 	KASSERT(mutex_owned(l->l_mutex));
1170 
1171 	old = l->l_mutex;
1172 	membar_exit();
1173 	l->l_mutex = new;
1174 	mutex_spin_exit(old);
1175 }
1176 
1177 /*
1178  * Acquire a new mutex, and donate it to an LWP.  The LWP must already be
1179  * locked.
1180  */
1181 void
1182 lwp_relock(struct lwp *l, kmutex_t *new)
1183 {
1184 	kmutex_t *old;
1185 
1186 	KASSERT(mutex_owned(l->l_mutex));
1187 
1188 	old = l->l_mutex;
1189 	if (old != new) {
1190 		mutex_spin_enter(new);
1191 		l->l_mutex = new;
1192 		mutex_spin_exit(old);
1193 	}
1194 }
1195 
1196 int
1197 lwp_trylock(struct lwp *l)
1198 {
1199 	kmutex_t *old;
1200 
1201 	for (;;) {
1202 		if (!mutex_tryenter(old = l->l_mutex))
1203 			return 0;
1204 		if (__predict_true(l->l_mutex == old))
1205 			return 1;
1206 		mutex_spin_exit(old);
1207 	}
1208 }
1209 
1210 u_int
1211 lwp_unsleep(lwp_t *l, bool cleanup)
1212 {
1213 
1214 	KASSERT(mutex_owned(l->l_mutex));
1215 
1216 	return (*l->l_syncobj->sobj_unsleep)(l, cleanup);
1217 }
1218 
1219 
1220 /*
1221  * Handle exceptions for mi_userret().  Called if a member of LW_USERRET is
1222  * set.
1223  */
1224 void
1225 lwp_userret(struct lwp *l)
1226 {
1227 	struct proc *p;
1228 	void (*hook)(void);
1229 	int sig;
1230 
1231 	KASSERT(l == curlwp);
1232 	KASSERT(l->l_stat == LSONPROC);
1233 	p = l->l_proc;
1234 
1235 #ifndef __HAVE_FAST_SOFTINTS
1236 	/* Run pending soft interrupts. */
1237 	if (l->l_cpu->ci_data.cpu_softints != 0)
1238 		softint_overlay();
1239 #endif
1240 
1241 	/*
1242 	 * It should be safe to do this read unlocked on a multiprocessor
1243 	 * system..
1244 	 */
1245 	while ((l->l_flag & LW_USERRET) != 0) {
1246 		/*
1247 		 * Process pending signals first, unless the process
1248 		 * is dumping core or exiting, where we will instead
1249 		 * enter the LW_WSUSPEND case below.
1250 		 */
1251 		if ((l->l_flag & (LW_PENDSIG | LW_WCORE | LW_WEXIT)) ==
1252 		    LW_PENDSIG) {
1253 			mutex_enter(p->p_lock);
1254 			while ((sig = issignal(l)) != 0)
1255 				postsig(sig);
1256 			mutex_exit(p->p_lock);
1257 		}
1258 
1259 		/*
1260 		 * Core-dump or suspend pending.
1261 		 *
1262 		 * In case of core dump, suspend ourselves, so that the
1263 		 * kernel stack and therefore the userland registers saved
1264 		 * in the trapframe are around for coredump() to write them
1265 		 * out.  We issue a wakeup on p->p_lwpcv so that sigexit()
1266 		 * will write the core file out once all other LWPs are
1267 		 * suspended.
1268 		 */
1269 		if ((l->l_flag & LW_WSUSPEND) != 0) {
1270 			mutex_enter(p->p_lock);
1271 			p->p_nrlwps--;
1272 			cv_broadcast(&p->p_lwpcv);
1273 			lwp_lock(l);
1274 			l->l_stat = LSSUSPENDED;
1275 			lwp_unlock(l);
1276 			mutex_exit(p->p_lock);
1277 			lwp_lock(l);
1278 			mi_switch(l);
1279 		}
1280 
1281 		/* Process is exiting. */
1282 		if ((l->l_flag & LW_WEXIT) != 0) {
1283 			lwp_exit(l);
1284 			KASSERT(0);
1285 			/* NOTREACHED */
1286 		}
1287 
1288 		/* Call userret hook; used by Linux emulation. */
1289 		if ((l->l_flag & LW_WUSERRET) != 0) {
1290 			lwp_lock(l);
1291 			l->l_flag &= ~LW_WUSERRET;
1292 			lwp_unlock(l);
1293 			hook = p->p_userret;
1294 			p->p_userret = NULL;
1295 			(*hook)();
1296 		}
1297 	}
1298 }
1299 
1300 /*
1301  * Force an LWP to enter the kernel, to take a trip through lwp_userret().
1302  */
1303 void
1304 lwp_need_userret(struct lwp *l)
1305 {
1306 	KASSERT(lwp_locked(l, NULL));
1307 
1308 	/*
1309 	 * Since the tests in lwp_userret() are done unlocked, make sure
1310 	 * that the condition will be seen before forcing the LWP to enter
1311 	 * kernel mode.
1312 	 */
1313 	membar_producer();
1314 	cpu_signotify(l);
1315 }
1316 
1317 /*
1318  * Add one reference to an LWP.  This will prevent the LWP from
1319  * exiting, thus keep the lwp structure and PCB around to inspect.
1320  */
1321 void
1322 lwp_addref(struct lwp *l)
1323 {
1324 
1325 	KASSERT(mutex_owned(l->l_proc->p_lock));
1326 	KASSERT(l->l_stat != LSZOMB);
1327 	KASSERT(l->l_refcnt != 0);
1328 
1329 	l->l_refcnt++;
1330 }
1331 
1332 /*
1333  * Remove one reference to an LWP.  If this is the last reference,
1334  * then we must finalize the LWP's death.
1335  */
1336 void
1337 lwp_delref(struct lwp *l)
1338 {
1339 	struct proc *p = l->l_proc;
1340 
1341 	mutex_enter(p->p_lock);
1342 	KASSERT(l->l_stat != LSZOMB);
1343 	KASSERT(l->l_refcnt > 0);
1344 	if (--l->l_refcnt == 0)
1345 		cv_broadcast(&p->p_lwpcv);
1346 	mutex_exit(p->p_lock);
1347 }
1348 
1349 /*
1350  * Drain all references to the current LWP.
1351  */
1352 void
1353 lwp_drainrefs(struct lwp *l)
1354 {
1355 	struct proc *p = l->l_proc;
1356 
1357 	KASSERT(mutex_owned(p->p_lock));
1358 	KASSERT(l->l_refcnt != 0);
1359 
1360 	l->l_refcnt--;
1361 	while (l->l_refcnt != 0)
1362 		cv_wait(&p->p_lwpcv, p->p_lock);
1363 }
1364 
1365 /*
1366  * lwp_specific_key_create --
1367  *	Create a key for subsystem lwp-specific data.
1368  */
1369 int
1370 lwp_specific_key_create(specificdata_key_t *keyp, specificdata_dtor_t dtor)
1371 {
1372 
1373 	return (specificdata_key_create(lwp_specificdata_domain, keyp, dtor));
1374 }
1375 
1376 /*
1377  * lwp_specific_key_delete --
1378  *	Delete a key for subsystem lwp-specific data.
1379  */
1380 void
1381 lwp_specific_key_delete(specificdata_key_t key)
1382 {
1383 
1384 	specificdata_key_delete(lwp_specificdata_domain, key);
1385 }
1386 
1387 /*
1388  * lwp_initspecific --
1389  *	Initialize an LWP's specificdata container.
1390  */
1391 void
1392 lwp_initspecific(struct lwp *l)
1393 {
1394 	int error;
1395 
1396 	error = specificdata_init(lwp_specificdata_domain, &l->l_specdataref);
1397 	KASSERT(error == 0);
1398 }
1399 
1400 /*
1401  * lwp_finispecific --
1402  *	Finalize an LWP's specificdata container.
1403  */
1404 void
1405 lwp_finispecific(struct lwp *l)
1406 {
1407 
1408 	specificdata_fini(lwp_specificdata_domain, &l->l_specdataref);
1409 }
1410 
1411 /*
1412  * lwp_getspecific --
1413  *	Return lwp-specific data corresponding to the specified key.
1414  *
1415  *	Note: LWP specific data is NOT INTERLOCKED.  An LWP should access
1416  *	only its OWN SPECIFIC DATA.  If it is necessary to access another
1417  *	LWP's specifc data, care must be taken to ensure that doing so
1418  *	would not cause internal data structure inconsistency (i.e. caller
1419  *	can guarantee that the target LWP is not inside an lwp_getspecific()
1420  *	or lwp_setspecific() call).
1421  */
1422 void *
1423 lwp_getspecific(specificdata_key_t key)
1424 {
1425 
1426 	return (specificdata_getspecific_unlocked(lwp_specificdata_domain,
1427 						  &curlwp->l_specdataref, key));
1428 }
1429 
1430 void *
1431 _lwp_getspecific_by_lwp(struct lwp *l, specificdata_key_t key)
1432 {
1433 
1434 	return (specificdata_getspecific_unlocked(lwp_specificdata_domain,
1435 						  &l->l_specdataref, key));
1436 }
1437 
1438 /*
1439  * lwp_setspecific --
1440  *	Set lwp-specific data corresponding to the specified key.
1441  */
1442 void
1443 lwp_setspecific(specificdata_key_t key, void *data)
1444 {
1445 
1446 	specificdata_setspecific(lwp_specificdata_domain,
1447 				 &curlwp->l_specdataref, key, data);
1448 }
1449 
1450 /*
1451  * Allocate a new lwpctl structure for a user LWP.
1452  */
1453 int
1454 lwp_ctl_alloc(vaddr_t *uaddr)
1455 {
1456 	lcproc_t *lp;
1457 	u_int bit, i, offset;
1458 	struct uvm_object *uao;
1459 	int error;
1460 	lcpage_t *lcp;
1461 	proc_t *p;
1462 	lwp_t *l;
1463 
1464 	l = curlwp;
1465 	p = l->l_proc;
1466 
1467 	if (l->l_lcpage != NULL) {
1468 		lcp = l->l_lcpage;
1469 		*uaddr = lcp->lcp_uaddr + (vaddr_t)l->l_lwpctl - lcp->lcp_kaddr;
1470 		return (EINVAL);
1471 	}
1472 
1473 	/* First time around, allocate header structure for the process. */
1474 	if ((lp = p->p_lwpctl) == NULL) {
1475 		lp = kmem_alloc(sizeof(*lp), KM_SLEEP);
1476 		mutex_init(&lp->lp_lock, MUTEX_DEFAULT, IPL_NONE);
1477 		lp->lp_uao = NULL;
1478 		TAILQ_INIT(&lp->lp_pages);
1479 		mutex_enter(p->p_lock);
1480 		if (p->p_lwpctl == NULL) {
1481 			p->p_lwpctl = lp;
1482 			mutex_exit(p->p_lock);
1483 		} else {
1484 			mutex_exit(p->p_lock);
1485 			mutex_destroy(&lp->lp_lock);
1486 			kmem_free(lp, sizeof(*lp));
1487 			lp = p->p_lwpctl;
1488 		}
1489 	}
1490 
1491  	/*
1492  	 * Set up an anonymous memory region to hold the shared pages.
1493  	 * Map them into the process' address space.  The user vmspace
1494  	 * gets the first reference on the UAO.
1495  	 */
1496 	mutex_enter(&lp->lp_lock);
1497 	if (lp->lp_uao == NULL) {
1498 		lp->lp_uao = uao_create(LWPCTL_UAREA_SZ, 0);
1499 		lp->lp_cur = 0;
1500 		lp->lp_max = LWPCTL_UAREA_SZ;
1501 		lp->lp_uva = p->p_emul->e_vm_default_addr(p,
1502 		     (vaddr_t)p->p_vmspace->vm_daddr, LWPCTL_UAREA_SZ);
1503 		error = uvm_map(&p->p_vmspace->vm_map, &lp->lp_uva,
1504 		    LWPCTL_UAREA_SZ, lp->lp_uao, 0, 0, UVM_MAPFLAG(UVM_PROT_RW,
1505 		    UVM_PROT_RW, UVM_INH_NONE, UVM_ADV_NORMAL, 0));
1506 		if (error != 0) {
1507 			uao_detach(lp->lp_uao);
1508 			lp->lp_uao = NULL;
1509 			mutex_exit(&lp->lp_lock);
1510 			return error;
1511 		}
1512 	}
1513 
1514 	/* Get a free block and allocate for this LWP. */
1515 	TAILQ_FOREACH(lcp, &lp->lp_pages, lcp_chain) {
1516 		if (lcp->lcp_nfree != 0)
1517 			break;
1518 	}
1519 	if (lcp == NULL) {
1520 		/* Nothing available - try to set up a free page. */
1521 		if (lp->lp_cur == lp->lp_max) {
1522 			mutex_exit(&lp->lp_lock);
1523 			return ENOMEM;
1524 		}
1525 		lcp = kmem_alloc(LWPCTL_LCPAGE_SZ, KM_SLEEP);
1526 		if (lcp == NULL) {
1527 			mutex_exit(&lp->lp_lock);
1528 			return ENOMEM;
1529 		}
1530 		/*
1531 		 * Wire the next page down in kernel space.  Since this
1532 		 * is a new mapping, we must add a reference.
1533 		 */
1534 		uao = lp->lp_uao;
1535 		(*uao->pgops->pgo_reference)(uao);
1536 		lcp->lcp_kaddr = vm_map_min(kernel_map);
1537 		error = uvm_map(kernel_map, &lcp->lcp_kaddr, PAGE_SIZE,
1538 		    uao, lp->lp_cur, PAGE_SIZE,
1539 		    UVM_MAPFLAG(UVM_PROT_RW, UVM_PROT_RW,
1540 		    UVM_INH_NONE, UVM_ADV_RANDOM, 0));
1541 		if (error != 0) {
1542 			mutex_exit(&lp->lp_lock);
1543 			kmem_free(lcp, LWPCTL_LCPAGE_SZ);
1544 			(*uao->pgops->pgo_detach)(uao);
1545 			return error;
1546 		}
1547 		error = uvm_map_pageable(kernel_map, lcp->lcp_kaddr,
1548 		    lcp->lcp_kaddr + PAGE_SIZE, FALSE, 0);
1549 		if (error != 0) {
1550 			mutex_exit(&lp->lp_lock);
1551 			uvm_unmap(kernel_map, lcp->lcp_kaddr,
1552 			    lcp->lcp_kaddr + PAGE_SIZE);
1553 			kmem_free(lcp, LWPCTL_LCPAGE_SZ);
1554 			return error;
1555 		}
1556 		/* Prepare the page descriptor and link into the list. */
1557 		lcp->lcp_uaddr = lp->lp_uva + lp->lp_cur;
1558 		lp->lp_cur += PAGE_SIZE;
1559 		lcp->lcp_nfree = LWPCTL_PER_PAGE;
1560 		lcp->lcp_rotor = 0;
1561 		memset(lcp->lcp_bitmap, 0xff, LWPCTL_BITMAP_SZ);
1562 		TAILQ_INSERT_HEAD(&lp->lp_pages, lcp, lcp_chain);
1563 	}
1564 	for (i = lcp->lcp_rotor; lcp->lcp_bitmap[i] == 0;) {
1565 		if (++i >= LWPCTL_BITMAP_ENTRIES)
1566 			i = 0;
1567 	}
1568 	bit = ffs(lcp->lcp_bitmap[i]) - 1;
1569 	lcp->lcp_bitmap[i] ^= (1 << bit);
1570 	lcp->lcp_rotor = i;
1571 	lcp->lcp_nfree--;
1572 	l->l_lcpage = lcp;
1573 	offset = (i << 5) + bit;
1574 	l->l_lwpctl = (lwpctl_t *)lcp->lcp_kaddr + offset;
1575 	*uaddr = lcp->lcp_uaddr + offset * sizeof(lwpctl_t);
1576 	mutex_exit(&lp->lp_lock);
1577 
1578 	KPREEMPT_DISABLE(l);
1579 	l->l_lwpctl->lc_curcpu = (int)curcpu()->ci_data.cpu_index;
1580 	KPREEMPT_ENABLE(l);
1581 
1582 	return 0;
1583 }
1584 
1585 /*
1586  * Free an lwpctl structure back to the per-process list.
1587  */
1588 void
1589 lwp_ctl_free(lwp_t *l)
1590 {
1591 	lcproc_t *lp;
1592 	lcpage_t *lcp;
1593 	u_int map, offset;
1594 
1595 	lp = l->l_proc->p_lwpctl;
1596 	KASSERT(lp != NULL);
1597 
1598 	lcp = l->l_lcpage;
1599 	offset = (u_int)((lwpctl_t *)l->l_lwpctl - (lwpctl_t *)lcp->lcp_kaddr);
1600 	KASSERT(offset < LWPCTL_PER_PAGE);
1601 
1602 	mutex_enter(&lp->lp_lock);
1603 	lcp->lcp_nfree++;
1604 	map = offset >> 5;
1605 	lcp->lcp_bitmap[map] |= (1 << (offset & 31));
1606 	if (lcp->lcp_bitmap[lcp->lcp_rotor] == 0)
1607 		lcp->lcp_rotor = map;
1608 	if (TAILQ_FIRST(&lp->lp_pages)->lcp_nfree == 0) {
1609 		TAILQ_REMOVE(&lp->lp_pages, lcp, lcp_chain);
1610 		TAILQ_INSERT_HEAD(&lp->lp_pages, lcp, lcp_chain);
1611 	}
1612 	mutex_exit(&lp->lp_lock);
1613 }
1614 
1615 /*
1616  * Process is exiting; tear down lwpctl state.  This can only be safely
1617  * called by the last LWP in the process.
1618  */
1619 void
1620 lwp_ctl_exit(void)
1621 {
1622 	lcpage_t *lcp, *next;
1623 	lcproc_t *lp;
1624 	proc_t *p;
1625 	lwp_t *l;
1626 
1627 	l = curlwp;
1628 	l->l_lwpctl = NULL;
1629 	l->l_lcpage = NULL;
1630 	p = l->l_proc;
1631 	lp = p->p_lwpctl;
1632 
1633 	KASSERT(lp != NULL);
1634 	KASSERT(p->p_nlwps == 1);
1635 
1636 	for (lcp = TAILQ_FIRST(&lp->lp_pages); lcp != NULL; lcp = next) {
1637 		next = TAILQ_NEXT(lcp, lcp_chain);
1638 		uvm_unmap(kernel_map, lcp->lcp_kaddr,
1639 		    lcp->lcp_kaddr + PAGE_SIZE);
1640 		kmem_free(lcp, LWPCTL_LCPAGE_SZ);
1641 	}
1642 
1643 	if (lp->lp_uao != NULL) {
1644 		uvm_unmap(&p->p_vmspace->vm_map, lp->lp_uva,
1645 		    lp->lp_uva + LWPCTL_UAREA_SZ);
1646 	}
1647 
1648 	mutex_destroy(&lp->lp_lock);
1649 	kmem_free(lp, sizeof(*lp));
1650 	p->p_lwpctl = NULL;
1651 }
1652 
1653 #if defined(DDB)
1654 void
1655 lwp_whatis(uintptr_t addr, void (*pr)(const char *, ...))
1656 {
1657 	lwp_t *l;
1658 
1659 	LIST_FOREACH(l, &alllwp, l_list) {
1660 		uintptr_t stack = (uintptr_t)KSTACK_LOWEST_ADDR(l);
1661 
1662 		if (addr < stack || stack + KSTACK_SIZE <= addr) {
1663 			continue;
1664 		}
1665 		(*pr)("%p is %p+%zu, LWP %p's stack\n",
1666 		    (void *)addr, (void *)stack,
1667 		    (size_t)(addr - stack), l);
1668 	}
1669 }
1670 #endif /* defined(DDB) */
1671