1 /* $NetBSD: kern_lwp.c,v 1.146 2010/04/23 19:18:09 rmind Exp $ */ 2 3 /*- 4 * Copyright (c) 2001, 2006, 2007, 2008, 2009 The NetBSD Foundation, Inc. 5 * All rights reserved. 6 * 7 * This code is derived from software contributed to The NetBSD Foundation 8 * by Nathan J. Williams, and Andrew Doran. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS 20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 29 * POSSIBILITY OF SUCH DAMAGE. 30 */ 31 32 /* 33 * Overview 34 * 35 * Lightweight processes (LWPs) are the basic unit or thread of 36 * execution within the kernel. The core state of an LWP is described 37 * by "struct lwp", also known as lwp_t. 38 * 39 * Each LWP is contained within a process (described by "struct proc"), 40 * Every process contains at least one LWP, but may contain more. The 41 * process describes attributes shared among all of its LWPs such as a 42 * private address space, global execution state (stopped, active, 43 * zombie, ...), signal disposition and so on. On a multiprocessor 44 * machine, multiple LWPs be executing concurrently in the kernel. 45 * 46 * Execution states 47 * 48 * At any given time, an LWP has overall state that is described by 49 * lwp::l_stat. The states are broken into two sets below. The first 50 * set is guaranteed to represent the absolute, current state of the 51 * LWP: 52 * 53 * LSONPROC 54 * 55 * On processor: the LWP is executing on a CPU, either in the 56 * kernel or in user space. 57 * 58 * LSRUN 59 * 60 * Runnable: the LWP is parked on a run queue, and may soon be 61 * chosen to run by an idle processor, or by a processor that 62 * has been asked to preempt a currently runnning but lower 63 * priority LWP. 64 * 65 * LSIDL 66 * 67 * Idle: the LWP has been created but has not yet executed, 68 * or it has ceased executing a unit of work and is waiting 69 * to be started again. 70 * 71 * LSSUSPENDED: 72 * 73 * Suspended: the LWP has had its execution suspended by 74 * another LWP in the same process using the _lwp_suspend() 75 * system call. User-level LWPs also enter the suspended 76 * state when the system is shutting down. 77 * 78 * The second set represent a "statement of intent" on behalf of the 79 * LWP. The LWP may in fact be executing on a processor, may be 80 * sleeping or idle. It is expected to take the necessary action to 81 * stop executing or become "running" again within a short timeframe. 82 * The LP_RUNNING flag in lwp::l_pflag indicates that an LWP is running. 83 * Importantly, it indicates that its state is tied to a CPU. 84 * 85 * LSZOMB: 86 * 87 * Dead or dying: the LWP has released most of its resources 88 * and is about to switch away into oblivion, or has already 89 * switched away. When it switches away, its few remaining 90 * resources can be collected. 91 * 92 * LSSLEEP: 93 * 94 * Sleeping: the LWP has entered itself onto a sleep queue, and 95 * has switched away or will switch away shortly to allow other 96 * LWPs to run on the CPU. 97 * 98 * LSSTOP: 99 * 100 * Stopped: the LWP has been stopped as a result of a job 101 * control signal, or as a result of the ptrace() interface. 102 * 103 * Stopped LWPs may run briefly within the kernel to handle 104 * signals that they receive, but will not return to user space 105 * until their process' state is changed away from stopped. 106 * 107 * Single LWPs within a process can not be set stopped 108 * selectively: all actions that can stop or continue LWPs 109 * occur at the process level. 110 * 111 * State transitions 112 * 113 * Note that the LSSTOP state may only be set when returning to 114 * user space in userret(), or when sleeping interruptably. The 115 * LSSUSPENDED state may only be set in userret(). Before setting 116 * those states, we try to ensure that the LWPs will release all 117 * locks that they hold, and at a minimum try to ensure that the 118 * LWP can be set runnable again by a signal. 119 * 120 * LWPs may transition states in the following ways: 121 * 122 * RUN -------> ONPROC ONPROC -----> RUN 123 * > SLEEP 124 * > STOPPED 125 * > SUSPENDED 126 * > ZOMB 127 * > IDL (special cases) 128 * 129 * STOPPED ---> RUN SUSPENDED --> RUN 130 * > SLEEP 131 * 132 * SLEEP -----> ONPROC IDL --------> RUN 133 * > RUN > SUSPENDED 134 * > STOPPED > STOPPED 135 * > ONPROC (special cases) 136 * 137 * Some state transitions are only possible with kernel threads (eg 138 * ONPROC -> IDL) and happen under tightly controlled circumstances 139 * free of unwanted side effects. 140 * 141 * Migration 142 * 143 * Migration of threads from one CPU to another could be performed 144 * internally by the scheduler via sched_takecpu() or sched_catchlwp() 145 * functions. The universal lwp_migrate() function should be used for 146 * any other cases. Subsystems in the kernel must be aware that CPU 147 * of LWP may change, while it is not locked. 148 * 149 * Locking 150 * 151 * The majority of fields in 'struct lwp' are covered by a single, 152 * general spin lock pointed to by lwp::l_mutex. The locks covering 153 * each field are documented in sys/lwp.h. 154 * 155 * State transitions must be made with the LWP's general lock held, 156 * and may cause the LWP's lock pointer to change. Manipulation of 157 * the general lock is not performed directly, but through calls to 158 * lwp_lock(), lwp_relock() and similar. 159 * 160 * States and their associated locks: 161 * 162 * LSONPROC, LSZOMB: 163 * 164 * Always covered by spc_lwplock, which protects running LWPs. 165 * This is a per-CPU lock and matches lwp::l_cpu. 166 * 167 * LSIDL, LSRUN: 168 * 169 * Always covered by spc_mutex, which protects the run queues. 170 * This is a per-CPU lock and matches lwp::l_cpu. 171 * 172 * LSSLEEP: 173 * 174 * Covered by a lock associated with the sleep queue that the 175 * LWP resides on. Matches lwp::l_sleepq::sq_mutex. 176 * 177 * LSSTOP, LSSUSPENDED: 178 * 179 * If the LWP was previously sleeping (l_wchan != NULL), then 180 * l_mutex references the sleep queue lock. If the LWP was 181 * runnable or on the CPU when halted, or has been removed from 182 * the sleep queue since halted, then the lock is spc_lwplock. 183 * 184 * The lock order is as follows: 185 * 186 * spc::spc_lwplock -> 187 * sleeptab::st_mutex -> 188 * tschain_t::tc_mutex -> 189 * spc::spc_mutex 190 * 191 * Each process has an scheduler state lock (proc::p_lock), and a 192 * number of counters on LWPs and their states: p_nzlwps, p_nrlwps, and 193 * so on. When an LWP is to be entered into or removed from one of the 194 * following states, p_lock must be held and the process wide counters 195 * adjusted: 196 * 197 * LSIDL, LSZOMB, LSSTOP, LSSUSPENDED 198 * 199 * (But not always for kernel threads. There are some special cases 200 * as mentioned above. See kern_softint.c.) 201 * 202 * Note that an LWP is considered running or likely to run soon if in 203 * one of the following states. This affects the value of p_nrlwps: 204 * 205 * LSRUN, LSONPROC, LSSLEEP 206 * 207 * p_lock does not need to be held when transitioning among these 208 * three states, hence p_lock is rarely taken for state transitions. 209 */ 210 211 #include <sys/cdefs.h> 212 __KERNEL_RCSID(0, "$NetBSD: kern_lwp.c,v 1.146 2010/04/23 19:18:09 rmind Exp $"); 213 214 #include "opt_ddb.h" 215 #include "opt_lockdebug.h" 216 #include "opt_sa.h" 217 #include "opt_dtrace.h" 218 219 #define _LWP_API_PRIVATE 220 221 #include <sys/param.h> 222 #include <sys/systm.h> 223 #include <sys/cpu.h> 224 #include <sys/pool.h> 225 #include <sys/proc.h> 226 #include <sys/sa.h> 227 #include <sys/savar.h> 228 #include <sys/syscallargs.h> 229 #include <sys/syscall_stats.h> 230 #include <sys/kauth.h> 231 #include <sys/sleepq.h> 232 #include <sys/lockdebug.h> 233 #include <sys/kmem.h> 234 #include <sys/pset.h> 235 #include <sys/intr.h> 236 #include <sys/lwpctl.h> 237 #include <sys/atomic.h> 238 #include <sys/filedesc.h> 239 #include <sys/dtrace_bsd.h> 240 #include <sys/sdt.h> 241 242 #include <uvm/uvm_extern.h> 243 #include <uvm/uvm_object.h> 244 245 struct lwplist alllwp = LIST_HEAD_INITIALIZER(alllwp); 246 static pool_cache_t lwp_cache; 247 248 /* DTrace proc provider probes */ 249 SDT_PROBE_DEFINE(proc,,,lwp_create, 250 "struct lwp *", NULL, 251 NULL, NULL, NULL, NULL, 252 NULL, NULL, NULL, NULL); 253 SDT_PROBE_DEFINE(proc,,,lwp_start, 254 "struct lwp *", NULL, 255 NULL, NULL, NULL, NULL, 256 NULL, NULL, NULL, NULL); 257 SDT_PROBE_DEFINE(proc,,,lwp_exit, 258 "struct lwp *", NULL, 259 NULL, NULL, NULL, NULL, 260 NULL, NULL, NULL, NULL); 261 262 void 263 lwpinit(void) 264 { 265 266 lwpinit_specificdata(); 267 lwp_sys_init(); 268 lwp_cache = pool_cache_init(sizeof(lwp_t), MIN_LWP_ALIGNMENT, 0, 0, 269 "lwppl", NULL, IPL_NONE, NULL, NULL, NULL); 270 } 271 272 /* 273 * Set an suspended. 274 * 275 * Must be called with p_lock held, and the LWP locked. Will unlock the 276 * LWP before return. 277 */ 278 int 279 lwp_suspend(struct lwp *curl, struct lwp *t) 280 { 281 int error; 282 283 KASSERT(mutex_owned(t->l_proc->p_lock)); 284 KASSERT(lwp_locked(t, NULL)); 285 286 KASSERT(curl != t || curl->l_stat == LSONPROC); 287 288 /* 289 * If the current LWP has been told to exit, we must not suspend anyone 290 * else or deadlock could occur. We won't return to userspace. 291 */ 292 if ((curl->l_flag & (LW_WEXIT | LW_WCORE)) != 0) { 293 lwp_unlock(t); 294 return (EDEADLK); 295 } 296 297 error = 0; 298 299 switch (t->l_stat) { 300 case LSRUN: 301 case LSONPROC: 302 t->l_flag |= LW_WSUSPEND; 303 lwp_need_userret(t); 304 lwp_unlock(t); 305 break; 306 307 case LSSLEEP: 308 t->l_flag |= LW_WSUSPEND; 309 310 /* 311 * Kick the LWP and try to get it to the kernel boundary 312 * so that it will release any locks that it holds. 313 * setrunnable() will release the lock. 314 */ 315 if ((t->l_flag & LW_SINTR) != 0) 316 setrunnable(t); 317 else 318 lwp_unlock(t); 319 break; 320 321 case LSSUSPENDED: 322 lwp_unlock(t); 323 break; 324 325 case LSSTOP: 326 t->l_flag |= LW_WSUSPEND; 327 setrunnable(t); 328 break; 329 330 case LSIDL: 331 case LSZOMB: 332 error = EINTR; /* It's what Solaris does..... */ 333 lwp_unlock(t); 334 break; 335 } 336 337 return (error); 338 } 339 340 /* 341 * Restart a suspended LWP. 342 * 343 * Must be called with p_lock held, and the LWP locked. Will unlock the 344 * LWP before return. 345 */ 346 void 347 lwp_continue(struct lwp *l) 348 { 349 350 KASSERT(mutex_owned(l->l_proc->p_lock)); 351 KASSERT(lwp_locked(l, NULL)); 352 353 /* If rebooting or not suspended, then just bail out. */ 354 if ((l->l_flag & LW_WREBOOT) != 0) { 355 lwp_unlock(l); 356 return; 357 } 358 359 l->l_flag &= ~LW_WSUSPEND; 360 361 if (l->l_stat != LSSUSPENDED) { 362 lwp_unlock(l); 363 return; 364 } 365 366 /* setrunnable() will release the lock. */ 367 setrunnable(l); 368 } 369 370 /* 371 * Restart a stopped LWP. 372 * 373 * Must be called with p_lock held, and the LWP NOT locked. Will unlock the 374 * LWP before return. 375 */ 376 void 377 lwp_unstop(struct lwp *l) 378 { 379 struct proc *p = l->l_proc; 380 381 KASSERT(mutex_owned(proc_lock)); 382 KASSERT(mutex_owned(p->p_lock)); 383 384 lwp_lock(l); 385 386 /* If not stopped, then just bail out. */ 387 if (l->l_stat != LSSTOP) { 388 lwp_unlock(l); 389 return; 390 } 391 392 p->p_stat = SACTIVE; 393 p->p_sflag &= ~PS_STOPPING; 394 395 if (!p->p_waited) 396 p->p_pptr->p_nstopchild--; 397 398 if (l->l_wchan == NULL) { 399 /* setrunnable() will release the lock. */ 400 setrunnable(l); 401 } else { 402 l->l_stat = LSSLEEP; 403 p->p_nrlwps++; 404 lwp_unlock(l); 405 } 406 } 407 408 /* 409 * Wait for an LWP within the current process to exit. If 'lid' is 410 * non-zero, we are waiting for a specific LWP. 411 * 412 * Must be called with p->p_lock held. 413 */ 414 int 415 lwp_wait1(struct lwp *l, lwpid_t lid, lwpid_t *departed, int flags) 416 { 417 struct proc *p = l->l_proc; 418 struct lwp *l2; 419 int nfound, error; 420 lwpid_t curlid; 421 bool exiting; 422 423 KASSERT(mutex_owned(p->p_lock)); 424 425 p->p_nlwpwait++; 426 l->l_waitingfor = lid; 427 curlid = l->l_lid; 428 exiting = ((flags & LWPWAIT_EXITCONTROL) != 0); 429 430 for (;;) { 431 /* 432 * Avoid a race between exit1() and sigexit(): if the 433 * process is dumping core, then we need to bail out: call 434 * into lwp_userret() where we will be suspended until the 435 * deed is done. 436 */ 437 if ((p->p_sflag & PS_WCORE) != 0) { 438 mutex_exit(p->p_lock); 439 lwp_userret(l); 440 #ifdef DIAGNOSTIC 441 panic("lwp_wait1"); 442 #endif 443 /* NOTREACHED */ 444 } 445 446 /* 447 * First off, drain any detached LWP that is waiting to be 448 * reaped. 449 */ 450 while ((l2 = p->p_zomblwp) != NULL) { 451 p->p_zomblwp = NULL; 452 lwp_free(l2, false, false);/* releases proc mutex */ 453 mutex_enter(p->p_lock); 454 } 455 456 /* 457 * Now look for an LWP to collect. If the whole process is 458 * exiting, count detached LWPs as eligible to be collected, 459 * but don't drain them here. 460 */ 461 nfound = 0; 462 error = 0; 463 LIST_FOREACH(l2, &p->p_lwps, l_sibling) { 464 /* 465 * If a specific wait and the target is waiting on 466 * us, then avoid deadlock. This also traps LWPs 467 * that try to wait on themselves. 468 * 469 * Note that this does not handle more complicated 470 * cycles, like: t1 -> t2 -> t3 -> t1. The process 471 * can still be killed so it is not a major problem. 472 */ 473 if (l2->l_lid == lid && l2->l_waitingfor == curlid) { 474 error = EDEADLK; 475 break; 476 } 477 if (l2 == l) 478 continue; 479 if ((l2->l_prflag & LPR_DETACHED) != 0) { 480 nfound += exiting; 481 continue; 482 } 483 if (lid != 0) { 484 if (l2->l_lid != lid) 485 continue; 486 /* 487 * Mark this LWP as the first waiter, if there 488 * is no other. 489 */ 490 if (l2->l_waiter == 0) 491 l2->l_waiter = curlid; 492 } else if (l2->l_waiter != 0) { 493 /* 494 * It already has a waiter - so don't 495 * collect it. If the waiter doesn't 496 * grab it we'll get another chance 497 * later. 498 */ 499 nfound++; 500 continue; 501 } 502 nfound++; 503 504 /* No need to lock the LWP in order to see LSZOMB. */ 505 if (l2->l_stat != LSZOMB) 506 continue; 507 508 /* 509 * We're no longer waiting. Reset the "first waiter" 510 * pointer on the target, in case it was us. 511 */ 512 l->l_waitingfor = 0; 513 l2->l_waiter = 0; 514 p->p_nlwpwait--; 515 if (departed) 516 *departed = l2->l_lid; 517 sched_lwp_collect(l2); 518 519 /* lwp_free() releases the proc lock. */ 520 lwp_free(l2, false, false); 521 mutex_enter(p->p_lock); 522 return 0; 523 } 524 525 if (error != 0) 526 break; 527 if (nfound == 0) { 528 error = ESRCH; 529 break; 530 } 531 532 /* 533 * The kernel is careful to ensure that it can not deadlock 534 * when exiting - just keep waiting. 535 */ 536 if (exiting) { 537 KASSERT(p->p_nlwps > 1); 538 cv_wait(&p->p_lwpcv, p->p_lock); 539 continue; 540 } 541 542 /* 543 * If all other LWPs are waiting for exits or suspends 544 * and the supply of zombies and potential zombies is 545 * exhausted, then we are about to deadlock. 546 * 547 * If the process is exiting (and this LWP is not the one 548 * that is coordinating the exit) then bail out now. 549 */ 550 if ((p->p_sflag & PS_WEXIT) != 0 || 551 p->p_nrlwps + p->p_nzlwps - p->p_ndlwps <= p->p_nlwpwait) { 552 error = EDEADLK; 553 break; 554 } 555 556 /* 557 * Sit around and wait for something to happen. We'll be 558 * awoken if any of the conditions examined change: if an 559 * LWP exits, is collected, or is detached. 560 */ 561 if ((error = cv_wait_sig(&p->p_lwpcv, p->p_lock)) != 0) 562 break; 563 } 564 565 /* 566 * We didn't find any LWPs to collect, we may have received a 567 * signal, or some other condition has caused us to bail out. 568 * 569 * If waiting on a specific LWP, clear the waiters marker: some 570 * other LWP may want it. Then, kick all the remaining waiters 571 * so that they can re-check for zombies and for deadlock. 572 */ 573 if (lid != 0) { 574 LIST_FOREACH(l2, &p->p_lwps, l_sibling) { 575 if (l2->l_lid == lid) { 576 if (l2->l_waiter == curlid) 577 l2->l_waiter = 0; 578 break; 579 } 580 } 581 } 582 p->p_nlwpwait--; 583 l->l_waitingfor = 0; 584 cv_broadcast(&p->p_lwpcv); 585 586 return error; 587 } 588 589 /* 590 * Create a new LWP within process 'p2', using LWP 'l1' as a template. 591 * The new LWP is created in state LSIDL and must be set running, 592 * suspended, or stopped by the caller. 593 */ 594 int 595 lwp_create(lwp_t *l1, proc_t *p2, vaddr_t uaddr, int flags, 596 void *stack, size_t stacksize, void (*func)(void *), void *arg, 597 lwp_t **rnewlwpp, int sclass) 598 { 599 struct lwp *l2, *isfree; 600 turnstile_t *ts; 601 602 KASSERT(l1 == curlwp || l1->l_proc == &proc0); 603 604 /* 605 * First off, reap any detached LWP waiting to be collected. 606 * We can re-use its LWP structure and turnstile. 607 */ 608 isfree = NULL; 609 if (p2->p_zomblwp != NULL) { 610 mutex_enter(p2->p_lock); 611 if ((isfree = p2->p_zomblwp) != NULL) { 612 p2->p_zomblwp = NULL; 613 lwp_free(isfree, true, false);/* releases proc mutex */ 614 } else 615 mutex_exit(p2->p_lock); 616 } 617 if (isfree == NULL) { 618 l2 = pool_cache_get(lwp_cache, PR_WAITOK); 619 memset(l2, 0, sizeof(*l2)); 620 l2->l_ts = pool_cache_get(turnstile_cache, PR_WAITOK); 621 SLIST_INIT(&l2->l_pi_lenders); 622 } else { 623 l2 = isfree; 624 ts = l2->l_ts; 625 KASSERT(l2->l_inheritedprio == -1); 626 KASSERT(SLIST_EMPTY(&l2->l_pi_lenders)); 627 memset(l2, 0, sizeof(*l2)); 628 l2->l_ts = ts; 629 } 630 631 l2->l_stat = LSIDL; 632 l2->l_proc = p2; 633 l2->l_refcnt = 1; 634 l2->l_class = sclass; 635 636 /* 637 * If vfork(), we want the LWP to run fast and on the same CPU 638 * as its parent, so that it can reuse the VM context and cache 639 * footprint on the local CPU. 640 */ 641 l2->l_kpriority = ((flags & LWP_VFORK) ? true : false); 642 l2->l_kpribase = PRI_KERNEL; 643 l2->l_priority = l1->l_priority; 644 l2->l_inheritedprio = -1; 645 l2->l_flag = 0; 646 l2->l_pflag = LP_MPSAFE; 647 TAILQ_INIT(&l2->l_ld_locks); 648 649 /* 650 * If not the first LWP in the process, grab a reference to the 651 * descriptor table. 652 */ 653 l2->l_fd = p2->p_fd; 654 if (p2->p_nlwps != 0) { 655 KASSERT(l1->l_proc == p2); 656 fd_hold(l2); 657 } else { 658 KASSERT(l1->l_proc != p2); 659 } 660 661 if (p2->p_flag & PK_SYSTEM) { 662 /* Mark it as a system LWP. */ 663 l2->l_flag |= LW_SYSTEM; 664 } 665 666 kpreempt_disable(); 667 l2->l_mutex = l1->l_cpu->ci_schedstate.spc_mutex; 668 l2->l_cpu = l1->l_cpu; 669 kpreempt_enable(); 670 671 kdtrace_thread_ctor(NULL, l2); 672 lwp_initspecific(l2); 673 sched_lwp_fork(l1, l2); 674 lwp_update_creds(l2); 675 callout_init(&l2->l_timeout_ch, CALLOUT_MPSAFE); 676 callout_setfunc(&l2->l_timeout_ch, sleepq_timeout, l2); 677 cv_init(&l2->l_sigcv, "sigwait"); 678 l2->l_syncobj = &sched_syncobj; 679 680 if (rnewlwpp != NULL) 681 *rnewlwpp = l2; 682 683 uvm_lwp_setuarea(l2, uaddr); 684 uvm_lwp_fork(l1, l2, stack, stacksize, func, 685 (arg != NULL) ? arg : l2); 686 687 mutex_enter(p2->p_lock); 688 689 if ((flags & LWP_DETACHED) != 0) { 690 l2->l_prflag = LPR_DETACHED; 691 p2->p_ndlwps++; 692 } else 693 l2->l_prflag = 0; 694 695 l2->l_sigmask = l1->l_sigmask; 696 CIRCLEQ_INIT(&l2->l_sigpend.sp_info); 697 sigemptyset(&l2->l_sigpend.sp_set); 698 699 p2->p_nlwpid++; 700 if (p2->p_nlwpid == 0) 701 p2->p_nlwpid++; 702 l2->l_lid = p2->p_nlwpid; 703 LIST_INSERT_HEAD(&p2->p_lwps, l2, l_sibling); 704 p2->p_nlwps++; 705 706 if ((p2->p_flag & PK_SYSTEM) == 0) { 707 /* Inherit an affinity */ 708 if (l1->l_flag & LW_AFFINITY) { 709 /* 710 * Note that we hold the state lock while inheriting 711 * the affinity to avoid race with sched_setaffinity(). 712 */ 713 lwp_lock(l1); 714 if (l1->l_flag & LW_AFFINITY) { 715 kcpuset_use(l1->l_affinity); 716 l2->l_affinity = l1->l_affinity; 717 l2->l_flag |= LW_AFFINITY; 718 } 719 lwp_unlock(l1); 720 } 721 lwp_lock(l2); 722 /* Inherit a processor-set */ 723 l2->l_psid = l1->l_psid; 724 /* Look for a CPU to start */ 725 l2->l_cpu = sched_takecpu(l2); 726 lwp_unlock_to(l2, l2->l_cpu->ci_schedstate.spc_mutex); 727 } 728 mutex_exit(p2->p_lock); 729 730 SDT_PROBE(proc,,,lwp_create, l2, 0,0,0,0); 731 732 mutex_enter(proc_lock); 733 LIST_INSERT_HEAD(&alllwp, l2, l_list); 734 mutex_exit(proc_lock); 735 736 SYSCALL_TIME_LWP_INIT(l2); 737 738 if (p2->p_emul->e_lwp_fork) 739 (*p2->p_emul->e_lwp_fork)(l1, l2); 740 741 return (0); 742 } 743 744 /* 745 * Called by MD code when a new LWP begins execution. Must be called 746 * with the previous LWP locked (so at splsched), or if there is no 747 * previous LWP, at splsched. 748 */ 749 void 750 lwp_startup(struct lwp *prev, struct lwp *new) 751 { 752 753 SDT_PROBE(proc,,,lwp_start, new, 0,0,0,0); 754 755 KASSERT(kpreempt_disabled()); 756 if (prev != NULL) { 757 /* 758 * Normalize the count of the spin-mutexes, it was 759 * increased in mi_switch(). Unmark the state of 760 * context switch - it is finished for previous LWP. 761 */ 762 curcpu()->ci_mtx_count++; 763 membar_exit(); 764 prev->l_ctxswtch = 0; 765 } 766 KPREEMPT_DISABLE(new); 767 spl0(); 768 pmap_activate(new); 769 LOCKDEBUG_BARRIER(NULL, 0); 770 KPREEMPT_ENABLE(new); 771 if ((new->l_pflag & LP_MPSAFE) == 0) { 772 KERNEL_LOCK(1, new); 773 } 774 } 775 776 /* 777 * Exit an LWP. 778 */ 779 void 780 lwp_exit(struct lwp *l) 781 { 782 struct proc *p = l->l_proc; 783 struct lwp *l2; 784 bool current; 785 786 current = (l == curlwp); 787 788 KASSERT(current || (l->l_stat == LSIDL && l->l_target_cpu == NULL)); 789 KASSERT(p == curproc); 790 791 SDT_PROBE(proc,,,lwp_exit, l, 0,0,0,0); 792 793 /* 794 * Verify that we hold no locks other than the kernel lock. 795 */ 796 LOCKDEBUG_BARRIER(&kernel_lock, 0); 797 798 /* 799 * If we are the last live LWP in a process, we need to exit the 800 * entire process. We do so with an exit status of zero, because 801 * it's a "controlled" exit, and because that's what Solaris does. 802 * 803 * We are not quite a zombie yet, but for accounting purposes we 804 * must increment the count of zombies here. 805 * 806 * Note: the last LWP's specificdata will be deleted here. 807 */ 808 mutex_enter(p->p_lock); 809 if (p->p_nlwps - p->p_nzlwps == 1) { 810 KASSERT(current == true); 811 /* XXXSMP kernel_lock not held */ 812 exit1(l, 0); 813 /* NOTREACHED */ 814 } 815 p->p_nzlwps++; 816 mutex_exit(p->p_lock); 817 818 if (p->p_emul->e_lwp_exit) 819 (*p->p_emul->e_lwp_exit)(l); 820 821 /* Drop filedesc reference. */ 822 fd_free(); 823 824 /* Delete the specificdata while it's still safe to sleep. */ 825 lwp_finispecific(l); 826 827 /* 828 * Release our cached credentials. 829 */ 830 kauth_cred_free(l->l_cred); 831 callout_destroy(&l->l_timeout_ch); 832 833 /* 834 * Remove the LWP from the global list. 835 */ 836 mutex_enter(proc_lock); 837 LIST_REMOVE(l, l_list); 838 mutex_exit(proc_lock); 839 840 /* 841 * Get rid of all references to the LWP that others (e.g. procfs) 842 * may have, and mark the LWP as a zombie. If the LWP is detached, 843 * mark it waiting for collection in the proc structure. Note that 844 * before we can do that, we need to free any other dead, deatched 845 * LWP waiting to meet its maker. 846 */ 847 mutex_enter(p->p_lock); 848 lwp_drainrefs(l); 849 850 if ((l->l_prflag & LPR_DETACHED) != 0) { 851 while ((l2 = p->p_zomblwp) != NULL) { 852 p->p_zomblwp = NULL; 853 lwp_free(l2, false, false);/* releases proc mutex */ 854 mutex_enter(p->p_lock); 855 l->l_refcnt++; 856 lwp_drainrefs(l); 857 } 858 p->p_zomblwp = l; 859 } 860 861 /* 862 * If we find a pending signal for the process and we have been 863 * asked to check for signals, then we loose: arrange to have 864 * all other LWPs in the process check for signals. 865 */ 866 if ((l->l_flag & LW_PENDSIG) != 0 && 867 firstsig(&p->p_sigpend.sp_set) != 0) { 868 LIST_FOREACH(l2, &p->p_lwps, l_sibling) { 869 lwp_lock(l2); 870 l2->l_flag |= LW_PENDSIG; 871 lwp_unlock(l2); 872 } 873 } 874 875 lwp_lock(l); 876 l->l_stat = LSZOMB; 877 if (l->l_name != NULL) 878 strcpy(l->l_name, "(zombie)"); 879 if (l->l_flag & LW_AFFINITY) { 880 l->l_flag &= ~LW_AFFINITY; 881 } else { 882 KASSERT(l->l_affinity == NULL); 883 } 884 lwp_unlock(l); 885 p->p_nrlwps--; 886 cv_broadcast(&p->p_lwpcv); 887 if (l->l_lwpctl != NULL) 888 l->l_lwpctl->lc_curcpu = LWPCTL_CPU_EXITED; 889 mutex_exit(p->p_lock); 890 891 /* Safe without lock since LWP is in zombie state */ 892 if (l->l_affinity) { 893 kcpuset_unuse(l->l_affinity, NULL); 894 l->l_affinity = NULL; 895 } 896 897 /* 898 * We can no longer block. At this point, lwp_free() may already 899 * be gunning for us. On a multi-CPU system, we may be off p_lwps. 900 * 901 * Free MD LWP resources. 902 */ 903 cpu_lwp_free(l, 0); 904 905 if (current) { 906 pmap_deactivate(l); 907 908 /* 909 * Release the kernel lock, and switch away into 910 * oblivion. 911 */ 912 #ifdef notyet 913 /* XXXSMP hold in lwp_userret() */ 914 KERNEL_UNLOCK_LAST(l); 915 #else 916 KERNEL_UNLOCK_ALL(l, NULL); 917 #endif 918 lwp_exit_switchaway(l); 919 } 920 } 921 922 /* 923 * Free a dead LWP's remaining resources. 924 * 925 * XXXLWP limits. 926 */ 927 void 928 lwp_free(struct lwp *l, bool recycle, bool last) 929 { 930 struct proc *p = l->l_proc; 931 struct rusage *ru; 932 ksiginfoq_t kq; 933 934 KASSERT(l != curlwp); 935 936 /* 937 * If this was not the last LWP in the process, then adjust 938 * counters and unlock. 939 */ 940 if (!last) { 941 /* 942 * Add the LWP's run time to the process' base value. 943 * This needs to co-incide with coming off p_lwps. 944 */ 945 bintime_add(&p->p_rtime, &l->l_rtime); 946 p->p_pctcpu += l->l_pctcpu; 947 ru = &p->p_stats->p_ru; 948 ruadd(ru, &l->l_ru); 949 ru->ru_nvcsw += (l->l_ncsw - l->l_nivcsw); 950 ru->ru_nivcsw += l->l_nivcsw; 951 LIST_REMOVE(l, l_sibling); 952 p->p_nlwps--; 953 p->p_nzlwps--; 954 if ((l->l_prflag & LPR_DETACHED) != 0) 955 p->p_ndlwps--; 956 957 /* 958 * Have any LWPs sleeping in lwp_wait() recheck for 959 * deadlock. 960 */ 961 cv_broadcast(&p->p_lwpcv); 962 mutex_exit(p->p_lock); 963 } 964 965 #ifdef MULTIPROCESSOR 966 /* 967 * In the unlikely event that the LWP is still on the CPU, 968 * then spin until it has switched away. We need to release 969 * all locks to avoid deadlock against interrupt handlers on 970 * the target CPU. 971 */ 972 if ((l->l_pflag & LP_RUNNING) != 0 || l->l_cpu->ci_curlwp == l) { 973 int count; 974 (void)count; /* XXXgcc */ 975 KERNEL_UNLOCK_ALL(curlwp, &count); 976 while ((l->l_pflag & LP_RUNNING) != 0 || 977 l->l_cpu->ci_curlwp == l) 978 SPINLOCK_BACKOFF_HOOK; 979 KERNEL_LOCK(count, curlwp); 980 } 981 #endif 982 983 /* 984 * Destroy the LWP's remaining signal information. 985 */ 986 ksiginfo_queue_init(&kq); 987 sigclear(&l->l_sigpend, NULL, &kq); 988 ksiginfo_queue_drain(&kq); 989 cv_destroy(&l->l_sigcv); 990 991 /* 992 * Free the LWP's turnstile and the LWP structure itself unless the 993 * caller wants to recycle them. Also, free the scheduler specific 994 * data. 995 * 996 * We can't return turnstile0 to the pool (it didn't come from it), 997 * so if it comes up just drop it quietly and move on. 998 * 999 * We don't recycle the VM resources at this time. 1000 */ 1001 if (l->l_lwpctl != NULL) 1002 lwp_ctl_free(l); 1003 1004 if (!recycle && l->l_ts != &turnstile0) 1005 pool_cache_put(turnstile_cache, l->l_ts); 1006 if (l->l_name != NULL) 1007 kmem_free(l->l_name, MAXCOMLEN); 1008 1009 cpu_lwp_free2(l); 1010 uvm_lwp_exit(l); 1011 1012 KASSERT(SLIST_EMPTY(&l->l_pi_lenders)); 1013 KASSERT(l->l_inheritedprio == -1); 1014 kdtrace_thread_dtor(NULL, l); 1015 if (!recycle) 1016 pool_cache_put(lwp_cache, l); 1017 } 1018 1019 /* 1020 * Migrate the LWP to the another CPU. Unlocks the LWP. 1021 */ 1022 void 1023 lwp_migrate(lwp_t *l, struct cpu_info *tci) 1024 { 1025 struct schedstate_percpu *tspc; 1026 int lstat = l->l_stat; 1027 1028 KASSERT(lwp_locked(l, NULL)); 1029 KASSERT(tci != NULL); 1030 1031 /* If LWP is still on the CPU, it must be handled like LSONPROC */ 1032 if ((l->l_pflag & LP_RUNNING) != 0) { 1033 lstat = LSONPROC; 1034 } 1035 1036 /* 1037 * The destination CPU could be changed while previous migration 1038 * was not finished. 1039 */ 1040 if (l->l_target_cpu != NULL) { 1041 l->l_target_cpu = tci; 1042 lwp_unlock(l); 1043 return; 1044 } 1045 1046 /* Nothing to do if trying to migrate to the same CPU */ 1047 if (l->l_cpu == tci) { 1048 lwp_unlock(l); 1049 return; 1050 } 1051 1052 KASSERT(l->l_target_cpu == NULL); 1053 tspc = &tci->ci_schedstate; 1054 switch (lstat) { 1055 case LSRUN: 1056 l->l_target_cpu = tci; 1057 break; 1058 case LSIDL: 1059 l->l_cpu = tci; 1060 lwp_unlock_to(l, tspc->spc_mutex); 1061 return; 1062 case LSSLEEP: 1063 l->l_cpu = tci; 1064 break; 1065 case LSSTOP: 1066 case LSSUSPENDED: 1067 l->l_cpu = tci; 1068 if (l->l_wchan == NULL) { 1069 lwp_unlock_to(l, tspc->spc_lwplock); 1070 return; 1071 } 1072 break; 1073 case LSONPROC: 1074 l->l_target_cpu = tci; 1075 spc_lock(l->l_cpu); 1076 cpu_need_resched(l->l_cpu, RESCHED_KPREEMPT); 1077 spc_unlock(l->l_cpu); 1078 break; 1079 } 1080 lwp_unlock(l); 1081 } 1082 1083 /* 1084 * Find the LWP in the process. Arguments may be zero, in such case, 1085 * the calling process and first LWP in the list will be used. 1086 * On success - returns proc locked. 1087 */ 1088 struct lwp * 1089 lwp_find2(pid_t pid, lwpid_t lid) 1090 { 1091 proc_t *p; 1092 lwp_t *l; 1093 1094 /* Find the process */ 1095 p = (pid == 0) ? curlwp->l_proc : p_find(pid, PFIND_UNLOCK_FAIL); 1096 if (p == NULL) 1097 return NULL; 1098 mutex_enter(p->p_lock); 1099 if (pid != 0) { 1100 /* Case of p_find */ 1101 mutex_exit(proc_lock); 1102 } 1103 1104 /* Find the thread */ 1105 l = (lid == 0) ? LIST_FIRST(&p->p_lwps) : lwp_find(p, lid); 1106 if (l == NULL) { 1107 mutex_exit(p->p_lock); 1108 } 1109 1110 return l; 1111 } 1112 1113 /* 1114 * Look up a live LWP within the speicifed process, and return it locked. 1115 * 1116 * Must be called with p->p_lock held. 1117 */ 1118 struct lwp * 1119 lwp_find(struct proc *p, int id) 1120 { 1121 struct lwp *l; 1122 1123 KASSERT(mutex_owned(p->p_lock)); 1124 1125 LIST_FOREACH(l, &p->p_lwps, l_sibling) { 1126 if (l->l_lid == id) 1127 break; 1128 } 1129 1130 /* 1131 * No need to lock - all of these conditions will 1132 * be visible with the process level mutex held. 1133 */ 1134 if (l != NULL && (l->l_stat == LSIDL || l->l_stat == LSZOMB)) 1135 l = NULL; 1136 1137 return l; 1138 } 1139 1140 /* 1141 * Update an LWP's cached credentials to mirror the process' master copy. 1142 * 1143 * This happens early in the syscall path, on user trap, and on LWP 1144 * creation. A long-running LWP can also voluntarily choose to update 1145 * it's credentials by calling this routine. This may be called from 1146 * LWP_CACHE_CREDS(), which checks l->l_cred != p->p_cred beforehand. 1147 */ 1148 void 1149 lwp_update_creds(struct lwp *l) 1150 { 1151 kauth_cred_t oc; 1152 struct proc *p; 1153 1154 p = l->l_proc; 1155 oc = l->l_cred; 1156 1157 mutex_enter(p->p_lock); 1158 kauth_cred_hold(p->p_cred); 1159 l->l_cred = p->p_cred; 1160 l->l_prflag &= ~LPR_CRMOD; 1161 mutex_exit(p->p_lock); 1162 if (oc != NULL) 1163 kauth_cred_free(oc); 1164 } 1165 1166 /* 1167 * Verify that an LWP is locked, and optionally verify that the lock matches 1168 * one we specify. 1169 */ 1170 int 1171 lwp_locked(struct lwp *l, kmutex_t *mtx) 1172 { 1173 kmutex_t *cur = l->l_mutex; 1174 1175 return mutex_owned(cur) && (mtx == cur || mtx == NULL); 1176 } 1177 1178 /* 1179 * Lock an LWP. 1180 */ 1181 kmutex_t * 1182 lwp_lock_retry(struct lwp *l, kmutex_t *old) 1183 { 1184 1185 /* 1186 * XXXgcc ignoring kmutex_t * volatile on i386 1187 * 1188 * gcc version 4.1.2 20061021 prerelease (NetBSD nb1 20061021) 1189 */ 1190 #if 1 1191 while (l->l_mutex != old) { 1192 #else 1193 for (;;) { 1194 #endif 1195 mutex_spin_exit(old); 1196 old = l->l_mutex; 1197 mutex_spin_enter(old); 1198 1199 /* 1200 * mutex_enter() will have posted a read barrier. Re-test 1201 * l->l_mutex. If it has changed, we need to try again. 1202 */ 1203 #if 1 1204 } 1205 #else 1206 } while (__predict_false(l->l_mutex != old)); 1207 #endif 1208 1209 return old; 1210 } 1211 1212 /* 1213 * Lend a new mutex to an LWP. The old mutex must be held. 1214 */ 1215 void 1216 lwp_setlock(struct lwp *l, kmutex_t *new) 1217 { 1218 1219 KASSERT(mutex_owned(l->l_mutex)); 1220 1221 membar_exit(); 1222 l->l_mutex = new; 1223 } 1224 1225 /* 1226 * Lend a new mutex to an LWP, and release the old mutex. The old mutex 1227 * must be held. 1228 */ 1229 void 1230 lwp_unlock_to(struct lwp *l, kmutex_t *new) 1231 { 1232 kmutex_t *old; 1233 1234 KASSERT(mutex_owned(l->l_mutex)); 1235 1236 old = l->l_mutex; 1237 membar_exit(); 1238 l->l_mutex = new; 1239 mutex_spin_exit(old); 1240 } 1241 1242 /* 1243 * Acquire a new mutex, and donate it to an LWP. The LWP must already be 1244 * locked. 1245 */ 1246 void 1247 lwp_relock(struct lwp *l, kmutex_t *new) 1248 { 1249 kmutex_t *old; 1250 1251 KASSERT(mutex_owned(l->l_mutex)); 1252 1253 old = l->l_mutex; 1254 if (old != new) { 1255 mutex_spin_enter(new); 1256 l->l_mutex = new; 1257 mutex_spin_exit(old); 1258 } 1259 } 1260 1261 int 1262 lwp_trylock(struct lwp *l) 1263 { 1264 kmutex_t *old; 1265 1266 for (;;) { 1267 if (!mutex_tryenter(old = l->l_mutex)) 1268 return 0; 1269 if (__predict_true(l->l_mutex == old)) 1270 return 1; 1271 mutex_spin_exit(old); 1272 } 1273 } 1274 1275 void 1276 lwp_unsleep(lwp_t *l, bool cleanup) 1277 { 1278 1279 KASSERT(mutex_owned(l->l_mutex)); 1280 (*l->l_syncobj->sobj_unsleep)(l, cleanup); 1281 } 1282 1283 1284 /* 1285 * Handle exceptions for mi_userret(). Called if a member of LW_USERRET is 1286 * set. 1287 */ 1288 void 1289 lwp_userret(struct lwp *l) 1290 { 1291 struct proc *p; 1292 void (*hook)(void); 1293 int sig; 1294 1295 KASSERT(l == curlwp); 1296 KASSERT(l->l_stat == LSONPROC); 1297 p = l->l_proc; 1298 1299 #ifndef __HAVE_FAST_SOFTINTS 1300 /* Run pending soft interrupts. */ 1301 if (l->l_cpu->ci_data.cpu_softints != 0) 1302 softint_overlay(); 1303 #endif 1304 1305 #ifdef KERN_SA 1306 /* Generate UNBLOCKED upcall if needed */ 1307 if (l->l_flag & LW_SA_BLOCKING) { 1308 sa_unblock_userret(l); 1309 /* NOTREACHED */ 1310 } 1311 #endif 1312 1313 /* 1314 * It should be safe to do this read unlocked on a multiprocessor 1315 * system.. 1316 * 1317 * LW_SA_UPCALL will be handled after the while() loop, so don't 1318 * consider it now. 1319 */ 1320 while ((l->l_flag & (LW_USERRET & ~(LW_SA_UPCALL))) != 0) { 1321 /* 1322 * Process pending signals first, unless the process 1323 * is dumping core or exiting, where we will instead 1324 * enter the LW_WSUSPEND case below. 1325 */ 1326 if ((l->l_flag & (LW_PENDSIG | LW_WCORE | LW_WEXIT)) == 1327 LW_PENDSIG) { 1328 mutex_enter(p->p_lock); 1329 while ((sig = issignal(l)) != 0) 1330 postsig(sig); 1331 mutex_exit(p->p_lock); 1332 } 1333 1334 /* 1335 * Core-dump or suspend pending. 1336 * 1337 * In case of core dump, suspend ourselves, so that the 1338 * kernel stack and therefore the userland registers saved 1339 * in the trapframe are around for coredump() to write them 1340 * out. We issue a wakeup on p->p_lwpcv so that sigexit() 1341 * will write the core file out once all other LWPs are 1342 * suspended. 1343 */ 1344 if ((l->l_flag & LW_WSUSPEND) != 0) { 1345 mutex_enter(p->p_lock); 1346 p->p_nrlwps--; 1347 cv_broadcast(&p->p_lwpcv); 1348 lwp_lock(l); 1349 l->l_stat = LSSUSPENDED; 1350 lwp_unlock(l); 1351 mutex_exit(p->p_lock); 1352 lwp_lock(l); 1353 mi_switch(l); 1354 } 1355 1356 /* Process is exiting. */ 1357 if ((l->l_flag & LW_WEXIT) != 0) { 1358 lwp_exit(l); 1359 KASSERT(0); 1360 /* NOTREACHED */ 1361 } 1362 1363 /* Call userret hook; used by Linux emulation. */ 1364 if ((l->l_flag & LW_WUSERRET) != 0) { 1365 lwp_lock(l); 1366 l->l_flag &= ~LW_WUSERRET; 1367 lwp_unlock(l); 1368 hook = p->p_userret; 1369 p->p_userret = NULL; 1370 (*hook)(); 1371 } 1372 } 1373 1374 #ifdef KERN_SA 1375 /* 1376 * Timer events are handled specially. We only try once to deliver 1377 * pending timer upcalls; if if fails, we can try again on the next 1378 * loop around. If we need to re-enter lwp_userret(), MD code will 1379 * bounce us back here through the trap path after we return. 1380 */ 1381 if (p->p_timerpend) 1382 timerupcall(l); 1383 if (l->l_flag & LW_SA_UPCALL) 1384 sa_upcall_userret(l); 1385 #endif /* KERN_SA */ 1386 } 1387 1388 /* 1389 * Force an LWP to enter the kernel, to take a trip through lwp_userret(). 1390 */ 1391 void 1392 lwp_need_userret(struct lwp *l) 1393 { 1394 KASSERT(lwp_locked(l, NULL)); 1395 1396 /* 1397 * Since the tests in lwp_userret() are done unlocked, make sure 1398 * that the condition will be seen before forcing the LWP to enter 1399 * kernel mode. 1400 */ 1401 membar_producer(); 1402 cpu_signotify(l); 1403 } 1404 1405 /* 1406 * Add one reference to an LWP. This will prevent the LWP from 1407 * exiting, thus keep the lwp structure and PCB around to inspect. 1408 */ 1409 void 1410 lwp_addref(struct lwp *l) 1411 { 1412 1413 KASSERT(mutex_owned(l->l_proc->p_lock)); 1414 KASSERT(l->l_stat != LSZOMB); 1415 KASSERT(l->l_refcnt != 0); 1416 1417 l->l_refcnt++; 1418 } 1419 1420 /* 1421 * Remove one reference to an LWP. If this is the last reference, 1422 * then we must finalize the LWP's death. 1423 */ 1424 void 1425 lwp_delref(struct lwp *l) 1426 { 1427 struct proc *p = l->l_proc; 1428 1429 mutex_enter(p->p_lock); 1430 lwp_delref2(l); 1431 mutex_exit(p->p_lock); 1432 } 1433 1434 /* 1435 * Remove one reference to an LWP. If this is the last reference, 1436 * then we must finalize the LWP's death. The proc mutex is held 1437 * on entry. 1438 */ 1439 void 1440 lwp_delref2(struct lwp *l) 1441 { 1442 struct proc *p = l->l_proc; 1443 1444 KASSERT(mutex_owned(p->p_lock)); 1445 KASSERT(l->l_stat != LSZOMB); 1446 KASSERT(l->l_refcnt > 0); 1447 if (--l->l_refcnt == 0) 1448 cv_broadcast(&p->p_lwpcv); 1449 } 1450 1451 /* 1452 * Drain all references to the current LWP. 1453 */ 1454 void 1455 lwp_drainrefs(struct lwp *l) 1456 { 1457 struct proc *p = l->l_proc; 1458 1459 KASSERT(mutex_owned(p->p_lock)); 1460 KASSERT(l->l_refcnt != 0); 1461 1462 l->l_refcnt--; 1463 while (l->l_refcnt != 0) 1464 cv_wait(&p->p_lwpcv, p->p_lock); 1465 } 1466 1467 /* 1468 * Return true if the specified LWP is 'alive'. Only p->p_lock need 1469 * be held. 1470 */ 1471 bool 1472 lwp_alive(lwp_t *l) 1473 { 1474 1475 KASSERT(mutex_owned(l->l_proc->p_lock)); 1476 1477 switch (l->l_stat) { 1478 case LSSLEEP: 1479 case LSRUN: 1480 case LSONPROC: 1481 case LSSTOP: 1482 case LSSUSPENDED: 1483 return true; 1484 default: 1485 return false; 1486 } 1487 } 1488 1489 /* 1490 * Return first live LWP in the process. 1491 */ 1492 lwp_t * 1493 lwp_find_first(proc_t *p) 1494 { 1495 lwp_t *l; 1496 1497 KASSERT(mutex_owned(p->p_lock)); 1498 1499 LIST_FOREACH(l, &p->p_lwps, l_sibling) { 1500 if (lwp_alive(l)) { 1501 return l; 1502 } 1503 } 1504 1505 return NULL; 1506 } 1507 1508 /* 1509 * Allocate a new lwpctl structure for a user LWP. 1510 */ 1511 int 1512 lwp_ctl_alloc(vaddr_t *uaddr) 1513 { 1514 lcproc_t *lp; 1515 u_int bit, i, offset; 1516 struct uvm_object *uao; 1517 int error; 1518 lcpage_t *lcp; 1519 proc_t *p; 1520 lwp_t *l; 1521 1522 l = curlwp; 1523 p = l->l_proc; 1524 1525 if (l->l_lcpage != NULL) { 1526 lcp = l->l_lcpage; 1527 *uaddr = lcp->lcp_uaddr + (vaddr_t)l->l_lwpctl - lcp->lcp_kaddr; 1528 return 0; 1529 } 1530 1531 /* First time around, allocate header structure for the process. */ 1532 if ((lp = p->p_lwpctl) == NULL) { 1533 lp = kmem_alloc(sizeof(*lp), KM_SLEEP); 1534 mutex_init(&lp->lp_lock, MUTEX_DEFAULT, IPL_NONE); 1535 lp->lp_uao = NULL; 1536 TAILQ_INIT(&lp->lp_pages); 1537 mutex_enter(p->p_lock); 1538 if (p->p_lwpctl == NULL) { 1539 p->p_lwpctl = lp; 1540 mutex_exit(p->p_lock); 1541 } else { 1542 mutex_exit(p->p_lock); 1543 mutex_destroy(&lp->lp_lock); 1544 kmem_free(lp, sizeof(*lp)); 1545 lp = p->p_lwpctl; 1546 } 1547 } 1548 1549 /* 1550 * Set up an anonymous memory region to hold the shared pages. 1551 * Map them into the process' address space. The user vmspace 1552 * gets the first reference on the UAO. 1553 */ 1554 mutex_enter(&lp->lp_lock); 1555 if (lp->lp_uao == NULL) { 1556 lp->lp_uao = uao_create(LWPCTL_UAREA_SZ, 0); 1557 lp->lp_cur = 0; 1558 lp->lp_max = LWPCTL_UAREA_SZ; 1559 lp->lp_uva = p->p_emul->e_vm_default_addr(p, 1560 (vaddr_t)p->p_vmspace->vm_daddr, LWPCTL_UAREA_SZ); 1561 error = uvm_map(&p->p_vmspace->vm_map, &lp->lp_uva, 1562 LWPCTL_UAREA_SZ, lp->lp_uao, 0, 0, UVM_MAPFLAG(UVM_PROT_RW, 1563 UVM_PROT_RW, UVM_INH_NONE, UVM_ADV_NORMAL, 0)); 1564 if (error != 0) { 1565 uao_detach(lp->lp_uao); 1566 lp->lp_uao = NULL; 1567 mutex_exit(&lp->lp_lock); 1568 return error; 1569 } 1570 } 1571 1572 /* Get a free block and allocate for this LWP. */ 1573 TAILQ_FOREACH(lcp, &lp->lp_pages, lcp_chain) { 1574 if (lcp->lcp_nfree != 0) 1575 break; 1576 } 1577 if (lcp == NULL) { 1578 /* Nothing available - try to set up a free page. */ 1579 if (lp->lp_cur == lp->lp_max) { 1580 mutex_exit(&lp->lp_lock); 1581 return ENOMEM; 1582 } 1583 lcp = kmem_alloc(LWPCTL_LCPAGE_SZ, KM_SLEEP); 1584 if (lcp == NULL) { 1585 mutex_exit(&lp->lp_lock); 1586 return ENOMEM; 1587 } 1588 /* 1589 * Wire the next page down in kernel space. Since this 1590 * is a new mapping, we must add a reference. 1591 */ 1592 uao = lp->lp_uao; 1593 (*uao->pgops->pgo_reference)(uao); 1594 lcp->lcp_kaddr = vm_map_min(kernel_map); 1595 error = uvm_map(kernel_map, &lcp->lcp_kaddr, PAGE_SIZE, 1596 uao, lp->lp_cur, PAGE_SIZE, 1597 UVM_MAPFLAG(UVM_PROT_RW, UVM_PROT_RW, 1598 UVM_INH_NONE, UVM_ADV_RANDOM, 0)); 1599 if (error != 0) { 1600 mutex_exit(&lp->lp_lock); 1601 kmem_free(lcp, LWPCTL_LCPAGE_SZ); 1602 (*uao->pgops->pgo_detach)(uao); 1603 return error; 1604 } 1605 error = uvm_map_pageable(kernel_map, lcp->lcp_kaddr, 1606 lcp->lcp_kaddr + PAGE_SIZE, FALSE, 0); 1607 if (error != 0) { 1608 mutex_exit(&lp->lp_lock); 1609 uvm_unmap(kernel_map, lcp->lcp_kaddr, 1610 lcp->lcp_kaddr + PAGE_SIZE); 1611 kmem_free(lcp, LWPCTL_LCPAGE_SZ); 1612 return error; 1613 } 1614 /* Prepare the page descriptor and link into the list. */ 1615 lcp->lcp_uaddr = lp->lp_uva + lp->lp_cur; 1616 lp->lp_cur += PAGE_SIZE; 1617 lcp->lcp_nfree = LWPCTL_PER_PAGE; 1618 lcp->lcp_rotor = 0; 1619 memset(lcp->lcp_bitmap, 0xff, LWPCTL_BITMAP_SZ); 1620 TAILQ_INSERT_HEAD(&lp->lp_pages, lcp, lcp_chain); 1621 } 1622 for (i = lcp->lcp_rotor; lcp->lcp_bitmap[i] == 0;) { 1623 if (++i >= LWPCTL_BITMAP_ENTRIES) 1624 i = 0; 1625 } 1626 bit = ffs(lcp->lcp_bitmap[i]) - 1; 1627 lcp->lcp_bitmap[i] ^= (1 << bit); 1628 lcp->lcp_rotor = i; 1629 lcp->lcp_nfree--; 1630 l->l_lcpage = lcp; 1631 offset = (i << 5) + bit; 1632 l->l_lwpctl = (lwpctl_t *)lcp->lcp_kaddr + offset; 1633 *uaddr = lcp->lcp_uaddr + offset * sizeof(lwpctl_t); 1634 mutex_exit(&lp->lp_lock); 1635 1636 KPREEMPT_DISABLE(l); 1637 l->l_lwpctl->lc_curcpu = (int)curcpu()->ci_data.cpu_index; 1638 KPREEMPT_ENABLE(l); 1639 1640 return 0; 1641 } 1642 1643 /* 1644 * Free an lwpctl structure back to the per-process list. 1645 */ 1646 void 1647 lwp_ctl_free(lwp_t *l) 1648 { 1649 lcproc_t *lp; 1650 lcpage_t *lcp; 1651 u_int map, offset; 1652 1653 lp = l->l_proc->p_lwpctl; 1654 KASSERT(lp != NULL); 1655 1656 lcp = l->l_lcpage; 1657 offset = (u_int)((lwpctl_t *)l->l_lwpctl - (lwpctl_t *)lcp->lcp_kaddr); 1658 KASSERT(offset < LWPCTL_PER_PAGE); 1659 1660 mutex_enter(&lp->lp_lock); 1661 lcp->lcp_nfree++; 1662 map = offset >> 5; 1663 lcp->lcp_bitmap[map] |= (1 << (offset & 31)); 1664 if (lcp->lcp_bitmap[lcp->lcp_rotor] == 0) 1665 lcp->lcp_rotor = map; 1666 if (TAILQ_FIRST(&lp->lp_pages)->lcp_nfree == 0) { 1667 TAILQ_REMOVE(&lp->lp_pages, lcp, lcp_chain); 1668 TAILQ_INSERT_HEAD(&lp->lp_pages, lcp, lcp_chain); 1669 } 1670 mutex_exit(&lp->lp_lock); 1671 } 1672 1673 /* 1674 * Process is exiting; tear down lwpctl state. This can only be safely 1675 * called by the last LWP in the process. 1676 */ 1677 void 1678 lwp_ctl_exit(void) 1679 { 1680 lcpage_t *lcp, *next; 1681 lcproc_t *lp; 1682 proc_t *p; 1683 lwp_t *l; 1684 1685 l = curlwp; 1686 l->l_lwpctl = NULL; 1687 l->l_lcpage = NULL; 1688 p = l->l_proc; 1689 lp = p->p_lwpctl; 1690 1691 KASSERT(lp != NULL); 1692 KASSERT(p->p_nlwps == 1); 1693 1694 for (lcp = TAILQ_FIRST(&lp->lp_pages); lcp != NULL; lcp = next) { 1695 next = TAILQ_NEXT(lcp, lcp_chain); 1696 uvm_unmap(kernel_map, lcp->lcp_kaddr, 1697 lcp->lcp_kaddr + PAGE_SIZE); 1698 kmem_free(lcp, LWPCTL_LCPAGE_SZ); 1699 } 1700 1701 if (lp->lp_uao != NULL) { 1702 uvm_unmap(&p->p_vmspace->vm_map, lp->lp_uva, 1703 lp->lp_uva + LWPCTL_UAREA_SZ); 1704 } 1705 1706 mutex_destroy(&lp->lp_lock); 1707 kmem_free(lp, sizeof(*lp)); 1708 p->p_lwpctl = NULL; 1709 } 1710 1711 /* 1712 * Return the current LWP's "preemption counter". Used to detect 1713 * preemption across operations that can tolerate preemption without 1714 * crashing, but which may generate incorrect results if preempted. 1715 */ 1716 uint64_t 1717 lwp_pctr(void) 1718 { 1719 1720 return curlwp->l_ncsw; 1721 } 1722 1723 #if defined(DDB) 1724 void 1725 lwp_whatis(uintptr_t addr, void (*pr)(const char *, ...)) 1726 { 1727 lwp_t *l; 1728 1729 LIST_FOREACH(l, &alllwp, l_list) { 1730 uintptr_t stack = (uintptr_t)KSTACK_LOWEST_ADDR(l); 1731 1732 if (addr < stack || stack + KSTACK_SIZE <= addr) { 1733 continue; 1734 } 1735 (*pr)("%p is %p+%zu, LWP %p's stack\n", 1736 (void *)addr, (void *)stack, 1737 (size_t)(addr - stack), l); 1738 } 1739 } 1740 #endif /* defined(DDB) */ 1741