xref: /netbsd-src/sys/kern/kern_lwp.c (revision bbde328be4e75ea9ad02e9715ea13ca54b797ada)
1 /*	$NetBSD: kern_lwp.c,v 1.146 2010/04/23 19:18:09 rmind Exp $	*/
2 
3 /*-
4  * Copyright (c) 2001, 2006, 2007, 2008, 2009 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Nathan J. Williams, and Andrew Doran.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29  * POSSIBILITY OF SUCH DAMAGE.
30  */
31 
32 /*
33  * Overview
34  *
35  *	Lightweight processes (LWPs) are the basic unit or thread of
36  *	execution within the kernel.  The core state of an LWP is described
37  *	by "struct lwp", also known as lwp_t.
38  *
39  *	Each LWP is contained within a process (described by "struct proc"),
40  *	Every process contains at least one LWP, but may contain more.  The
41  *	process describes attributes shared among all of its LWPs such as a
42  *	private address space, global execution state (stopped, active,
43  *	zombie, ...), signal disposition and so on.  On a multiprocessor
44  *	machine, multiple LWPs be executing concurrently in the kernel.
45  *
46  * Execution states
47  *
48  *	At any given time, an LWP has overall state that is described by
49  *	lwp::l_stat.  The states are broken into two sets below.  The first
50  *	set is guaranteed to represent the absolute, current state of the
51  *	LWP:
52  *
53  *	LSONPROC
54  *
55  *		On processor: the LWP is executing on a CPU, either in the
56  *		kernel or in user space.
57  *
58  *	LSRUN
59  *
60  *		Runnable: the LWP is parked on a run queue, and may soon be
61  *		chosen to run by an idle processor, or by a processor that
62  *		has been asked to preempt a currently runnning but lower
63  *		priority LWP.
64  *
65  *	LSIDL
66  *
67  *		Idle: the LWP has been created but has not yet executed,
68  *		or it has ceased executing a unit of work and is waiting
69  *		to be started again.
70  *
71  *	LSSUSPENDED:
72  *
73  *		Suspended: the LWP has had its execution suspended by
74  *		another LWP in the same process using the _lwp_suspend()
75  *		system call.  User-level LWPs also enter the suspended
76  *		state when the system is shutting down.
77  *
78  *	The second set represent a "statement of intent" on behalf of the
79  *	LWP.  The LWP may in fact be executing on a processor, may be
80  *	sleeping or idle. It is expected to take the necessary action to
81  *	stop executing or become "running" again within a short timeframe.
82  *	The LP_RUNNING flag in lwp::l_pflag indicates that an LWP is running.
83  *	Importantly, it indicates that its state is tied to a CPU.
84  *
85  *	LSZOMB:
86  *
87  *		Dead or dying: the LWP has released most of its resources
88  *		and is about to switch away into oblivion, or has already
89  *		switched away.  When it switches away, its few remaining
90  *		resources can be collected.
91  *
92  *	LSSLEEP:
93  *
94  *		Sleeping: the LWP has entered itself onto a sleep queue, and
95  *		has switched away or will switch away shortly to allow other
96  *		LWPs to run on the CPU.
97  *
98  *	LSSTOP:
99  *
100  *		Stopped: the LWP has been stopped as a result of a job
101  *		control signal, or as a result of the ptrace() interface.
102  *
103  *		Stopped LWPs may run briefly within the kernel to handle
104  *		signals that they receive, but will not return to user space
105  *		until their process' state is changed away from stopped.
106  *
107  *		Single LWPs within a process can not be set stopped
108  *		selectively: all actions that can stop or continue LWPs
109  *		occur at the process level.
110  *
111  * State transitions
112  *
113  *	Note that the LSSTOP state may only be set when returning to
114  *	user space in userret(), or when sleeping interruptably.  The
115  *	LSSUSPENDED state may only be set in userret().  Before setting
116  *	those states, we try to ensure that the LWPs will release all
117  *	locks that they hold, and at a minimum try to ensure that the
118  *	LWP can be set runnable again by a signal.
119  *
120  *	LWPs may transition states in the following ways:
121  *
122  *	 RUN -------> ONPROC		ONPROC -----> RUN
123  *		    				    > SLEEP
124  *		    				    > STOPPED
125  *						    > SUSPENDED
126  *						    > ZOMB
127  *						    > IDL (special cases)
128  *
129  *	 STOPPED ---> RUN		SUSPENDED --> RUN
130  *	            > SLEEP
131  *
132  *	 SLEEP -----> ONPROC		IDL --------> RUN
133  *		    > RUN			    > SUSPENDED
134  *		    > STOPPED			    > STOPPED
135  *						    > ONPROC (special cases)
136  *
137  *	Some state transitions are only possible with kernel threads (eg
138  *	ONPROC -> IDL) and happen under tightly controlled circumstances
139  *	free of unwanted side effects.
140  *
141  * Migration
142  *
143  *	Migration of threads from one CPU to another could be performed
144  *	internally by the scheduler via sched_takecpu() or sched_catchlwp()
145  *	functions.  The universal lwp_migrate() function should be used for
146  *	any other cases.  Subsystems in the kernel must be aware that CPU
147  *	of LWP may change, while it is not locked.
148  *
149  * Locking
150  *
151  *	The majority of fields in 'struct lwp' are covered by a single,
152  *	general spin lock pointed to by lwp::l_mutex.  The locks covering
153  *	each field are documented in sys/lwp.h.
154  *
155  *	State transitions must be made with the LWP's general lock held,
156  *	and may cause the LWP's lock pointer to change. Manipulation of
157  *	the general lock is not performed directly, but through calls to
158  *	lwp_lock(), lwp_relock() and similar.
159  *
160  *	States and their associated locks:
161  *
162  *	LSONPROC, LSZOMB:
163  *
164  *		Always covered by spc_lwplock, which protects running LWPs.
165  *		This is a per-CPU lock and matches lwp::l_cpu.
166  *
167  *	LSIDL, LSRUN:
168  *
169  *		Always covered by spc_mutex, which protects the run queues.
170  *		This is a per-CPU lock and matches lwp::l_cpu.
171  *
172  *	LSSLEEP:
173  *
174  *		Covered by a lock associated with the sleep queue that the
175  *		LWP resides on.  Matches lwp::l_sleepq::sq_mutex.
176  *
177  *	LSSTOP, LSSUSPENDED:
178  *
179  *		If the LWP was previously sleeping (l_wchan != NULL), then
180  *		l_mutex references the sleep queue lock.  If the LWP was
181  *		runnable or on the CPU when halted, or has been removed from
182  *		the sleep queue since halted, then the lock is spc_lwplock.
183  *
184  *	The lock order is as follows:
185  *
186  *		spc::spc_lwplock ->
187  *		    sleeptab::st_mutex ->
188  *			tschain_t::tc_mutex ->
189  *			    spc::spc_mutex
190  *
191  *	Each process has an scheduler state lock (proc::p_lock), and a
192  *	number of counters on LWPs and their states: p_nzlwps, p_nrlwps, and
193  *	so on.  When an LWP is to be entered into or removed from one of the
194  *	following states, p_lock must be held and the process wide counters
195  *	adjusted:
196  *
197  *		LSIDL, LSZOMB, LSSTOP, LSSUSPENDED
198  *
199  *	(But not always for kernel threads.  There are some special cases
200  *	as mentioned above.  See kern_softint.c.)
201  *
202  *	Note that an LWP is considered running or likely to run soon if in
203  *	one of the following states.  This affects the value of p_nrlwps:
204  *
205  *		LSRUN, LSONPROC, LSSLEEP
206  *
207  *	p_lock does not need to be held when transitioning among these
208  *	three states, hence p_lock is rarely taken for state transitions.
209  */
210 
211 #include <sys/cdefs.h>
212 __KERNEL_RCSID(0, "$NetBSD: kern_lwp.c,v 1.146 2010/04/23 19:18:09 rmind Exp $");
213 
214 #include "opt_ddb.h"
215 #include "opt_lockdebug.h"
216 #include "opt_sa.h"
217 #include "opt_dtrace.h"
218 
219 #define _LWP_API_PRIVATE
220 
221 #include <sys/param.h>
222 #include <sys/systm.h>
223 #include <sys/cpu.h>
224 #include <sys/pool.h>
225 #include <sys/proc.h>
226 #include <sys/sa.h>
227 #include <sys/savar.h>
228 #include <sys/syscallargs.h>
229 #include <sys/syscall_stats.h>
230 #include <sys/kauth.h>
231 #include <sys/sleepq.h>
232 #include <sys/lockdebug.h>
233 #include <sys/kmem.h>
234 #include <sys/pset.h>
235 #include <sys/intr.h>
236 #include <sys/lwpctl.h>
237 #include <sys/atomic.h>
238 #include <sys/filedesc.h>
239 #include <sys/dtrace_bsd.h>
240 #include <sys/sdt.h>
241 
242 #include <uvm/uvm_extern.h>
243 #include <uvm/uvm_object.h>
244 
245 struct lwplist		alllwp = LIST_HEAD_INITIALIZER(alllwp);
246 static pool_cache_t	lwp_cache;
247 
248 /* DTrace proc provider probes */
249 SDT_PROBE_DEFINE(proc,,,lwp_create,
250 	"struct lwp *", NULL,
251 	NULL, NULL, NULL, NULL,
252 	NULL, NULL, NULL, NULL);
253 SDT_PROBE_DEFINE(proc,,,lwp_start,
254 	"struct lwp *", NULL,
255 	NULL, NULL, NULL, NULL,
256 	NULL, NULL, NULL, NULL);
257 SDT_PROBE_DEFINE(proc,,,lwp_exit,
258 	"struct lwp *", NULL,
259 	NULL, NULL, NULL, NULL,
260 	NULL, NULL, NULL, NULL);
261 
262 void
263 lwpinit(void)
264 {
265 
266 	lwpinit_specificdata();
267 	lwp_sys_init();
268 	lwp_cache = pool_cache_init(sizeof(lwp_t), MIN_LWP_ALIGNMENT, 0, 0,
269 	    "lwppl", NULL, IPL_NONE, NULL, NULL, NULL);
270 }
271 
272 /*
273  * Set an suspended.
274  *
275  * Must be called with p_lock held, and the LWP locked.  Will unlock the
276  * LWP before return.
277  */
278 int
279 lwp_suspend(struct lwp *curl, struct lwp *t)
280 {
281 	int error;
282 
283 	KASSERT(mutex_owned(t->l_proc->p_lock));
284 	KASSERT(lwp_locked(t, NULL));
285 
286 	KASSERT(curl != t || curl->l_stat == LSONPROC);
287 
288 	/*
289 	 * If the current LWP has been told to exit, we must not suspend anyone
290 	 * else or deadlock could occur.  We won't return to userspace.
291 	 */
292 	if ((curl->l_flag & (LW_WEXIT | LW_WCORE)) != 0) {
293 		lwp_unlock(t);
294 		return (EDEADLK);
295 	}
296 
297 	error = 0;
298 
299 	switch (t->l_stat) {
300 	case LSRUN:
301 	case LSONPROC:
302 		t->l_flag |= LW_WSUSPEND;
303 		lwp_need_userret(t);
304 		lwp_unlock(t);
305 		break;
306 
307 	case LSSLEEP:
308 		t->l_flag |= LW_WSUSPEND;
309 
310 		/*
311 		 * Kick the LWP and try to get it to the kernel boundary
312 		 * so that it will release any locks that it holds.
313 		 * setrunnable() will release the lock.
314 		 */
315 		if ((t->l_flag & LW_SINTR) != 0)
316 			setrunnable(t);
317 		else
318 			lwp_unlock(t);
319 		break;
320 
321 	case LSSUSPENDED:
322 		lwp_unlock(t);
323 		break;
324 
325 	case LSSTOP:
326 		t->l_flag |= LW_WSUSPEND;
327 		setrunnable(t);
328 		break;
329 
330 	case LSIDL:
331 	case LSZOMB:
332 		error = EINTR; /* It's what Solaris does..... */
333 		lwp_unlock(t);
334 		break;
335 	}
336 
337 	return (error);
338 }
339 
340 /*
341  * Restart a suspended LWP.
342  *
343  * Must be called with p_lock held, and the LWP locked.  Will unlock the
344  * LWP before return.
345  */
346 void
347 lwp_continue(struct lwp *l)
348 {
349 
350 	KASSERT(mutex_owned(l->l_proc->p_lock));
351 	KASSERT(lwp_locked(l, NULL));
352 
353 	/* If rebooting or not suspended, then just bail out. */
354 	if ((l->l_flag & LW_WREBOOT) != 0) {
355 		lwp_unlock(l);
356 		return;
357 	}
358 
359 	l->l_flag &= ~LW_WSUSPEND;
360 
361 	if (l->l_stat != LSSUSPENDED) {
362 		lwp_unlock(l);
363 		return;
364 	}
365 
366 	/* setrunnable() will release the lock. */
367 	setrunnable(l);
368 }
369 
370 /*
371  * Restart a stopped LWP.
372  *
373  * Must be called with p_lock held, and the LWP NOT locked.  Will unlock the
374  * LWP before return.
375  */
376 void
377 lwp_unstop(struct lwp *l)
378 {
379 	struct proc *p = l->l_proc;
380 
381 	KASSERT(mutex_owned(proc_lock));
382 	KASSERT(mutex_owned(p->p_lock));
383 
384 	lwp_lock(l);
385 
386 	/* If not stopped, then just bail out. */
387 	if (l->l_stat != LSSTOP) {
388 		lwp_unlock(l);
389 		return;
390 	}
391 
392 	p->p_stat = SACTIVE;
393 	p->p_sflag &= ~PS_STOPPING;
394 
395 	if (!p->p_waited)
396 		p->p_pptr->p_nstopchild--;
397 
398 	if (l->l_wchan == NULL) {
399 		/* setrunnable() will release the lock. */
400 		setrunnable(l);
401 	} else {
402 		l->l_stat = LSSLEEP;
403 		p->p_nrlwps++;
404 		lwp_unlock(l);
405 	}
406 }
407 
408 /*
409  * Wait for an LWP within the current process to exit.  If 'lid' is
410  * non-zero, we are waiting for a specific LWP.
411  *
412  * Must be called with p->p_lock held.
413  */
414 int
415 lwp_wait1(struct lwp *l, lwpid_t lid, lwpid_t *departed, int flags)
416 {
417 	struct proc *p = l->l_proc;
418 	struct lwp *l2;
419 	int nfound, error;
420 	lwpid_t curlid;
421 	bool exiting;
422 
423 	KASSERT(mutex_owned(p->p_lock));
424 
425 	p->p_nlwpwait++;
426 	l->l_waitingfor = lid;
427 	curlid = l->l_lid;
428 	exiting = ((flags & LWPWAIT_EXITCONTROL) != 0);
429 
430 	for (;;) {
431 		/*
432 		 * Avoid a race between exit1() and sigexit(): if the
433 		 * process is dumping core, then we need to bail out: call
434 		 * into lwp_userret() where we will be suspended until the
435 		 * deed is done.
436 		 */
437 		if ((p->p_sflag & PS_WCORE) != 0) {
438 			mutex_exit(p->p_lock);
439 			lwp_userret(l);
440 #ifdef DIAGNOSTIC
441 			panic("lwp_wait1");
442 #endif
443 			/* NOTREACHED */
444 		}
445 
446 		/*
447 		 * First off, drain any detached LWP that is waiting to be
448 		 * reaped.
449 		 */
450 		while ((l2 = p->p_zomblwp) != NULL) {
451 			p->p_zomblwp = NULL;
452 			lwp_free(l2, false, false);/* releases proc mutex */
453 			mutex_enter(p->p_lock);
454 		}
455 
456 		/*
457 		 * Now look for an LWP to collect.  If the whole process is
458 		 * exiting, count detached LWPs as eligible to be collected,
459 		 * but don't drain them here.
460 		 */
461 		nfound = 0;
462 		error = 0;
463 		LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
464 			/*
465 			 * If a specific wait and the target is waiting on
466 			 * us, then avoid deadlock.  This also traps LWPs
467 			 * that try to wait on themselves.
468 			 *
469 			 * Note that this does not handle more complicated
470 			 * cycles, like: t1 -> t2 -> t3 -> t1.  The process
471 			 * can still be killed so it is not a major problem.
472 			 */
473 			if (l2->l_lid == lid && l2->l_waitingfor == curlid) {
474 				error = EDEADLK;
475 				break;
476 			}
477 			if (l2 == l)
478 				continue;
479 			if ((l2->l_prflag & LPR_DETACHED) != 0) {
480 				nfound += exiting;
481 				continue;
482 			}
483 			if (lid != 0) {
484 				if (l2->l_lid != lid)
485 					continue;
486 				/*
487 				 * Mark this LWP as the first waiter, if there
488 				 * is no other.
489 				 */
490 				if (l2->l_waiter == 0)
491 					l2->l_waiter = curlid;
492 			} else if (l2->l_waiter != 0) {
493 				/*
494 				 * It already has a waiter - so don't
495 				 * collect it.  If the waiter doesn't
496 				 * grab it we'll get another chance
497 				 * later.
498 				 */
499 				nfound++;
500 				continue;
501 			}
502 			nfound++;
503 
504 			/* No need to lock the LWP in order to see LSZOMB. */
505 			if (l2->l_stat != LSZOMB)
506 				continue;
507 
508 			/*
509 			 * We're no longer waiting.  Reset the "first waiter"
510 			 * pointer on the target, in case it was us.
511 			 */
512 			l->l_waitingfor = 0;
513 			l2->l_waiter = 0;
514 			p->p_nlwpwait--;
515 			if (departed)
516 				*departed = l2->l_lid;
517 			sched_lwp_collect(l2);
518 
519 			/* lwp_free() releases the proc lock. */
520 			lwp_free(l2, false, false);
521 			mutex_enter(p->p_lock);
522 			return 0;
523 		}
524 
525 		if (error != 0)
526 			break;
527 		if (nfound == 0) {
528 			error = ESRCH;
529 			break;
530 		}
531 
532 		/*
533 		 * The kernel is careful to ensure that it can not deadlock
534 		 * when exiting - just keep waiting.
535 		 */
536 		if (exiting) {
537 			KASSERT(p->p_nlwps > 1);
538 			cv_wait(&p->p_lwpcv, p->p_lock);
539 			continue;
540 		}
541 
542 		/*
543 		 * If all other LWPs are waiting for exits or suspends
544 		 * and the supply of zombies and potential zombies is
545 		 * exhausted, then we are about to deadlock.
546 		 *
547 		 * If the process is exiting (and this LWP is not the one
548 		 * that is coordinating the exit) then bail out now.
549 		 */
550 		if ((p->p_sflag & PS_WEXIT) != 0 ||
551 		    p->p_nrlwps + p->p_nzlwps - p->p_ndlwps <= p->p_nlwpwait) {
552 			error = EDEADLK;
553 			break;
554 		}
555 
556 		/*
557 		 * Sit around and wait for something to happen.  We'll be
558 		 * awoken if any of the conditions examined change: if an
559 		 * LWP exits, is collected, or is detached.
560 		 */
561 		if ((error = cv_wait_sig(&p->p_lwpcv, p->p_lock)) != 0)
562 			break;
563 	}
564 
565 	/*
566 	 * We didn't find any LWPs to collect, we may have received a
567 	 * signal, or some other condition has caused us to bail out.
568 	 *
569 	 * If waiting on a specific LWP, clear the waiters marker: some
570 	 * other LWP may want it.  Then, kick all the remaining waiters
571 	 * so that they can re-check for zombies and for deadlock.
572 	 */
573 	if (lid != 0) {
574 		LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
575 			if (l2->l_lid == lid) {
576 				if (l2->l_waiter == curlid)
577 					l2->l_waiter = 0;
578 				break;
579 			}
580 		}
581 	}
582 	p->p_nlwpwait--;
583 	l->l_waitingfor = 0;
584 	cv_broadcast(&p->p_lwpcv);
585 
586 	return error;
587 }
588 
589 /*
590  * Create a new LWP within process 'p2', using LWP 'l1' as a template.
591  * The new LWP is created in state LSIDL and must be set running,
592  * suspended, or stopped by the caller.
593  */
594 int
595 lwp_create(lwp_t *l1, proc_t *p2, vaddr_t uaddr, int flags,
596 	   void *stack, size_t stacksize, void (*func)(void *), void *arg,
597 	   lwp_t **rnewlwpp, int sclass)
598 {
599 	struct lwp *l2, *isfree;
600 	turnstile_t *ts;
601 
602 	KASSERT(l1 == curlwp || l1->l_proc == &proc0);
603 
604 	/*
605 	 * First off, reap any detached LWP waiting to be collected.
606 	 * We can re-use its LWP structure and turnstile.
607 	 */
608 	isfree = NULL;
609 	if (p2->p_zomblwp != NULL) {
610 		mutex_enter(p2->p_lock);
611 		if ((isfree = p2->p_zomblwp) != NULL) {
612 			p2->p_zomblwp = NULL;
613 			lwp_free(isfree, true, false);/* releases proc mutex */
614 		} else
615 			mutex_exit(p2->p_lock);
616 	}
617 	if (isfree == NULL) {
618 		l2 = pool_cache_get(lwp_cache, PR_WAITOK);
619 		memset(l2, 0, sizeof(*l2));
620 		l2->l_ts = pool_cache_get(turnstile_cache, PR_WAITOK);
621 		SLIST_INIT(&l2->l_pi_lenders);
622 	} else {
623 		l2 = isfree;
624 		ts = l2->l_ts;
625 		KASSERT(l2->l_inheritedprio == -1);
626 		KASSERT(SLIST_EMPTY(&l2->l_pi_lenders));
627 		memset(l2, 0, sizeof(*l2));
628 		l2->l_ts = ts;
629 	}
630 
631 	l2->l_stat = LSIDL;
632 	l2->l_proc = p2;
633 	l2->l_refcnt = 1;
634 	l2->l_class = sclass;
635 
636 	/*
637 	 * If vfork(), we want the LWP to run fast and on the same CPU
638 	 * as its parent, so that it can reuse the VM context and cache
639 	 * footprint on the local CPU.
640 	 */
641 	l2->l_kpriority = ((flags & LWP_VFORK) ? true : false);
642 	l2->l_kpribase = PRI_KERNEL;
643 	l2->l_priority = l1->l_priority;
644 	l2->l_inheritedprio = -1;
645 	l2->l_flag = 0;
646 	l2->l_pflag = LP_MPSAFE;
647 	TAILQ_INIT(&l2->l_ld_locks);
648 
649 	/*
650 	 * If not the first LWP in the process, grab a reference to the
651 	 * descriptor table.
652 	 */
653 	l2->l_fd = p2->p_fd;
654 	if (p2->p_nlwps != 0) {
655 		KASSERT(l1->l_proc == p2);
656 		fd_hold(l2);
657 	} else {
658 		KASSERT(l1->l_proc != p2);
659 	}
660 
661 	if (p2->p_flag & PK_SYSTEM) {
662 		/* Mark it as a system LWP. */
663 		l2->l_flag |= LW_SYSTEM;
664 	}
665 
666 	kpreempt_disable();
667 	l2->l_mutex = l1->l_cpu->ci_schedstate.spc_mutex;
668 	l2->l_cpu = l1->l_cpu;
669 	kpreempt_enable();
670 
671 	kdtrace_thread_ctor(NULL, l2);
672 	lwp_initspecific(l2);
673 	sched_lwp_fork(l1, l2);
674 	lwp_update_creds(l2);
675 	callout_init(&l2->l_timeout_ch, CALLOUT_MPSAFE);
676 	callout_setfunc(&l2->l_timeout_ch, sleepq_timeout, l2);
677 	cv_init(&l2->l_sigcv, "sigwait");
678 	l2->l_syncobj = &sched_syncobj;
679 
680 	if (rnewlwpp != NULL)
681 		*rnewlwpp = l2;
682 
683 	uvm_lwp_setuarea(l2, uaddr);
684 	uvm_lwp_fork(l1, l2, stack, stacksize, func,
685 	    (arg != NULL) ? arg : l2);
686 
687 	mutex_enter(p2->p_lock);
688 
689 	if ((flags & LWP_DETACHED) != 0) {
690 		l2->l_prflag = LPR_DETACHED;
691 		p2->p_ndlwps++;
692 	} else
693 		l2->l_prflag = 0;
694 
695 	l2->l_sigmask = l1->l_sigmask;
696 	CIRCLEQ_INIT(&l2->l_sigpend.sp_info);
697 	sigemptyset(&l2->l_sigpend.sp_set);
698 
699 	p2->p_nlwpid++;
700 	if (p2->p_nlwpid == 0)
701 		p2->p_nlwpid++;
702 	l2->l_lid = p2->p_nlwpid;
703 	LIST_INSERT_HEAD(&p2->p_lwps, l2, l_sibling);
704 	p2->p_nlwps++;
705 
706 	if ((p2->p_flag & PK_SYSTEM) == 0) {
707 		/* Inherit an affinity */
708 		if (l1->l_flag & LW_AFFINITY) {
709 			/*
710 			 * Note that we hold the state lock while inheriting
711 			 * the affinity to avoid race with sched_setaffinity().
712 			 */
713 			lwp_lock(l1);
714 			if (l1->l_flag & LW_AFFINITY) {
715 				kcpuset_use(l1->l_affinity);
716 				l2->l_affinity = l1->l_affinity;
717 				l2->l_flag |= LW_AFFINITY;
718 			}
719 			lwp_unlock(l1);
720 		}
721 		lwp_lock(l2);
722 		/* Inherit a processor-set */
723 		l2->l_psid = l1->l_psid;
724 		/* Look for a CPU to start */
725 		l2->l_cpu = sched_takecpu(l2);
726 		lwp_unlock_to(l2, l2->l_cpu->ci_schedstate.spc_mutex);
727 	}
728 	mutex_exit(p2->p_lock);
729 
730 	SDT_PROBE(proc,,,lwp_create, l2, 0,0,0,0);
731 
732 	mutex_enter(proc_lock);
733 	LIST_INSERT_HEAD(&alllwp, l2, l_list);
734 	mutex_exit(proc_lock);
735 
736 	SYSCALL_TIME_LWP_INIT(l2);
737 
738 	if (p2->p_emul->e_lwp_fork)
739 		(*p2->p_emul->e_lwp_fork)(l1, l2);
740 
741 	return (0);
742 }
743 
744 /*
745  * Called by MD code when a new LWP begins execution.  Must be called
746  * with the previous LWP locked (so at splsched), or if there is no
747  * previous LWP, at splsched.
748  */
749 void
750 lwp_startup(struct lwp *prev, struct lwp *new)
751 {
752 
753 	SDT_PROBE(proc,,,lwp_start, new, 0,0,0,0);
754 
755 	KASSERT(kpreempt_disabled());
756 	if (prev != NULL) {
757 		/*
758 		 * Normalize the count of the spin-mutexes, it was
759 		 * increased in mi_switch().  Unmark the state of
760 		 * context switch - it is finished for previous LWP.
761 		 */
762 		curcpu()->ci_mtx_count++;
763 		membar_exit();
764 		prev->l_ctxswtch = 0;
765 	}
766 	KPREEMPT_DISABLE(new);
767 	spl0();
768 	pmap_activate(new);
769 	LOCKDEBUG_BARRIER(NULL, 0);
770 	KPREEMPT_ENABLE(new);
771 	if ((new->l_pflag & LP_MPSAFE) == 0) {
772 		KERNEL_LOCK(1, new);
773 	}
774 }
775 
776 /*
777  * Exit an LWP.
778  */
779 void
780 lwp_exit(struct lwp *l)
781 {
782 	struct proc *p = l->l_proc;
783 	struct lwp *l2;
784 	bool current;
785 
786 	current = (l == curlwp);
787 
788 	KASSERT(current || (l->l_stat == LSIDL && l->l_target_cpu == NULL));
789 	KASSERT(p == curproc);
790 
791 	SDT_PROBE(proc,,,lwp_exit, l, 0,0,0,0);
792 
793 	/*
794 	 * Verify that we hold no locks other than the kernel lock.
795 	 */
796 	LOCKDEBUG_BARRIER(&kernel_lock, 0);
797 
798 	/*
799 	 * If we are the last live LWP in a process, we need to exit the
800 	 * entire process.  We do so with an exit status of zero, because
801 	 * it's a "controlled" exit, and because that's what Solaris does.
802 	 *
803 	 * We are not quite a zombie yet, but for accounting purposes we
804 	 * must increment the count of zombies here.
805 	 *
806 	 * Note: the last LWP's specificdata will be deleted here.
807 	 */
808 	mutex_enter(p->p_lock);
809 	if (p->p_nlwps - p->p_nzlwps == 1) {
810 		KASSERT(current == true);
811 		/* XXXSMP kernel_lock not held */
812 		exit1(l, 0);
813 		/* NOTREACHED */
814 	}
815 	p->p_nzlwps++;
816 	mutex_exit(p->p_lock);
817 
818 	if (p->p_emul->e_lwp_exit)
819 		(*p->p_emul->e_lwp_exit)(l);
820 
821 	/* Drop filedesc reference. */
822 	fd_free();
823 
824 	/* Delete the specificdata while it's still safe to sleep. */
825 	lwp_finispecific(l);
826 
827 	/*
828 	 * Release our cached credentials.
829 	 */
830 	kauth_cred_free(l->l_cred);
831 	callout_destroy(&l->l_timeout_ch);
832 
833 	/*
834 	 * Remove the LWP from the global list.
835 	 */
836 	mutex_enter(proc_lock);
837 	LIST_REMOVE(l, l_list);
838 	mutex_exit(proc_lock);
839 
840 	/*
841 	 * Get rid of all references to the LWP that others (e.g. procfs)
842 	 * may have, and mark the LWP as a zombie.  If the LWP is detached,
843 	 * mark it waiting for collection in the proc structure.  Note that
844 	 * before we can do that, we need to free any other dead, deatched
845 	 * LWP waiting to meet its maker.
846 	 */
847 	mutex_enter(p->p_lock);
848 	lwp_drainrefs(l);
849 
850 	if ((l->l_prflag & LPR_DETACHED) != 0) {
851 		while ((l2 = p->p_zomblwp) != NULL) {
852 			p->p_zomblwp = NULL;
853 			lwp_free(l2, false, false);/* releases proc mutex */
854 			mutex_enter(p->p_lock);
855 			l->l_refcnt++;
856 			lwp_drainrefs(l);
857 		}
858 		p->p_zomblwp = l;
859 	}
860 
861 	/*
862 	 * If we find a pending signal for the process and we have been
863 	 * asked to check for signals, then we loose: arrange to have
864 	 * all other LWPs in the process check for signals.
865 	 */
866 	if ((l->l_flag & LW_PENDSIG) != 0 &&
867 	    firstsig(&p->p_sigpend.sp_set) != 0) {
868 		LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
869 			lwp_lock(l2);
870 			l2->l_flag |= LW_PENDSIG;
871 			lwp_unlock(l2);
872 		}
873 	}
874 
875 	lwp_lock(l);
876 	l->l_stat = LSZOMB;
877 	if (l->l_name != NULL)
878 		strcpy(l->l_name, "(zombie)");
879 	if (l->l_flag & LW_AFFINITY) {
880 		l->l_flag &= ~LW_AFFINITY;
881 	} else {
882 		KASSERT(l->l_affinity == NULL);
883 	}
884 	lwp_unlock(l);
885 	p->p_nrlwps--;
886 	cv_broadcast(&p->p_lwpcv);
887 	if (l->l_lwpctl != NULL)
888 		l->l_lwpctl->lc_curcpu = LWPCTL_CPU_EXITED;
889 	mutex_exit(p->p_lock);
890 
891 	/* Safe without lock since LWP is in zombie state */
892 	if (l->l_affinity) {
893 		kcpuset_unuse(l->l_affinity, NULL);
894 		l->l_affinity = NULL;
895 	}
896 
897 	/*
898 	 * We can no longer block.  At this point, lwp_free() may already
899 	 * be gunning for us.  On a multi-CPU system, we may be off p_lwps.
900 	 *
901 	 * Free MD LWP resources.
902 	 */
903 	cpu_lwp_free(l, 0);
904 
905 	if (current) {
906 		pmap_deactivate(l);
907 
908 		/*
909 		 * Release the kernel lock, and switch away into
910 		 * oblivion.
911 		 */
912 #ifdef notyet
913 		/* XXXSMP hold in lwp_userret() */
914 		KERNEL_UNLOCK_LAST(l);
915 #else
916 		KERNEL_UNLOCK_ALL(l, NULL);
917 #endif
918 		lwp_exit_switchaway(l);
919 	}
920 }
921 
922 /*
923  * Free a dead LWP's remaining resources.
924  *
925  * XXXLWP limits.
926  */
927 void
928 lwp_free(struct lwp *l, bool recycle, bool last)
929 {
930 	struct proc *p = l->l_proc;
931 	struct rusage *ru;
932 	ksiginfoq_t kq;
933 
934 	KASSERT(l != curlwp);
935 
936 	/*
937 	 * If this was not the last LWP in the process, then adjust
938 	 * counters and unlock.
939 	 */
940 	if (!last) {
941 		/*
942 		 * Add the LWP's run time to the process' base value.
943 		 * This needs to co-incide with coming off p_lwps.
944 		 */
945 		bintime_add(&p->p_rtime, &l->l_rtime);
946 		p->p_pctcpu += l->l_pctcpu;
947 		ru = &p->p_stats->p_ru;
948 		ruadd(ru, &l->l_ru);
949 		ru->ru_nvcsw += (l->l_ncsw - l->l_nivcsw);
950 		ru->ru_nivcsw += l->l_nivcsw;
951 		LIST_REMOVE(l, l_sibling);
952 		p->p_nlwps--;
953 		p->p_nzlwps--;
954 		if ((l->l_prflag & LPR_DETACHED) != 0)
955 			p->p_ndlwps--;
956 
957 		/*
958 		 * Have any LWPs sleeping in lwp_wait() recheck for
959 		 * deadlock.
960 		 */
961 		cv_broadcast(&p->p_lwpcv);
962 		mutex_exit(p->p_lock);
963 	}
964 
965 #ifdef MULTIPROCESSOR
966 	/*
967 	 * In the unlikely event that the LWP is still on the CPU,
968 	 * then spin until it has switched away.  We need to release
969 	 * all locks to avoid deadlock against interrupt handlers on
970 	 * the target CPU.
971 	 */
972 	if ((l->l_pflag & LP_RUNNING) != 0 || l->l_cpu->ci_curlwp == l) {
973 		int count;
974 		(void)count; /* XXXgcc */
975 		KERNEL_UNLOCK_ALL(curlwp, &count);
976 		while ((l->l_pflag & LP_RUNNING) != 0 ||
977 		    l->l_cpu->ci_curlwp == l)
978 			SPINLOCK_BACKOFF_HOOK;
979 		KERNEL_LOCK(count, curlwp);
980 	}
981 #endif
982 
983 	/*
984 	 * Destroy the LWP's remaining signal information.
985 	 */
986 	ksiginfo_queue_init(&kq);
987 	sigclear(&l->l_sigpend, NULL, &kq);
988 	ksiginfo_queue_drain(&kq);
989 	cv_destroy(&l->l_sigcv);
990 
991 	/*
992 	 * Free the LWP's turnstile and the LWP structure itself unless the
993 	 * caller wants to recycle them.  Also, free the scheduler specific
994 	 * data.
995 	 *
996 	 * We can't return turnstile0 to the pool (it didn't come from it),
997 	 * so if it comes up just drop it quietly and move on.
998 	 *
999 	 * We don't recycle the VM resources at this time.
1000 	 */
1001 	if (l->l_lwpctl != NULL)
1002 		lwp_ctl_free(l);
1003 
1004 	if (!recycle && l->l_ts != &turnstile0)
1005 		pool_cache_put(turnstile_cache, l->l_ts);
1006 	if (l->l_name != NULL)
1007 		kmem_free(l->l_name, MAXCOMLEN);
1008 
1009 	cpu_lwp_free2(l);
1010 	uvm_lwp_exit(l);
1011 
1012 	KASSERT(SLIST_EMPTY(&l->l_pi_lenders));
1013 	KASSERT(l->l_inheritedprio == -1);
1014 	kdtrace_thread_dtor(NULL, l);
1015 	if (!recycle)
1016 		pool_cache_put(lwp_cache, l);
1017 }
1018 
1019 /*
1020  * Migrate the LWP to the another CPU.  Unlocks the LWP.
1021  */
1022 void
1023 lwp_migrate(lwp_t *l, struct cpu_info *tci)
1024 {
1025 	struct schedstate_percpu *tspc;
1026 	int lstat = l->l_stat;
1027 
1028 	KASSERT(lwp_locked(l, NULL));
1029 	KASSERT(tci != NULL);
1030 
1031 	/* If LWP is still on the CPU, it must be handled like LSONPROC */
1032 	if ((l->l_pflag & LP_RUNNING) != 0) {
1033 		lstat = LSONPROC;
1034 	}
1035 
1036 	/*
1037 	 * The destination CPU could be changed while previous migration
1038 	 * was not finished.
1039 	 */
1040 	if (l->l_target_cpu != NULL) {
1041 		l->l_target_cpu = tci;
1042 		lwp_unlock(l);
1043 		return;
1044 	}
1045 
1046 	/* Nothing to do if trying to migrate to the same CPU */
1047 	if (l->l_cpu == tci) {
1048 		lwp_unlock(l);
1049 		return;
1050 	}
1051 
1052 	KASSERT(l->l_target_cpu == NULL);
1053 	tspc = &tci->ci_schedstate;
1054 	switch (lstat) {
1055 	case LSRUN:
1056 		l->l_target_cpu = tci;
1057 		break;
1058 	case LSIDL:
1059 		l->l_cpu = tci;
1060 		lwp_unlock_to(l, tspc->spc_mutex);
1061 		return;
1062 	case LSSLEEP:
1063 		l->l_cpu = tci;
1064 		break;
1065 	case LSSTOP:
1066 	case LSSUSPENDED:
1067 		l->l_cpu = tci;
1068 		if (l->l_wchan == NULL) {
1069 			lwp_unlock_to(l, tspc->spc_lwplock);
1070 			return;
1071 		}
1072 		break;
1073 	case LSONPROC:
1074 		l->l_target_cpu = tci;
1075 		spc_lock(l->l_cpu);
1076 		cpu_need_resched(l->l_cpu, RESCHED_KPREEMPT);
1077 		spc_unlock(l->l_cpu);
1078 		break;
1079 	}
1080 	lwp_unlock(l);
1081 }
1082 
1083 /*
1084  * Find the LWP in the process.  Arguments may be zero, in such case,
1085  * the calling process and first LWP in the list will be used.
1086  * On success - returns proc locked.
1087  */
1088 struct lwp *
1089 lwp_find2(pid_t pid, lwpid_t lid)
1090 {
1091 	proc_t *p;
1092 	lwp_t *l;
1093 
1094 	/* Find the process */
1095 	p = (pid == 0) ? curlwp->l_proc : p_find(pid, PFIND_UNLOCK_FAIL);
1096 	if (p == NULL)
1097 		return NULL;
1098 	mutex_enter(p->p_lock);
1099 	if (pid != 0) {
1100 		/* Case of p_find */
1101 		mutex_exit(proc_lock);
1102 	}
1103 
1104 	/* Find the thread */
1105 	l = (lid == 0) ? LIST_FIRST(&p->p_lwps) : lwp_find(p, lid);
1106 	if (l == NULL) {
1107 		mutex_exit(p->p_lock);
1108 	}
1109 
1110 	return l;
1111 }
1112 
1113 /*
1114  * Look up a live LWP within the speicifed process, and return it locked.
1115  *
1116  * Must be called with p->p_lock held.
1117  */
1118 struct lwp *
1119 lwp_find(struct proc *p, int id)
1120 {
1121 	struct lwp *l;
1122 
1123 	KASSERT(mutex_owned(p->p_lock));
1124 
1125 	LIST_FOREACH(l, &p->p_lwps, l_sibling) {
1126 		if (l->l_lid == id)
1127 			break;
1128 	}
1129 
1130 	/*
1131 	 * No need to lock - all of these conditions will
1132 	 * be visible with the process level mutex held.
1133 	 */
1134 	if (l != NULL && (l->l_stat == LSIDL || l->l_stat == LSZOMB))
1135 		l = NULL;
1136 
1137 	return l;
1138 }
1139 
1140 /*
1141  * Update an LWP's cached credentials to mirror the process' master copy.
1142  *
1143  * This happens early in the syscall path, on user trap, and on LWP
1144  * creation.  A long-running LWP can also voluntarily choose to update
1145  * it's credentials by calling this routine.  This may be called from
1146  * LWP_CACHE_CREDS(), which checks l->l_cred != p->p_cred beforehand.
1147  */
1148 void
1149 lwp_update_creds(struct lwp *l)
1150 {
1151 	kauth_cred_t oc;
1152 	struct proc *p;
1153 
1154 	p = l->l_proc;
1155 	oc = l->l_cred;
1156 
1157 	mutex_enter(p->p_lock);
1158 	kauth_cred_hold(p->p_cred);
1159 	l->l_cred = p->p_cred;
1160 	l->l_prflag &= ~LPR_CRMOD;
1161 	mutex_exit(p->p_lock);
1162 	if (oc != NULL)
1163 		kauth_cred_free(oc);
1164 }
1165 
1166 /*
1167  * Verify that an LWP is locked, and optionally verify that the lock matches
1168  * one we specify.
1169  */
1170 int
1171 lwp_locked(struct lwp *l, kmutex_t *mtx)
1172 {
1173 	kmutex_t *cur = l->l_mutex;
1174 
1175 	return mutex_owned(cur) && (mtx == cur || mtx == NULL);
1176 }
1177 
1178 /*
1179  * Lock an LWP.
1180  */
1181 kmutex_t *
1182 lwp_lock_retry(struct lwp *l, kmutex_t *old)
1183 {
1184 
1185 	/*
1186 	 * XXXgcc ignoring kmutex_t * volatile on i386
1187 	 *
1188 	 * gcc version 4.1.2 20061021 prerelease (NetBSD nb1 20061021)
1189 	 */
1190 #if 1
1191 	while (l->l_mutex != old) {
1192 #else
1193 	for (;;) {
1194 #endif
1195 		mutex_spin_exit(old);
1196 		old = l->l_mutex;
1197 		mutex_spin_enter(old);
1198 
1199 		/*
1200 		 * mutex_enter() will have posted a read barrier.  Re-test
1201 		 * l->l_mutex.  If it has changed, we need to try again.
1202 		 */
1203 #if 1
1204 	}
1205 #else
1206 	} while (__predict_false(l->l_mutex != old));
1207 #endif
1208 
1209 	return old;
1210 }
1211 
1212 /*
1213  * Lend a new mutex to an LWP.  The old mutex must be held.
1214  */
1215 void
1216 lwp_setlock(struct lwp *l, kmutex_t *new)
1217 {
1218 
1219 	KASSERT(mutex_owned(l->l_mutex));
1220 
1221 	membar_exit();
1222 	l->l_mutex = new;
1223 }
1224 
1225 /*
1226  * Lend a new mutex to an LWP, and release the old mutex.  The old mutex
1227  * must be held.
1228  */
1229 void
1230 lwp_unlock_to(struct lwp *l, kmutex_t *new)
1231 {
1232 	kmutex_t *old;
1233 
1234 	KASSERT(mutex_owned(l->l_mutex));
1235 
1236 	old = l->l_mutex;
1237 	membar_exit();
1238 	l->l_mutex = new;
1239 	mutex_spin_exit(old);
1240 }
1241 
1242 /*
1243  * Acquire a new mutex, and donate it to an LWP.  The LWP must already be
1244  * locked.
1245  */
1246 void
1247 lwp_relock(struct lwp *l, kmutex_t *new)
1248 {
1249 	kmutex_t *old;
1250 
1251 	KASSERT(mutex_owned(l->l_mutex));
1252 
1253 	old = l->l_mutex;
1254 	if (old != new) {
1255 		mutex_spin_enter(new);
1256 		l->l_mutex = new;
1257 		mutex_spin_exit(old);
1258 	}
1259 }
1260 
1261 int
1262 lwp_trylock(struct lwp *l)
1263 {
1264 	kmutex_t *old;
1265 
1266 	for (;;) {
1267 		if (!mutex_tryenter(old = l->l_mutex))
1268 			return 0;
1269 		if (__predict_true(l->l_mutex == old))
1270 			return 1;
1271 		mutex_spin_exit(old);
1272 	}
1273 }
1274 
1275 void
1276 lwp_unsleep(lwp_t *l, bool cleanup)
1277 {
1278 
1279 	KASSERT(mutex_owned(l->l_mutex));
1280 	(*l->l_syncobj->sobj_unsleep)(l, cleanup);
1281 }
1282 
1283 
1284 /*
1285  * Handle exceptions for mi_userret().  Called if a member of LW_USERRET is
1286  * set.
1287  */
1288 void
1289 lwp_userret(struct lwp *l)
1290 {
1291 	struct proc *p;
1292 	void (*hook)(void);
1293 	int sig;
1294 
1295 	KASSERT(l == curlwp);
1296 	KASSERT(l->l_stat == LSONPROC);
1297 	p = l->l_proc;
1298 
1299 #ifndef __HAVE_FAST_SOFTINTS
1300 	/* Run pending soft interrupts. */
1301 	if (l->l_cpu->ci_data.cpu_softints != 0)
1302 		softint_overlay();
1303 #endif
1304 
1305 #ifdef KERN_SA
1306 	/* Generate UNBLOCKED upcall if needed */
1307 	if (l->l_flag & LW_SA_BLOCKING) {
1308 		sa_unblock_userret(l);
1309 		/* NOTREACHED */
1310 	}
1311 #endif
1312 
1313 	/*
1314 	 * It should be safe to do this read unlocked on a multiprocessor
1315 	 * system..
1316 	 *
1317 	 * LW_SA_UPCALL will be handled after the while() loop, so don't
1318 	 * consider it now.
1319 	 */
1320 	while ((l->l_flag & (LW_USERRET & ~(LW_SA_UPCALL))) != 0) {
1321 		/*
1322 		 * Process pending signals first, unless the process
1323 		 * is dumping core or exiting, where we will instead
1324 		 * enter the LW_WSUSPEND case below.
1325 		 */
1326 		if ((l->l_flag & (LW_PENDSIG | LW_WCORE | LW_WEXIT)) ==
1327 		    LW_PENDSIG) {
1328 			mutex_enter(p->p_lock);
1329 			while ((sig = issignal(l)) != 0)
1330 				postsig(sig);
1331 			mutex_exit(p->p_lock);
1332 		}
1333 
1334 		/*
1335 		 * Core-dump or suspend pending.
1336 		 *
1337 		 * In case of core dump, suspend ourselves, so that the
1338 		 * kernel stack and therefore the userland registers saved
1339 		 * in the trapframe are around for coredump() to write them
1340 		 * out.  We issue a wakeup on p->p_lwpcv so that sigexit()
1341 		 * will write the core file out once all other LWPs are
1342 		 * suspended.
1343 		 */
1344 		if ((l->l_flag & LW_WSUSPEND) != 0) {
1345 			mutex_enter(p->p_lock);
1346 			p->p_nrlwps--;
1347 			cv_broadcast(&p->p_lwpcv);
1348 			lwp_lock(l);
1349 			l->l_stat = LSSUSPENDED;
1350 			lwp_unlock(l);
1351 			mutex_exit(p->p_lock);
1352 			lwp_lock(l);
1353 			mi_switch(l);
1354 		}
1355 
1356 		/* Process is exiting. */
1357 		if ((l->l_flag & LW_WEXIT) != 0) {
1358 			lwp_exit(l);
1359 			KASSERT(0);
1360 			/* NOTREACHED */
1361 		}
1362 
1363 		/* Call userret hook; used by Linux emulation. */
1364 		if ((l->l_flag & LW_WUSERRET) != 0) {
1365 			lwp_lock(l);
1366 			l->l_flag &= ~LW_WUSERRET;
1367 			lwp_unlock(l);
1368 			hook = p->p_userret;
1369 			p->p_userret = NULL;
1370 			(*hook)();
1371 		}
1372 	}
1373 
1374 #ifdef KERN_SA
1375 	/*
1376 	 * Timer events are handled specially.  We only try once to deliver
1377 	 * pending timer upcalls; if if fails, we can try again on the next
1378 	 * loop around.  If we need to re-enter lwp_userret(), MD code will
1379 	 * bounce us back here through the trap path after we return.
1380 	 */
1381 	if (p->p_timerpend)
1382 		timerupcall(l);
1383 	if (l->l_flag & LW_SA_UPCALL)
1384 		sa_upcall_userret(l);
1385 #endif /* KERN_SA */
1386 }
1387 
1388 /*
1389  * Force an LWP to enter the kernel, to take a trip through lwp_userret().
1390  */
1391 void
1392 lwp_need_userret(struct lwp *l)
1393 {
1394 	KASSERT(lwp_locked(l, NULL));
1395 
1396 	/*
1397 	 * Since the tests in lwp_userret() are done unlocked, make sure
1398 	 * that the condition will be seen before forcing the LWP to enter
1399 	 * kernel mode.
1400 	 */
1401 	membar_producer();
1402 	cpu_signotify(l);
1403 }
1404 
1405 /*
1406  * Add one reference to an LWP.  This will prevent the LWP from
1407  * exiting, thus keep the lwp structure and PCB around to inspect.
1408  */
1409 void
1410 lwp_addref(struct lwp *l)
1411 {
1412 
1413 	KASSERT(mutex_owned(l->l_proc->p_lock));
1414 	KASSERT(l->l_stat != LSZOMB);
1415 	KASSERT(l->l_refcnt != 0);
1416 
1417 	l->l_refcnt++;
1418 }
1419 
1420 /*
1421  * Remove one reference to an LWP.  If this is the last reference,
1422  * then we must finalize the LWP's death.
1423  */
1424 void
1425 lwp_delref(struct lwp *l)
1426 {
1427 	struct proc *p = l->l_proc;
1428 
1429 	mutex_enter(p->p_lock);
1430 	lwp_delref2(l);
1431 	mutex_exit(p->p_lock);
1432 }
1433 
1434 /*
1435  * Remove one reference to an LWP.  If this is the last reference,
1436  * then we must finalize the LWP's death.  The proc mutex is held
1437  * on entry.
1438  */
1439 void
1440 lwp_delref2(struct lwp *l)
1441 {
1442 	struct proc *p = l->l_proc;
1443 
1444 	KASSERT(mutex_owned(p->p_lock));
1445 	KASSERT(l->l_stat != LSZOMB);
1446 	KASSERT(l->l_refcnt > 0);
1447 	if (--l->l_refcnt == 0)
1448 		cv_broadcast(&p->p_lwpcv);
1449 }
1450 
1451 /*
1452  * Drain all references to the current LWP.
1453  */
1454 void
1455 lwp_drainrefs(struct lwp *l)
1456 {
1457 	struct proc *p = l->l_proc;
1458 
1459 	KASSERT(mutex_owned(p->p_lock));
1460 	KASSERT(l->l_refcnt != 0);
1461 
1462 	l->l_refcnt--;
1463 	while (l->l_refcnt != 0)
1464 		cv_wait(&p->p_lwpcv, p->p_lock);
1465 }
1466 
1467 /*
1468  * Return true if the specified LWP is 'alive'.  Only p->p_lock need
1469  * be held.
1470  */
1471 bool
1472 lwp_alive(lwp_t *l)
1473 {
1474 
1475 	KASSERT(mutex_owned(l->l_proc->p_lock));
1476 
1477 	switch (l->l_stat) {
1478 	case LSSLEEP:
1479 	case LSRUN:
1480 	case LSONPROC:
1481 	case LSSTOP:
1482 	case LSSUSPENDED:
1483 		return true;
1484 	default:
1485 		return false;
1486 	}
1487 }
1488 
1489 /*
1490  * Return first live LWP in the process.
1491  */
1492 lwp_t *
1493 lwp_find_first(proc_t *p)
1494 {
1495 	lwp_t *l;
1496 
1497 	KASSERT(mutex_owned(p->p_lock));
1498 
1499 	LIST_FOREACH(l, &p->p_lwps, l_sibling) {
1500 		if (lwp_alive(l)) {
1501 			return l;
1502 		}
1503 	}
1504 
1505 	return NULL;
1506 }
1507 
1508 /*
1509  * Allocate a new lwpctl structure for a user LWP.
1510  */
1511 int
1512 lwp_ctl_alloc(vaddr_t *uaddr)
1513 {
1514 	lcproc_t *lp;
1515 	u_int bit, i, offset;
1516 	struct uvm_object *uao;
1517 	int error;
1518 	lcpage_t *lcp;
1519 	proc_t *p;
1520 	lwp_t *l;
1521 
1522 	l = curlwp;
1523 	p = l->l_proc;
1524 
1525 	if (l->l_lcpage != NULL) {
1526 		lcp = l->l_lcpage;
1527 		*uaddr = lcp->lcp_uaddr + (vaddr_t)l->l_lwpctl - lcp->lcp_kaddr;
1528 		return 0;
1529 	}
1530 
1531 	/* First time around, allocate header structure for the process. */
1532 	if ((lp = p->p_lwpctl) == NULL) {
1533 		lp = kmem_alloc(sizeof(*lp), KM_SLEEP);
1534 		mutex_init(&lp->lp_lock, MUTEX_DEFAULT, IPL_NONE);
1535 		lp->lp_uao = NULL;
1536 		TAILQ_INIT(&lp->lp_pages);
1537 		mutex_enter(p->p_lock);
1538 		if (p->p_lwpctl == NULL) {
1539 			p->p_lwpctl = lp;
1540 			mutex_exit(p->p_lock);
1541 		} else {
1542 			mutex_exit(p->p_lock);
1543 			mutex_destroy(&lp->lp_lock);
1544 			kmem_free(lp, sizeof(*lp));
1545 			lp = p->p_lwpctl;
1546 		}
1547 	}
1548 
1549  	/*
1550  	 * Set up an anonymous memory region to hold the shared pages.
1551  	 * Map them into the process' address space.  The user vmspace
1552  	 * gets the first reference on the UAO.
1553  	 */
1554 	mutex_enter(&lp->lp_lock);
1555 	if (lp->lp_uao == NULL) {
1556 		lp->lp_uao = uao_create(LWPCTL_UAREA_SZ, 0);
1557 		lp->lp_cur = 0;
1558 		lp->lp_max = LWPCTL_UAREA_SZ;
1559 		lp->lp_uva = p->p_emul->e_vm_default_addr(p,
1560 		     (vaddr_t)p->p_vmspace->vm_daddr, LWPCTL_UAREA_SZ);
1561 		error = uvm_map(&p->p_vmspace->vm_map, &lp->lp_uva,
1562 		    LWPCTL_UAREA_SZ, lp->lp_uao, 0, 0, UVM_MAPFLAG(UVM_PROT_RW,
1563 		    UVM_PROT_RW, UVM_INH_NONE, UVM_ADV_NORMAL, 0));
1564 		if (error != 0) {
1565 			uao_detach(lp->lp_uao);
1566 			lp->lp_uao = NULL;
1567 			mutex_exit(&lp->lp_lock);
1568 			return error;
1569 		}
1570 	}
1571 
1572 	/* Get a free block and allocate for this LWP. */
1573 	TAILQ_FOREACH(lcp, &lp->lp_pages, lcp_chain) {
1574 		if (lcp->lcp_nfree != 0)
1575 			break;
1576 	}
1577 	if (lcp == NULL) {
1578 		/* Nothing available - try to set up a free page. */
1579 		if (lp->lp_cur == lp->lp_max) {
1580 			mutex_exit(&lp->lp_lock);
1581 			return ENOMEM;
1582 		}
1583 		lcp = kmem_alloc(LWPCTL_LCPAGE_SZ, KM_SLEEP);
1584 		if (lcp == NULL) {
1585 			mutex_exit(&lp->lp_lock);
1586 			return ENOMEM;
1587 		}
1588 		/*
1589 		 * Wire the next page down in kernel space.  Since this
1590 		 * is a new mapping, we must add a reference.
1591 		 */
1592 		uao = lp->lp_uao;
1593 		(*uao->pgops->pgo_reference)(uao);
1594 		lcp->lcp_kaddr = vm_map_min(kernel_map);
1595 		error = uvm_map(kernel_map, &lcp->lcp_kaddr, PAGE_SIZE,
1596 		    uao, lp->lp_cur, PAGE_SIZE,
1597 		    UVM_MAPFLAG(UVM_PROT_RW, UVM_PROT_RW,
1598 		    UVM_INH_NONE, UVM_ADV_RANDOM, 0));
1599 		if (error != 0) {
1600 			mutex_exit(&lp->lp_lock);
1601 			kmem_free(lcp, LWPCTL_LCPAGE_SZ);
1602 			(*uao->pgops->pgo_detach)(uao);
1603 			return error;
1604 		}
1605 		error = uvm_map_pageable(kernel_map, lcp->lcp_kaddr,
1606 		    lcp->lcp_kaddr + PAGE_SIZE, FALSE, 0);
1607 		if (error != 0) {
1608 			mutex_exit(&lp->lp_lock);
1609 			uvm_unmap(kernel_map, lcp->lcp_kaddr,
1610 			    lcp->lcp_kaddr + PAGE_SIZE);
1611 			kmem_free(lcp, LWPCTL_LCPAGE_SZ);
1612 			return error;
1613 		}
1614 		/* Prepare the page descriptor and link into the list. */
1615 		lcp->lcp_uaddr = lp->lp_uva + lp->lp_cur;
1616 		lp->lp_cur += PAGE_SIZE;
1617 		lcp->lcp_nfree = LWPCTL_PER_PAGE;
1618 		lcp->lcp_rotor = 0;
1619 		memset(lcp->lcp_bitmap, 0xff, LWPCTL_BITMAP_SZ);
1620 		TAILQ_INSERT_HEAD(&lp->lp_pages, lcp, lcp_chain);
1621 	}
1622 	for (i = lcp->lcp_rotor; lcp->lcp_bitmap[i] == 0;) {
1623 		if (++i >= LWPCTL_BITMAP_ENTRIES)
1624 			i = 0;
1625 	}
1626 	bit = ffs(lcp->lcp_bitmap[i]) - 1;
1627 	lcp->lcp_bitmap[i] ^= (1 << bit);
1628 	lcp->lcp_rotor = i;
1629 	lcp->lcp_nfree--;
1630 	l->l_lcpage = lcp;
1631 	offset = (i << 5) + bit;
1632 	l->l_lwpctl = (lwpctl_t *)lcp->lcp_kaddr + offset;
1633 	*uaddr = lcp->lcp_uaddr + offset * sizeof(lwpctl_t);
1634 	mutex_exit(&lp->lp_lock);
1635 
1636 	KPREEMPT_DISABLE(l);
1637 	l->l_lwpctl->lc_curcpu = (int)curcpu()->ci_data.cpu_index;
1638 	KPREEMPT_ENABLE(l);
1639 
1640 	return 0;
1641 }
1642 
1643 /*
1644  * Free an lwpctl structure back to the per-process list.
1645  */
1646 void
1647 lwp_ctl_free(lwp_t *l)
1648 {
1649 	lcproc_t *lp;
1650 	lcpage_t *lcp;
1651 	u_int map, offset;
1652 
1653 	lp = l->l_proc->p_lwpctl;
1654 	KASSERT(lp != NULL);
1655 
1656 	lcp = l->l_lcpage;
1657 	offset = (u_int)((lwpctl_t *)l->l_lwpctl - (lwpctl_t *)lcp->lcp_kaddr);
1658 	KASSERT(offset < LWPCTL_PER_PAGE);
1659 
1660 	mutex_enter(&lp->lp_lock);
1661 	lcp->lcp_nfree++;
1662 	map = offset >> 5;
1663 	lcp->lcp_bitmap[map] |= (1 << (offset & 31));
1664 	if (lcp->lcp_bitmap[lcp->lcp_rotor] == 0)
1665 		lcp->lcp_rotor = map;
1666 	if (TAILQ_FIRST(&lp->lp_pages)->lcp_nfree == 0) {
1667 		TAILQ_REMOVE(&lp->lp_pages, lcp, lcp_chain);
1668 		TAILQ_INSERT_HEAD(&lp->lp_pages, lcp, lcp_chain);
1669 	}
1670 	mutex_exit(&lp->lp_lock);
1671 }
1672 
1673 /*
1674  * Process is exiting; tear down lwpctl state.  This can only be safely
1675  * called by the last LWP in the process.
1676  */
1677 void
1678 lwp_ctl_exit(void)
1679 {
1680 	lcpage_t *lcp, *next;
1681 	lcproc_t *lp;
1682 	proc_t *p;
1683 	lwp_t *l;
1684 
1685 	l = curlwp;
1686 	l->l_lwpctl = NULL;
1687 	l->l_lcpage = NULL;
1688 	p = l->l_proc;
1689 	lp = p->p_lwpctl;
1690 
1691 	KASSERT(lp != NULL);
1692 	KASSERT(p->p_nlwps == 1);
1693 
1694 	for (lcp = TAILQ_FIRST(&lp->lp_pages); lcp != NULL; lcp = next) {
1695 		next = TAILQ_NEXT(lcp, lcp_chain);
1696 		uvm_unmap(kernel_map, lcp->lcp_kaddr,
1697 		    lcp->lcp_kaddr + PAGE_SIZE);
1698 		kmem_free(lcp, LWPCTL_LCPAGE_SZ);
1699 	}
1700 
1701 	if (lp->lp_uao != NULL) {
1702 		uvm_unmap(&p->p_vmspace->vm_map, lp->lp_uva,
1703 		    lp->lp_uva + LWPCTL_UAREA_SZ);
1704 	}
1705 
1706 	mutex_destroy(&lp->lp_lock);
1707 	kmem_free(lp, sizeof(*lp));
1708 	p->p_lwpctl = NULL;
1709 }
1710 
1711 /*
1712  * Return the current LWP's "preemption counter".  Used to detect
1713  * preemption across operations that can tolerate preemption without
1714  * crashing, but which may generate incorrect results if preempted.
1715  */
1716 uint64_t
1717 lwp_pctr(void)
1718 {
1719 
1720 	return curlwp->l_ncsw;
1721 }
1722 
1723 #if defined(DDB)
1724 void
1725 lwp_whatis(uintptr_t addr, void (*pr)(const char *, ...))
1726 {
1727 	lwp_t *l;
1728 
1729 	LIST_FOREACH(l, &alllwp, l_list) {
1730 		uintptr_t stack = (uintptr_t)KSTACK_LOWEST_ADDR(l);
1731 
1732 		if (addr < stack || stack + KSTACK_SIZE <= addr) {
1733 			continue;
1734 		}
1735 		(*pr)("%p is %p+%zu, LWP %p's stack\n",
1736 		    (void *)addr, (void *)stack,
1737 		    (size_t)(addr - stack), l);
1738 	}
1739 }
1740 #endif /* defined(DDB) */
1741