xref: /netbsd-src/sys/kern/kern_lwp.c (revision bdc22b2e01993381dcefeff2bc9b56ca75a4235c)
1 /*	$NetBSD: kern_lwp.c,v 1.194 2018/07/04 18:15:27 kamil Exp $	*/
2 
3 /*-
4  * Copyright (c) 2001, 2006, 2007, 2008, 2009 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Nathan J. Williams, and Andrew Doran.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29  * POSSIBILITY OF SUCH DAMAGE.
30  */
31 
32 /*
33  * Overview
34  *
35  *	Lightweight processes (LWPs) are the basic unit or thread of
36  *	execution within the kernel.  The core state of an LWP is described
37  *	by "struct lwp", also known as lwp_t.
38  *
39  *	Each LWP is contained within a process (described by "struct proc"),
40  *	Every process contains at least one LWP, but may contain more.  The
41  *	process describes attributes shared among all of its LWPs such as a
42  *	private address space, global execution state (stopped, active,
43  *	zombie, ...), signal disposition and so on.  On a multiprocessor
44  *	machine, multiple LWPs be executing concurrently in the kernel.
45  *
46  * Execution states
47  *
48  *	At any given time, an LWP has overall state that is described by
49  *	lwp::l_stat.  The states are broken into two sets below.  The first
50  *	set is guaranteed to represent the absolute, current state of the
51  *	LWP:
52  *
53  *	LSONPROC
54  *
55  *		On processor: the LWP is executing on a CPU, either in the
56  *		kernel or in user space.
57  *
58  *	LSRUN
59  *
60  *		Runnable: the LWP is parked on a run queue, and may soon be
61  *		chosen to run by an idle processor, or by a processor that
62  *		has been asked to preempt a currently runnning but lower
63  *		priority LWP.
64  *
65  *	LSIDL
66  *
67  *		Idle: the LWP has been created but has not yet executed,
68  *		or it has ceased executing a unit of work and is waiting
69  *		to be started again.
70  *
71  *	LSSUSPENDED:
72  *
73  *		Suspended: the LWP has had its execution suspended by
74  *		another LWP in the same process using the _lwp_suspend()
75  *		system call.  User-level LWPs also enter the suspended
76  *		state when the system is shutting down.
77  *
78  *	The second set represent a "statement of intent" on behalf of the
79  *	LWP.  The LWP may in fact be executing on a processor, may be
80  *	sleeping or idle. It is expected to take the necessary action to
81  *	stop executing or become "running" again within a short timeframe.
82  *	The LP_RUNNING flag in lwp::l_pflag indicates that an LWP is running.
83  *	Importantly, it indicates that its state is tied to a CPU.
84  *
85  *	LSZOMB:
86  *
87  *		Dead or dying: the LWP has released most of its resources
88  *		and is about to switch away into oblivion, or has already
89  *		switched away.  When it switches away, its few remaining
90  *		resources can be collected.
91  *
92  *	LSSLEEP:
93  *
94  *		Sleeping: the LWP has entered itself onto a sleep queue, and
95  *		has switched away or will switch away shortly to allow other
96  *		LWPs to run on the CPU.
97  *
98  *	LSSTOP:
99  *
100  *		Stopped: the LWP has been stopped as a result of a job
101  *		control signal, or as a result of the ptrace() interface.
102  *
103  *		Stopped LWPs may run briefly within the kernel to handle
104  *		signals that they receive, but will not return to user space
105  *		until their process' state is changed away from stopped.
106  *
107  *		Single LWPs within a process can not be set stopped
108  *		selectively: all actions that can stop or continue LWPs
109  *		occur at the process level.
110  *
111  * State transitions
112  *
113  *	Note that the LSSTOP state may only be set when returning to
114  *	user space in userret(), or when sleeping interruptably.  The
115  *	LSSUSPENDED state may only be set in userret().  Before setting
116  *	those states, we try to ensure that the LWPs will release all
117  *	locks that they hold, and at a minimum try to ensure that the
118  *	LWP can be set runnable again by a signal.
119  *
120  *	LWPs may transition states in the following ways:
121  *
122  *	 RUN -------> ONPROC		ONPROC -----> RUN
123  *		    				    > SLEEP
124  *		    				    > STOPPED
125  *						    > SUSPENDED
126  *						    > ZOMB
127  *						    > IDL (special cases)
128  *
129  *	 STOPPED ---> RUN		SUSPENDED --> RUN
130  *	            > SLEEP
131  *
132  *	 SLEEP -----> ONPROC		IDL --------> RUN
133  *		    > RUN			    > SUSPENDED
134  *		    > STOPPED			    > STOPPED
135  *						    > ONPROC (special cases)
136  *
137  *	Some state transitions are only possible with kernel threads (eg
138  *	ONPROC -> IDL) and happen under tightly controlled circumstances
139  *	free of unwanted side effects.
140  *
141  * Migration
142  *
143  *	Migration of threads from one CPU to another could be performed
144  *	internally by the scheduler via sched_takecpu() or sched_catchlwp()
145  *	functions.  The universal lwp_migrate() function should be used for
146  *	any other cases.  Subsystems in the kernel must be aware that CPU
147  *	of LWP may change, while it is not locked.
148  *
149  * Locking
150  *
151  *	The majority of fields in 'struct lwp' are covered by a single,
152  *	general spin lock pointed to by lwp::l_mutex.  The locks covering
153  *	each field are documented in sys/lwp.h.
154  *
155  *	State transitions must be made with the LWP's general lock held,
156  *	and may cause the LWP's lock pointer to change.  Manipulation of
157  *	the general lock is not performed directly, but through calls to
158  *	lwp_lock(), lwp_unlock() and others.  It should be noted that the
159  *	adaptive locks are not allowed to be released while the LWP's lock
160  *	is being held (unlike for other spin-locks).
161  *
162  *	States and their associated locks:
163  *
164  *	LSONPROC, LSZOMB:
165  *
166  *		Always covered by spc_lwplock, which protects running LWPs.
167  *		This is a per-CPU lock and matches lwp::l_cpu.
168  *
169  *	LSIDL, LSRUN:
170  *
171  *		Always covered by spc_mutex, which protects the run queues.
172  *		This is a per-CPU lock and matches lwp::l_cpu.
173  *
174  *	LSSLEEP:
175  *
176  *		Covered by a lock associated with the sleep queue that the
177  *		LWP resides on.  Matches lwp::l_sleepq::sq_mutex.
178  *
179  *	LSSTOP, LSSUSPENDED:
180  *
181  *		If the LWP was previously sleeping (l_wchan != NULL), then
182  *		l_mutex references the sleep queue lock.  If the LWP was
183  *		runnable or on the CPU when halted, or has been removed from
184  *		the sleep queue since halted, then the lock is spc_lwplock.
185  *
186  *	The lock order is as follows:
187  *
188  *		spc::spc_lwplock ->
189  *		    sleeptab::st_mutex ->
190  *			tschain_t::tc_mutex ->
191  *			    spc::spc_mutex
192  *
193  *	Each process has an scheduler state lock (proc::p_lock), and a
194  *	number of counters on LWPs and their states: p_nzlwps, p_nrlwps, and
195  *	so on.  When an LWP is to be entered into or removed from one of the
196  *	following states, p_lock must be held and the process wide counters
197  *	adjusted:
198  *
199  *		LSIDL, LSZOMB, LSSTOP, LSSUSPENDED
200  *
201  *	(But not always for kernel threads.  There are some special cases
202  *	as mentioned above.  See kern_softint.c.)
203  *
204  *	Note that an LWP is considered running or likely to run soon if in
205  *	one of the following states.  This affects the value of p_nrlwps:
206  *
207  *		LSRUN, LSONPROC, LSSLEEP
208  *
209  *	p_lock does not need to be held when transitioning among these
210  *	three states, hence p_lock is rarely taken for state transitions.
211  */
212 
213 #include <sys/cdefs.h>
214 __KERNEL_RCSID(0, "$NetBSD: kern_lwp.c,v 1.194 2018/07/04 18:15:27 kamil Exp $");
215 
216 #include "opt_ddb.h"
217 #include "opt_lockdebug.h"
218 #include "opt_dtrace.h"
219 
220 #define _LWP_API_PRIVATE
221 
222 #include <sys/param.h>
223 #include <sys/systm.h>
224 #include <sys/cpu.h>
225 #include <sys/pool.h>
226 #include <sys/proc.h>
227 #include <sys/syscallargs.h>
228 #include <sys/syscall_stats.h>
229 #include <sys/kauth.h>
230 #include <sys/pserialize.h>
231 #include <sys/sleepq.h>
232 #include <sys/lockdebug.h>
233 #include <sys/kmem.h>
234 #include <sys/pset.h>
235 #include <sys/intr.h>
236 #include <sys/lwpctl.h>
237 #include <sys/atomic.h>
238 #include <sys/filedesc.h>
239 #include <sys/dtrace_bsd.h>
240 #include <sys/sdt.h>
241 #include <sys/xcall.h>
242 #include <sys/uidinfo.h>
243 #include <sys/sysctl.h>
244 
245 #include <uvm/uvm_extern.h>
246 #include <uvm/uvm_object.h>
247 
248 static pool_cache_t	lwp_cache	__read_mostly;
249 struct lwplist		alllwp		__cacheline_aligned;
250 
251 static void		lwp_dtor(void *, void *);
252 
253 /* DTrace proc provider probes */
254 SDT_PROVIDER_DEFINE(proc);
255 
256 SDT_PROBE_DEFINE1(proc, kernel, , lwp__create, "struct lwp *");
257 SDT_PROBE_DEFINE1(proc, kernel, , lwp__start, "struct lwp *");
258 SDT_PROBE_DEFINE1(proc, kernel, , lwp__exit, "struct lwp *");
259 
260 struct turnstile turnstile0;
261 struct lwp lwp0 __aligned(MIN_LWP_ALIGNMENT) = {
262 #ifdef LWP0_CPU_INFO
263 	.l_cpu = LWP0_CPU_INFO,
264 #endif
265 #ifdef LWP0_MD_INITIALIZER
266 	.l_md = LWP0_MD_INITIALIZER,
267 #endif
268 	.l_proc = &proc0,
269 	.l_lid = 1,
270 	.l_flag = LW_SYSTEM,
271 	.l_stat = LSONPROC,
272 	.l_ts = &turnstile0,
273 	.l_syncobj = &sched_syncobj,
274 	.l_refcnt = 1,
275 	.l_priority = PRI_USER + NPRI_USER - 1,
276 	.l_inheritedprio = -1,
277 	.l_class = SCHED_OTHER,
278 	.l_psid = PS_NONE,
279 	.l_pi_lenders = SLIST_HEAD_INITIALIZER(&lwp0.l_pi_lenders),
280 	.l_name = __UNCONST("swapper"),
281 	.l_fd = &filedesc0,
282 };
283 
284 static int sysctl_kern_maxlwp(SYSCTLFN_PROTO);
285 
286 /*
287  * sysctl helper routine for kern.maxlwp. Ensures that the new
288  * values are not too low or too high.
289  */
290 static int
291 sysctl_kern_maxlwp(SYSCTLFN_ARGS)
292 {
293 	int error, nmaxlwp;
294 	struct sysctlnode node;
295 
296 	nmaxlwp = maxlwp;
297 	node = *rnode;
298 	node.sysctl_data = &nmaxlwp;
299 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
300 	if (error || newp == NULL)
301 		return error;
302 
303 	if (nmaxlwp < 0 || nmaxlwp >= 65536)
304 		return EINVAL;
305 	if (nmaxlwp > cpu_maxlwp())
306 		return EINVAL;
307 	maxlwp = nmaxlwp;
308 
309 	return 0;
310 }
311 
312 static void
313 sysctl_kern_lwp_setup(void)
314 {
315 	struct sysctllog *clog = NULL;
316 
317 	sysctl_createv(&clog, 0, NULL, NULL,
318 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
319 		       CTLTYPE_INT, "maxlwp",
320 		       SYSCTL_DESCR("Maximum number of simultaneous threads"),
321 		       sysctl_kern_maxlwp, 0, NULL, 0,
322 		       CTL_KERN, CTL_CREATE, CTL_EOL);
323 }
324 
325 void
326 lwpinit(void)
327 {
328 
329 	LIST_INIT(&alllwp);
330 	lwpinit_specificdata();
331 	lwp_sys_init();
332 	lwp_cache = pool_cache_init(sizeof(lwp_t), MIN_LWP_ALIGNMENT, 0, 0,
333 	    "lwppl", NULL, IPL_NONE, NULL, lwp_dtor, NULL);
334 
335 	maxlwp = cpu_maxlwp();
336 	sysctl_kern_lwp_setup();
337 }
338 
339 void
340 lwp0_init(void)
341 {
342 	struct lwp *l = &lwp0;
343 
344 	KASSERT((void *)uvm_lwp_getuarea(l) != NULL);
345 	KASSERT(l->l_lid == proc0.p_nlwpid);
346 
347 	LIST_INSERT_HEAD(&alllwp, l, l_list);
348 
349 	callout_init(&l->l_timeout_ch, CALLOUT_MPSAFE);
350 	callout_setfunc(&l->l_timeout_ch, sleepq_timeout, l);
351 	cv_init(&l->l_sigcv, "sigwait");
352 	cv_init(&l->l_waitcv, "vfork");
353 
354 	kauth_cred_hold(proc0.p_cred);
355 	l->l_cred = proc0.p_cred;
356 
357 	kdtrace_thread_ctor(NULL, l);
358 	lwp_initspecific(l);
359 
360 	SYSCALL_TIME_LWP_INIT(l);
361 }
362 
363 static void
364 lwp_dtor(void *arg, void *obj)
365 {
366 	lwp_t *l = obj;
367 	uint64_t where;
368 	(void)l;
369 
370 	/*
371 	 * Provide a barrier to ensure that all mutex_oncpu() and rw_oncpu()
372 	 * calls will exit before memory of LWP is returned to the pool, where
373 	 * KVA of LWP structure might be freed and re-used for other purposes.
374 	 * Kernel preemption is disabled around mutex_oncpu() and rw_oncpu()
375 	 * callers, therefore cross-call to all CPUs will do the job.  Also,
376 	 * the value of l->l_cpu must be still valid at this point.
377 	 */
378 	KASSERT(l->l_cpu != NULL);
379 	where = xc_broadcast(0, (xcfunc_t)nullop, NULL, NULL);
380 	xc_wait(where);
381 }
382 
383 /*
384  * Set an suspended.
385  *
386  * Must be called with p_lock held, and the LWP locked.  Will unlock the
387  * LWP before return.
388  */
389 int
390 lwp_suspend(struct lwp *curl, struct lwp *t)
391 {
392 	int error;
393 
394 	KASSERT(mutex_owned(t->l_proc->p_lock));
395 	KASSERT(lwp_locked(t, NULL));
396 
397 	KASSERT(curl != t || curl->l_stat == LSONPROC);
398 
399 	/*
400 	 * If the current LWP has been told to exit, we must not suspend anyone
401 	 * else or deadlock could occur.  We won't return to userspace.
402 	 */
403 	if ((curl->l_flag & (LW_WEXIT | LW_WCORE)) != 0) {
404 		lwp_unlock(t);
405 		return (EDEADLK);
406 	}
407 
408 	error = 0;
409 
410 	switch (t->l_stat) {
411 	case LSRUN:
412 	case LSONPROC:
413 		t->l_flag |= LW_WSUSPEND;
414 		lwp_need_userret(t);
415 		lwp_unlock(t);
416 		break;
417 
418 	case LSSLEEP:
419 		t->l_flag |= LW_WSUSPEND;
420 
421 		/*
422 		 * Kick the LWP and try to get it to the kernel boundary
423 		 * so that it will release any locks that it holds.
424 		 * setrunnable() will release the lock.
425 		 */
426 		if ((t->l_flag & LW_SINTR) != 0)
427 			setrunnable(t);
428 		else
429 			lwp_unlock(t);
430 		break;
431 
432 	case LSSUSPENDED:
433 		lwp_unlock(t);
434 		break;
435 
436 	case LSSTOP:
437 		t->l_flag |= LW_WSUSPEND;
438 		setrunnable(t);
439 		break;
440 
441 	case LSIDL:
442 	case LSZOMB:
443 		error = EINTR; /* It's what Solaris does..... */
444 		lwp_unlock(t);
445 		break;
446 	}
447 
448 	return (error);
449 }
450 
451 /*
452  * Restart a suspended LWP.
453  *
454  * Must be called with p_lock held, and the LWP locked.  Will unlock the
455  * LWP before return.
456  */
457 void
458 lwp_continue(struct lwp *l)
459 {
460 
461 	KASSERT(mutex_owned(l->l_proc->p_lock));
462 	KASSERT(lwp_locked(l, NULL));
463 
464 	/* If rebooting or not suspended, then just bail out. */
465 	if ((l->l_flag & LW_WREBOOT) != 0) {
466 		lwp_unlock(l);
467 		return;
468 	}
469 
470 	l->l_flag &= ~LW_WSUSPEND;
471 
472 	if (l->l_stat != LSSUSPENDED) {
473 		lwp_unlock(l);
474 		return;
475 	}
476 
477 	/* setrunnable() will release the lock. */
478 	setrunnable(l);
479 }
480 
481 /*
482  * Restart a stopped LWP.
483  *
484  * Must be called with p_lock held, and the LWP NOT locked.  Will unlock the
485  * LWP before return.
486  */
487 void
488 lwp_unstop(struct lwp *l)
489 {
490 	struct proc *p = l->l_proc;
491 
492 	KASSERT(mutex_owned(proc_lock));
493 	KASSERT(mutex_owned(p->p_lock));
494 
495 	lwp_lock(l);
496 
497 	/* If not stopped, then just bail out. */
498 	if (l->l_stat != LSSTOP) {
499 		lwp_unlock(l);
500 		return;
501 	}
502 
503 	p->p_stat = SACTIVE;
504 	p->p_sflag &= ~PS_STOPPING;
505 
506 	if (!p->p_waited)
507 		p->p_pptr->p_nstopchild--;
508 
509 	if (l->l_wchan == NULL) {
510 		/* setrunnable() will release the lock. */
511 		setrunnable(l);
512 	} else if (p->p_xsig && (l->l_flag & LW_SINTR) != 0) {
513 		/* setrunnable() so we can receive the signal */
514 		setrunnable(l);
515 	} else {
516 		l->l_stat = LSSLEEP;
517 		p->p_nrlwps++;
518 		lwp_unlock(l);
519 	}
520 }
521 
522 /*
523  * Wait for an LWP within the current process to exit.  If 'lid' is
524  * non-zero, we are waiting for a specific LWP.
525  *
526  * Must be called with p->p_lock held.
527  */
528 int
529 lwp_wait(struct lwp *l, lwpid_t lid, lwpid_t *departed, bool exiting)
530 {
531 	const lwpid_t curlid = l->l_lid;
532 	proc_t *p = l->l_proc;
533 	lwp_t *l2;
534 	int error;
535 
536 	KASSERT(mutex_owned(p->p_lock));
537 
538 	p->p_nlwpwait++;
539 	l->l_waitingfor = lid;
540 
541 	for (;;) {
542 		int nfound;
543 
544 		/*
545 		 * Avoid a race between exit1() and sigexit(): if the
546 		 * process is dumping core, then we need to bail out: call
547 		 * into lwp_userret() where we will be suspended until the
548 		 * deed is done.
549 		 */
550 		if ((p->p_sflag & PS_WCORE) != 0) {
551 			mutex_exit(p->p_lock);
552 			lwp_userret(l);
553 			KASSERT(false);
554 		}
555 
556 		/*
557 		 * First off, drain any detached LWP that is waiting to be
558 		 * reaped.
559 		 */
560 		while ((l2 = p->p_zomblwp) != NULL) {
561 			p->p_zomblwp = NULL;
562 			lwp_free(l2, false, false);/* releases proc mutex */
563 			mutex_enter(p->p_lock);
564 		}
565 
566 		/*
567 		 * Now look for an LWP to collect.  If the whole process is
568 		 * exiting, count detached LWPs as eligible to be collected,
569 		 * but don't drain them here.
570 		 */
571 		nfound = 0;
572 		error = 0;
573 		LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
574 			/*
575 			 * If a specific wait and the target is waiting on
576 			 * us, then avoid deadlock.  This also traps LWPs
577 			 * that try to wait on themselves.
578 			 *
579 			 * Note that this does not handle more complicated
580 			 * cycles, like: t1 -> t2 -> t3 -> t1.  The process
581 			 * can still be killed so it is not a major problem.
582 			 */
583 			if (l2->l_lid == lid && l2->l_waitingfor == curlid) {
584 				error = EDEADLK;
585 				break;
586 			}
587 			if (l2 == l)
588 				continue;
589 			if ((l2->l_prflag & LPR_DETACHED) != 0) {
590 				nfound += exiting;
591 				continue;
592 			}
593 			if (lid != 0) {
594 				if (l2->l_lid != lid)
595 					continue;
596 				/*
597 				 * Mark this LWP as the first waiter, if there
598 				 * is no other.
599 				 */
600 				if (l2->l_waiter == 0)
601 					l2->l_waiter = curlid;
602 			} else if (l2->l_waiter != 0) {
603 				/*
604 				 * It already has a waiter - so don't
605 				 * collect it.  If the waiter doesn't
606 				 * grab it we'll get another chance
607 				 * later.
608 				 */
609 				nfound++;
610 				continue;
611 			}
612 			nfound++;
613 
614 			/* No need to lock the LWP in order to see LSZOMB. */
615 			if (l2->l_stat != LSZOMB)
616 				continue;
617 
618 			/*
619 			 * We're no longer waiting.  Reset the "first waiter"
620 			 * pointer on the target, in case it was us.
621 			 */
622 			l->l_waitingfor = 0;
623 			l2->l_waiter = 0;
624 			p->p_nlwpwait--;
625 			if (departed)
626 				*departed = l2->l_lid;
627 			sched_lwp_collect(l2);
628 
629 			/* lwp_free() releases the proc lock. */
630 			lwp_free(l2, false, false);
631 			mutex_enter(p->p_lock);
632 			return 0;
633 		}
634 
635 		if (error != 0)
636 			break;
637 		if (nfound == 0) {
638 			error = ESRCH;
639 			break;
640 		}
641 
642 		/*
643 		 * Note: since the lock will be dropped, need to restart on
644 		 * wakeup to run all LWPs again, e.g. there may be new LWPs.
645 		 */
646 		if (exiting) {
647 			KASSERT(p->p_nlwps > 1);
648 			cv_wait(&p->p_lwpcv, p->p_lock);
649 			error = EAGAIN;
650 			break;
651 		}
652 
653 		/*
654 		 * If all other LWPs are waiting for exits or suspends
655 		 * and the supply of zombies and potential zombies is
656 		 * exhausted, then we are about to deadlock.
657 		 *
658 		 * If the process is exiting (and this LWP is not the one
659 		 * that is coordinating the exit) then bail out now.
660 		 */
661 		if ((p->p_sflag & PS_WEXIT) != 0 ||
662 		    p->p_nrlwps + p->p_nzlwps - p->p_ndlwps <= p->p_nlwpwait) {
663 			error = EDEADLK;
664 			break;
665 		}
666 
667 		/*
668 		 * Sit around and wait for something to happen.  We'll be
669 		 * awoken if any of the conditions examined change: if an
670 		 * LWP exits, is collected, or is detached.
671 		 */
672 		if ((error = cv_wait_sig(&p->p_lwpcv, p->p_lock)) != 0)
673 			break;
674 	}
675 
676 	/*
677 	 * We didn't find any LWPs to collect, we may have received a
678 	 * signal, or some other condition has caused us to bail out.
679 	 *
680 	 * If waiting on a specific LWP, clear the waiters marker: some
681 	 * other LWP may want it.  Then, kick all the remaining waiters
682 	 * so that they can re-check for zombies and for deadlock.
683 	 */
684 	if (lid != 0) {
685 		LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
686 			if (l2->l_lid == lid) {
687 				if (l2->l_waiter == curlid)
688 					l2->l_waiter = 0;
689 				break;
690 			}
691 		}
692 	}
693 	p->p_nlwpwait--;
694 	l->l_waitingfor = 0;
695 	cv_broadcast(&p->p_lwpcv);
696 
697 	return error;
698 }
699 
700 static lwpid_t
701 lwp_find_free_lid(lwpid_t try_lid, lwp_t * new_lwp, proc_t *p)
702 {
703 	#define LID_SCAN (1u << 31)
704 	lwp_t *scan, *free_before;
705 	lwpid_t nxt_lid;
706 
707 	/*
708 	 * We want the first unused lid greater than or equal to
709 	 * try_lid (modulo 2^31).
710 	 * (If nothing else ld.elf_so doesn't want lwpid with the top bit set.)
711 	 * We must not return 0, and avoiding 'LID_SCAN - 1' makes
712 	 * the outer test easier.
713 	 * This would be much easier if the list were sorted in
714 	 * increasing order.
715 	 * The list is kept sorted in decreasing order.
716 	 * This code is only used after a process has generated 2^31 lwp.
717 	 *
718 	 * Code assumes it can always find an id.
719 	 */
720 
721 	try_lid &= LID_SCAN - 1;
722 	if (try_lid <= 1)
723 		try_lid = 2;
724 
725 	free_before = NULL;
726 	nxt_lid = LID_SCAN - 1;
727 	LIST_FOREACH(scan, &p->p_lwps, l_sibling) {
728 		if (scan->l_lid != nxt_lid) {
729 			/* There are available lid before this entry */
730 			free_before = scan;
731 			if (try_lid > scan->l_lid)
732 				break;
733 		}
734 		if (try_lid == scan->l_lid) {
735 			/* The ideal lid is busy, take a higher one */
736 			if (free_before != NULL) {
737 				try_lid = free_before->l_lid + 1;
738 				break;
739 			}
740 			/* No higher ones, reuse low numbers */
741 			try_lid = 2;
742 		}
743 
744 		nxt_lid = scan->l_lid - 1;
745 		if (LIST_NEXT(scan, l_sibling) == NULL) {
746 		    /* The value we have is lower than any existing lwp */
747 		    LIST_INSERT_AFTER(scan, new_lwp, l_sibling);
748 		    return try_lid;
749 		}
750 	}
751 
752 	LIST_INSERT_BEFORE(free_before, new_lwp, l_sibling);
753 	return try_lid;
754 }
755 
756 /*
757  * Create a new LWP within process 'p2', using LWP 'l1' as a template.
758  * The new LWP is created in state LSIDL and must be set running,
759  * suspended, or stopped by the caller.
760  */
761 int
762 lwp_create(lwp_t *l1, proc_t *p2, vaddr_t uaddr, int flags,
763     void *stack, size_t stacksize, void (*func)(void *), void *arg,
764     lwp_t **rnewlwpp, int sclass, const sigset_t *sigmask,
765     const stack_t *sigstk)
766 {
767 	struct lwp *l2, *isfree;
768 	turnstile_t *ts;
769 	lwpid_t lid;
770 
771 	KASSERT(l1 == curlwp || l1->l_proc == &proc0);
772 
773 	/*
774 	 * Enforce limits, excluding the first lwp and kthreads.
775 	 */
776 	if (p2->p_nlwps != 0 && p2 != &proc0) {
777 		uid_t uid = kauth_cred_getuid(l1->l_cred);
778 		int count = chglwpcnt(uid, 1);
779 		if (__predict_false(count >
780 		    p2->p_rlimit[RLIMIT_NTHR].rlim_cur)) {
781 			if (kauth_authorize_process(l1->l_cred,
782 			    KAUTH_PROCESS_RLIMIT, p2,
783 			    KAUTH_ARG(KAUTH_REQ_PROCESS_RLIMIT_BYPASS),
784 			    &p2->p_rlimit[RLIMIT_NTHR], KAUTH_ARG(RLIMIT_NTHR))
785 			    != 0) {
786 				(void)chglwpcnt(uid, -1);
787 				return EAGAIN;
788 			}
789 		}
790 	}
791 
792 	/*
793 	 * First off, reap any detached LWP waiting to be collected.
794 	 * We can re-use its LWP structure and turnstile.
795 	 */
796 	isfree = NULL;
797 	if (p2->p_zomblwp != NULL) {
798 		mutex_enter(p2->p_lock);
799 		if ((isfree = p2->p_zomblwp) != NULL) {
800 			p2->p_zomblwp = NULL;
801 			lwp_free(isfree, true, false);/* releases proc mutex */
802 		} else
803 			mutex_exit(p2->p_lock);
804 	}
805 	if (isfree == NULL) {
806 		l2 = pool_cache_get(lwp_cache, PR_WAITOK);
807 		memset(l2, 0, sizeof(*l2));
808 		l2->l_ts = pool_cache_get(turnstile_cache, PR_WAITOK);
809 		SLIST_INIT(&l2->l_pi_lenders);
810 	} else {
811 		l2 = isfree;
812 		ts = l2->l_ts;
813 		KASSERT(l2->l_inheritedprio == -1);
814 		KASSERT(SLIST_EMPTY(&l2->l_pi_lenders));
815 		memset(l2, 0, sizeof(*l2));
816 		l2->l_ts = ts;
817 	}
818 
819 	l2->l_stat = LSIDL;
820 	l2->l_proc = p2;
821 	l2->l_refcnt = 1;
822 	l2->l_class = sclass;
823 
824 	/*
825 	 * If vfork(), we want the LWP to run fast and on the same CPU
826 	 * as its parent, so that it can reuse the VM context and cache
827 	 * footprint on the local CPU.
828 	 */
829 	l2->l_kpriority = ((flags & LWP_VFORK) ? true : false);
830 	l2->l_kpribase = PRI_KERNEL;
831 	l2->l_priority = l1->l_priority;
832 	l2->l_inheritedprio = -1;
833 	l2->l_protectprio = -1;
834 	l2->l_auxprio = -1;
835 	l2->l_flag = 0;
836 	l2->l_pflag = LP_MPSAFE;
837 	TAILQ_INIT(&l2->l_ld_locks);
838 
839 	/*
840 	 * For vfork, borrow parent's lwpctl context if it exists.
841 	 * This also causes us to return via lwp_userret.
842 	 */
843 	if (flags & LWP_VFORK && l1->l_lwpctl) {
844 		l2->l_lwpctl = l1->l_lwpctl;
845 		l2->l_flag |= LW_LWPCTL;
846 	}
847 
848 	/*
849 	 * If not the first LWP in the process, grab a reference to the
850 	 * descriptor table.
851 	 */
852 	l2->l_fd = p2->p_fd;
853 	if (p2->p_nlwps != 0) {
854 		KASSERT(l1->l_proc == p2);
855 		fd_hold(l2);
856 	} else {
857 		KASSERT(l1->l_proc != p2);
858 	}
859 
860 	if (p2->p_flag & PK_SYSTEM) {
861 		/* Mark it as a system LWP. */
862 		l2->l_flag |= LW_SYSTEM;
863 	}
864 
865 	kpreempt_disable();
866 	l2->l_mutex = l1->l_cpu->ci_schedstate.spc_mutex;
867 	l2->l_cpu = l1->l_cpu;
868 	kpreempt_enable();
869 
870 	kdtrace_thread_ctor(NULL, l2);
871 	lwp_initspecific(l2);
872 	sched_lwp_fork(l1, l2);
873 	lwp_update_creds(l2);
874 	callout_init(&l2->l_timeout_ch, CALLOUT_MPSAFE);
875 	callout_setfunc(&l2->l_timeout_ch, sleepq_timeout, l2);
876 	cv_init(&l2->l_sigcv, "sigwait");
877 	cv_init(&l2->l_waitcv, "vfork");
878 	l2->l_syncobj = &sched_syncobj;
879 
880 	if (rnewlwpp != NULL)
881 		*rnewlwpp = l2;
882 
883 	/*
884 	 * PCU state needs to be saved before calling uvm_lwp_fork() so that
885 	 * the MD cpu_lwp_fork() can copy the saved state to the new LWP.
886 	 */
887 	pcu_save_all(l1);
888 
889 	uvm_lwp_setuarea(l2, uaddr);
890 	uvm_lwp_fork(l1, l2, stack, stacksize, func, (arg != NULL) ? arg : l2);
891 
892 	if ((flags & LWP_PIDLID) != 0) {
893 		lid = proc_alloc_pid(p2);
894 		l2->l_pflag |= LP_PIDLID;
895 	} else {
896 		lid = 0;
897 	}
898 
899 	mutex_enter(p2->p_lock);
900 
901 	if ((flags & LWP_DETACHED) != 0) {
902 		l2->l_prflag = LPR_DETACHED;
903 		p2->p_ndlwps++;
904 	} else
905 		l2->l_prflag = 0;
906 
907 	l2->l_sigstk = *sigstk;
908 	l2->l_sigmask = *sigmask;
909 	TAILQ_INIT(&l2->l_sigpend.sp_info);
910 	sigemptyset(&l2->l_sigpend.sp_set);
911 
912 	if (__predict_true(lid == 0)) {
913 		/*
914 		 * XXX: l_lid are expected to be unique (for a process)
915 		 * if LWP_PIDLID is sometimes set this won't be true.
916 		 * Once 2^31 threads have been allocated we have to
917 		 * scan to ensure we allocate a unique value.
918 		 */
919 		lid = ++p2->p_nlwpid;
920 		if (__predict_false(lid & LID_SCAN)) {
921 			lid = lwp_find_free_lid(lid, l2, p2);
922 			p2->p_nlwpid = lid | LID_SCAN;
923 			/* l2 as been inserted into p_lwps in order */
924 			goto skip_insert;
925 		}
926 		p2->p_nlwpid = lid;
927 	}
928 	LIST_INSERT_HEAD(&p2->p_lwps, l2, l_sibling);
929     skip_insert:
930 	l2->l_lid = lid;
931 	p2->p_nlwps++;
932 	p2->p_nrlwps++;
933 
934 	KASSERT(l2->l_affinity == NULL);
935 
936 	if ((p2->p_flag & PK_SYSTEM) == 0) {
937 		/* Inherit the affinity mask. */
938 		if (l1->l_affinity) {
939 			/*
940 			 * Note that we hold the state lock while inheriting
941 			 * the affinity to avoid race with sched_setaffinity().
942 			 */
943 			lwp_lock(l1);
944 			if (l1->l_affinity) {
945 				kcpuset_use(l1->l_affinity);
946 				l2->l_affinity = l1->l_affinity;
947 			}
948 			lwp_unlock(l1);
949 		}
950 		lwp_lock(l2);
951 		/* Inherit a processor-set */
952 		l2->l_psid = l1->l_psid;
953 		/* Look for a CPU to start */
954 		l2->l_cpu = sched_takecpu(l2);
955 		lwp_unlock_to(l2, l2->l_cpu->ci_schedstate.spc_mutex);
956 	}
957 	mutex_exit(p2->p_lock);
958 
959 	SDT_PROBE(proc, kernel, , lwp__create, l2, 0, 0, 0, 0);
960 
961 	mutex_enter(proc_lock);
962 	LIST_INSERT_HEAD(&alllwp, l2, l_list);
963 	mutex_exit(proc_lock);
964 
965 	SYSCALL_TIME_LWP_INIT(l2);
966 
967 	if (p2->p_emul->e_lwp_fork)
968 		(*p2->p_emul->e_lwp_fork)(l1, l2);
969 
970 	/* If the process is traced, report lwp creation to a debugger */
971 	if ((p2->p_slflag & (PSL_TRACED|PSL_TRACELWP_CREATE|PSL_SYSCALL)) ==
972 	    (PSL_TRACED|PSL_TRACELWP_CREATE)) {
973 		ksiginfo_t ksi;
974 
975 		/* Tracing */
976 		KASSERT((l2->l_flag & LW_SYSTEM) == 0);
977 
978 		p2->p_lwp_created = l2->l_lid;
979 
980 		KSI_INIT_EMPTY(&ksi);
981 		ksi.ksi_signo = SIGTRAP;
982 		ksi.ksi_code = TRAP_LWP;
983 		mutex_enter(proc_lock);
984 		kpsignal(p2, &ksi, NULL);
985 		mutex_exit(proc_lock);
986 	}
987 
988 	return (0);
989 }
990 
991 /*
992  * Called by MD code when a new LWP begins execution.  Must be called
993  * with the previous LWP locked (so at splsched), or if there is no
994  * previous LWP, at splsched.
995  */
996 void
997 lwp_startup(struct lwp *prev, struct lwp *new_lwp)
998 {
999 	KASSERTMSG(new_lwp == curlwp, "l %p curlwp %p prevlwp %p", new_lwp, curlwp, prev);
1000 
1001 	SDT_PROBE(proc, kernel, , lwp__start, new_lwp, 0, 0, 0, 0);
1002 
1003 	KASSERT(kpreempt_disabled());
1004 	if (prev != NULL) {
1005 		/*
1006 		 * Normalize the count of the spin-mutexes, it was
1007 		 * increased in mi_switch().  Unmark the state of
1008 		 * context switch - it is finished for previous LWP.
1009 		 */
1010 		curcpu()->ci_mtx_count++;
1011 		membar_exit();
1012 		prev->l_ctxswtch = 0;
1013 	}
1014 	KPREEMPT_DISABLE(new_lwp);
1015 	if (__predict_true(new_lwp->l_proc->p_vmspace))
1016 		pmap_activate(new_lwp);
1017 	spl0();
1018 
1019 	/* Note trip through cpu_switchto(). */
1020 	pserialize_switchpoint();
1021 
1022 	LOCKDEBUG_BARRIER(NULL, 0);
1023 	KPREEMPT_ENABLE(new_lwp);
1024 	if ((new_lwp->l_pflag & LP_MPSAFE) == 0) {
1025 		KERNEL_LOCK(1, new_lwp);
1026 	}
1027 }
1028 
1029 /*
1030  * Exit an LWP.
1031  */
1032 void
1033 lwp_exit(struct lwp *l)
1034 {
1035 	struct proc *p = l->l_proc;
1036 	struct lwp *l2;
1037 	bool current;
1038 
1039 	current = (l == curlwp);
1040 
1041 	KASSERT(current || (l->l_stat == LSIDL && l->l_target_cpu == NULL));
1042 	KASSERT(p == curproc);
1043 
1044 	SDT_PROBE(proc, kernel, , lwp__exit, l, 0, 0, 0, 0);
1045 
1046 	/*
1047 	 * Verify that we hold no locks other than the kernel lock.
1048 	 */
1049 	LOCKDEBUG_BARRIER(&kernel_lock, 0);
1050 
1051 	/* If the process is traced, report lwp termination to a debugger */
1052 	if ((p->p_slflag & (PSL_TRACED|PSL_TRACELWP_EXIT|PSL_SYSCALL)) ==
1053 	    (PSL_TRACED|PSL_TRACELWP_EXIT)) {
1054 		ksiginfo_t ksi;
1055 
1056 		/* Tracing */
1057 		KASSERT((l->l_flag & LW_SYSTEM) == 0);
1058 
1059 		p->p_lwp_exited = l->l_lid;
1060 
1061 		KSI_INIT_EMPTY(&ksi);
1062 		ksi.ksi_signo = SIGTRAP;
1063 		ksi.ksi_code = TRAP_LWP;
1064 		mutex_enter(proc_lock);
1065 		kpsignal(p, &ksi, NULL);
1066 		mutex_exit(proc_lock);
1067 	}
1068 
1069 	/*
1070 	 * If we are the last live LWP in a process, we need to exit the
1071 	 * entire process.  We do so with an exit status of zero, because
1072 	 * it's a "controlled" exit, and because that's what Solaris does.
1073 	 *
1074 	 * We are not quite a zombie yet, but for accounting purposes we
1075 	 * must increment the count of zombies here.
1076 	 *
1077 	 * Note: the last LWP's specificdata will be deleted here.
1078 	 */
1079 	mutex_enter(p->p_lock);
1080 	if (p->p_nlwps - p->p_nzlwps == 1) {
1081 		KASSERT(current == true);
1082 		KASSERT(p != &proc0);
1083 		/* XXXSMP kernel_lock not held */
1084 		exit1(l, 0, 0);
1085 		/* NOTREACHED */
1086 	}
1087 	p->p_nzlwps++;
1088 	mutex_exit(p->p_lock);
1089 
1090 	if (p->p_emul->e_lwp_exit)
1091 		(*p->p_emul->e_lwp_exit)(l);
1092 
1093 	/* Drop filedesc reference. */
1094 	fd_free();
1095 
1096 	/* Delete the specificdata while it's still safe to sleep. */
1097 	lwp_finispecific(l);
1098 
1099 	/*
1100 	 * Release our cached credentials.
1101 	 */
1102 	kauth_cred_free(l->l_cred);
1103 	callout_destroy(&l->l_timeout_ch);
1104 
1105 	/*
1106 	 * Remove the LWP from the global list.
1107 	 * Free its LID from the PID namespace if needed.
1108 	 */
1109 	mutex_enter(proc_lock);
1110 	LIST_REMOVE(l, l_list);
1111 	if ((l->l_pflag & LP_PIDLID) != 0 && l->l_lid != p->p_pid) {
1112 		proc_free_pid(l->l_lid);
1113 	}
1114 	mutex_exit(proc_lock);
1115 
1116 	/*
1117 	 * Get rid of all references to the LWP that others (e.g. procfs)
1118 	 * may have, and mark the LWP as a zombie.  If the LWP is detached,
1119 	 * mark it waiting for collection in the proc structure.  Note that
1120 	 * before we can do that, we need to free any other dead, deatched
1121 	 * LWP waiting to meet its maker.
1122 	 */
1123 	mutex_enter(p->p_lock);
1124 	lwp_drainrefs(l);
1125 
1126 	if ((l->l_prflag & LPR_DETACHED) != 0) {
1127 		while ((l2 = p->p_zomblwp) != NULL) {
1128 			p->p_zomblwp = NULL;
1129 			lwp_free(l2, false, false);/* releases proc mutex */
1130 			mutex_enter(p->p_lock);
1131 			l->l_refcnt++;
1132 			lwp_drainrefs(l);
1133 		}
1134 		p->p_zomblwp = l;
1135 	}
1136 
1137 	/*
1138 	 * If we find a pending signal for the process and we have been
1139 	 * asked to check for signals, then we lose: arrange to have
1140 	 * all other LWPs in the process check for signals.
1141 	 */
1142 	if ((l->l_flag & LW_PENDSIG) != 0 &&
1143 	    firstsig(&p->p_sigpend.sp_set) != 0) {
1144 		LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
1145 			lwp_lock(l2);
1146 			l2->l_flag |= LW_PENDSIG;
1147 			lwp_unlock(l2);
1148 		}
1149 	}
1150 
1151 	/*
1152 	 * Release any PCU resources before becoming a zombie.
1153 	 */
1154 	pcu_discard_all(l);
1155 
1156 	lwp_lock(l);
1157 	l->l_stat = LSZOMB;
1158 	if (l->l_name != NULL) {
1159 		strcpy(l->l_name, "(zombie)");
1160 	}
1161 	lwp_unlock(l);
1162 	p->p_nrlwps--;
1163 	cv_broadcast(&p->p_lwpcv);
1164 	if (l->l_lwpctl != NULL)
1165 		l->l_lwpctl->lc_curcpu = LWPCTL_CPU_EXITED;
1166 	mutex_exit(p->p_lock);
1167 
1168 	/*
1169 	 * We can no longer block.  At this point, lwp_free() may already
1170 	 * be gunning for us.  On a multi-CPU system, we may be off p_lwps.
1171 	 *
1172 	 * Free MD LWP resources.
1173 	 */
1174 	cpu_lwp_free(l, 0);
1175 
1176 	if (current) {
1177 		pmap_deactivate(l);
1178 
1179 		/*
1180 		 * Release the kernel lock, and switch away into
1181 		 * oblivion.
1182 		 */
1183 #ifdef notyet
1184 		/* XXXSMP hold in lwp_userret() */
1185 		KERNEL_UNLOCK_LAST(l);
1186 #else
1187 		KERNEL_UNLOCK_ALL(l, NULL);
1188 #endif
1189 		lwp_exit_switchaway(l);
1190 	}
1191 }
1192 
1193 /*
1194  * Free a dead LWP's remaining resources.
1195  *
1196  * XXXLWP limits.
1197  */
1198 void
1199 lwp_free(struct lwp *l, bool recycle, bool last)
1200 {
1201 	struct proc *p = l->l_proc;
1202 	struct rusage *ru;
1203 	ksiginfoq_t kq;
1204 
1205 	KASSERT(l != curlwp);
1206 	KASSERT(last || mutex_owned(p->p_lock));
1207 
1208 	/*
1209 	 * We use the process credentials instead of the lwp credentials here
1210 	 * because the lwp credentials maybe cached (just after a setuid call)
1211 	 * and we don't want pay for syncing, since the lwp is going away
1212 	 * anyway
1213 	 */
1214 	if (p != &proc0 && p->p_nlwps != 1)
1215 		(void)chglwpcnt(kauth_cred_getuid(p->p_cred), -1);
1216 	/*
1217 	 * If this was not the last LWP in the process, then adjust
1218 	 * counters and unlock.
1219 	 */
1220 	if (!last) {
1221 		/*
1222 		 * Add the LWP's run time to the process' base value.
1223 		 * This needs to co-incide with coming off p_lwps.
1224 		 */
1225 		bintime_add(&p->p_rtime, &l->l_rtime);
1226 		p->p_pctcpu += l->l_pctcpu;
1227 		ru = &p->p_stats->p_ru;
1228 		ruadd(ru, &l->l_ru);
1229 		ru->ru_nvcsw += (l->l_ncsw - l->l_nivcsw);
1230 		ru->ru_nivcsw += l->l_nivcsw;
1231 		LIST_REMOVE(l, l_sibling);
1232 		p->p_nlwps--;
1233 		p->p_nzlwps--;
1234 		if ((l->l_prflag & LPR_DETACHED) != 0)
1235 			p->p_ndlwps--;
1236 
1237 		/*
1238 		 * Have any LWPs sleeping in lwp_wait() recheck for
1239 		 * deadlock.
1240 		 */
1241 		cv_broadcast(&p->p_lwpcv);
1242 		mutex_exit(p->p_lock);
1243 	}
1244 
1245 #ifdef MULTIPROCESSOR
1246 	/*
1247 	 * In the unlikely event that the LWP is still on the CPU,
1248 	 * then spin until it has switched away.  We need to release
1249 	 * all locks to avoid deadlock against interrupt handlers on
1250 	 * the target CPU.
1251 	 */
1252 	if ((l->l_pflag & LP_RUNNING) != 0 || l->l_cpu->ci_curlwp == l) {
1253 		int count;
1254 		(void)count; /* XXXgcc */
1255 		KERNEL_UNLOCK_ALL(curlwp, &count);
1256 		while ((l->l_pflag & LP_RUNNING) != 0 ||
1257 		    l->l_cpu->ci_curlwp == l)
1258 			SPINLOCK_BACKOFF_HOOK;
1259 		KERNEL_LOCK(count, curlwp);
1260 	}
1261 #endif
1262 
1263 	/*
1264 	 * Destroy the LWP's remaining signal information.
1265 	 */
1266 	ksiginfo_queue_init(&kq);
1267 	sigclear(&l->l_sigpend, NULL, &kq);
1268 	ksiginfo_queue_drain(&kq);
1269 	cv_destroy(&l->l_sigcv);
1270 	cv_destroy(&l->l_waitcv);
1271 
1272 	/*
1273 	 * Free lwpctl structure and affinity.
1274 	 */
1275 	if (l->l_lwpctl) {
1276 		lwp_ctl_free(l);
1277 	}
1278 	if (l->l_affinity) {
1279 		kcpuset_unuse(l->l_affinity, NULL);
1280 		l->l_affinity = NULL;
1281 	}
1282 
1283 	/*
1284 	 * Free the LWP's turnstile and the LWP structure itself unless the
1285 	 * caller wants to recycle them.  Also, free the scheduler specific
1286 	 * data.
1287 	 *
1288 	 * We can't return turnstile0 to the pool (it didn't come from it),
1289 	 * so if it comes up just drop it quietly and move on.
1290 	 *
1291 	 * We don't recycle the VM resources at this time.
1292 	 */
1293 
1294 	if (!recycle && l->l_ts != &turnstile0)
1295 		pool_cache_put(turnstile_cache, l->l_ts);
1296 	if (l->l_name != NULL)
1297 		kmem_free(l->l_name, MAXCOMLEN);
1298 
1299 	cpu_lwp_free2(l);
1300 	uvm_lwp_exit(l);
1301 
1302 	KASSERT(SLIST_EMPTY(&l->l_pi_lenders));
1303 	KASSERT(l->l_inheritedprio == -1);
1304 	KASSERT(l->l_blcnt == 0);
1305 	kdtrace_thread_dtor(NULL, l);
1306 	if (!recycle)
1307 		pool_cache_put(lwp_cache, l);
1308 }
1309 
1310 /*
1311  * Migrate the LWP to the another CPU.  Unlocks the LWP.
1312  */
1313 void
1314 lwp_migrate(lwp_t *l, struct cpu_info *tci)
1315 {
1316 	struct schedstate_percpu *tspc;
1317 	int lstat = l->l_stat;
1318 
1319 	KASSERT(lwp_locked(l, NULL));
1320 	KASSERT(tci != NULL);
1321 
1322 	/* If LWP is still on the CPU, it must be handled like LSONPROC */
1323 	if ((l->l_pflag & LP_RUNNING) != 0) {
1324 		lstat = LSONPROC;
1325 	}
1326 
1327 	/*
1328 	 * The destination CPU could be changed while previous migration
1329 	 * was not finished.
1330 	 */
1331 	if (l->l_target_cpu != NULL) {
1332 		l->l_target_cpu = tci;
1333 		lwp_unlock(l);
1334 		return;
1335 	}
1336 
1337 	/* Nothing to do if trying to migrate to the same CPU */
1338 	if (l->l_cpu == tci) {
1339 		lwp_unlock(l);
1340 		return;
1341 	}
1342 
1343 	KASSERT(l->l_target_cpu == NULL);
1344 	tspc = &tci->ci_schedstate;
1345 	switch (lstat) {
1346 	case LSRUN:
1347 		l->l_target_cpu = tci;
1348 		break;
1349 	case LSIDL:
1350 		l->l_cpu = tci;
1351 		lwp_unlock_to(l, tspc->spc_mutex);
1352 		return;
1353 	case LSSLEEP:
1354 		l->l_cpu = tci;
1355 		break;
1356 	case LSSTOP:
1357 	case LSSUSPENDED:
1358 		l->l_cpu = tci;
1359 		if (l->l_wchan == NULL) {
1360 			lwp_unlock_to(l, tspc->spc_lwplock);
1361 			return;
1362 		}
1363 		break;
1364 	case LSONPROC:
1365 		l->l_target_cpu = tci;
1366 		spc_lock(l->l_cpu);
1367 		cpu_need_resched(l->l_cpu, RESCHED_KPREEMPT);
1368 		spc_unlock(l->l_cpu);
1369 		break;
1370 	}
1371 	lwp_unlock(l);
1372 }
1373 
1374 /*
1375  * Find the LWP in the process.  Arguments may be zero, in such case,
1376  * the calling process and first LWP in the list will be used.
1377  * On success - returns proc locked.
1378  */
1379 struct lwp *
1380 lwp_find2(pid_t pid, lwpid_t lid)
1381 {
1382 	proc_t *p;
1383 	lwp_t *l;
1384 
1385 	/* Find the process. */
1386 	if (pid != 0) {
1387 		mutex_enter(proc_lock);
1388 		p = proc_find(pid);
1389 		if (p == NULL) {
1390 			mutex_exit(proc_lock);
1391 			return NULL;
1392 		}
1393 		mutex_enter(p->p_lock);
1394 		mutex_exit(proc_lock);
1395 	} else {
1396 		p = curlwp->l_proc;
1397 		mutex_enter(p->p_lock);
1398 	}
1399 	/* Find the thread. */
1400 	if (lid != 0) {
1401 		l = lwp_find(p, lid);
1402 	} else {
1403 		l = LIST_FIRST(&p->p_lwps);
1404 	}
1405 	if (l == NULL) {
1406 		mutex_exit(p->p_lock);
1407 	}
1408 	return l;
1409 }
1410 
1411 /*
1412  * Look up a live LWP within the specified process.
1413  *
1414  * Must be called with p->p_lock held.
1415  */
1416 struct lwp *
1417 lwp_find(struct proc *p, lwpid_t id)
1418 {
1419 	struct lwp *l;
1420 
1421 	KASSERT(mutex_owned(p->p_lock));
1422 
1423 	LIST_FOREACH(l, &p->p_lwps, l_sibling) {
1424 		if (l->l_lid == id)
1425 			break;
1426 	}
1427 
1428 	/*
1429 	 * No need to lock - all of these conditions will
1430 	 * be visible with the process level mutex held.
1431 	 */
1432 	if (l != NULL && (l->l_stat == LSIDL || l->l_stat == LSZOMB))
1433 		l = NULL;
1434 
1435 	return l;
1436 }
1437 
1438 /*
1439  * Update an LWP's cached credentials to mirror the process' master copy.
1440  *
1441  * This happens early in the syscall path, on user trap, and on LWP
1442  * creation.  A long-running LWP can also voluntarily choose to update
1443  * its credentials by calling this routine.  This may be called from
1444  * LWP_CACHE_CREDS(), which checks l->l_cred != p->p_cred beforehand.
1445  */
1446 void
1447 lwp_update_creds(struct lwp *l)
1448 {
1449 	kauth_cred_t oc;
1450 	struct proc *p;
1451 
1452 	p = l->l_proc;
1453 	oc = l->l_cred;
1454 
1455 	mutex_enter(p->p_lock);
1456 	kauth_cred_hold(p->p_cred);
1457 	l->l_cred = p->p_cred;
1458 	l->l_prflag &= ~LPR_CRMOD;
1459 	mutex_exit(p->p_lock);
1460 	if (oc != NULL)
1461 		kauth_cred_free(oc);
1462 }
1463 
1464 /*
1465  * Verify that an LWP is locked, and optionally verify that the lock matches
1466  * one we specify.
1467  */
1468 int
1469 lwp_locked(struct lwp *l, kmutex_t *mtx)
1470 {
1471 	kmutex_t *cur = l->l_mutex;
1472 
1473 	return mutex_owned(cur) && (mtx == cur || mtx == NULL);
1474 }
1475 
1476 /*
1477  * Lend a new mutex to an LWP.  The old mutex must be held.
1478  */
1479 void
1480 lwp_setlock(struct lwp *l, kmutex_t *mtx)
1481 {
1482 
1483 	KASSERT(mutex_owned(l->l_mutex));
1484 
1485 	membar_exit();
1486 	l->l_mutex = mtx;
1487 }
1488 
1489 /*
1490  * Lend a new mutex to an LWP, and release the old mutex.  The old mutex
1491  * must be held.
1492  */
1493 void
1494 lwp_unlock_to(struct lwp *l, kmutex_t *mtx)
1495 {
1496 	kmutex_t *old;
1497 
1498 	KASSERT(lwp_locked(l, NULL));
1499 
1500 	old = l->l_mutex;
1501 	membar_exit();
1502 	l->l_mutex = mtx;
1503 	mutex_spin_exit(old);
1504 }
1505 
1506 int
1507 lwp_trylock(struct lwp *l)
1508 {
1509 	kmutex_t *old;
1510 
1511 	for (;;) {
1512 		if (!mutex_tryenter(old = l->l_mutex))
1513 			return 0;
1514 		if (__predict_true(l->l_mutex == old))
1515 			return 1;
1516 		mutex_spin_exit(old);
1517 	}
1518 }
1519 
1520 void
1521 lwp_unsleep(lwp_t *l, bool cleanup)
1522 {
1523 
1524 	KASSERT(mutex_owned(l->l_mutex));
1525 	(*l->l_syncobj->sobj_unsleep)(l, cleanup);
1526 }
1527 
1528 /*
1529  * Handle exceptions for mi_userret().  Called if a member of LW_USERRET is
1530  * set.
1531  */
1532 void
1533 lwp_userret(struct lwp *l)
1534 {
1535 	struct proc *p;
1536 	int sig;
1537 
1538 	KASSERT(l == curlwp);
1539 	KASSERT(l->l_stat == LSONPROC);
1540 	p = l->l_proc;
1541 
1542 #ifndef __HAVE_FAST_SOFTINTS
1543 	/* Run pending soft interrupts. */
1544 	if (l->l_cpu->ci_data.cpu_softints != 0)
1545 		softint_overlay();
1546 #endif
1547 
1548 	/*
1549 	 * It is safe to do this read unlocked on a MP system..
1550 	 */
1551 	while ((l->l_flag & LW_USERRET) != 0) {
1552 		/*
1553 		 * Process pending signals first, unless the process
1554 		 * is dumping core or exiting, where we will instead
1555 		 * enter the LW_WSUSPEND case below.
1556 		 */
1557 		if ((l->l_flag & (LW_PENDSIG | LW_WCORE | LW_WEXIT)) ==
1558 		    LW_PENDSIG) {
1559 			mutex_enter(p->p_lock);
1560 			while ((sig = issignal(l)) != 0)
1561 				postsig(sig);
1562 			mutex_exit(p->p_lock);
1563 		}
1564 
1565 		/*
1566 		 * Core-dump or suspend pending.
1567 		 *
1568 		 * In case of core dump, suspend ourselves, so that the kernel
1569 		 * stack and therefore the userland registers saved in the
1570 		 * trapframe are around for coredump() to write them out.
1571 		 * We also need to save any PCU resources that we have so that
1572 		 * they accessible for coredump().  We issue a wakeup on
1573 		 * p->p_lwpcv so that sigexit() will write the core file out
1574 		 * once all other LWPs are suspended.
1575 		 */
1576 		if ((l->l_flag & LW_WSUSPEND) != 0) {
1577 			pcu_save_all(l);
1578 			mutex_enter(p->p_lock);
1579 			p->p_nrlwps--;
1580 			cv_broadcast(&p->p_lwpcv);
1581 			lwp_lock(l);
1582 			l->l_stat = LSSUSPENDED;
1583 			lwp_unlock(l);
1584 			mutex_exit(p->p_lock);
1585 			lwp_lock(l);
1586 			mi_switch(l);
1587 		}
1588 
1589 		/* Process is exiting. */
1590 		if ((l->l_flag & LW_WEXIT) != 0) {
1591 			lwp_exit(l);
1592 			KASSERT(0);
1593 			/* NOTREACHED */
1594 		}
1595 
1596 		/* update lwpctl processor (for vfork child_return) */
1597 		if (l->l_flag & LW_LWPCTL) {
1598 			lwp_lock(l);
1599 			KASSERT(kpreempt_disabled());
1600 			l->l_lwpctl->lc_curcpu = (int)cpu_index(l->l_cpu);
1601 			l->l_lwpctl->lc_pctr++;
1602 			l->l_flag &= ~LW_LWPCTL;
1603 			lwp_unlock(l);
1604 		}
1605 	}
1606 }
1607 
1608 /*
1609  * Force an LWP to enter the kernel, to take a trip through lwp_userret().
1610  */
1611 void
1612 lwp_need_userret(struct lwp *l)
1613 {
1614 	KASSERT(lwp_locked(l, NULL));
1615 
1616 	/*
1617 	 * Since the tests in lwp_userret() are done unlocked, make sure
1618 	 * that the condition will be seen before forcing the LWP to enter
1619 	 * kernel mode.
1620 	 */
1621 	membar_producer();
1622 	cpu_signotify(l);
1623 }
1624 
1625 /*
1626  * Add one reference to an LWP.  This will prevent the LWP from
1627  * exiting, thus keep the lwp structure and PCB around to inspect.
1628  */
1629 void
1630 lwp_addref(struct lwp *l)
1631 {
1632 
1633 	KASSERT(mutex_owned(l->l_proc->p_lock));
1634 	KASSERT(l->l_stat != LSZOMB);
1635 	KASSERT(l->l_refcnt != 0);
1636 
1637 	l->l_refcnt++;
1638 }
1639 
1640 /*
1641  * Remove one reference to an LWP.  If this is the last reference,
1642  * then we must finalize the LWP's death.
1643  */
1644 void
1645 lwp_delref(struct lwp *l)
1646 {
1647 	struct proc *p = l->l_proc;
1648 
1649 	mutex_enter(p->p_lock);
1650 	lwp_delref2(l);
1651 	mutex_exit(p->p_lock);
1652 }
1653 
1654 /*
1655  * Remove one reference to an LWP.  If this is the last reference,
1656  * then we must finalize the LWP's death.  The proc mutex is held
1657  * on entry.
1658  */
1659 void
1660 lwp_delref2(struct lwp *l)
1661 {
1662 	struct proc *p = l->l_proc;
1663 
1664 	KASSERT(mutex_owned(p->p_lock));
1665 	KASSERT(l->l_stat != LSZOMB);
1666 	KASSERT(l->l_refcnt > 0);
1667 	if (--l->l_refcnt == 0)
1668 		cv_broadcast(&p->p_lwpcv);
1669 }
1670 
1671 /*
1672  * Drain all references to the current LWP.
1673  */
1674 void
1675 lwp_drainrefs(struct lwp *l)
1676 {
1677 	struct proc *p = l->l_proc;
1678 
1679 	KASSERT(mutex_owned(p->p_lock));
1680 	KASSERT(l->l_refcnt != 0);
1681 
1682 	l->l_refcnt--;
1683 	while (l->l_refcnt != 0)
1684 		cv_wait(&p->p_lwpcv, p->p_lock);
1685 }
1686 
1687 /*
1688  * Return true if the specified LWP is 'alive'.  Only p->p_lock need
1689  * be held.
1690  */
1691 bool
1692 lwp_alive(lwp_t *l)
1693 {
1694 
1695 	KASSERT(mutex_owned(l->l_proc->p_lock));
1696 
1697 	switch (l->l_stat) {
1698 	case LSSLEEP:
1699 	case LSRUN:
1700 	case LSONPROC:
1701 	case LSSTOP:
1702 	case LSSUSPENDED:
1703 		return true;
1704 	default:
1705 		return false;
1706 	}
1707 }
1708 
1709 /*
1710  * Return first live LWP in the process.
1711  */
1712 lwp_t *
1713 lwp_find_first(proc_t *p)
1714 {
1715 	lwp_t *l;
1716 
1717 	KASSERT(mutex_owned(p->p_lock));
1718 
1719 	LIST_FOREACH(l, &p->p_lwps, l_sibling) {
1720 		if (lwp_alive(l)) {
1721 			return l;
1722 		}
1723 	}
1724 
1725 	return NULL;
1726 }
1727 
1728 /*
1729  * Allocate a new lwpctl structure for a user LWP.
1730  */
1731 int
1732 lwp_ctl_alloc(vaddr_t *uaddr)
1733 {
1734 	lcproc_t *lp;
1735 	u_int bit, i, offset;
1736 	struct uvm_object *uao;
1737 	int error;
1738 	lcpage_t *lcp;
1739 	proc_t *p;
1740 	lwp_t *l;
1741 
1742 	l = curlwp;
1743 	p = l->l_proc;
1744 
1745 	/* don't allow a vforked process to create lwp ctls */
1746 	if (p->p_lflag & PL_PPWAIT)
1747 		return EBUSY;
1748 
1749 	if (l->l_lcpage != NULL) {
1750 		lcp = l->l_lcpage;
1751 		*uaddr = lcp->lcp_uaddr + (vaddr_t)l->l_lwpctl - lcp->lcp_kaddr;
1752 		return 0;
1753 	}
1754 
1755 	/* First time around, allocate header structure for the process. */
1756 	if ((lp = p->p_lwpctl) == NULL) {
1757 		lp = kmem_alloc(sizeof(*lp), KM_SLEEP);
1758 		mutex_init(&lp->lp_lock, MUTEX_DEFAULT, IPL_NONE);
1759 		lp->lp_uao = NULL;
1760 		TAILQ_INIT(&lp->lp_pages);
1761 		mutex_enter(p->p_lock);
1762 		if (p->p_lwpctl == NULL) {
1763 			p->p_lwpctl = lp;
1764 			mutex_exit(p->p_lock);
1765 		} else {
1766 			mutex_exit(p->p_lock);
1767 			mutex_destroy(&lp->lp_lock);
1768 			kmem_free(lp, sizeof(*lp));
1769 			lp = p->p_lwpctl;
1770 		}
1771 	}
1772 
1773  	/*
1774  	 * Set up an anonymous memory region to hold the shared pages.
1775  	 * Map them into the process' address space.  The user vmspace
1776  	 * gets the first reference on the UAO.
1777  	 */
1778 	mutex_enter(&lp->lp_lock);
1779 	if (lp->lp_uao == NULL) {
1780 		lp->lp_uao = uao_create(LWPCTL_UAREA_SZ, 0);
1781 		lp->lp_cur = 0;
1782 		lp->lp_max = LWPCTL_UAREA_SZ;
1783 		lp->lp_uva = p->p_emul->e_vm_default_addr(p,
1784 		     (vaddr_t)p->p_vmspace->vm_daddr, LWPCTL_UAREA_SZ,
1785 		     p->p_vmspace->vm_map.flags & VM_MAP_TOPDOWN);
1786 		error = uvm_map(&p->p_vmspace->vm_map, &lp->lp_uva,
1787 		    LWPCTL_UAREA_SZ, lp->lp_uao, 0, 0, UVM_MAPFLAG(UVM_PROT_RW,
1788 		    UVM_PROT_RW, UVM_INH_NONE, UVM_ADV_NORMAL, 0));
1789 		if (error != 0) {
1790 			uao_detach(lp->lp_uao);
1791 			lp->lp_uao = NULL;
1792 			mutex_exit(&lp->lp_lock);
1793 			return error;
1794 		}
1795 	}
1796 
1797 	/* Get a free block and allocate for this LWP. */
1798 	TAILQ_FOREACH(lcp, &lp->lp_pages, lcp_chain) {
1799 		if (lcp->lcp_nfree != 0)
1800 			break;
1801 	}
1802 	if (lcp == NULL) {
1803 		/* Nothing available - try to set up a free page. */
1804 		if (lp->lp_cur == lp->lp_max) {
1805 			mutex_exit(&lp->lp_lock);
1806 			return ENOMEM;
1807 		}
1808 		lcp = kmem_alloc(LWPCTL_LCPAGE_SZ, KM_SLEEP);
1809 
1810 		/*
1811 		 * Wire the next page down in kernel space.  Since this
1812 		 * is a new mapping, we must add a reference.
1813 		 */
1814 		uao = lp->lp_uao;
1815 		(*uao->pgops->pgo_reference)(uao);
1816 		lcp->lcp_kaddr = vm_map_min(kernel_map);
1817 		error = uvm_map(kernel_map, &lcp->lcp_kaddr, PAGE_SIZE,
1818 		    uao, lp->lp_cur, PAGE_SIZE,
1819 		    UVM_MAPFLAG(UVM_PROT_RW, UVM_PROT_RW,
1820 		    UVM_INH_NONE, UVM_ADV_RANDOM, 0));
1821 		if (error != 0) {
1822 			mutex_exit(&lp->lp_lock);
1823 			kmem_free(lcp, LWPCTL_LCPAGE_SZ);
1824 			(*uao->pgops->pgo_detach)(uao);
1825 			return error;
1826 		}
1827 		error = uvm_map_pageable(kernel_map, lcp->lcp_kaddr,
1828 		    lcp->lcp_kaddr + PAGE_SIZE, FALSE, 0);
1829 		if (error != 0) {
1830 			mutex_exit(&lp->lp_lock);
1831 			uvm_unmap(kernel_map, lcp->lcp_kaddr,
1832 			    lcp->lcp_kaddr + PAGE_SIZE);
1833 			kmem_free(lcp, LWPCTL_LCPAGE_SZ);
1834 			return error;
1835 		}
1836 		/* Prepare the page descriptor and link into the list. */
1837 		lcp->lcp_uaddr = lp->lp_uva + lp->lp_cur;
1838 		lp->lp_cur += PAGE_SIZE;
1839 		lcp->lcp_nfree = LWPCTL_PER_PAGE;
1840 		lcp->lcp_rotor = 0;
1841 		memset(lcp->lcp_bitmap, 0xff, LWPCTL_BITMAP_SZ);
1842 		TAILQ_INSERT_HEAD(&lp->lp_pages, lcp, lcp_chain);
1843 	}
1844 	for (i = lcp->lcp_rotor; lcp->lcp_bitmap[i] == 0;) {
1845 		if (++i >= LWPCTL_BITMAP_ENTRIES)
1846 			i = 0;
1847 	}
1848 	bit = ffs(lcp->lcp_bitmap[i]) - 1;
1849 	lcp->lcp_bitmap[i] ^= (1U << bit);
1850 	lcp->lcp_rotor = i;
1851 	lcp->lcp_nfree--;
1852 	l->l_lcpage = lcp;
1853 	offset = (i << 5) + bit;
1854 	l->l_lwpctl = (lwpctl_t *)lcp->lcp_kaddr + offset;
1855 	*uaddr = lcp->lcp_uaddr + offset * sizeof(lwpctl_t);
1856 	mutex_exit(&lp->lp_lock);
1857 
1858 	KPREEMPT_DISABLE(l);
1859 	l->l_lwpctl->lc_curcpu = (int)curcpu()->ci_data.cpu_index;
1860 	KPREEMPT_ENABLE(l);
1861 
1862 	return 0;
1863 }
1864 
1865 /*
1866  * Free an lwpctl structure back to the per-process list.
1867  */
1868 void
1869 lwp_ctl_free(lwp_t *l)
1870 {
1871 	struct proc *p = l->l_proc;
1872 	lcproc_t *lp;
1873 	lcpage_t *lcp;
1874 	u_int map, offset;
1875 
1876 	/* don't free a lwp context we borrowed for vfork */
1877 	if (p->p_lflag & PL_PPWAIT) {
1878 		l->l_lwpctl = NULL;
1879 		return;
1880 	}
1881 
1882 	lp = p->p_lwpctl;
1883 	KASSERT(lp != NULL);
1884 
1885 	lcp = l->l_lcpage;
1886 	offset = (u_int)((lwpctl_t *)l->l_lwpctl - (lwpctl_t *)lcp->lcp_kaddr);
1887 	KASSERT(offset < LWPCTL_PER_PAGE);
1888 
1889 	mutex_enter(&lp->lp_lock);
1890 	lcp->lcp_nfree++;
1891 	map = offset >> 5;
1892 	lcp->lcp_bitmap[map] |= (1U << (offset & 31));
1893 	if (lcp->lcp_bitmap[lcp->lcp_rotor] == 0)
1894 		lcp->lcp_rotor = map;
1895 	if (TAILQ_FIRST(&lp->lp_pages)->lcp_nfree == 0) {
1896 		TAILQ_REMOVE(&lp->lp_pages, lcp, lcp_chain);
1897 		TAILQ_INSERT_HEAD(&lp->lp_pages, lcp, lcp_chain);
1898 	}
1899 	mutex_exit(&lp->lp_lock);
1900 }
1901 
1902 /*
1903  * Process is exiting; tear down lwpctl state.  This can only be safely
1904  * called by the last LWP in the process.
1905  */
1906 void
1907 lwp_ctl_exit(void)
1908 {
1909 	lcpage_t *lcp, *next;
1910 	lcproc_t *lp;
1911 	proc_t *p;
1912 	lwp_t *l;
1913 
1914 	l = curlwp;
1915 	l->l_lwpctl = NULL;
1916 	l->l_lcpage = NULL;
1917 	p = l->l_proc;
1918 	lp = p->p_lwpctl;
1919 
1920 	KASSERT(lp != NULL);
1921 	KASSERT(p->p_nlwps == 1);
1922 
1923 	for (lcp = TAILQ_FIRST(&lp->lp_pages); lcp != NULL; lcp = next) {
1924 		next = TAILQ_NEXT(lcp, lcp_chain);
1925 		uvm_unmap(kernel_map, lcp->lcp_kaddr,
1926 		    lcp->lcp_kaddr + PAGE_SIZE);
1927 		kmem_free(lcp, LWPCTL_LCPAGE_SZ);
1928 	}
1929 
1930 	if (lp->lp_uao != NULL) {
1931 		uvm_unmap(&p->p_vmspace->vm_map, lp->lp_uva,
1932 		    lp->lp_uva + LWPCTL_UAREA_SZ);
1933 	}
1934 
1935 	mutex_destroy(&lp->lp_lock);
1936 	kmem_free(lp, sizeof(*lp));
1937 	p->p_lwpctl = NULL;
1938 }
1939 
1940 /*
1941  * Return the current LWP's "preemption counter".  Used to detect
1942  * preemption across operations that can tolerate preemption without
1943  * crashing, but which may generate incorrect results if preempted.
1944  */
1945 uint64_t
1946 lwp_pctr(void)
1947 {
1948 
1949 	return curlwp->l_ncsw;
1950 }
1951 
1952 /*
1953  * Set an LWP's private data pointer.
1954  */
1955 int
1956 lwp_setprivate(struct lwp *l, void *ptr)
1957 {
1958 	int error = 0;
1959 
1960 	l->l_private = ptr;
1961 #ifdef __HAVE_CPU_LWP_SETPRIVATE
1962 	error = cpu_lwp_setprivate(l, ptr);
1963 #endif
1964 	return error;
1965 }
1966 
1967 #if defined(DDB)
1968 #include <machine/pcb.h>
1969 
1970 void
1971 lwp_whatis(uintptr_t addr, void (*pr)(const char *, ...))
1972 {
1973 	lwp_t *l;
1974 
1975 	LIST_FOREACH(l, &alllwp, l_list) {
1976 		uintptr_t stack = (uintptr_t)KSTACK_LOWEST_ADDR(l);
1977 
1978 		if (addr < stack || stack + KSTACK_SIZE <= addr) {
1979 			continue;
1980 		}
1981 		(*pr)("%p is %p+%zu, LWP %p's stack\n",
1982 		    (void *)addr, (void *)stack,
1983 		    (size_t)(addr - stack), l);
1984 	}
1985 }
1986 #endif /* defined(DDB) */
1987