1 /* $NetBSD: kern_lwp.c,v 1.145 2010/04/12 23:20:18 pooka Exp $ */ 2 3 /*- 4 * Copyright (c) 2001, 2006, 2007, 2008, 2009 The NetBSD Foundation, Inc. 5 * All rights reserved. 6 * 7 * This code is derived from software contributed to The NetBSD Foundation 8 * by Nathan J. Williams, and Andrew Doran. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS 20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 29 * POSSIBILITY OF SUCH DAMAGE. 30 */ 31 32 /* 33 * Overview 34 * 35 * Lightweight processes (LWPs) are the basic unit or thread of 36 * execution within the kernel. The core state of an LWP is described 37 * by "struct lwp", also known as lwp_t. 38 * 39 * Each LWP is contained within a process (described by "struct proc"), 40 * Every process contains at least one LWP, but may contain more. The 41 * process describes attributes shared among all of its LWPs such as a 42 * private address space, global execution state (stopped, active, 43 * zombie, ...), signal disposition and so on. On a multiprocessor 44 * machine, multiple LWPs be executing concurrently in the kernel. 45 * 46 * Execution states 47 * 48 * At any given time, an LWP has overall state that is described by 49 * lwp::l_stat. The states are broken into two sets below. The first 50 * set is guaranteed to represent the absolute, current state of the 51 * LWP: 52 * 53 * LSONPROC 54 * 55 * On processor: the LWP is executing on a CPU, either in the 56 * kernel or in user space. 57 * 58 * LSRUN 59 * 60 * Runnable: the LWP is parked on a run queue, and may soon be 61 * chosen to run by an idle processor, or by a processor that 62 * has been asked to preempt a currently runnning but lower 63 * priority LWP. 64 * 65 * LSIDL 66 * 67 * Idle: the LWP has been created but has not yet executed, 68 * or it has ceased executing a unit of work and is waiting 69 * to be started again. 70 * 71 * LSSUSPENDED: 72 * 73 * Suspended: the LWP has had its execution suspended by 74 * another LWP in the same process using the _lwp_suspend() 75 * system call. User-level LWPs also enter the suspended 76 * state when the system is shutting down. 77 * 78 * The second set represent a "statement of intent" on behalf of the 79 * LWP. The LWP may in fact be executing on a processor, may be 80 * sleeping or idle. It is expected to take the necessary action to 81 * stop executing or become "running" again within a short timeframe. 82 * The LP_RUNNING flag in lwp::l_pflag indicates that an LWP is running. 83 * Importantly, it indicates that its state is tied to a CPU. 84 * 85 * LSZOMB: 86 * 87 * Dead or dying: the LWP has released most of its resources 88 * and is about to switch away into oblivion, or has already 89 * switched away. When it switches away, its few remaining 90 * resources can be collected. 91 * 92 * LSSLEEP: 93 * 94 * Sleeping: the LWP has entered itself onto a sleep queue, and 95 * has switched away or will switch away shortly to allow other 96 * LWPs to run on the CPU. 97 * 98 * LSSTOP: 99 * 100 * Stopped: the LWP has been stopped as a result of a job 101 * control signal, or as a result of the ptrace() interface. 102 * 103 * Stopped LWPs may run briefly within the kernel to handle 104 * signals that they receive, but will not return to user space 105 * until their process' state is changed away from stopped. 106 * 107 * Single LWPs within a process can not be set stopped 108 * selectively: all actions that can stop or continue LWPs 109 * occur at the process level. 110 * 111 * State transitions 112 * 113 * Note that the LSSTOP state may only be set when returning to 114 * user space in userret(), or when sleeping interruptably. The 115 * LSSUSPENDED state may only be set in userret(). Before setting 116 * those states, we try to ensure that the LWPs will release all 117 * locks that they hold, and at a minimum try to ensure that the 118 * LWP can be set runnable again by a signal. 119 * 120 * LWPs may transition states in the following ways: 121 * 122 * RUN -------> ONPROC ONPROC -----> RUN 123 * > SLEEP 124 * > STOPPED 125 * > SUSPENDED 126 * > ZOMB 127 * > IDL (special cases) 128 * 129 * STOPPED ---> RUN SUSPENDED --> RUN 130 * > SLEEP 131 * 132 * SLEEP -----> ONPROC IDL --------> RUN 133 * > RUN > SUSPENDED 134 * > STOPPED > STOPPED 135 * > ONPROC (special cases) 136 * 137 * Some state transitions are only possible with kernel threads (eg 138 * ONPROC -> IDL) and happen under tightly controlled circumstances 139 * free of unwanted side effects. 140 * 141 * Migration 142 * 143 * Migration of threads from one CPU to another could be performed 144 * internally by the scheduler via sched_takecpu() or sched_catchlwp() 145 * functions. The universal lwp_migrate() function should be used for 146 * any other cases. Subsystems in the kernel must be aware that CPU 147 * of LWP may change, while it is not locked. 148 * 149 * Locking 150 * 151 * The majority of fields in 'struct lwp' are covered by a single, 152 * general spin lock pointed to by lwp::l_mutex. The locks covering 153 * each field are documented in sys/lwp.h. 154 * 155 * State transitions must be made with the LWP's general lock held, 156 * and may cause the LWP's lock pointer to change. Manipulation of 157 * the general lock is not performed directly, but through calls to 158 * lwp_lock(), lwp_relock() and similar. 159 * 160 * States and their associated locks: 161 * 162 * LSONPROC, LSZOMB: 163 * 164 * Always covered by spc_lwplock, which protects running LWPs. 165 * This is a per-CPU lock and matches lwp::l_cpu. 166 * 167 * LSIDL, LSRUN: 168 * 169 * Always covered by spc_mutex, which protects the run queues. 170 * This is a per-CPU lock and matches lwp::l_cpu. 171 * 172 * LSSLEEP: 173 * 174 * Covered by a lock associated with the sleep queue that the 175 * LWP resides on. Matches lwp::l_sleepq::sq_mutex. 176 * 177 * LSSTOP, LSSUSPENDED: 178 * 179 * If the LWP was previously sleeping (l_wchan != NULL), then 180 * l_mutex references the sleep queue lock. If the LWP was 181 * runnable or on the CPU when halted, or has been removed from 182 * the sleep queue since halted, then the lock is spc_lwplock. 183 * 184 * The lock order is as follows: 185 * 186 * spc::spc_lwplock -> 187 * sleeptab::st_mutex -> 188 * tschain_t::tc_mutex -> 189 * spc::spc_mutex 190 * 191 * Each process has an scheduler state lock (proc::p_lock), and a 192 * number of counters on LWPs and their states: p_nzlwps, p_nrlwps, and 193 * so on. When an LWP is to be entered into or removed from one of the 194 * following states, p_lock must be held and the process wide counters 195 * adjusted: 196 * 197 * LSIDL, LSZOMB, LSSTOP, LSSUSPENDED 198 * 199 * (But not always for kernel threads. There are some special cases 200 * as mentioned above. See kern_softint.c.) 201 * 202 * Note that an LWP is considered running or likely to run soon if in 203 * one of the following states. This affects the value of p_nrlwps: 204 * 205 * LSRUN, LSONPROC, LSSLEEP 206 * 207 * p_lock does not need to be held when transitioning among these 208 * three states, hence p_lock is rarely taken for state transitions. 209 */ 210 211 #include <sys/cdefs.h> 212 __KERNEL_RCSID(0, "$NetBSD: kern_lwp.c,v 1.145 2010/04/12 23:20:18 pooka Exp $"); 213 214 #include "opt_ddb.h" 215 #include "opt_lockdebug.h" 216 #include "opt_sa.h" 217 #include "opt_dtrace.h" 218 219 #define _LWP_API_PRIVATE 220 221 #include <sys/param.h> 222 #include <sys/systm.h> 223 #include <sys/cpu.h> 224 #include <sys/pool.h> 225 #include <sys/proc.h> 226 #include <sys/sa.h> 227 #include <sys/savar.h> 228 #include <sys/syscallargs.h> 229 #include <sys/syscall_stats.h> 230 #include <sys/kauth.h> 231 #include <sys/sleepq.h> 232 #include <sys/lockdebug.h> 233 #include <sys/kmem.h> 234 #include <sys/pset.h> 235 #include <sys/intr.h> 236 #include <sys/lwpctl.h> 237 #include <sys/atomic.h> 238 #include <sys/filedesc.h> 239 #include <sys/dtrace_bsd.h> 240 #include <sys/sdt.h> 241 242 #include <uvm/uvm_extern.h> 243 #include <uvm/uvm_object.h> 244 245 struct lwplist alllwp = LIST_HEAD_INITIALIZER(alllwp); 246 247 struct pool lwp_uc_pool; 248 249 static pool_cache_t lwp_cache; 250 251 /* DTrace proc provider probes */ 252 SDT_PROBE_DEFINE(proc,,,lwp_create, 253 "struct lwp *", NULL, 254 NULL, NULL, NULL, NULL, 255 NULL, NULL, NULL, NULL); 256 SDT_PROBE_DEFINE(proc,,,lwp_start, 257 "struct lwp *", NULL, 258 NULL, NULL, NULL, NULL, 259 NULL, NULL, NULL, NULL); 260 SDT_PROBE_DEFINE(proc,,,lwp_exit, 261 "struct lwp *", NULL, 262 NULL, NULL, NULL, NULL, 263 NULL, NULL, NULL, NULL); 264 265 void 266 lwpinit(void) 267 { 268 269 pool_init(&lwp_uc_pool, sizeof(ucontext_t), 0, 0, 0, "lwpucpl", 270 &pool_allocator_nointr, IPL_NONE); 271 lwpinit_specificdata(); 272 lwp_sys_init(); 273 lwp_cache = pool_cache_init(sizeof(lwp_t), MIN_LWP_ALIGNMENT, 0, 0, 274 "lwppl", NULL, IPL_NONE, NULL, NULL, NULL); 275 } 276 277 /* 278 * Set an suspended. 279 * 280 * Must be called with p_lock held, and the LWP locked. Will unlock the 281 * LWP before return. 282 */ 283 int 284 lwp_suspend(struct lwp *curl, struct lwp *t) 285 { 286 int error; 287 288 KASSERT(mutex_owned(t->l_proc->p_lock)); 289 KASSERT(lwp_locked(t, NULL)); 290 291 KASSERT(curl != t || curl->l_stat == LSONPROC); 292 293 /* 294 * If the current LWP has been told to exit, we must not suspend anyone 295 * else or deadlock could occur. We won't return to userspace. 296 */ 297 if ((curl->l_flag & (LW_WEXIT | LW_WCORE)) != 0) { 298 lwp_unlock(t); 299 return (EDEADLK); 300 } 301 302 error = 0; 303 304 switch (t->l_stat) { 305 case LSRUN: 306 case LSONPROC: 307 t->l_flag |= LW_WSUSPEND; 308 lwp_need_userret(t); 309 lwp_unlock(t); 310 break; 311 312 case LSSLEEP: 313 t->l_flag |= LW_WSUSPEND; 314 315 /* 316 * Kick the LWP and try to get it to the kernel boundary 317 * so that it will release any locks that it holds. 318 * setrunnable() will release the lock. 319 */ 320 if ((t->l_flag & LW_SINTR) != 0) 321 setrunnable(t); 322 else 323 lwp_unlock(t); 324 break; 325 326 case LSSUSPENDED: 327 lwp_unlock(t); 328 break; 329 330 case LSSTOP: 331 t->l_flag |= LW_WSUSPEND; 332 setrunnable(t); 333 break; 334 335 case LSIDL: 336 case LSZOMB: 337 error = EINTR; /* It's what Solaris does..... */ 338 lwp_unlock(t); 339 break; 340 } 341 342 return (error); 343 } 344 345 /* 346 * Restart a suspended LWP. 347 * 348 * Must be called with p_lock held, and the LWP locked. Will unlock the 349 * LWP before return. 350 */ 351 void 352 lwp_continue(struct lwp *l) 353 { 354 355 KASSERT(mutex_owned(l->l_proc->p_lock)); 356 KASSERT(lwp_locked(l, NULL)); 357 358 /* If rebooting or not suspended, then just bail out. */ 359 if ((l->l_flag & LW_WREBOOT) != 0) { 360 lwp_unlock(l); 361 return; 362 } 363 364 l->l_flag &= ~LW_WSUSPEND; 365 366 if (l->l_stat != LSSUSPENDED) { 367 lwp_unlock(l); 368 return; 369 } 370 371 /* setrunnable() will release the lock. */ 372 setrunnable(l); 373 } 374 375 /* 376 * Restart a stopped LWP. 377 * 378 * Must be called with p_lock held, and the LWP NOT locked. Will unlock the 379 * LWP before return. 380 */ 381 void 382 lwp_unstop(struct lwp *l) 383 { 384 struct proc *p = l->l_proc; 385 386 KASSERT(mutex_owned(proc_lock)); 387 KASSERT(mutex_owned(p->p_lock)); 388 389 lwp_lock(l); 390 391 /* If not stopped, then just bail out. */ 392 if (l->l_stat != LSSTOP) { 393 lwp_unlock(l); 394 return; 395 } 396 397 p->p_stat = SACTIVE; 398 p->p_sflag &= ~PS_STOPPING; 399 400 if (!p->p_waited) 401 p->p_pptr->p_nstopchild--; 402 403 if (l->l_wchan == NULL) { 404 /* setrunnable() will release the lock. */ 405 setrunnable(l); 406 } else { 407 l->l_stat = LSSLEEP; 408 p->p_nrlwps++; 409 lwp_unlock(l); 410 } 411 } 412 413 /* 414 * Wait for an LWP within the current process to exit. If 'lid' is 415 * non-zero, we are waiting for a specific LWP. 416 * 417 * Must be called with p->p_lock held. 418 */ 419 int 420 lwp_wait1(struct lwp *l, lwpid_t lid, lwpid_t *departed, int flags) 421 { 422 struct proc *p = l->l_proc; 423 struct lwp *l2; 424 int nfound, error; 425 lwpid_t curlid; 426 bool exiting; 427 428 KASSERT(mutex_owned(p->p_lock)); 429 430 p->p_nlwpwait++; 431 l->l_waitingfor = lid; 432 curlid = l->l_lid; 433 exiting = ((flags & LWPWAIT_EXITCONTROL) != 0); 434 435 for (;;) { 436 /* 437 * Avoid a race between exit1() and sigexit(): if the 438 * process is dumping core, then we need to bail out: call 439 * into lwp_userret() where we will be suspended until the 440 * deed is done. 441 */ 442 if ((p->p_sflag & PS_WCORE) != 0) { 443 mutex_exit(p->p_lock); 444 lwp_userret(l); 445 #ifdef DIAGNOSTIC 446 panic("lwp_wait1"); 447 #endif 448 /* NOTREACHED */ 449 } 450 451 /* 452 * First off, drain any detached LWP that is waiting to be 453 * reaped. 454 */ 455 while ((l2 = p->p_zomblwp) != NULL) { 456 p->p_zomblwp = NULL; 457 lwp_free(l2, false, false);/* releases proc mutex */ 458 mutex_enter(p->p_lock); 459 } 460 461 /* 462 * Now look for an LWP to collect. If the whole process is 463 * exiting, count detached LWPs as eligible to be collected, 464 * but don't drain them here. 465 */ 466 nfound = 0; 467 error = 0; 468 LIST_FOREACH(l2, &p->p_lwps, l_sibling) { 469 /* 470 * If a specific wait and the target is waiting on 471 * us, then avoid deadlock. This also traps LWPs 472 * that try to wait on themselves. 473 * 474 * Note that this does not handle more complicated 475 * cycles, like: t1 -> t2 -> t3 -> t1. The process 476 * can still be killed so it is not a major problem. 477 */ 478 if (l2->l_lid == lid && l2->l_waitingfor == curlid) { 479 error = EDEADLK; 480 break; 481 } 482 if (l2 == l) 483 continue; 484 if ((l2->l_prflag & LPR_DETACHED) != 0) { 485 nfound += exiting; 486 continue; 487 } 488 if (lid != 0) { 489 if (l2->l_lid != lid) 490 continue; 491 /* 492 * Mark this LWP as the first waiter, if there 493 * is no other. 494 */ 495 if (l2->l_waiter == 0) 496 l2->l_waiter = curlid; 497 } else if (l2->l_waiter != 0) { 498 /* 499 * It already has a waiter - so don't 500 * collect it. If the waiter doesn't 501 * grab it we'll get another chance 502 * later. 503 */ 504 nfound++; 505 continue; 506 } 507 nfound++; 508 509 /* No need to lock the LWP in order to see LSZOMB. */ 510 if (l2->l_stat != LSZOMB) 511 continue; 512 513 /* 514 * We're no longer waiting. Reset the "first waiter" 515 * pointer on the target, in case it was us. 516 */ 517 l->l_waitingfor = 0; 518 l2->l_waiter = 0; 519 p->p_nlwpwait--; 520 if (departed) 521 *departed = l2->l_lid; 522 sched_lwp_collect(l2); 523 524 /* lwp_free() releases the proc lock. */ 525 lwp_free(l2, false, false); 526 mutex_enter(p->p_lock); 527 return 0; 528 } 529 530 if (error != 0) 531 break; 532 if (nfound == 0) { 533 error = ESRCH; 534 break; 535 } 536 537 /* 538 * The kernel is careful to ensure that it can not deadlock 539 * when exiting - just keep waiting. 540 */ 541 if (exiting) { 542 KASSERT(p->p_nlwps > 1); 543 cv_wait(&p->p_lwpcv, p->p_lock); 544 continue; 545 } 546 547 /* 548 * If all other LWPs are waiting for exits or suspends 549 * and the supply of zombies and potential zombies is 550 * exhausted, then we are about to deadlock. 551 * 552 * If the process is exiting (and this LWP is not the one 553 * that is coordinating the exit) then bail out now. 554 */ 555 if ((p->p_sflag & PS_WEXIT) != 0 || 556 p->p_nrlwps + p->p_nzlwps - p->p_ndlwps <= p->p_nlwpwait) { 557 error = EDEADLK; 558 break; 559 } 560 561 /* 562 * Sit around and wait for something to happen. We'll be 563 * awoken if any of the conditions examined change: if an 564 * LWP exits, is collected, or is detached. 565 */ 566 if ((error = cv_wait_sig(&p->p_lwpcv, p->p_lock)) != 0) 567 break; 568 } 569 570 /* 571 * We didn't find any LWPs to collect, we may have received a 572 * signal, or some other condition has caused us to bail out. 573 * 574 * If waiting on a specific LWP, clear the waiters marker: some 575 * other LWP may want it. Then, kick all the remaining waiters 576 * so that they can re-check for zombies and for deadlock. 577 */ 578 if (lid != 0) { 579 LIST_FOREACH(l2, &p->p_lwps, l_sibling) { 580 if (l2->l_lid == lid) { 581 if (l2->l_waiter == curlid) 582 l2->l_waiter = 0; 583 break; 584 } 585 } 586 } 587 p->p_nlwpwait--; 588 l->l_waitingfor = 0; 589 cv_broadcast(&p->p_lwpcv); 590 591 return error; 592 } 593 594 /* 595 * Create a new LWP within process 'p2', using LWP 'l1' as a template. 596 * The new LWP is created in state LSIDL and must be set running, 597 * suspended, or stopped by the caller. 598 */ 599 int 600 lwp_create(lwp_t *l1, proc_t *p2, vaddr_t uaddr, int flags, 601 void *stack, size_t stacksize, void (*func)(void *), void *arg, 602 lwp_t **rnewlwpp, int sclass) 603 { 604 struct lwp *l2, *isfree; 605 turnstile_t *ts; 606 607 KASSERT(l1 == curlwp || l1->l_proc == &proc0); 608 609 /* 610 * First off, reap any detached LWP waiting to be collected. 611 * We can re-use its LWP structure and turnstile. 612 */ 613 isfree = NULL; 614 if (p2->p_zomblwp != NULL) { 615 mutex_enter(p2->p_lock); 616 if ((isfree = p2->p_zomblwp) != NULL) { 617 p2->p_zomblwp = NULL; 618 lwp_free(isfree, true, false);/* releases proc mutex */ 619 } else 620 mutex_exit(p2->p_lock); 621 } 622 if (isfree == NULL) { 623 l2 = pool_cache_get(lwp_cache, PR_WAITOK); 624 memset(l2, 0, sizeof(*l2)); 625 l2->l_ts = pool_cache_get(turnstile_cache, PR_WAITOK); 626 SLIST_INIT(&l2->l_pi_lenders); 627 } else { 628 l2 = isfree; 629 ts = l2->l_ts; 630 KASSERT(l2->l_inheritedprio == -1); 631 KASSERT(SLIST_EMPTY(&l2->l_pi_lenders)); 632 memset(l2, 0, sizeof(*l2)); 633 l2->l_ts = ts; 634 } 635 636 l2->l_stat = LSIDL; 637 l2->l_proc = p2; 638 l2->l_refcnt = 1; 639 l2->l_class = sclass; 640 641 /* 642 * If vfork(), we want the LWP to run fast and on the same CPU 643 * as its parent, so that it can reuse the VM context and cache 644 * footprint on the local CPU. 645 */ 646 l2->l_kpriority = ((flags & LWP_VFORK) ? true : false); 647 l2->l_kpribase = PRI_KERNEL; 648 l2->l_priority = l1->l_priority; 649 l2->l_inheritedprio = -1; 650 l2->l_flag = 0; 651 l2->l_pflag = LP_MPSAFE; 652 TAILQ_INIT(&l2->l_ld_locks); 653 654 /* 655 * If not the first LWP in the process, grab a reference to the 656 * descriptor table. 657 */ 658 l2->l_fd = p2->p_fd; 659 if (p2->p_nlwps != 0) { 660 KASSERT(l1->l_proc == p2); 661 fd_hold(l2); 662 } else { 663 KASSERT(l1->l_proc != p2); 664 } 665 666 if (p2->p_flag & PK_SYSTEM) { 667 /* Mark it as a system LWP. */ 668 l2->l_flag |= LW_SYSTEM; 669 } 670 671 kpreempt_disable(); 672 l2->l_mutex = l1->l_cpu->ci_schedstate.spc_mutex; 673 l2->l_cpu = l1->l_cpu; 674 kpreempt_enable(); 675 676 kdtrace_thread_ctor(NULL, l2); 677 lwp_initspecific(l2); 678 sched_lwp_fork(l1, l2); 679 lwp_update_creds(l2); 680 callout_init(&l2->l_timeout_ch, CALLOUT_MPSAFE); 681 callout_setfunc(&l2->l_timeout_ch, sleepq_timeout, l2); 682 cv_init(&l2->l_sigcv, "sigwait"); 683 l2->l_syncobj = &sched_syncobj; 684 685 if (rnewlwpp != NULL) 686 *rnewlwpp = l2; 687 688 uvm_lwp_setuarea(l2, uaddr); 689 uvm_lwp_fork(l1, l2, stack, stacksize, func, 690 (arg != NULL) ? arg : l2); 691 692 mutex_enter(p2->p_lock); 693 694 if ((flags & LWP_DETACHED) != 0) { 695 l2->l_prflag = LPR_DETACHED; 696 p2->p_ndlwps++; 697 } else 698 l2->l_prflag = 0; 699 700 l2->l_sigmask = l1->l_sigmask; 701 CIRCLEQ_INIT(&l2->l_sigpend.sp_info); 702 sigemptyset(&l2->l_sigpend.sp_set); 703 704 p2->p_nlwpid++; 705 if (p2->p_nlwpid == 0) 706 p2->p_nlwpid++; 707 l2->l_lid = p2->p_nlwpid; 708 LIST_INSERT_HEAD(&p2->p_lwps, l2, l_sibling); 709 p2->p_nlwps++; 710 711 if ((p2->p_flag & PK_SYSTEM) == 0) { 712 /* Inherit an affinity */ 713 if (l1->l_flag & LW_AFFINITY) { 714 /* 715 * Note that we hold the state lock while inheriting 716 * the affinity to avoid race with sched_setaffinity(). 717 */ 718 lwp_lock(l1); 719 if (l1->l_flag & LW_AFFINITY) { 720 kcpuset_use(l1->l_affinity); 721 l2->l_affinity = l1->l_affinity; 722 l2->l_flag |= LW_AFFINITY; 723 } 724 lwp_unlock(l1); 725 } 726 lwp_lock(l2); 727 /* Inherit a processor-set */ 728 l2->l_psid = l1->l_psid; 729 /* Look for a CPU to start */ 730 l2->l_cpu = sched_takecpu(l2); 731 lwp_unlock_to(l2, l2->l_cpu->ci_schedstate.spc_mutex); 732 } 733 mutex_exit(p2->p_lock); 734 735 SDT_PROBE(proc,,,lwp_create, l2, 0,0,0,0); 736 737 mutex_enter(proc_lock); 738 LIST_INSERT_HEAD(&alllwp, l2, l_list); 739 mutex_exit(proc_lock); 740 741 SYSCALL_TIME_LWP_INIT(l2); 742 743 if (p2->p_emul->e_lwp_fork) 744 (*p2->p_emul->e_lwp_fork)(l1, l2); 745 746 return (0); 747 } 748 749 /* 750 * Called by MD code when a new LWP begins execution. Must be called 751 * with the previous LWP locked (so at splsched), or if there is no 752 * previous LWP, at splsched. 753 */ 754 void 755 lwp_startup(struct lwp *prev, struct lwp *new) 756 { 757 758 SDT_PROBE(proc,,,lwp_start, new, 0,0,0,0); 759 760 KASSERT(kpreempt_disabled()); 761 if (prev != NULL) { 762 /* 763 * Normalize the count of the spin-mutexes, it was 764 * increased in mi_switch(). Unmark the state of 765 * context switch - it is finished for previous LWP. 766 */ 767 curcpu()->ci_mtx_count++; 768 membar_exit(); 769 prev->l_ctxswtch = 0; 770 } 771 KPREEMPT_DISABLE(new); 772 spl0(); 773 pmap_activate(new); 774 LOCKDEBUG_BARRIER(NULL, 0); 775 KPREEMPT_ENABLE(new); 776 if ((new->l_pflag & LP_MPSAFE) == 0) { 777 KERNEL_LOCK(1, new); 778 } 779 } 780 781 /* 782 * Exit an LWP. 783 */ 784 void 785 lwp_exit(struct lwp *l) 786 { 787 struct proc *p = l->l_proc; 788 struct lwp *l2; 789 bool current; 790 791 current = (l == curlwp); 792 793 KASSERT(current || (l->l_stat == LSIDL && l->l_target_cpu == NULL)); 794 KASSERT(p == curproc); 795 796 SDT_PROBE(proc,,,lwp_exit, l, 0,0,0,0); 797 798 /* 799 * Verify that we hold no locks other than the kernel lock. 800 */ 801 LOCKDEBUG_BARRIER(&kernel_lock, 0); 802 803 /* 804 * If we are the last live LWP in a process, we need to exit the 805 * entire process. We do so with an exit status of zero, because 806 * it's a "controlled" exit, and because that's what Solaris does. 807 * 808 * We are not quite a zombie yet, but for accounting purposes we 809 * must increment the count of zombies here. 810 * 811 * Note: the last LWP's specificdata will be deleted here. 812 */ 813 mutex_enter(p->p_lock); 814 if (p->p_nlwps - p->p_nzlwps == 1) { 815 KASSERT(current == true); 816 /* XXXSMP kernel_lock not held */ 817 exit1(l, 0); 818 /* NOTREACHED */ 819 } 820 p->p_nzlwps++; 821 mutex_exit(p->p_lock); 822 823 if (p->p_emul->e_lwp_exit) 824 (*p->p_emul->e_lwp_exit)(l); 825 826 /* Drop filedesc reference. */ 827 fd_free(); 828 829 /* Delete the specificdata while it's still safe to sleep. */ 830 lwp_finispecific(l); 831 832 /* 833 * Release our cached credentials. 834 */ 835 kauth_cred_free(l->l_cred); 836 callout_destroy(&l->l_timeout_ch); 837 838 /* 839 * Remove the LWP from the global list. 840 */ 841 mutex_enter(proc_lock); 842 LIST_REMOVE(l, l_list); 843 mutex_exit(proc_lock); 844 845 /* 846 * Get rid of all references to the LWP that others (e.g. procfs) 847 * may have, and mark the LWP as a zombie. If the LWP is detached, 848 * mark it waiting for collection in the proc structure. Note that 849 * before we can do that, we need to free any other dead, deatched 850 * LWP waiting to meet its maker. 851 */ 852 mutex_enter(p->p_lock); 853 lwp_drainrefs(l); 854 855 if ((l->l_prflag & LPR_DETACHED) != 0) { 856 while ((l2 = p->p_zomblwp) != NULL) { 857 p->p_zomblwp = NULL; 858 lwp_free(l2, false, false);/* releases proc mutex */ 859 mutex_enter(p->p_lock); 860 l->l_refcnt++; 861 lwp_drainrefs(l); 862 } 863 p->p_zomblwp = l; 864 } 865 866 /* 867 * If we find a pending signal for the process and we have been 868 * asked to check for signals, then we loose: arrange to have 869 * all other LWPs in the process check for signals. 870 */ 871 if ((l->l_flag & LW_PENDSIG) != 0 && 872 firstsig(&p->p_sigpend.sp_set) != 0) { 873 LIST_FOREACH(l2, &p->p_lwps, l_sibling) { 874 lwp_lock(l2); 875 l2->l_flag |= LW_PENDSIG; 876 lwp_unlock(l2); 877 } 878 } 879 880 lwp_lock(l); 881 l->l_stat = LSZOMB; 882 if (l->l_name != NULL) 883 strcpy(l->l_name, "(zombie)"); 884 if (l->l_flag & LW_AFFINITY) { 885 l->l_flag &= ~LW_AFFINITY; 886 } else { 887 KASSERT(l->l_affinity == NULL); 888 } 889 lwp_unlock(l); 890 p->p_nrlwps--; 891 cv_broadcast(&p->p_lwpcv); 892 if (l->l_lwpctl != NULL) 893 l->l_lwpctl->lc_curcpu = LWPCTL_CPU_EXITED; 894 mutex_exit(p->p_lock); 895 896 /* Safe without lock since LWP is in zombie state */ 897 if (l->l_affinity) { 898 kcpuset_unuse(l->l_affinity, NULL); 899 l->l_affinity = NULL; 900 } 901 902 /* 903 * We can no longer block. At this point, lwp_free() may already 904 * be gunning for us. On a multi-CPU system, we may be off p_lwps. 905 * 906 * Free MD LWP resources. 907 */ 908 cpu_lwp_free(l, 0); 909 910 if (current) { 911 pmap_deactivate(l); 912 913 /* 914 * Release the kernel lock, and switch away into 915 * oblivion. 916 */ 917 #ifdef notyet 918 /* XXXSMP hold in lwp_userret() */ 919 KERNEL_UNLOCK_LAST(l); 920 #else 921 KERNEL_UNLOCK_ALL(l, NULL); 922 #endif 923 lwp_exit_switchaway(l); 924 } 925 } 926 927 /* 928 * Free a dead LWP's remaining resources. 929 * 930 * XXXLWP limits. 931 */ 932 void 933 lwp_free(struct lwp *l, bool recycle, bool last) 934 { 935 struct proc *p = l->l_proc; 936 struct rusage *ru; 937 ksiginfoq_t kq; 938 939 KASSERT(l != curlwp); 940 941 /* 942 * If this was not the last LWP in the process, then adjust 943 * counters and unlock. 944 */ 945 if (!last) { 946 /* 947 * Add the LWP's run time to the process' base value. 948 * This needs to co-incide with coming off p_lwps. 949 */ 950 bintime_add(&p->p_rtime, &l->l_rtime); 951 p->p_pctcpu += l->l_pctcpu; 952 ru = &p->p_stats->p_ru; 953 ruadd(ru, &l->l_ru); 954 ru->ru_nvcsw += (l->l_ncsw - l->l_nivcsw); 955 ru->ru_nivcsw += l->l_nivcsw; 956 LIST_REMOVE(l, l_sibling); 957 p->p_nlwps--; 958 p->p_nzlwps--; 959 if ((l->l_prflag & LPR_DETACHED) != 0) 960 p->p_ndlwps--; 961 962 /* 963 * Have any LWPs sleeping in lwp_wait() recheck for 964 * deadlock. 965 */ 966 cv_broadcast(&p->p_lwpcv); 967 mutex_exit(p->p_lock); 968 } 969 970 #ifdef MULTIPROCESSOR 971 /* 972 * In the unlikely event that the LWP is still on the CPU, 973 * then spin until it has switched away. We need to release 974 * all locks to avoid deadlock against interrupt handlers on 975 * the target CPU. 976 */ 977 if ((l->l_pflag & LP_RUNNING) != 0 || l->l_cpu->ci_curlwp == l) { 978 int count; 979 (void)count; /* XXXgcc */ 980 KERNEL_UNLOCK_ALL(curlwp, &count); 981 while ((l->l_pflag & LP_RUNNING) != 0 || 982 l->l_cpu->ci_curlwp == l) 983 SPINLOCK_BACKOFF_HOOK; 984 KERNEL_LOCK(count, curlwp); 985 } 986 #endif 987 988 /* 989 * Destroy the LWP's remaining signal information. 990 */ 991 ksiginfo_queue_init(&kq); 992 sigclear(&l->l_sigpend, NULL, &kq); 993 ksiginfo_queue_drain(&kq); 994 cv_destroy(&l->l_sigcv); 995 996 /* 997 * Free the LWP's turnstile and the LWP structure itself unless the 998 * caller wants to recycle them. Also, free the scheduler specific 999 * data. 1000 * 1001 * We can't return turnstile0 to the pool (it didn't come from it), 1002 * so if it comes up just drop it quietly and move on. 1003 * 1004 * We don't recycle the VM resources at this time. 1005 */ 1006 if (l->l_lwpctl != NULL) 1007 lwp_ctl_free(l); 1008 1009 if (!recycle && l->l_ts != &turnstile0) 1010 pool_cache_put(turnstile_cache, l->l_ts); 1011 if (l->l_name != NULL) 1012 kmem_free(l->l_name, MAXCOMLEN); 1013 1014 cpu_lwp_free2(l); 1015 uvm_lwp_exit(l); 1016 1017 KASSERT(SLIST_EMPTY(&l->l_pi_lenders)); 1018 KASSERT(l->l_inheritedprio == -1); 1019 kdtrace_thread_dtor(NULL, l); 1020 if (!recycle) 1021 pool_cache_put(lwp_cache, l); 1022 } 1023 1024 /* 1025 * Migrate the LWP to the another CPU. Unlocks the LWP. 1026 */ 1027 void 1028 lwp_migrate(lwp_t *l, struct cpu_info *tci) 1029 { 1030 struct schedstate_percpu *tspc; 1031 int lstat = l->l_stat; 1032 1033 KASSERT(lwp_locked(l, NULL)); 1034 KASSERT(tci != NULL); 1035 1036 /* If LWP is still on the CPU, it must be handled like LSONPROC */ 1037 if ((l->l_pflag & LP_RUNNING) != 0) { 1038 lstat = LSONPROC; 1039 } 1040 1041 /* 1042 * The destination CPU could be changed while previous migration 1043 * was not finished. 1044 */ 1045 if (l->l_target_cpu != NULL) { 1046 l->l_target_cpu = tci; 1047 lwp_unlock(l); 1048 return; 1049 } 1050 1051 /* Nothing to do if trying to migrate to the same CPU */ 1052 if (l->l_cpu == tci) { 1053 lwp_unlock(l); 1054 return; 1055 } 1056 1057 KASSERT(l->l_target_cpu == NULL); 1058 tspc = &tci->ci_schedstate; 1059 switch (lstat) { 1060 case LSRUN: 1061 l->l_target_cpu = tci; 1062 break; 1063 case LSIDL: 1064 l->l_cpu = tci; 1065 lwp_unlock_to(l, tspc->spc_mutex); 1066 return; 1067 case LSSLEEP: 1068 l->l_cpu = tci; 1069 break; 1070 case LSSTOP: 1071 case LSSUSPENDED: 1072 l->l_cpu = tci; 1073 if (l->l_wchan == NULL) { 1074 lwp_unlock_to(l, tspc->spc_lwplock); 1075 return; 1076 } 1077 break; 1078 case LSONPROC: 1079 l->l_target_cpu = tci; 1080 spc_lock(l->l_cpu); 1081 cpu_need_resched(l->l_cpu, RESCHED_KPREEMPT); 1082 spc_unlock(l->l_cpu); 1083 break; 1084 } 1085 lwp_unlock(l); 1086 } 1087 1088 /* 1089 * Find the LWP in the process. Arguments may be zero, in such case, 1090 * the calling process and first LWP in the list will be used. 1091 * On success - returns proc locked. 1092 */ 1093 struct lwp * 1094 lwp_find2(pid_t pid, lwpid_t lid) 1095 { 1096 proc_t *p; 1097 lwp_t *l; 1098 1099 /* Find the process */ 1100 p = (pid == 0) ? curlwp->l_proc : p_find(pid, PFIND_UNLOCK_FAIL); 1101 if (p == NULL) 1102 return NULL; 1103 mutex_enter(p->p_lock); 1104 if (pid != 0) { 1105 /* Case of p_find */ 1106 mutex_exit(proc_lock); 1107 } 1108 1109 /* Find the thread */ 1110 l = (lid == 0) ? LIST_FIRST(&p->p_lwps) : lwp_find(p, lid); 1111 if (l == NULL) { 1112 mutex_exit(p->p_lock); 1113 } 1114 1115 return l; 1116 } 1117 1118 /* 1119 * Look up a live LWP within the speicifed process, and return it locked. 1120 * 1121 * Must be called with p->p_lock held. 1122 */ 1123 struct lwp * 1124 lwp_find(struct proc *p, int id) 1125 { 1126 struct lwp *l; 1127 1128 KASSERT(mutex_owned(p->p_lock)); 1129 1130 LIST_FOREACH(l, &p->p_lwps, l_sibling) { 1131 if (l->l_lid == id) 1132 break; 1133 } 1134 1135 /* 1136 * No need to lock - all of these conditions will 1137 * be visible with the process level mutex held. 1138 */ 1139 if (l != NULL && (l->l_stat == LSIDL || l->l_stat == LSZOMB)) 1140 l = NULL; 1141 1142 return l; 1143 } 1144 1145 /* 1146 * Update an LWP's cached credentials to mirror the process' master copy. 1147 * 1148 * This happens early in the syscall path, on user trap, and on LWP 1149 * creation. A long-running LWP can also voluntarily choose to update 1150 * it's credentials by calling this routine. This may be called from 1151 * LWP_CACHE_CREDS(), which checks l->l_cred != p->p_cred beforehand. 1152 */ 1153 void 1154 lwp_update_creds(struct lwp *l) 1155 { 1156 kauth_cred_t oc; 1157 struct proc *p; 1158 1159 p = l->l_proc; 1160 oc = l->l_cred; 1161 1162 mutex_enter(p->p_lock); 1163 kauth_cred_hold(p->p_cred); 1164 l->l_cred = p->p_cred; 1165 l->l_prflag &= ~LPR_CRMOD; 1166 mutex_exit(p->p_lock); 1167 if (oc != NULL) 1168 kauth_cred_free(oc); 1169 } 1170 1171 /* 1172 * Verify that an LWP is locked, and optionally verify that the lock matches 1173 * one we specify. 1174 */ 1175 int 1176 lwp_locked(struct lwp *l, kmutex_t *mtx) 1177 { 1178 kmutex_t *cur = l->l_mutex; 1179 1180 return mutex_owned(cur) && (mtx == cur || mtx == NULL); 1181 } 1182 1183 /* 1184 * Lock an LWP. 1185 */ 1186 kmutex_t * 1187 lwp_lock_retry(struct lwp *l, kmutex_t *old) 1188 { 1189 1190 /* 1191 * XXXgcc ignoring kmutex_t * volatile on i386 1192 * 1193 * gcc version 4.1.2 20061021 prerelease (NetBSD nb1 20061021) 1194 */ 1195 #if 1 1196 while (l->l_mutex != old) { 1197 #else 1198 for (;;) { 1199 #endif 1200 mutex_spin_exit(old); 1201 old = l->l_mutex; 1202 mutex_spin_enter(old); 1203 1204 /* 1205 * mutex_enter() will have posted a read barrier. Re-test 1206 * l->l_mutex. If it has changed, we need to try again. 1207 */ 1208 #if 1 1209 } 1210 #else 1211 } while (__predict_false(l->l_mutex != old)); 1212 #endif 1213 1214 return old; 1215 } 1216 1217 /* 1218 * Lend a new mutex to an LWP. The old mutex must be held. 1219 */ 1220 void 1221 lwp_setlock(struct lwp *l, kmutex_t *new) 1222 { 1223 1224 KASSERT(mutex_owned(l->l_mutex)); 1225 1226 membar_exit(); 1227 l->l_mutex = new; 1228 } 1229 1230 /* 1231 * Lend a new mutex to an LWP, and release the old mutex. The old mutex 1232 * must be held. 1233 */ 1234 void 1235 lwp_unlock_to(struct lwp *l, kmutex_t *new) 1236 { 1237 kmutex_t *old; 1238 1239 KASSERT(mutex_owned(l->l_mutex)); 1240 1241 old = l->l_mutex; 1242 membar_exit(); 1243 l->l_mutex = new; 1244 mutex_spin_exit(old); 1245 } 1246 1247 /* 1248 * Acquire a new mutex, and donate it to an LWP. The LWP must already be 1249 * locked. 1250 */ 1251 void 1252 lwp_relock(struct lwp *l, kmutex_t *new) 1253 { 1254 kmutex_t *old; 1255 1256 KASSERT(mutex_owned(l->l_mutex)); 1257 1258 old = l->l_mutex; 1259 if (old != new) { 1260 mutex_spin_enter(new); 1261 l->l_mutex = new; 1262 mutex_spin_exit(old); 1263 } 1264 } 1265 1266 int 1267 lwp_trylock(struct lwp *l) 1268 { 1269 kmutex_t *old; 1270 1271 for (;;) { 1272 if (!mutex_tryenter(old = l->l_mutex)) 1273 return 0; 1274 if (__predict_true(l->l_mutex == old)) 1275 return 1; 1276 mutex_spin_exit(old); 1277 } 1278 } 1279 1280 void 1281 lwp_unsleep(lwp_t *l, bool cleanup) 1282 { 1283 1284 KASSERT(mutex_owned(l->l_mutex)); 1285 (*l->l_syncobj->sobj_unsleep)(l, cleanup); 1286 } 1287 1288 1289 /* 1290 * Handle exceptions for mi_userret(). Called if a member of LW_USERRET is 1291 * set. 1292 */ 1293 void 1294 lwp_userret(struct lwp *l) 1295 { 1296 struct proc *p; 1297 void (*hook)(void); 1298 int sig; 1299 1300 KASSERT(l == curlwp); 1301 KASSERT(l->l_stat == LSONPROC); 1302 p = l->l_proc; 1303 1304 #ifndef __HAVE_FAST_SOFTINTS 1305 /* Run pending soft interrupts. */ 1306 if (l->l_cpu->ci_data.cpu_softints != 0) 1307 softint_overlay(); 1308 #endif 1309 1310 #ifdef KERN_SA 1311 /* Generate UNBLOCKED upcall if needed */ 1312 if (l->l_flag & LW_SA_BLOCKING) { 1313 sa_unblock_userret(l); 1314 /* NOTREACHED */ 1315 } 1316 #endif 1317 1318 /* 1319 * It should be safe to do this read unlocked on a multiprocessor 1320 * system.. 1321 * 1322 * LW_SA_UPCALL will be handled after the while() loop, so don't 1323 * consider it now. 1324 */ 1325 while ((l->l_flag & (LW_USERRET & ~(LW_SA_UPCALL))) != 0) { 1326 /* 1327 * Process pending signals first, unless the process 1328 * is dumping core or exiting, where we will instead 1329 * enter the LW_WSUSPEND case below. 1330 */ 1331 if ((l->l_flag & (LW_PENDSIG | LW_WCORE | LW_WEXIT)) == 1332 LW_PENDSIG) { 1333 mutex_enter(p->p_lock); 1334 while ((sig = issignal(l)) != 0) 1335 postsig(sig); 1336 mutex_exit(p->p_lock); 1337 } 1338 1339 /* 1340 * Core-dump or suspend pending. 1341 * 1342 * In case of core dump, suspend ourselves, so that the 1343 * kernel stack and therefore the userland registers saved 1344 * in the trapframe are around for coredump() to write them 1345 * out. We issue a wakeup on p->p_lwpcv so that sigexit() 1346 * will write the core file out once all other LWPs are 1347 * suspended. 1348 */ 1349 if ((l->l_flag & LW_WSUSPEND) != 0) { 1350 mutex_enter(p->p_lock); 1351 p->p_nrlwps--; 1352 cv_broadcast(&p->p_lwpcv); 1353 lwp_lock(l); 1354 l->l_stat = LSSUSPENDED; 1355 lwp_unlock(l); 1356 mutex_exit(p->p_lock); 1357 lwp_lock(l); 1358 mi_switch(l); 1359 } 1360 1361 /* Process is exiting. */ 1362 if ((l->l_flag & LW_WEXIT) != 0) { 1363 lwp_exit(l); 1364 KASSERT(0); 1365 /* NOTREACHED */ 1366 } 1367 1368 /* Call userret hook; used by Linux emulation. */ 1369 if ((l->l_flag & LW_WUSERRET) != 0) { 1370 lwp_lock(l); 1371 l->l_flag &= ~LW_WUSERRET; 1372 lwp_unlock(l); 1373 hook = p->p_userret; 1374 p->p_userret = NULL; 1375 (*hook)(); 1376 } 1377 } 1378 1379 #ifdef KERN_SA 1380 /* 1381 * Timer events are handled specially. We only try once to deliver 1382 * pending timer upcalls; if if fails, we can try again on the next 1383 * loop around. If we need to re-enter lwp_userret(), MD code will 1384 * bounce us back here through the trap path after we return. 1385 */ 1386 if (p->p_timerpend) 1387 timerupcall(l); 1388 if (l->l_flag & LW_SA_UPCALL) 1389 sa_upcall_userret(l); 1390 #endif /* KERN_SA */ 1391 } 1392 1393 /* 1394 * Force an LWP to enter the kernel, to take a trip through lwp_userret(). 1395 */ 1396 void 1397 lwp_need_userret(struct lwp *l) 1398 { 1399 KASSERT(lwp_locked(l, NULL)); 1400 1401 /* 1402 * Since the tests in lwp_userret() are done unlocked, make sure 1403 * that the condition will be seen before forcing the LWP to enter 1404 * kernel mode. 1405 */ 1406 membar_producer(); 1407 cpu_signotify(l); 1408 } 1409 1410 /* 1411 * Add one reference to an LWP. This will prevent the LWP from 1412 * exiting, thus keep the lwp structure and PCB around to inspect. 1413 */ 1414 void 1415 lwp_addref(struct lwp *l) 1416 { 1417 1418 KASSERT(mutex_owned(l->l_proc->p_lock)); 1419 KASSERT(l->l_stat != LSZOMB); 1420 KASSERT(l->l_refcnt != 0); 1421 1422 l->l_refcnt++; 1423 } 1424 1425 /* 1426 * Remove one reference to an LWP. If this is the last reference, 1427 * then we must finalize the LWP's death. 1428 */ 1429 void 1430 lwp_delref(struct lwp *l) 1431 { 1432 struct proc *p = l->l_proc; 1433 1434 mutex_enter(p->p_lock); 1435 lwp_delref2(l); 1436 mutex_exit(p->p_lock); 1437 } 1438 1439 /* 1440 * Remove one reference to an LWP. If this is the last reference, 1441 * then we must finalize the LWP's death. The proc mutex is held 1442 * on entry. 1443 */ 1444 void 1445 lwp_delref2(struct lwp *l) 1446 { 1447 struct proc *p = l->l_proc; 1448 1449 KASSERT(mutex_owned(p->p_lock)); 1450 KASSERT(l->l_stat != LSZOMB); 1451 KASSERT(l->l_refcnt > 0); 1452 if (--l->l_refcnt == 0) 1453 cv_broadcast(&p->p_lwpcv); 1454 } 1455 1456 /* 1457 * Drain all references to the current LWP. 1458 */ 1459 void 1460 lwp_drainrefs(struct lwp *l) 1461 { 1462 struct proc *p = l->l_proc; 1463 1464 KASSERT(mutex_owned(p->p_lock)); 1465 KASSERT(l->l_refcnt != 0); 1466 1467 l->l_refcnt--; 1468 while (l->l_refcnt != 0) 1469 cv_wait(&p->p_lwpcv, p->p_lock); 1470 } 1471 1472 /* 1473 * Return true if the specified LWP is 'alive'. Only p->p_lock need 1474 * be held. 1475 */ 1476 bool 1477 lwp_alive(lwp_t *l) 1478 { 1479 1480 KASSERT(mutex_owned(l->l_proc->p_lock)); 1481 1482 switch (l->l_stat) { 1483 case LSSLEEP: 1484 case LSRUN: 1485 case LSONPROC: 1486 case LSSTOP: 1487 case LSSUSPENDED: 1488 return true; 1489 default: 1490 return false; 1491 } 1492 } 1493 1494 /* 1495 * Return first live LWP in the process. 1496 */ 1497 lwp_t * 1498 lwp_find_first(proc_t *p) 1499 { 1500 lwp_t *l; 1501 1502 KASSERT(mutex_owned(p->p_lock)); 1503 1504 LIST_FOREACH(l, &p->p_lwps, l_sibling) { 1505 if (lwp_alive(l)) { 1506 return l; 1507 } 1508 } 1509 1510 return NULL; 1511 } 1512 1513 /* 1514 * Allocate a new lwpctl structure for a user LWP. 1515 */ 1516 int 1517 lwp_ctl_alloc(vaddr_t *uaddr) 1518 { 1519 lcproc_t *lp; 1520 u_int bit, i, offset; 1521 struct uvm_object *uao; 1522 int error; 1523 lcpage_t *lcp; 1524 proc_t *p; 1525 lwp_t *l; 1526 1527 l = curlwp; 1528 p = l->l_proc; 1529 1530 if (l->l_lcpage != NULL) { 1531 lcp = l->l_lcpage; 1532 *uaddr = lcp->lcp_uaddr + (vaddr_t)l->l_lwpctl - lcp->lcp_kaddr; 1533 return 0; 1534 } 1535 1536 /* First time around, allocate header structure for the process. */ 1537 if ((lp = p->p_lwpctl) == NULL) { 1538 lp = kmem_alloc(sizeof(*lp), KM_SLEEP); 1539 mutex_init(&lp->lp_lock, MUTEX_DEFAULT, IPL_NONE); 1540 lp->lp_uao = NULL; 1541 TAILQ_INIT(&lp->lp_pages); 1542 mutex_enter(p->p_lock); 1543 if (p->p_lwpctl == NULL) { 1544 p->p_lwpctl = lp; 1545 mutex_exit(p->p_lock); 1546 } else { 1547 mutex_exit(p->p_lock); 1548 mutex_destroy(&lp->lp_lock); 1549 kmem_free(lp, sizeof(*lp)); 1550 lp = p->p_lwpctl; 1551 } 1552 } 1553 1554 /* 1555 * Set up an anonymous memory region to hold the shared pages. 1556 * Map them into the process' address space. The user vmspace 1557 * gets the first reference on the UAO. 1558 */ 1559 mutex_enter(&lp->lp_lock); 1560 if (lp->lp_uao == NULL) { 1561 lp->lp_uao = uao_create(LWPCTL_UAREA_SZ, 0); 1562 lp->lp_cur = 0; 1563 lp->lp_max = LWPCTL_UAREA_SZ; 1564 lp->lp_uva = p->p_emul->e_vm_default_addr(p, 1565 (vaddr_t)p->p_vmspace->vm_daddr, LWPCTL_UAREA_SZ); 1566 error = uvm_map(&p->p_vmspace->vm_map, &lp->lp_uva, 1567 LWPCTL_UAREA_SZ, lp->lp_uao, 0, 0, UVM_MAPFLAG(UVM_PROT_RW, 1568 UVM_PROT_RW, UVM_INH_NONE, UVM_ADV_NORMAL, 0)); 1569 if (error != 0) { 1570 uao_detach(lp->lp_uao); 1571 lp->lp_uao = NULL; 1572 mutex_exit(&lp->lp_lock); 1573 return error; 1574 } 1575 } 1576 1577 /* Get a free block and allocate for this LWP. */ 1578 TAILQ_FOREACH(lcp, &lp->lp_pages, lcp_chain) { 1579 if (lcp->lcp_nfree != 0) 1580 break; 1581 } 1582 if (lcp == NULL) { 1583 /* Nothing available - try to set up a free page. */ 1584 if (lp->lp_cur == lp->lp_max) { 1585 mutex_exit(&lp->lp_lock); 1586 return ENOMEM; 1587 } 1588 lcp = kmem_alloc(LWPCTL_LCPAGE_SZ, KM_SLEEP); 1589 if (lcp == NULL) { 1590 mutex_exit(&lp->lp_lock); 1591 return ENOMEM; 1592 } 1593 /* 1594 * Wire the next page down in kernel space. Since this 1595 * is a new mapping, we must add a reference. 1596 */ 1597 uao = lp->lp_uao; 1598 (*uao->pgops->pgo_reference)(uao); 1599 lcp->lcp_kaddr = vm_map_min(kernel_map); 1600 error = uvm_map(kernel_map, &lcp->lcp_kaddr, PAGE_SIZE, 1601 uao, lp->lp_cur, PAGE_SIZE, 1602 UVM_MAPFLAG(UVM_PROT_RW, UVM_PROT_RW, 1603 UVM_INH_NONE, UVM_ADV_RANDOM, 0)); 1604 if (error != 0) { 1605 mutex_exit(&lp->lp_lock); 1606 kmem_free(lcp, LWPCTL_LCPAGE_SZ); 1607 (*uao->pgops->pgo_detach)(uao); 1608 return error; 1609 } 1610 error = uvm_map_pageable(kernel_map, lcp->lcp_kaddr, 1611 lcp->lcp_kaddr + PAGE_SIZE, FALSE, 0); 1612 if (error != 0) { 1613 mutex_exit(&lp->lp_lock); 1614 uvm_unmap(kernel_map, lcp->lcp_kaddr, 1615 lcp->lcp_kaddr + PAGE_SIZE); 1616 kmem_free(lcp, LWPCTL_LCPAGE_SZ); 1617 return error; 1618 } 1619 /* Prepare the page descriptor and link into the list. */ 1620 lcp->lcp_uaddr = lp->lp_uva + lp->lp_cur; 1621 lp->lp_cur += PAGE_SIZE; 1622 lcp->lcp_nfree = LWPCTL_PER_PAGE; 1623 lcp->lcp_rotor = 0; 1624 memset(lcp->lcp_bitmap, 0xff, LWPCTL_BITMAP_SZ); 1625 TAILQ_INSERT_HEAD(&lp->lp_pages, lcp, lcp_chain); 1626 } 1627 for (i = lcp->lcp_rotor; lcp->lcp_bitmap[i] == 0;) { 1628 if (++i >= LWPCTL_BITMAP_ENTRIES) 1629 i = 0; 1630 } 1631 bit = ffs(lcp->lcp_bitmap[i]) - 1; 1632 lcp->lcp_bitmap[i] ^= (1 << bit); 1633 lcp->lcp_rotor = i; 1634 lcp->lcp_nfree--; 1635 l->l_lcpage = lcp; 1636 offset = (i << 5) + bit; 1637 l->l_lwpctl = (lwpctl_t *)lcp->lcp_kaddr + offset; 1638 *uaddr = lcp->lcp_uaddr + offset * sizeof(lwpctl_t); 1639 mutex_exit(&lp->lp_lock); 1640 1641 KPREEMPT_DISABLE(l); 1642 l->l_lwpctl->lc_curcpu = (int)curcpu()->ci_data.cpu_index; 1643 KPREEMPT_ENABLE(l); 1644 1645 return 0; 1646 } 1647 1648 /* 1649 * Free an lwpctl structure back to the per-process list. 1650 */ 1651 void 1652 lwp_ctl_free(lwp_t *l) 1653 { 1654 lcproc_t *lp; 1655 lcpage_t *lcp; 1656 u_int map, offset; 1657 1658 lp = l->l_proc->p_lwpctl; 1659 KASSERT(lp != NULL); 1660 1661 lcp = l->l_lcpage; 1662 offset = (u_int)((lwpctl_t *)l->l_lwpctl - (lwpctl_t *)lcp->lcp_kaddr); 1663 KASSERT(offset < LWPCTL_PER_PAGE); 1664 1665 mutex_enter(&lp->lp_lock); 1666 lcp->lcp_nfree++; 1667 map = offset >> 5; 1668 lcp->lcp_bitmap[map] |= (1 << (offset & 31)); 1669 if (lcp->lcp_bitmap[lcp->lcp_rotor] == 0) 1670 lcp->lcp_rotor = map; 1671 if (TAILQ_FIRST(&lp->lp_pages)->lcp_nfree == 0) { 1672 TAILQ_REMOVE(&lp->lp_pages, lcp, lcp_chain); 1673 TAILQ_INSERT_HEAD(&lp->lp_pages, lcp, lcp_chain); 1674 } 1675 mutex_exit(&lp->lp_lock); 1676 } 1677 1678 /* 1679 * Process is exiting; tear down lwpctl state. This can only be safely 1680 * called by the last LWP in the process. 1681 */ 1682 void 1683 lwp_ctl_exit(void) 1684 { 1685 lcpage_t *lcp, *next; 1686 lcproc_t *lp; 1687 proc_t *p; 1688 lwp_t *l; 1689 1690 l = curlwp; 1691 l->l_lwpctl = NULL; 1692 l->l_lcpage = NULL; 1693 p = l->l_proc; 1694 lp = p->p_lwpctl; 1695 1696 KASSERT(lp != NULL); 1697 KASSERT(p->p_nlwps == 1); 1698 1699 for (lcp = TAILQ_FIRST(&lp->lp_pages); lcp != NULL; lcp = next) { 1700 next = TAILQ_NEXT(lcp, lcp_chain); 1701 uvm_unmap(kernel_map, lcp->lcp_kaddr, 1702 lcp->lcp_kaddr + PAGE_SIZE); 1703 kmem_free(lcp, LWPCTL_LCPAGE_SZ); 1704 } 1705 1706 if (lp->lp_uao != NULL) { 1707 uvm_unmap(&p->p_vmspace->vm_map, lp->lp_uva, 1708 lp->lp_uva + LWPCTL_UAREA_SZ); 1709 } 1710 1711 mutex_destroy(&lp->lp_lock); 1712 kmem_free(lp, sizeof(*lp)); 1713 p->p_lwpctl = NULL; 1714 } 1715 1716 /* 1717 * Return the current LWP's "preemption counter". Used to detect 1718 * preemption across operations that can tolerate preemption without 1719 * crashing, but which may generate incorrect results if preempted. 1720 */ 1721 uint64_t 1722 lwp_pctr(void) 1723 { 1724 1725 return curlwp->l_ncsw; 1726 } 1727 1728 #if defined(DDB) 1729 void 1730 lwp_whatis(uintptr_t addr, void (*pr)(const char *, ...)) 1731 { 1732 lwp_t *l; 1733 1734 LIST_FOREACH(l, &alllwp, l_list) { 1735 uintptr_t stack = (uintptr_t)KSTACK_LOWEST_ADDR(l); 1736 1737 if (addr < stack || stack + KSTACK_SIZE <= addr) { 1738 continue; 1739 } 1740 (*pr)("%p is %p+%zu, LWP %p's stack\n", 1741 (void *)addr, (void *)stack, 1742 (size_t)(addr - stack), l); 1743 } 1744 } 1745 #endif /* defined(DDB) */ 1746