1 /* $NetBSD: kern_lwp.c,v 1.194 2018/07/04 18:15:27 kamil Exp $ */ 2 3 /*- 4 * Copyright (c) 2001, 2006, 2007, 2008, 2009 The NetBSD Foundation, Inc. 5 * All rights reserved. 6 * 7 * This code is derived from software contributed to The NetBSD Foundation 8 * by Nathan J. Williams, and Andrew Doran. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS 20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 29 * POSSIBILITY OF SUCH DAMAGE. 30 */ 31 32 /* 33 * Overview 34 * 35 * Lightweight processes (LWPs) are the basic unit or thread of 36 * execution within the kernel. The core state of an LWP is described 37 * by "struct lwp", also known as lwp_t. 38 * 39 * Each LWP is contained within a process (described by "struct proc"), 40 * Every process contains at least one LWP, but may contain more. The 41 * process describes attributes shared among all of its LWPs such as a 42 * private address space, global execution state (stopped, active, 43 * zombie, ...), signal disposition and so on. On a multiprocessor 44 * machine, multiple LWPs be executing concurrently in the kernel. 45 * 46 * Execution states 47 * 48 * At any given time, an LWP has overall state that is described by 49 * lwp::l_stat. The states are broken into two sets below. The first 50 * set is guaranteed to represent the absolute, current state of the 51 * LWP: 52 * 53 * LSONPROC 54 * 55 * On processor: the LWP is executing on a CPU, either in the 56 * kernel or in user space. 57 * 58 * LSRUN 59 * 60 * Runnable: the LWP is parked on a run queue, and may soon be 61 * chosen to run by an idle processor, or by a processor that 62 * has been asked to preempt a currently runnning but lower 63 * priority LWP. 64 * 65 * LSIDL 66 * 67 * Idle: the LWP has been created but has not yet executed, 68 * or it has ceased executing a unit of work and is waiting 69 * to be started again. 70 * 71 * LSSUSPENDED: 72 * 73 * Suspended: the LWP has had its execution suspended by 74 * another LWP in the same process using the _lwp_suspend() 75 * system call. User-level LWPs also enter the suspended 76 * state when the system is shutting down. 77 * 78 * The second set represent a "statement of intent" on behalf of the 79 * LWP. The LWP may in fact be executing on a processor, may be 80 * sleeping or idle. It is expected to take the necessary action to 81 * stop executing or become "running" again within a short timeframe. 82 * The LP_RUNNING flag in lwp::l_pflag indicates that an LWP is running. 83 * Importantly, it indicates that its state is tied to a CPU. 84 * 85 * LSZOMB: 86 * 87 * Dead or dying: the LWP has released most of its resources 88 * and is about to switch away into oblivion, or has already 89 * switched away. When it switches away, its few remaining 90 * resources can be collected. 91 * 92 * LSSLEEP: 93 * 94 * Sleeping: the LWP has entered itself onto a sleep queue, and 95 * has switched away or will switch away shortly to allow other 96 * LWPs to run on the CPU. 97 * 98 * LSSTOP: 99 * 100 * Stopped: the LWP has been stopped as a result of a job 101 * control signal, or as a result of the ptrace() interface. 102 * 103 * Stopped LWPs may run briefly within the kernel to handle 104 * signals that they receive, but will not return to user space 105 * until their process' state is changed away from stopped. 106 * 107 * Single LWPs within a process can not be set stopped 108 * selectively: all actions that can stop or continue LWPs 109 * occur at the process level. 110 * 111 * State transitions 112 * 113 * Note that the LSSTOP state may only be set when returning to 114 * user space in userret(), or when sleeping interruptably. The 115 * LSSUSPENDED state may only be set in userret(). Before setting 116 * those states, we try to ensure that the LWPs will release all 117 * locks that they hold, and at a minimum try to ensure that the 118 * LWP can be set runnable again by a signal. 119 * 120 * LWPs may transition states in the following ways: 121 * 122 * RUN -------> ONPROC ONPROC -----> RUN 123 * > SLEEP 124 * > STOPPED 125 * > SUSPENDED 126 * > ZOMB 127 * > IDL (special cases) 128 * 129 * STOPPED ---> RUN SUSPENDED --> RUN 130 * > SLEEP 131 * 132 * SLEEP -----> ONPROC IDL --------> RUN 133 * > RUN > SUSPENDED 134 * > STOPPED > STOPPED 135 * > ONPROC (special cases) 136 * 137 * Some state transitions are only possible with kernel threads (eg 138 * ONPROC -> IDL) and happen under tightly controlled circumstances 139 * free of unwanted side effects. 140 * 141 * Migration 142 * 143 * Migration of threads from one CPU to another could be performed 144 * internally by the scheduler via sched_takecpu() or sched_catchlwp() 145 * functions. The universal lwp_migrate() function should be used for 146 * any other cases. Subsystems in the kernel must be aware that CPU 147 * of LWP may change, while it is not locked. 148 * 149 * Locking 150 * 151 * The majority of fields in 'struct lwp' are covered by a single, 152 * general spin lock pointed to by lwp::l_mutex. The locks covering 153 * each field are documented in sys/lwp.h. 154 * 155 * State transitions must be made with the LWP's general lock held, 156 * and may cause the LWP's lock pointer to change. Manipulation of 157 * the general lock is not performed directly, but through calls to 158 * lwp_lock(), lwp_unlock() and others. It should be noted that the 159 * adaptive locks are not allowed to be released while the LWP's lock 160 * is being held (unlike for other spin-locks). 161 * 162 * States and their associated locks: 163 * 164 * LSONPROC, LSZOMB: 165 * 166 * Always covered by spc_lwplock, which protects running LWPs. 167 * This is a per-CPU lock and matches lwp::l_cpu. 168 * 169 * LSIDL, LSRUN: 170 * 171 * Always covered by spc_mutex, which protects the run queues. 172 * This is a per-CPU lock and matches lwp::l_cpu. 173 * 174 * LSSLEEP: 175 * 176 * Covered by a lock associated with the sleep queue that the 177 * LWP resides on. Matches lwp::l_sleepq::sq_mutex. 178 * 179 * LSSTOP, LSSUSPENDED: 180 * 181 * If the LWP was previously sleeping (l_wchan != NULL), then 182 * l_mutex references the sleep queue lock. If the LWP was 183 * runnable or on the CPU when halted, or has been removed from 184 * the sleep queue since halted, then the lock is spc_lwplock. 185 * 186 * The lock order is as follows: 187 * 188 * spc::spc_lwplock -> 189 * sleeptab::st_mutex -> 190 * tschain_t::tc_mutex -> 191 * spc::spc_mutex 192 * 193 * Each process has an scheduler state lock (proc::p_lock), and a 194 * number of counters on LWPs and their states: p_nzlwps, p_nrlwps, and 195 * so on. When an LWP is to be entered into or removed from one of the 196 * following states, p_lock must be held and the process wide counters 197 * adjusted: 198 * 199 * LSIDL, LSZOMB, LSSTOP, LSSUSPENDED 200 * 201 * (But not always for kernel threads. There are some special cases 202 * as mentioned above. See kern_softint.c.) 203 * 204 * Note that an LWP is considered running or likely to run soon if in 205 * one of the following states. This affects the value of p_nrlwps: 206 * 207 * LSRUN, LSONPROC, LSSLEEP 208 * 209 * p_lock does not need to be held when transitioning among these 210 * three states, hence p_lock is rarely taken for state transitions. 211 */ 212 213 #include <sys/cdefs.h> 214 __KERNEL_RCSID(0, "$NetBSD: kern_lwp.c,v 1.194 2018/07/04 18:15:27 kamil Exp $"); 215 216 #include "opt_ddb.h" 217 #include "opt_lockdebug.h" 218 #include "opt_dtrace.h" 219 220 #define _LWP_API_PRIVATE 221 222 #include <sys/param.h> 223 #include <sys/systm.h> 224 #include <sys/cpu.h> 225 #include <sys/pool.h> 226 #include <sys/proc.h> 227 #include <sys/syscallargs.h> 228 #include <sys/syscall_stats.h> 229 #include <sys/kauth.h> 230 #include <sys/pserialize.h> 231 #include <sys/sleepq.h> 232 #include <sys/lockdebug.h> 233 #include <sys/kmem.h> 234 #include <sys/pset.h> 235 #include <sys/intr.h> 236 #include <sys/lwpctl.h> 237 #include <sys/atomic.h> 238 #include <sys/filedesc.h> 239 #include <sys/dtrace_bsd.h> 240 #include <sys/sdt.h> 241 #include <sys/xcall.h> 242 #include <sys/uidinfo.h> 243 #include <sys/sysctl.h> 244 245 #include <uvm/uvm_extern.h> 246 #include <uvm/uvm_object.h> 247 248 static pool_cache_t lwp_cache __read_mostly; 249 struct lwplist alllwp __cacheline_aligned; 250 251 static void lwp_dtor(void *, void *); 252 253 /* DTrace proc provider probes */ 254 SDT_PROVIDER_DEFINE(proc); 255 256 SDT_PROBE_DEFINE1(proc, kernel, , lwp__create, "struct lwp *"); 257 SDT_PROBE_DEFINE1(proc, kernel, , lwp__start, "struct lwp *"); 258 SDT_PROBE_DEFINE1(proc, kernel, , lwp__exit, "struct lwp *"); 259 260 struct turnstile turnstile0; 261 struct lwp lwp0 __aligned(MIN_LWP_ALIGNMENT) = { 262 #ifdef LWP0_CPU_INFO 263 .l_cpu = LWP0_CPU_INFO, 264 #endif 265 #ifdef LWP0_MD_INITIALIZER 266 .l_md = LWP0_MD_INITIALIZER, 267 #endif 268 .l_proc = &proc0, 269 .l_lid = 1, 270 .l_flag = LW_SYSTEM, 271 .l_stat = LSONPROC, 272 .l_ts = &turnstile0, 273 .l_syncobj = &sched_syncobj, 274 .l_refcnt = 1, 275 .l_priority = PRI_USER + NPRI_USER - 1, 276 .l_inheritedprio = -1, 277 .l_class = SCHED_OTHER, 278 .l_psid = PS_NONE, 279 .l_pi_lenders = SLIST_HEAD_INITIALIZER(&lwp0.l_pi_lenders), 280 .l_name = __UNCONST("swapper"), 281 .l_fd = &filedesc0, 282 }; 283 284 static int sysctl_kern_maxlwp(SYSCTLFN_PROTO); 285 286 /* 287 * sysctl helper routine for kern.maxlwp. Ensures that the new 288 * values are not too low or too high. 289 */ 290 static int 291 sysctl_kern_maxlwp(SYSCTLFN_ARGS) 292 { 293 int error, nmaxlwp; 294 struct sysctlnode node; 295 296 nmaxlwp = maxlwp; 297 node = *rnode; 298 node.sysctl_data = &nmaxlwp; 299 error = sysctl_lookup(SYSCTLFN_CALL(&node)); 300 if (error || newp == NULL) 301 return error; 302 303 if (nmaxlwp < 0 || nmaxlwp >= 65536) 304 return EINVAL; 305 if (nmaxlwp > cpu_maxlwp()) 306 return EINVAL; 307 maxlwp = nmaxlwp; 308 309 return 0; 310 } 311 312 static void 313 sysctl_kern_lwp_setup(void) 314 { 315 struct sysctllog *clog = NULL; 316 317 sysctl_createv(&clog, 0, NULL, NULL, 318 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, 319 CTLTYPE_INT, "maxlwp", 320 SYSCTL_DESCR("Maximum number of simultaneous threads"), 321 sysctl_kern_maxlwp, 0, NULL, 0, 322 CTL_KERN, CTL_CREATE, CTL_EOL); 323 } 324 325 void 326 lwpinit(void) 327 { 328 329 LIST_INIT(&alllwp); 330 lwpinit_specificdata(); 331 lwp_sys_init(); 332 lwp_cache = pool_cache_init(sizeof(lwp_t), MIN_LWP_ALIGNMENT, 0, 0, 333 "lwppl", NULL, IPL_NONE, NULL, lwp_dtor, NULL); 334 335 maxlwp = cpu_maxlwp(); 336 sysctl_kern_lwp_setup(); 337 } 338 339 void 340 lwp0_init(void) 341 { 342 struct lwp *l = &lwp0; 343 344 KASSERT((void *)uvm_lwp_getuarea(l) != NULL); 345 KASSERT(l->l_lid == proc0.p_nlwpid); 346 347 LIST_INSERT_HEAD(&alllwp, l, l_list); 348 349 callout_init(&l->l_timeout_ch, CALLOUT_MPSAFE); 350 callout_setfunc(&l->l_timeout_ch, sleepq_timeout, l); 351 cv_init(&l->l_sigcv, "sigwait"); 352 cv_init(&l->l_waitcv, "vfork"); 353 354 kauth_cred_hold(proc0.p_cred); 355 l->l_cred = proc0.p_cred; 356 357 kdtrace_thread_ctor(NULL, l); 358 lwp_initspecific(l); 359 360 SYSCALL_TIME_LWP_INIT(l); 361 } 362 363 static void 364 lwp_dtor(void *arg, void *obj) 365 { 366 lwp_t *l = obj; 367 uint64_t where; 368 (void)l; 369 370 /* 371 * Provide a barrier to ensure that all mutex_oncpu() and rw_oncpu() 372 * calls will exit before memory of LWP is returned to the pool, where 373 * KVA of LWP structure might be freed and re-used for other purposes. 374 * Kernel preemption is disabled around mutex_oncpu() and rw_oncpu() 375 * callers, therefore cross-call to all CPUs will do the job. Also, 376 * the value of l->l_cpu must be still valid at this point. 377 */ 378 KASSERT(l->l_cpu != NULL); 379 where = xc_broadcast(0, (xcfunc_t)nullop, NULL, NULL); 380 xc_wait(where); 381 } 382 383 /* 384 * Set an suspended. 385 * 386 * Must be called with p_lock held, and the LWP locked. Will unlock the 387 * LWP before return. 388 */ 389 int 390 lwp_suspend(struct lwp *curl, struct lwp *t) 391 { 392 int error; 393 394 KASSERT(mutex_owned(t->l_proc->p_lock)); 395 KASSERT(lwp_locked(t, NULL)); 396 397 KASSERT(curl != t || curl->l_stat == LSONPROC); 398 399 /* 400 * If the current LWP has been told to exit, we must not suspend anyone 401 * else or deadlock could occur. We won't return to userspace. 402 */ 403 if ((curl->l_flag & (LW_WEXIT | LW_WCORE)) != 0) { 404 lwp_unlock(t); 405 return (EDEADLK); 406 } 407 408 error = 0; 409 410 switch (t->l_stat) { 411 case LSRUN: 412 case LSONPROC: 413 t->l_flag |= LW_WSUSPEND; 414 lwp_need_userret(t); 415 lwp_unlock(t); 416 break; 417 418 case LSSLEEP: 419 t->l_flag |= LW_WSUSPEND; 420 421 /* 422 * Kick the LWP and try to get it to the kernel boundary 423 * so that it will release any locks that it holds. 424 * setrunnable() will release the lock. 425 */ 426 if ((t->l_flag & LW_SINTR) != 0) 427 setrunnable(t); 428 else 429 lwp_unlock(t); 430 break; 431 432 case LSSUSPENDED: 433 lwp_unlock(t); 434 break; 435 436 case LSSTOP: 437 t->l_flag |= LW_WSUSPEND; 438 setrunnable(t); 439 break; 440 441 case LSIDL: 442 case LSZOMB: 443 error = EINTR; /* It's what Solaris does..... */ 444 lwp_unlock(t); 445 break; 446 } 447 448 return (error); 449 } 450 451 /* 452 * Restart a suspended LWP. 453 * 454 * Must be called with p_lock held, and the LWP locked. Will unlock the 455 * LWP before return. 456 */ 457 void 458 lwp_continue(struct lwp *l) 459 { 460 461 KASSERT(mutex_owned(l->l_proc->p_lock)); 462 KASSERT(lwp_locked(l, NULL)); 463 464 /* If rebooting or not suspended, then just bail out. */ 465 if ((l->l_flag & LW_WREBOOT) != 0) { 466 lwp_unlock(l); 467 return; 468 } 469 470 l->l_flag &= ~LW_WSUSPEND; 471 472 if (l->l_stat != LSSUSPENDED) { 473 lwp_unlock(l); 474 return; 475 } 476 477 /* setrunnable() will release the lock. */ 478 setrunnable(l); 479 } 480 481 /* 482 * Restart a stopped LWP. 483 * 484 * Must be called with p_lock held, and the LWP NOT locked. Will unlock the 485 * LWP before return. 486 */ 487 void 488 lwp_unstop(struct lwp *l) 489 { 490 struct proc *p = l->l_proc; 491 492 KASSERT(mutex_owned(proc_lock)); 493 KASSERT(mutex_owned(p->p_lock)); 494 495 lwp_lock(l); 496 497 /* If not stopped, then just bail out. */ 498 if (l->l_stat != LSSTOP) { 499 lwp_unlock(l); 500 return; 501 } 502 503 p->p_stat = SACTIVE; 504 p->p_sflag &= ~PS_STOPPING; 505 506 if (!p->p_waited) 507 p->p_pptr->p_nstopchild--; 508 509 if (l->l_wchan == NULL) { 510 /* setrunnable() will release the lock. */ 511 setrunnable(l); 512 } else if (p->p_xsig && (l->l_flag & LW_SINTR) != 0) { 513 /* setrunnable() so we can receive the signal */ 514 setrunnable(l); 515 } else { 516 l->l_stat = LSSLEEP; 517 p->p_nrlwps++; 518 lwp_unlock(l); 519 } 520 } 521 522 /* 523 * Wait for an LWP within the current process to exit. If 'lid' is 524 * non-zero, we are waiting for a specific LWP. 525 * 526 * Must be called with p->p_lock held. 527 */ 528 int 529 lwp_wait(struct lwp *l, lwpid_t lid, lwpid_t *departed, bool exiting) 530 { 531 const lwpid_t curlid = l->l_lid; 532 proc_t *p = l->l_proc; 533 lwp_t *l2; 534 int error; 535 536 KASSERT(mutex_owned(p->p_lock)); 537 538 p->p_nlwpwait++; 539 l->l_waitingfor = lid; 540 541 for (;;) { 542 int nfound; 543 544 /* 545 * Avoid a race between exit1() and sigexit(): if the 546 * process is dumping core, then we need to bail out: call 547 * into lwp_userret() where we will be suspended until the 548 * deed is done. 549 */ 550 if ((p->p_sflag & PS_WCORE) != 0) { 551 mutex_exit(p->p_lock); 552 lwp_userret(l); 553 KASSERT(false); 554 } 555 556 /* 557 * First off, drain any detached LWP that is waiting to be 558 * reaped. 559 */ 560 while ((l2 = p->p_zomblwp) != NULL) { 561 p->p_zomblwp = NULL; 562 lwp_free(l2, false, false);/* releases proc mutex */ 563 mutex_enter(p->p_lock); 564 } 565 566 /* 567 * Now look for an LWP to collect. If the whole process is 568 * exiting, count detached LWPs as eligible to be collected, 569 * but don't drain them here. 570 */ 571 nfound = 0; 572 error = 0; 573 LIST_FOREACH(l2, &p->p_lwps, l_sibling) { 574 /* 575 * If a specific wait and the target is waiting on 576 * us, then avoid deadlock. This also traps LWPs 577 * that try to wait on themselves. 578 * 579 * Note that this does not handle more complicated 580 * cycles, like: t1 -> t2 -> t3 -> t1. The process 581 * can still be killed so it is not a major problem. 582 */ 583 if (l2->l_lid == lid && l2->l_waitingfor == curlid) { 584 error = EDEADLK; 585 break; 586 } 587 if (l2 == l) 588 continue; 589 if ((l2->l_prflag & LPR_DETACHED) != 0) { 590 nfound += exiting; 591 continue; 592 } 593 if (lid != 0) { 594 if (l2->l_lid != lid) 595 continue; 596 /* 597 * Mark this LWP as the first waiter, if there 598 * is no other. 599 */ 600 if (l2->l_waiter == 0) 601 l2->l_waiter = curlid; 602 } else if (l2->l_waiter != 0) { 603 /* 604 * It already has a waiter - so don't 605 * collect it. If the waiter doesn't 606 * grab it we'll get another chance 607 * later. 608 */ 609 nfound++; 610 continue; 611 } 612 nfound++; 613 614 /* No need to lock the LWP in order to see LSZOMB. */ 615 if (l2->l_stat != LSZOMB) 616 continue; 617 618 /* 619 * We're no longer waiting. Reset the "first waiter" 620 * pointer on the target, in case it was us. 621 */ 622 l->l_waitingfor = 0; 623 l2->l_waiter = 0; 624 p->p_nlwpwait--; 625 if (departed) 626 *departed = l2->l_lid; 627 sched_lwp_collect(l2); 628 629 /* lwp_free() releases the proc lock. */ 630 lwp_free(l2, false, false); 631 mutex_enter(p->p_lock); 632 return 0; 633 } 634 635 if (error != 0) 636 break; 637 if (nfound == 0) { 638 error = ESRCH; 639 break; 640 } 641 642 /* 643 * Note: since the lock will be dropped, need to restart on 644 * wakeup to run all LWPs again, e.g. there may be new LWPs. 645 */ 646 if (exiting) { 647 KASSERT(p->p_nlwps > 1); 648 cv_wait(&p->p_lwpcv, p->p_lock); 649 error = EAGAIN; 650 break; 651 } 652 653 /* 654 * If all other LWPs are waiting for exits or suspends 655 * and the supply of zombies and potential zombies is 656 * exhausted, then we are about to deadlock. 657 * 658 * If the process is exiting (and this LWP is not the one 659 * that is coordinating the exit) then bail out now. 660 */ 661 if ((p->p_sflag & PS_WEXIT) != 0 || 662 p->p_nrlwps + p->p_nzlwps - p->p_ndlwps <= p->p_nlwpwait) { 663 error = EDEADLK; 664 break; 665 } 666 667 /* 668 * Sit around and wait for something to happen. We'll be 669 * awoken if any of the conditions examined change: if an 670 * LWP exits, is collected, or is detached. 671 */ 672 if ((error = cv_wait_sig(&p->p_lwpcv, p->p_lock)) != 0) 673 break; 674 } 675 676 /* 677 * We didn't find any LWPs to collect, we may have received a 678 * signal, or some other condition has caused us to bail out. 679 * 680 * If waiting on a specific LWP, clear the waiters marker: some 681 * other LWP may want it. Then, kick all the remaining waiters 682 * so that they can re-check for zombies and for deadlock. 683 */ 684 if (lid != 0) { 685 LIST_FOREACH(l2, &p->p_lwps, l_sibling) { 686 if (l2->l_lid == lid) { 687 if (l2->l_waiter == curlid) 688 l2->l_waiter = 0; 689 break; 690 } 691 } 692 } 693 p->p_nlwpwait--; 694 l->l_waitingfor = 0; 695 cv_broadcast(&p->p_lwpcv); 696 697 return error; 698 } 699 700 static lwpid_t 701 lwp_find_free_lid(lwpid_t try_lid, lwp_t * new_lwp, proc_t *p) 702 { 703 #define LID_SCAN (1u << 31) 704 lwp_t *scan, *free_before; 705 lwpid_t nxt_lid; 706 707 /* 708 * We want the first unused lid greater than or equal to 709 * try_lid (modulo 2^31). 710 * (If nothing else ld.elf_so doesn't want lwpid with the top bit set.) 711 * We must not return 0, and avoiding 'LID_SCAN - 1' makes 712 * the outer test easier. 713 * This would be much easier if the list were sorted in 714 * increasing order. 715 * The list is kept sorted in decreasing order. 716 * This code is only used after a process has generated 2^31 lwp. 717 * 718 * Code assumes it can always find an id. 719 */ 720 721 try_lid &= LID_SCAN - 1; 722 if (try_lid <= 1) 723 try_lid = 2; 724 725 free_before = NULL; 726 nxt_lid = LID_SCAN - 1; 727 LIST_FOREACH(scan, &p->p_lwps, l_sibling) { 728 if (scan->l_lid != nxt_lid) { 729 /* There are available lid before this entry */ 730 free_before = scan; 731 if (try_lid > scan->l_lid) 732 break; 733 } 734 if (try_lid == scan->l_lid) { 735 /* The ideal lid is busy, take a higher one */ 736 if (free_before != NULL) { 737 try_lid = free_before->l_lid + 1; 738 break; 739 } 740 /* No higher ones, reuse low numbers */ 741 try_lid = 2; 742 } 743 744 nxt_lid = scan->l_lid - 1; 745 if (LIST_NEXT(scan, l_sibling) == NULL) { 746 /* The value we have is lower than any existing lwp */ 747 LIST_INSERT_AFTER(scan, new_lwp, l_sibling); 748 return try_lid; 749 } 750 } 751 752 LIST_INSERT_BEFORE(free_before, new_lwp, l_sibling); 753 return try_lid; 754 } 755 756 /* 757 * Create a new LWP within process 'p2', using LWP 'l1' as a template. 758 * The new LWP is created in state LSIDL and must be set running, 759 * suspended, or stopped by the caller. 760 */ 761 int 762 lwp_create(lwp_t *l1, proc_t *p2, vaddr_t uaddr, int flags, 763 void *stack, size_t stacksize, void (*func)(void *), void *arg, 764 lwp_t **rnewlwpp, int sclass, const sigset_t *sigmask, 765 const stack_t *sigstk) 766 { 767 struct lwp *l2, *isfree; 768 turnstile_t *ts; 769 lwpid_t lid; 770 771 KASSERT(l1 == curlwp || l1->l_proc == &proc0); 772 773 /* 774 * Enforce limits, excluding the first lwp and kthreads. 775 */ 776 if (p2->p_nlwps != 0 && p2 != &proc0) { 777 uid_t uid = kauth_cred_getuid(l1->l_cred); 778 int count = chglwpcnt(uid, 1); 779 if (__predict_false(count > 780 p2->p_rlimit[RLIMIT_NTHR].rlim_cur)) { 781 if (kauth_authorize_process(l1->l_cred, 782 KAUTH_PROCESS_RLIMIT, p2, 783 KAUTH_ARG(KAUTH_REQ_PROCESS_RLIMIT_BYPASS), 784 &p2->p_rlimit[RLIMIT_NTHR], KAUTH_ARG(RLIMIT_NTHR)) 785 != 0) { 786 (void)chglwpcnt(uid, -1); 787 return EAGAIN; 788 } 789 } 790 } 791 792 /* 793 * First off, reap any detached LWP waiting to be collected. 794 * We can re-use its LWP structure and turnstile. 795 */ 796 isfree = NULL; 797 if (p2->p_zomblwp != NULL) { 798 mutex_enter(p2->p_lock); 799 if ((isfree = p2->p_zomblwp) != NULL) { 800 p2->p_zomblwp = NULL; 801 lwp_free(isfree, true, false);/* releases proc mutex */ 802 } else 803 mutex_exit(p2->p_lock); 804 } 805 if (isfree == NULL) { 806 l2 = pool_cache_get(lwp_cache, PR_WAITOK); 807 memset(l2, 0, sizeof(*l2)); 808 l2->l_ts = pool_cache_get(turnstile_cache, PR_WAITOK); 809 SLIST_INIT(&l2->l_pi_lenders); 810 } else { 811 l2 = isfree; 812 ts = l2->l_ts; 813 KASSERT(l2->l_inheritedprio == -1); 814 KASSERT(SLIST_EMPTY(&l2->l_pi_lenders)); 815 memset(l2, 0, sizeof(*l2)); 816 l2->l_ts = ts; 817 } 818 819 l2->l_stat = LSIDL; 820 l2->l_proc = p2; 821 l2->l_refcnt = 1; 822 l2->l_class = sclass; 823 824 /* 825 * If vfork(), we want the LWP to run fast and on the same CPU 826 * as its parent, so that it can reuse the VM context and cache 827 * footprint on the local CPU. 828 */ 829 l2->l_kpriority = ((flags & LWP_VFORK) ? true : false); 830 l2->l_kpribase = PRI_KERNEL; 831 l2->l_priority = l1->l_priority; 832 l2->l_inheritedprio = -1; 833 l2->l_protectprio = -1; 834 l2->l_auxprio = -1; 835 l2->l_flag = 0; 836 l2->l_pflag = LP_MPSAFE; 837 TAILQ_INIT(&l2->l_ld_locks); 838 839 /* 840 * For vfork, borrow parent's lwpctl context if it exists. 841 * This also causes us to return via lwp_userret. 842 */ 843 if (flags & LWP_VFORK && l1->l_lwpctl) { 844 l2->l_lwpctl = l1->l_lwpctl; 845 l2->l_flag |= LW_LWPCTL; 846 } 847 848 /* 849 * If not the first LWP in the process, grab a reference to the 850 * descriptor table. 851 */ 852 l2->l_fd = p2->p_fd; 853 if (p2->p_nlwps != 0) { 854 KASSERT(l1->l_proc == p2); 855 fd_hold(l2); 856 } else { 857 KASSERT(l1->l_proc != p2); 858 } 859 860 if (p2->p_flag & PK_SYSTEM) { 861 /* Mark it as a system LWP. */ 862 l2->l_flag |= LW_SYSTEM; 863 } 864 865 kpreempt_disable(); 866 l2->l_mutex = l1->l_cpu->ci_schedstate.spc_mutex; 867 l2->l_cpu = l1->l_cpu; 868 kpreempt_enable(); 869 870 kdtrace_thread_ctor(NULL, l2); 871 lwp_initspecific(l2); 872 sched_lwp_fork(l1, l2); 873 lwp_update_creds(l2); 874 callout_init(&l2->l_timeout_ch, CALLOUT_MPSAFE); 875 callout_setfunc(&l2->l_timeout_ch, sleepq_timeout, l2); 876 cv_init(&l2->l_sigcv, "sigwait"); 877 cv_init(&l2->l_waitcv, "vfork"); 878 l2->l_syncobj = &sched_syncobj; 879 880 if (rnewlwpp != NULL) 881 *rnewlwpp = l2; 882 883 /* 884 * PCU state needs to be saved before calling uvm_lwp_fork() so that 885 * the MD cpu_lwp_fork() can copy the saved state to the new LWP. 886 */ 887 pcu_save_all(l1); 888 889 uvm_lwp_setuarea(l2, uaddr); 890 uvm_lwp_fork(l1, l2, stack, stacksize, func, (arg != NULL) ? arg : l2); 891 892 if ((flags & LWP_PIDLID) != 0) { 893 lid = proc_alloc_pid(p2); 894 l2->l_pflag |= LP_PIDLID; 895 } else { 896 lid = 0; 897 } 898 899 mutex_enter(p2->p_lock); 900 901 if ((flags & LWP_DETACHED) != 0) { 902 l2->l_prflag = LPR_DETACHED; 903 p2->p_ndlwps++; 904 } else 905 l2->l_prflag = 0; 906 907 l2->l_sigstk = *sigstk; 908 l2->l_sigmask = *sigmask; 909 TAILQ_INIT(&l2->l_sigpend.sp_info); 910 sigemptyset(&l2->l_sigpend.sp_set); 911 912 if (__predict_true(lid == 0)) { 913 /* 914 * XXX: l_lid are expected to be unique (for a process) 915 * if LWP_PIDLID is sometimes set this won't be true. 916 * Once 2^31 threads have been allocated we have to 917 * scan to ensure we allocate a unique value. 918 */ 919 lid = ++p2->p_nlwpid; 920 if (__predict_false(lid & LID_SCAN)) { 921 lid = lwp_find_free_lid(lid, l2, p2); 922 p2->p_nlwpid = lid | LID_SCAN; 923 /* l2 as been inserted into p_lwps in order */ 924 goto skip_insert; 925 } 926 p2->p_nlwpid = lid; 927 } 928 LIST_INSERT_HEAD(&p2->p_lwps, l2, l_sibling); 929 skip_insert: 930 l2->l_lid = lid; 931 p2->p_nlwps++; 932 p2->p_nrlwps++; 933 934 KASSERT(l2->l_affinity == NULL); 935 936 if ((p2->p_flag & PK_SYSTEM) == 0) { 937 /* Inherit the affinity mask. */ 938 if (l1->l_affinity) { 939 /* 940 * Note that we hold the state lock while inheriting 941 * the affinity to avoid race with sched_setaffinity(). 942 */ 943 lwp_lock(l1); 944 if (l1->l_affinity) { 945 kcpuset_use(l1->l_affinity); 946 l2->l_affinity = l1->l_affinity; 947 } 948 lwp_unlock(l1); 949 } 950 lwp_lock(l2); 951 /* Inherit a processor-set */ 952 l2->l_psid = l1->l_psid; 953 /* Look for a CPU to start */ 954 l2->l_cpu = sched_takecpu(l2); 955 lwp_unlock_to(l2, l2->l_cpu->ci_schedstate.spc_mutex); 956 } 957 mutex_exit(p2->p_lock); 958 959 SDT_PROBE(proc, kernel, , lwp__create, l2, 0, 0, 0, 0); 960 961 mutex_enter(proc_lock); 962 LIST_INSERT_HEAD(&alllwp, l2, l_list); 963 mutex_exit(proc_lock); 964 965 SYSCALL_TIME_LWP_INIT(l2); 966 967 if (p2->p_emul->e_lwp_fork) 968 (*p2->p_emul->e_lwp_fork)(l1, l2); 969 970 /* If the process is traced, report lwp creation to a debugger */ 971 if ((p2->p_slflag & (PSL_TRACED|PSL_TRACELWP_CREATE|PSL_SYSCALL)) == 972 (PSL_TRACED|PSL_TRACELWP_CREATE)) { 973 ksiginfo_t ksi; 974 975 /* Tracing */ 976 KASSERT((l2->l_flag & LW_SYSTEM) == 0); 977 978 p2->p_lwp_created = l2->l_lid; 979 980 KSI_INIT_EMPTY(&ksi); 981 ksi.ksi_signo = SIGTRAP; 982 ksi.ksi_code = TRAP_LWP; 983 mutex_enter(proc_lock); 984 kpsignal(p2, &ksi, NULL); 985 mutex_exit(proc_lock); 986 } 987 988 return (0); 989 } 990 991 /* 992 * Called by MD code when a new LWP begins execution. Must be called 993 * with the previous LWP locked (so at splsched), or if there is no 994 * previous LWP, at splsched. 995 */ 996 void 997 lwp_startup(struct lwp *prev, struct lwp *new_lwp) 998 { 999 KASSERTMSG(new_lwp == curlwp, "l %p curlwp %p prevlwp %p", new_lwp, curlwp, prev); 1000 1001 SDT_PROBE(proc, kernel, , lwp__start, new_lwp, 0, 0, 0, 0); 1002 1003 KASSERT(kpreempt_disabled()); 1004 if (prev != NULL) { 1005 /* 1006 * Normalize the count of the spin-mutexes, it was 1007 * increased in mi_switch(). Unmark the state of 1008 * context switch - it is finished for previous LWP. 1009 */ 1010 curcpu()->ci_mtx_count++; 1011 membar_exit(); 1012 prev->l_ctxswtch = 0; 1013 } 1014 KPREEMPT_DISABLE(new_lwp); 1015 if (__predict_true(new_lwp->l_proc->p_vmspace)) 1016 pmap_activate(new_lwp); 1017 spl0(); 1018 1019 /* Note trip through cpu_switchto(). */ 1020 pserialize_switchpoint(); 1021 1022 LOCKDEBUG_BARRIER(NULL, 0); 1023 KPREEMPT_ENABLE(new_lwp); 1024 if ((new_lwp->l_pflag & LP_MPSAFE) == 0) { 1025 KERNEL_LOCK(1, new_lwp); 1026 } 1027 } 1028 1029 /* 1030 * Exit an LWP. 1031 */ 1032 void 1033 lwp_exit(struct lwp *l) 1034 { 1035 struct proc *p = l->l_proc; 1036 struct lwp *l2; 1037 bool current; 1038 1039 current = (l == curlwp); 1040 1041 KASSERT(current || (l->l_stat == LSIDL && l->l_target_cpu == NULL)); 1042 KASSERT(p == curproc); 1043 1044 SDT_PROBE(proc, kernel, , lwp__exit, l, 0, 0, 0, 0); 1045 1046 /* 1047 * Verify that we hold no locks other than the kernel lock. 1048 */ 1049 LOCKDEBUG_BARRIER(&kernel_lock, 0); 1050 1051 /* If the process is traced, report lwp termination to a debugger */ 1052 if ((p->p_slflag & (PSL_TRACED|PSL_TRACELWP_EXIT|PSL_SYSCALL)) == 1053 (PSL_TRACED|PSL_TRACELWP_EXIT)) { 1054 ksiginfo_t ksi; 1055 1056 /* Tracing */ 1057 KASSERT((l->l_flag & LW_SYSTEM) == 0); 1058 1059 p->p_lwp_exited = l->l_lid; 1060 1061 KSI_INIT_EMPTY(&ksi); 1062 ksi.ksi_signo = SIGTRAP; 1063 ksi.ksi_code = TRAP_LWP; 1064 mutex_enter(proc_lock); 1065 kpsignal(p, &ksi, NULL); 1066 mutex_exit(proc_lock); 1067 } 1068 1069 /* 1070 * If we are the last live LWP in a process, we need to exit the 1071 * entire process. We do so with an exit status of zero, because 1072 * it's a "controlled" exit, and because that's what Solaris does. 1073 * 1074 * We are not quite a zombie yet, but for accounting purposes we 1075 * must increment the count of zombies here. 1076 * 1077 * Note: the last LWP's specificdata will be deleted here. 1078 */ 1079 mutex_enter(p->p_lock); 1080 if (p->p_nlwps - p->p_nzlwps == 1) { 1081 KASSERT(current == true); 1082 KASSERT(p != &proc0); 1083 /* XXXSMP kernel_lock not held */ 1084 exit1(l, 0, 0); 1085 /* NOTREACHED */ 1086 } 1087 p->p_nzlwps++; 1088 mutex_exit(p->p_lock); 1089 1090 if (p->p_emul->e_lwp_exit) 1091 (*p->p_emul->e_lwp_exit)(l); 1092 1093 /* Drop filedesc reference. */ 1094 fd_free(); 1095 1096 /* Delete the specificdata while it's still safe to sleep. */ 1097 lwp_finispecific(l); 1098 1099 /* 1100 * Release our cached credentials. 1101 */ 1102 kauth_cred_free(l->l_cred); 1103 callout_destroy(&l->l_timeout_ch); 1104 1105 /* 1106 * Remove the LWP from the global list. 1107 * Free its LID from the PID namespace if needed. 1108 */ 1109 mutex_enter(proc_lock); 1110 LIST_REMOVE(l, l_list); 1111 if ((l->l_pflag & LP_PIDLID) != 0 && l->l_lid != p->p_pid) { 1112 proc_free_pid(l->l_lid); 1113 } 1114 mutex_exit(proc_lock); 1115 1116 /* 1117 * Get rid of all references to the LWP that others (e.g. procfs) 1118 * may have, and mark the LWP as a zombie. If the LWP is detached, 1119 * mark it waiting for collection in the proc structure. Note that 1120 * before we can do that, we need to free any other dead, deatched 1121 * LWP waiting to meet its maker. 1122 */ 1123 mutex_enter(p->p_lock); 1124 lwp_drainrefs(l); 1125 1126 if ((l->l_prflag & LPR_DETACHED) != 0) { 1127 while ((l2 = p->p_zomblwp) != NULL) { 1128 p->p_zomblwp = NULL; 1129 lwp_free(l2, false, false);/* releases proc mutex */ 1130 mutex_enter(p->p_lock); 1131 l->l_refcnt++; 1132 lwp_drainrefs(l); 1133 } 1134 p->p_zomblwp = l; 1135 } 1136 1137 /* 1138 * If we find a pending signal for the process and we have been 1139 * asked to check for signals, then we lose: arrange to have 1140 * all other LWPs in the process check for signals. 1141 */ 1142 if ((l->l_flag & LW_PENDSIG) != 0 && 1143 firstsig(&p->p_sigpend.sp_set) != 0) { 1144 LIST_FOREACH(l2, &p->p_lwps, l_sibling) { 1145 lwp_lock(l2); 1146 l2->l_flag |= LW_PENDSIG; 1147 lwp_unlock(l2); 1148 } 1149 } 1150 1151 /* 1152 * Release any PCU resources before becoming a zombie. 1153 */ 1154 pcu_discard_all(l); 1155 1156 lwp_lock(l); 1157 l->l_stat = LSZOMB; 1158 if (l->l_name != NULL) { 1159 strcpy(l->l_name, "(zombie)"); 1160 } 1161 lwp_unlock(l); 1162 p->p_nrlwps--; 1163 cv_broadcast(&p->p_lwpcv); 1164 if (l->l_lwpctl != NULL) 1165 l->l_lwpctl->lc_curcpu = LWPCTL_CPU_EXITED; 1166 mutex_exit(p->p_lock); 1167 1168 /* 1169 * We can no longer block. At this point, lwp_free() may already 1170 * be gunning for us. On a multi-CPU system, we may be off p_lwps. 1171 * 1172 * Free MD LWP resources. 1173 */ 1174 cpu_lwp_free(l, 0); 1175 1176 if (current) { 1177 pmap_deactivate(l); 1178 1179 /* 1180 * Release the kernel lock, and switch away into 1181 * oblivion. 1182 */ 1183 #ifdef notyet 1184 /* XXXSMP hold in lwp_userret() */ 1185 KERNEL_UNLOCK_LAST(l); 1186 #else 1187 KERNEL_UNLOCK_ALL(l, NULL); 1188 #endif 1189 lwp_exit_switchaway(l); 1190 } 1191 } 1192 1193 /* 1194 * Free a dead LWP's remaining resources. 1195 * 1196 * XXXLWP limits. 1197 */ 1198 void 1199 lwp_free(struct lwp *l, bool recycle, bool last) 1200 { 1201 struct proc *p = l->l_proc; 1202 struct rusage *ru; 1203 ksiginfoq_t kq; 1204 1205 KASSERT(l != curlwp); 1206 KASSERT(last || mutex_owned(p->p_lock)); 1207 1208 /* 1209 * We use the process credentials instead of the lwp credentials here 1210 * because the lwp credentials maybe cached (just after a setuid call) 1211 * and we don't want pay for syncing, since the lwp is going away 1212 * anyway 1213 */ 1214 if (p != &proc0 && p->p_nlwps != 1) 1215 (void)chglwpcnt(kauth_cred_getuid(p->p_cred), -1); 1216 /* 1217 * If this was not the last LWP in the process, then adjust 1218 * counters and unlock. 1219 */ 1220 if (!last) { 1221 /* 1222 * Add the LWP's run time to the process' base value. 1223 * This needs to co-incide with coming off p_lwps. 1224 */ 1225 bintime_add(&p->p_rtime, &l->l_rtime); 1226 p->p_pctcpu += l->l_pctcpu; 1227 ru = &p->p_stats->p_ru; 1228 ruadd(ru, &l->l_ru); 1229 ru->ru_nvcsw += (l->l_ncsw - l->l_nivcsw); 1230 ru->ru_nivcsw += l->l_nivcsw; 1231 LIST_REMOVE(l, l_sibling); 1232 p->p_nlwps--; 1233 p->p_nzlwps--; 1234 if ((l->l_prflag & LPR_DETACHED) != 0) 1235 p->p_ndlwps--; 1236 1237 /* 1238 * Have any LWPs sleeping in lwp_wait() recheck for 1239 * deadlock. 1240 */ 1241 cv_broadcast(&p->p_lwpcv); 1242 mutex_exit(p->p_lock); 1243 } 1244 1245 #ifdef MULTIPROCESSOR 1246 /* 1247 * In the unlikely event that the LWP is still on the CPU, 1248 * then spin until it has switched away. We need to release 1249 * all locks to avoid deadlock against interrupt handlers on 1250 * the target CPU. 1251 */ 1252 if ((l->l_pflag & LP_RUNNING) != 0 || l->l_cpu->ci_curlwp == l) { 1253 int count; 1254 (void)count; /* XXXgcc */ 1255 KERNEL_UNLOCK_ALL(curlwp, &count); 1256 while ((l->l_pflag & LP_RUNNING) != 0 || 1257 l->l_cpu->ci_curlwp == l) 1258 SPINLOCK_BACKOFF_HOOK; 1259 KERNEL_LOCK(count, curlwp); 1260 } 1261 #endif 1262 1263 /* 1264 * Destroy the LWP's remaining signal information. 1265 */ 1266 ksiginfo_queue_init(&kq); 1267 sigclear(&l->l_sigpend, NULL, &kq); 1268 ksiginfo_queue_drain(&kq); 1269 cv_destroy(&l->l_sigcv); 1270 cv_destroy(&l->l_waitcv); 1271 1272 /* 1273 * Free lwpctl structure and affinity. 1274 */ 1275 if (l->l_lwpctl) { 1276 lwp_ctl_free(l); 1277 } 1278 if (l->l_affinity) { 1279 kcpuset_unuse(l->l_affinity, NULL); 1280 l->l_affinity = NULL; 1281 } 1282 1283 /* 1284 * Free the LWP's turnstile and the LWP structure itself unless the 1285 * caller wants to recycle them. Also, free the scheduler specific 1286 * data. 1287 * 1288 * We can't return turnstile0 to the pool (it didn't come from it), 1289 * so if it comes up just drop it quietly and move on. 1290 * 1291 * We don't recycle the VM resources at this time. 1292 */ 1293 1294 if (!recycle && l->l_ts != &turnstile0) 1295 pool_cache_put(turnstile_cache, l->l_ts); 1296 if (l->l_name != NULL) 1297 kmem_free(l->l_name, MAXCOMLEN); 1298 1299 cpu_lwp_free2(l); 1300 uvm_lwp_exit(l); 1301 1302 KASSERT(SLIST_EMPTY(&l->l_pi_lenders)); 1303 KASSERT(l->l_inheritedprio == -1); 1304 KASSERT(l->l_blcnt == 0); 1305 kdtrace_thread_dtor(NULL, l); 1306 if (!recycle) 1307 pool_cache_put(lwp_cache, l); 1308 } 1309 1310 /* 1311 * Migrate the LWP to the another CPU. Unlocks the LWP. 1312 */ 1313 void 1314 lwp_migrate(lwp_t *l, struct cpu_info *tci) 1315 { 1316 struct schedstate_percpu *tspc; 1317 int lstat = l->l_stat; 1318 1319 KASSERT(lwp_locked(l, NULL)); 1320 KASSERT(tci != NULL); 1321 1322 /* If LWP is still on the CPU, it must be handled like LSONPROC */ 1323 if ((l->l_pflag & LP_RUNNING) != 0) { 1324 lstat = LSONPROC; 1325 } 1326 1327 /* 1328 * The destination CPU could be changed while previous migration 1329 * was not finished. 1330 */ 1331 if (l->l_target_cpu != NULL) { 1332 l->l_target_cpu = tci; 1333 lwp_unlock(l); 1334 return; 1335 } 1336 1337 /* Nothing to do if trying to migrate to the same CPU */ 1338 if (l->l_cpu == tci) { 1339 lwp_unlock(l); 1340 return; 1341 } 1342 1343 KASSERT(l->l_target_cpu == NULL); 1344 tspc = &tci->ci_schedstate; 1345 switch (lstat) { 1346 case LSRUN: 1347 l->l_target_cpu = tci; 1348 break; 1349 case LSIDL: 1350 l->l_cpu = tci; 1351 lwp_unlock_to(l, tspc->spc_mutex); 1352 return; 1353 case LSSLEEP: 1354 l->l_cpu = tci; 1355 break; 1356 case LSSTOP: 1357 case LSSUSPENDED: 1358 l->l_cpu = tci; 1359 if (l->l_wchan == NULL) { 1360 lwp_unlock_to(l, tspc->spc_lwplock); 1361 return; 1362 } 1363 break; 1364 case LSONPROC: 1365 l->l_target_cpu = tci; 1366 spc_lock(l->l_cpu); 1367 cpu_need_resched(l->l_cpu, RESCHED_KPREEMPT); 1368 spc_unlock(l->l_cpu); 1369 break; 1370 } 1371 lwp_unlock(l); 1372 } 1373 1374 /* 1375 * Find the LWP in the process. Arguments may be zero, in such case, 1376 * the calling process and first LWP in the list will be used. 1377 * On success - returns proc locked. 1378 */ 1379 struct lwp * 1380 lwp_find2(pid_t pid, lwpid_t lid) 1381 { 1382 proc_t *p; 1383 lwp_t *l; 1384 1385 /* Find the process. */ 1386 if (pid != 0) { 1387 mutex_enter(proc_lock); 1388 p = proc_find(pid); 1389 if (p == NULL) { 1390 mutex_exit(proc_lock); 1391 return NULL; 1392 } 1393 mutex_enter(p->p_lock); 1394 mutex_exit(proc_lock); 1395 } else { 1396 p = curlwp->l_proc; 1397 mutex_enter(p->p_lock); 1398 } 1399 /* Find the thread. */ 1400 if (lid != 0) { 1401 l = lwp_find(p, lid); 1402 } else { 1403 l = LIST_FIRST(&p->p_lwps); 1404 } 1405 if (l == NULL) { 1406 mutex_exit(p->p_lock); 1407 } 1408 return l; 1409 } 1410 1411 /* 1412 * Look up a live LWP within the specified process. 1413 * 1414 * Must be called with p->p_lock held. 1415 */ 1416 struct lwp * 1417 lwp_find(struct proc *p, lwpid_t id) 1418 { 1419 struct lwp *l; 1420 1421 KASSERT(mutex_owned(p->p_lock)); 1422 1423 LIST_FOREACH(l, &p->p_lwps, l_sibling) { 1424 if (l->l_lid == id) 1425 break; 1426 } 1427 1428 /* 1429 * No need to lock - all of these conditions will 1430 * be visible with the process level mutex held. 1431 */ 1432 if (l != NULL && (l->l_stat == LSIDL || l->l_stat == LSZOMB)) 1433 l = NULL; 1434 1435 return l; 1436 } 1437 1438 /* 1439 * Update an LWP's cached credentials to mirror the process' master copy. 1440 * 1441 * This happens early in the syscall path, on user trap, and on LWP 1442 * creation. A long-running LWP can also voluntarily choose to update 1443 * its credentials by calling this routine. This may be called from 1444 * LWP_CACHE_CREDS(), which checks l->l_cred != p->p_cred beforehand. 1445 */ 1446 void 1447 lwp_update_creds(struct lwp *l) 1448 { 1449 kauth_cred_t oc; 1450 struct proc *p; 1451 1452 p = l->l_proc; 1453 oc = l->l_cred; 1454 1455 mutex_enter(p->p_lock); 1456 kauth_cred_hold(p->p_cred); 1457 l->l_cred = p->p_cred; 1458 l->l_prflag &= ~LPR_CRMOD; 1459 mutex_exit(p->p_lock); 1460 if (oc != NULL) 1461 kauth_cred_free(oc); 1462 } 1463 1464 /* 1465 * Verify that an LWP is locked, and optionally verify that the lock matches 1466 * one we specify. 1467 */ 1468 int 1469 lwp_locked(struct lwp *l, kmutex_t *mtx) 1470 { 1471 kmutex_t *cur = l->l_mutex; 1472 1473 return mutex_owned(cur) && (mtx == cur || mtx == NULL); 1474 } 1475 1476 /* 1477 * Lend a new mutex to an LWP. The old mutex must be held. 1478 */ 1479 void 1480 lwp_setlock(struct lwp *l, kmutex_t *mtx) 1481 { 1482 1483 KASSERT(mutex_owned(l->l_mutex)); 1484 1485 membar_exit(); 1486 l->l_mutex = mtx; 1487 } 1488 1489 /* 1490 * Lend a new mutex to an LWP, and release the old mutex. The old mutex 1491 * must be held. 1492 */ 1493 void 1494 lwp_unlock_to(struct lwp *l, kmutex_t *mtx) 1495 { 1496 kmutex_t *old; 1497 1498 KASSERT(lwp_locked(l, NULL)); 1499 1500 old = l->l_mutex; 1501 membar_exit(); 1502 l->l_mutex = mtx; 1503 mutex_spin_exit(old); 1504 } 1505 1506 int 1507 lwp_trylock(struct lwp *l) 1508 { 1509 kmutex_t *old; 1510 1511 for (;;) { 1512 if (!mutex_tryenter(old = l->l_mutex)) 1513 return 0; 1514 if (__predict_true(l->l_mutex == old)) 1515 return 1; 1516 mutex_spin_exit(old); 1517 } 1518 } 1519 1520 void 1521 lwp_unsleep(lwp_t *l, bool cleanup) 1522 { 1523 1524 KASSERT(mutex_owned(l->l_mutex)); 1525 (*l->l_syncobj->sobj_unsleep)(l, cleanup); 1526 } 1527 1528 /* 1529 * Handle exceptions for mi_userret(). Called if a member of LW_USERRET is 1530 * set. 1531 */ 1532 void 1533 lwp_userret(struct lwp *l) 1534 { 1535 struct proc *p; 1536 int sig; 1537 1538 KASSERT(l == curlwp); 1539 KASSERT(l->l_stat == LSONPROC); 1540 p = l->l_proc; 1541 1542 #ifndef __HAVE_FAST_SOFTINTS 1543 /* Run pending soft interrupts. */ 1544 if (l->l_cpu->ci_data.cpu_softints != 0) 1545 softint_overlay(); 1546 #endif 1547 1548 /* 1549 * It is safe to do this read unlocked on a MP system.. 1550 */ 1551 while ((l->l_flag & LW_USERRET) != 0) { 1552 /* 1553 * Process pending signals first, unless the process 1554 * is dumping core or exiting, where we will instead 1555 * enter the LW_WSUSPEND case below. 1556 */ 1557 if ((l->l_flag & (LW_PENDSIG | LW_WCORE | LW_WEXIT)) == 1558 LW_PENDSIG) { 1559 mutex_enter(p->p_lock); 1560 while ((sig = issignal(l)) != 0) 1561 postsig(sig); 1562 mutex_exit(p->p_lock); 1563 } 1564 1565 /* 1566 * Core-dump or suspend pending. 1567 * 1568 * In case of core dump, suspend ourselves, so that the kernel 1569 * stack and therefore the userland registers saved in the 1570 * trapframe are around for coredump() to write them out. 1571 * We also need to save any PCU resources that we have so that 1572 * they accessible for coredump(). We issue a wakeup on 1573 * p->p_lwpcv so that sigexit() will write the core file out 1574 * once all other LWPs are suspended. 1575 */ 1576 if ((l->l_flag & LW_WSUSPEND) != 0) { 1577 pcu_save_all(l); 1578 mutex_enter(p->p_lock); 1579 p->p_nrlwps--; 1580 cv_broadcast(&p->p_lwpcv); 1581 lwp_lock(l); 1582 l->l_stat = LSSUSPENDED; 1583 lwp_unlock(l); 1584 mutex_exit(p->p_lock); 1585 lwp_lock(l); 1586 mi_switch(l); 1587 } 1588 1589 /* Process is exiting. */ 1590 if ((l->l_flag & LW_WEXIT) != 0) { 1591 lwp_exit(l); 1592 KASSERT(0); 1593 /* NOTREACHED */ 1594 } 1595 1596 /* update lwpctl processor (for vfork child_return) */ 1597 if (l->l_flag & LW_LWPCTL) { 1598 lwp_lock(l); 1599 KASSERT(kpreempt_disabled()); 1600 l->l_lwpctl->lc_curcpu = (int)cpu_index(l->l_cpu); 1601 l->l_lwpctl->lc_pctr++; 1602 l->l_flag &= ~LW_LWPCTL; 1603 lwp_unlock(l); 1604 } 1605 } 1606 } 1607 1608 /* 1609 * Force an LWP to enter the kernel, to take a trip through lwp_userret(). 1610 */ 1611 void 1612 lwp_need_userret(struct lwp *l) 1613 { 1614 KASSERT(lwp_locked(l, NULL)); 1615 1616 /* 1617 * Since the tests in lwp_userret() are done unlocked, make sure 1618 * that the condition will be seen before forcing the LWP to enter 1619 * kernel mode. 1620 */ 1621 membar_producer(); 1622 cpu_signotify(l); 1623 } 1624 1625 /* 1626 * Add one reference to an LWP. This will prevent the LWP from 1627 * exiting, thus keep the lwp structure and PCB around to inspect. 1628 */ 1629 void 1630 lwp_addref(struct lwp *l) 1631 { 1632 1633 KASSERT(mutex_owned(l->l_proc->p_lock)); 1634 KASSERT(l->l_stat != LSZOMB); 1635 KASSERT(l->l_refcnt != 0); 1636 1637 l->l_refcnt++; 1638 } 1639 1640 /* 1641 * Remove one reference to an LWP. If this is the last reference, 1642 * then we must finalize the LWP's death. 1643 */ 1644 void 1645 lwp_delref(struct lwp *l) 1646 { 1647 struct proc *p = l->l_proc; 1648 1649 mutex_enter(p->p_lock); 1650 lwp_delref2(l); 1651 mutex_exit(p->p_lock); 1652 } 1653 1654 /* 1655 * Remove one reference to an LWP. If this is the last reference, 1656 * then we must finalize the LWP's death. The proc mutex is held 1657 * on entry. 1658 */ 1659 void 1660 lwp_delref2(struct lwp *l) 1661 { 1662 struct proc *p = l->l_proc; 1663 1664 KASSERT(mutex_owned(p->p_lock)); 1665 KASSERT(l->l_stat != LSZOMB); 1666 KASSERT(l->l_refcnt > 0); 1667 if (--l->l_refcnt == 0) 1668 cv_broadcast(&p->p_lwpcv); 1669 } 1670 1671 /* 1672 * Drain all references to the current LWP. 1673 */ 1674 void 1675 lwp_drainrefs(struct lwp *l) 1676 { 1677 struct proc *p = l->l_proc; 1678 1679 KASSERT(mutex_owned(p->p_lock)); 1680 KASSERT(l->l_refcnt != 0); 1681 1682 l->l_refcnt--; 1683 while (l->l_refcnt != 0) 1684 cv_wait(&p->p_lwpcv, p->p_lock); 1685 } 1686 1687 /* 1688 * Return true if the specified LWP is 'alive'. Only p->p_lock need 1689 * be held. 1690 */ 1691 bool 1692 lwp_alive(lwp_t *l) 1693 { 1694 1695 KASSERT(mutex_owned(l->l_proc->p_lock)); 1696 1697 switch (l->l_stat) { 1698 case LSSLEEP: 1699 case LSRUN: 1700 case LSONPROC: 1701 case LSSTOP: 1702 case LSSUSPENDED: 1703 return true; 1704 default: 1705 return false; 1706 } 1707 } 1708 1709 /* 1710 * Return first live LWP in the process. 1711 */ 1712 lwp_t * 1713 lwp_find_first(proc_t *p) 1714 { 1715 lwp_t *l; 1716 1717 KASSERT(mutex_owned(p->p_lock)); 1718 1719 LIST_FOREACH(l, &p->p_lwps, l_sibling) { 1720 if (lwp_alive(l)) { 1721 return l; 1722 } 1723 } 1724 1725 return NULL; 1726 } 1727 1728 /* 1729 * Allocate a new lwpctl structure for a user LWP. 1730 */ 1731 int 1732 lwp_ctl_alloc(vaddr_t *uaddr) 1733 { 1734 lcproc_t *lp; 1735 u_int bit, i, offset; 1736 struct uvm_object *uao; 1737 int error; 1738 lcpage_t *lcp; 1739 proc_t *p; 1740 lwp_t *l; 1741 1742 l = curlwp; 1743 p = l->l_proc; 1744 1745 /* don't allow a vforked process to create lwp ctls */ 1746 if (p->p_lflag & PL_PPWAIT) 1747 return EBUSY; 1748 1749 if (l->l_lcpage != NULL) { 1750 lcp = l->l_lcpage; 1751 *uaddr = lcp->lcp_uaddr + (vaddr_t)l->l_lwpctl - lcp->lcp_kaddr; 1752 return 0; 1753 } 1754 1755 /* First time around, allocate header structure for the process. */ 1756 if ((lp = p->p_lwpctl) == NULL) { 1757 lp = kmem_alloc(sizeof(*lp), KM_SLEEP); 1758 mutex_init(&lp->lp_lock, MUTEX_DEFAULT, IPL_NONE); 1759 lp->lp_uao = NULL; 1760 TAILQ_INIT(&lp->lp_pages); 1761 mutex_enter(p->p_lock); 1762 if (p->p_lwpctl == NULL) { 1763 p->p_lwpctl = lp; 1764 mutex_exit(p->p_lock); 1765 } else { 1766 mutex_exit(p->p_lock); 1767 mutex_destroy(&lp->lp_lock); 1768 kmem_free(lp, sizeof(*lp)); 1769 lp = p->p_lwpctl; 1770 } 1771 } 1772 1773 /* 1774 * Set up an anonymous memory region to hold the shared pages. 1775 * Map them into the process' address space. The user vmspace 1776 * gets the first reference on the UAO. 1777 */ 1778 mutex_enter(&lp->lp_lock); 1779 if (lp->lp_uao == NULL) { 1780 lp->lp_uao = uao_create(LWPCTL_UAREA_SZ, 0); 1781 lp->lp_cur = 0; 1782 lp->lp_max = LWPCTL_UAREA_SZ; 1783 lp->lp_uva = p->p_emul->e_vm_default_addr(p, 1784 (vaddr_t)p->p_vmspace->vm_daddr, LWPCTL_UAREA_SZ, 1785 p->p_vmspace->vm_map.flags & VM_MAP_TOPDOWN); 1786 error = uvm_map(&p->p_vmspace->vm_map, &lp->lp_uva, 1787 LWPCTL_UAREA_SZ, lp->lp_uao, 0, 0, UVM_MAPFLAG(UVM_PROT_RW, 1788 UVM_PROT_RW, UVM_INH_NONE, UVM_ADV_NORMAL, 0)); 1789 if (error != 0) { 1790 uao_detach(lp->lp_uao); 1791 lp->lp_uao = NULL; 1792 mutex_exit(&lp->lp_lock); 1793 return error; 1794 } 1795 } 1796 1797 /* Get a free block and allocate for this LWP. */ 1798 TAILQ_FOREACH(lcp, &lp->lp_pages, lcp_chain) { 1799 if (lcp->lcp_nfree != 0) 1800 break; 1801 } 1802 if (lcp == NULL) { 1803 /* Nothing available - try to set up a free page. */ 1804 if (lp->lp_cur == lp->lp_max) { 1805 mutex_exit(&lp->lp_lock); 1806 return ENOMEM; 1807 } 1808 lcp = kmem_alloc(LWPCTL_LCPAGE_SZ, KM_SLEEP); 1809 1810 /* 1811 * Wire the next page down in kernel space. Since this 1812 * is a new mapping, we must add a reference. 1813 */ 1814 uao = lp->lp_uao; 1815 (*uao->pgops->pgo_reference)(uao); 1816 lcp->lcp_kaddr = vm_map_min(kernel_map); 1817 error = uvm_map(kernel_map, &lcp->lcp_kaddr, PAGE_SIZE, 1818 uao, lp->lp_cur, PAGE_SIZE, 1819 UVM_MAPFLAG(UVM_PROT_RW, UVM_PROT_RW, 1820 UVM_INH_NONE, UVM_ADV_RANDOM, 0)); 1821 if (error != 0) { 1822 mutex_exit(&lp->lp_lock); 1823 kmem_free(lcp, LWPCTL_LCPAGE_SZ); 1824 (*uao->pgops->pgo_detach)(uao); 1825 return error; 1826 } 1827 error = uvm_map_pageable(kernel_map, lcp->lcp_kaddr, 1828 lcp->lcp_kaddr + PAGE_SIZE, FALSE, 0); 1829 if (error != 0) { 1830 mutex_exit(&lp->lp_lock); 1831 uvm_unmap(kernel_map, lcp->lcp_kaddr, 1832 lcp->lcp_kaddr + PAGE_SIZE); 1833 kmem_free(lcp, LWPCTL_LCPAGE_SZ); 1834 return error; 1835 } 1836 /* Prepare the page descriptor and link into the list. */ 1837 lcp->lcp_uaddr = lp->lp_uva + lp->lp_cur; 1838 lp->lp_cur += PAGE_SIZE; 1839 lcp->lcp_nfree = LWPCTL_PER_PAGE; 1840 lcp->lcp_rotor = 0; 1841 memset(lcp->lcp_bitmap, 0xff, LWPCTL_BITMAP_SZ); 1842 TAILQ_INSERT_HEAD(&lp->lp_pages, lcp, lcp_chain); 1843 } 1844 for (i = lcp->lcp_rotor; lcp->lcp_bitmap[i] == 0;) { 1845 if (++i >= LWPCTL_BITMAP_ENTRIES) 1846 i = 0; 1847 } 1848 bit = ffs(lcp->lcp_bitmap[i]) - 1; 1849 lcp->lcp_bitmap[i] ^= (1U << bit); 1850 lcp->lcp_rotor = i; 1851 lcp->lcp_nfree--; 1852 l->l_lcpage = lcp; 1853 offset = (i << 5) + bit; 1854 l->l_lwpctl = (lwpctl_t *)lcp->lcp_kaddr + offset; 1855 *uaddr = lcp->lcp_uaddr + offset * sizeof(lwpctl_t); 1856 mutex_exit(&lp->lp_lock); 1857 1858 KPREEMPT_DISABLE(l); 1859 l->l_lwpctl->lc_curcpu = (int)curcpu()->ci_data.cpu_index; 1860 KPREEMPT_ENABLE(l); 1861 1862 return 0; 1863 } 1864 1865 /* 1866 * Free an lwpctl structure back to the per-process list. 1867 */ 1868 void 1869 lwp_ctl_free(lwp_t *l) 1870 { 1871 struct proc *p = l->l_proc; 1872 lcproc_t *lp; 1873 lcpage_t *lcp; 1874 u_int map, offset; 1875 1876 /* don't free a lwp context we borrowed for vfork */ 1877 if (p->p_lflag & PL_PPWAIT) { 1878 l->l_lwpctl = NULL; 1879 return; 1880 } 1881 1882 lp = p->p_lwpctl; 1883 KASSERT(lp != NULL); 1884 1885 lcp = l->l_lcpage; 1886 offset = (u_int)((lwpctl_t *)l->l_lwpctl - (lwpctl_t *)lcp->lcp_kaddr); 1887 KASSERT(offset < LWPCTL_PER_PAGE); 1888 1889 mutex_enter(&lp->lp_lock); 1890 lcp->lcp_nfree++; 1891 map = offset >> 5; 1892 lcp->lcp_bitmap[map] |= (1U << (offset & 31)); 1893 if (lcp->lcp_bitmap[lcp->lcp_rotor] == 0) 1894 lcp->lcp_rotor = map; 1895 if (TAILQ_FIRST(&lp->lp_pages)->lcp_nfree == 0) { 1896 TAILQ_REMOVE(&lp->lp_pages, lcp, lcp_chain); 1897 TAILQ_INSERT_HEAD(&lp->lp_pages, lcp, lcp_chain); 1898 } 1899 mutex_exit(&lp->lp_lock); 1900 } 1901 1902 /* 1903 * Process is exiting; tear down lwpctl state. This can only be safely 1904 * called by the last LWP in the process. 1905 */ 1906 void 1907 lwp_ctl_exit(void) 1908 { 1909 lcpage_t *lcp, *next; 1910 lcproc_t *lp; 1911 proc_t *p; 1912 lwp_t *l; 1913 1914 l = curlwp; 1915 l->l_lwpctl = NULL; 1916 l->l_lcpage = NULL; 1917 p = l->l_proc; 1918 lp = p->p_lwpctl; 1919 1920 KASSERT(lp != NULL); 1921 KASSERT(p->p_nlwps == 1); 1922 1923 for (lcp = TAILQ_FIRST(&lp->lp_pages); lcp != NULL; lcp = next) { 1924 next = TAILQ_NEXT(lcp, lcp_chain); 1925 uvm_unmap(kernel_map, lcp->lcp_kaddr, 1926 lcp->lcp_kaddr + PAGE_SIZE); 1927 kmem_free(lcp, LWPCTL_LCPAGE_SZ); 1928 } 1929 1930 if (lp->lp_uao != NULL) { 1931 uvm_unmap(&p->p_vmspace->vm_map, lp->lp_uva, 1932 lp->lp_uva + LWPCTL_UAREA_SZ); 1933 } 1934 1935 mutex_destroy(&lp->lp_lock); 1936 kmem_free(lp, sizeof(*lp)); 1937 p->p_lwpctl = NULL; 1938 } 1939 1940 /* 1941 * Return the current LWP's "preemption counter". Used to detect 1942 * preemption across operations that can tolerate preemption without 1943 * crashing, but which may generate incorrect results if preempted. 1944 */ 1945 uint64_t 1946 lwp_pctr(void) 1947 { 1948 1949 return curlwp->l_ncsw; 1950 } 1951 1952 /* 1953 * Set an LWP's private data pointer. 1954 */ 1955 int 1956 lwp_setprivate(struct lwp *l, void *ptr) 1957 { 1958 int error = 0; 1959 1960 l->l_private = ptr; 1961 #ifdef __HAVE_CPU_LWP_SETPRIVATE 1962 error = cpu_lwp_setprivate(l, ptr); 1963 #endif 1964 return error; 1965 } 1966 1967 #if defined(DDB) 1968 #include <machine/pcb.h> 1969 1970 void 1971 lwp_whatis(uintptr_t addr, void (*pr)(const char *, ...)) 1972 { 1973 lwp_t *l; 1974 1975 LIST_FOREACH(l, &alllwp, l_list) { 1976 uintptr_t stack = (uintptr_t)KSTACK_LOWEST_ADDR(l); 1977 1978 if (addr < stack || stack + KSTACK_SIZE <= addr) { 1979 continue; 1980 } 1981 (*pr)("%p is %p+%zu, LWP %p's stack\n", 1982 (void *)addr, (void *)stack, 1983 (size_t)(addr - stack), l); 1984 } 1985 } 1986 #endif /* defined(DDB) */ 1987