1 /* $NetBSD: kern_lwp.c,v 1.129 2009/04/04 22:34:03 ad Exp $ */ 2 3 /*- 4 * Copyright (c) 2001, 2006, 2007, 2008, 2009 The NetBSD Foundation, Inc. 5 * All rights reserved. 6 * 7 * This code is derived from software contributed to The NetBSD Foundation 8 * by Nathan J. Williams, and Andrew Doran. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS 20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 29 * POSSIBILITY OF SUCH DAMAGE. 30 */ 31 32 /* 33 * Overview 34 * 35 * Lightweight processes (LWPs) are the basic unit or thread of 36 * execution within the kernel. The core state of an LWP is described 37 * by "struct lwp", also known as lwp_t. 38 * 39 * Each LWP is contained within a process (described by "struct proc"), 40 * Every process contains at least one LWP, but may contain more. The 41 * process describes attributes shared among all of its LWPs such as a 42 * private address space, global execution state (stopped, active, 43 * zombie, ...), signal disposition and so on. On a multiprocessor 44 * machine, multiple LWPs be executing concurrently in the kernel. 45 * 46 * Execution states 47 * 48 * At any given time, an LWP has overall state that is described by 49 * lwp::l_stat. The states are broken into two sets below. The first 50 * set is guaranteed to represent the absolute, current state of the 51 * LWP: 52 * 53 * LSONPROC 54 * 55 * On processor: the LWP is executing on a CPU, either in the 56 * kernel or in user space. 57 * 58 * LSRUN 59 * 60 * Runnable: the LWP is parked on a run queue, and may soon be 61 * chosen to run by an idle processor, or by a processor that 62 * has been asked to preempt a currently runnning but lower 63 * priority LWP. If the LWP is not swapped in (LW_INMEM == 0) 64 * then the LWP is not on a run queue, but may be soon. 65 * 66 * LSIDL 67 * 68 * Idle: the LWP has been created but has not yet executed, 69 * or it has ceased executing a unit of work and is waiting 70 * to be started again. 71 * 72 * LSSUSPENDED: 73 * 74 * Suspended: the LWP has had its execution suspended by 75 * another LWP in the same process using the _lwp_suspend() 76 * system call. User-level LWPs also enter the suspended 77 * state when the system is shutting down. 78 * 79 * The second set represent a "statement of intent" on behalf of the 80 * LWP. The LWP may in fact be executing on a processor, may be 81 * sleeping or idle. It is expected to take the necessary action to 82 * stop executing or become "running" again within a short timeframe. 83 * The LP_RUNNING flag in lwp::l_pflag indicates that an LWP is running. 84 * Importantly, it indicates that its state is tied to a CPU. 85 * 86 * LSZOMB: 87 * 88 * Dead or dying: the LWP has released most of its resources 89 * and is about to switch away into oblivion, or has already 90 * switched away. When it switches away, its few remaining 91 * resources can be collected. 92 * 93 * LSSLEEP: 94 * 95 * Sleeping: the LWP has entered itself onto a sleep queue, and 96 * has switched away or will switch away shortly to allow other 97 * LWPs to run on the CPU. 98 * 99 * LSSTOP: 100 * 101 * Stopped: the LWP has been stopped as a result of a job 102 * control signal, or as a result of the ptrace() interface. 103 * 104 * Stopped LWPs may run briefly within the kernel to handle 105 * signals that they receive, but will not return to user space 106 * until their process' state is changed away from stopped. 107 * 108 * Single LWPs within a process can not be set stopped 109 * selectively: all actions that can stop or continue LWPs 110 * occur at the process level. 111 * 112 * State transitions 113 * 114 * Note that the LSSTOP state may only be set when returning to 115 * user space in userret(), or when sleeping interruptably. The 116 * LSSUSPENDED state may only be set in userret(). Before setting 117 * those states, we try to ensure that the LWPs will release all 118 * locks that they hold, and at a minimum try to ensure that the 119 * LWP can be set runnable again by a signal. 120 * 121 * LWPs may transition states in the following ways: 122 * 123 * RUN -------> ONPROC ONPROC -----> RUN 124 * > SLEEP 125 * > STOPPED 126 * > SUSPENDED 127 * > ZOMB 128 * > IDL (special cases) 129 * 130 * STOPPED ---> RUN SUSPENDED --> RUN 131 * > SLEEP 132 * 133 * SLEEP -----> ONPROC IDL --------> RUN 134 * > RUN > SUSPENDED 135 * > STOPPED > STOPPED 136 * > ONPROC (special cases) 137 * 138 * Some state transitions are only possible with kernel threads (eg 139 * ONPROC -> IDL) and happen under tightly controlled circumstances 140 * free of unwanted side effects. 141 * 142 * Migration 143 * 144 * Migration of threads from one CPU to another could be performed 145 * internally by the scheduler via sched_takecpu() or sched_catchlwp() 146 * functions. The universal lwp_migrate() function should be used for 147 * any other cases. Subsystems in the kernel must be aware that CPU 148 * of LWP may change, while it is not locked. 149 * 150 * Locking 151 * 152 * The majority of fields in 'struct lwp' are covered by a single, 153 * general spin lock pointed to by lwp::l_mutex. The locks covering 154 * each field are documented in sys/lwp.h. 155 * 156 * State transitions must be made with the LWP's general lock held, 157 * and may cause the LWP's lock pointer to change. Manipulation of 158 * the general lock is not performed directly, but through calls to 159 * lwp_lock(), lwp_relock() and similar. 160 * 161 * States and their associated locks: 162 * 163 * LSONPROC, LSZOMB: 164 * 165 * Always covered by spc_lwplock, which protects running LWPs. 166 * This is a per-CPU lock and matches lwp::l_cpu. 167 * 168 * LSIDL, LSRUN: 169 * 170 * Always covered by spc_mutex, which protects the run queues. 171 * This is a per-CPU lock and matches lwp::l_cpu. 172 * 173 * LSSLEEP: 174 * 175 * Covered by a lock associated with the sleep queue that the 176 * LWP resides on. Matches lwp::l_sleepq::sq_mutex. 177 * 178 * LSSTOP, LSSUSPENDED: 179 * 180 * If the LWP was previously sleeping (l_wchan != NULL), then 181 * l_mutex references the sleep queue lock. If the LWP was 182 * runnable or on the CPU when halted, or has been removed from 183 * the sleep queue since halted, then the lock is spc_lwplock. 184 * 185 * The lock order is as follows: 186 * 187 * spc::spc_lwplock -> 188 * sleeptab::st_mutex -> 189 * tschain_t::tc_mutex -> 190 * spc::spc_mutex 191 * 192 * Each process has an scheduler state lock (proc::p_lock), and a 193 * number of counters on LWPs and their states: p_nzlwps, p_nrlwps, and 194 * so on. When an LWP is to be entered into or removed from one of the 195 * following states, p_lock must be held and the process wide counters 196 * adjusted: 197 * 198 * LSIDL, LSZOMB, LSSTOP, LSSUSPENDED 199 * 200 * (But not always for kernel threads. There are some special cases 201 * as mentioned above. See kern_softint.c.) 202 * 203 * Note that an LWP is considered running or likely to run soon if in 204 * one of the following states. This affects the value of p_nrlwps: 205 * 206 * LSRUN, LSONPROC, LSSLEEP 207 * 208 * p_lock does not need to be held when transitioning among these 209 * three states, hence p_lock is rarely taken for state transitions. 210 */ 211 212 #include <sys/cdefs.h> 213 __KERNEL_RCSID(0, "$NetBSD: kern_lwp.c,v 1.129 2009/04/04 22:34:03 ad Exp $"); 214 215 #include "opt_ddb.h" 216 #include "opt_lockdebug.h" 217 #include "opt_sa.h" 218 219 #define _LWP_API_PRIVATE 220 221 #include <sys/param.h> 222 #include <sys/systm.h> 223 #include <sys/cpu.h> 224 #include <sys/pool.h> 225 #include <sys/proc.h> 226 #include <sys/sa.h> 227 #include <sys/savar.h> 228 #include <sys/syscallargs.h> 229 #include <sys/syscall_stats.h> 230 #include <sys/kauth.h> 231 #include <sys/sleepq.h> 232 #include <sys/user.h> 233 #include <sys/lockdebug.h> 234 #include <sys/kmem.h> 235 #include <sys/pset.h> 236 #include <sys/intr.h> 237 #include <sys/lwpctl.h> 238 #include <sys/atomic.h> 239 240 #include <uvm/uvm_extern.h> 241 #include <uvm/uvm_object.h> 242 243 struct lwplist alllwp = LIST_HEAD_INITIALIZER(alllwp); 244 245 POOL_INIT(lwp_uc_pool, sizeof(ucontext_t), 0, 0, 0, "lwpucpl", 246 &pool_allocator_nointr, IPL_NONE); 247 248 static pool_cache_t lwp_cache; 249 static specificdata_domain_t lwp_specificdata_domain; 250 251 void 252 lwpinit(void) 253 { 254 255 lwp_specificdata_domain = specificdata_domain_create(); 256 KASSERT(lwp_specificdata_domain != NULL); 257 lwp_sys_init(); 258 lwp_cache = pool_cache_init(sizeof(lwp_t), MIN_LWP_ALIGNMENT, 0, 0, 259 "lwppl", NULL, IPL_NONE, NULL, NULL, NULL); 260 } 261 262 /* 263 * Set an suspended. 264 * 265 * Must be called with p_lock held, and the LWP locked. Will unlock the 266 * LWP before return. 267 */ 268 int 269 lwp_suspend(struct lwp *curl, struct lwp *t) 270 { 271 int error; 272 273 KASSERT(mutex_owned(t->l_proc->p_lock)); 274 KASSERT(lwp_locked(t, NULL)); 275 276 KASSERT(curl != t || curl->l_stat == LSONPROC); 277 278 /* 279 * If the current LWP has been told to exit, we must not suspend anyone 280 * else or deadlock could occur. We won't return to userspace. 281 */ 282 if ((curl->l_flag & (LW_WEXIT | LW_WCORE)) != 0) { 283 lwp_unlock(t); 284 return (EDEADLK); 285 } 286 287 error = 0; 288 289 switch (t->l_stat) { 290 case LSRUN: 291 case LSONPROC: 292 t->l_flag |= LW_WSUSPEND; 293 lwp_need_userret(t); 294 lwp_unlock(t); 295 break; 296 297 case LSSLEEP: 298 t->l_flag |= LW_WSUSPEND; 299 300 /* 301 * Kick the LWP and try to get it to the kernel boundary 302 * so that it will release any locks that it holds. 303 * setrunnable() will release the lock. 304 */ 305 if ((t->l_flag & LW_SINTR) != 0) 306 setrunnable(t); 307 else 308 lwp_unlock(t); 309 break; 310 311 case LSSUSPENDED: 312 lwp_unlock(t); 313 break; 314 315 case LSSTOP: 316 t->l_flag |= LW_WSUSPEND; 317 setrunnable(t); 318 break; 319 320 case LSIDL: 321 case LSZOMB: 322 error = EINTR; /* It's what Solaris does..... */ 323 lwp_unlock(t); 324 break; 325 } 326 327 return (error); 328 } 329 330 /* 331 * Restart a suspended LWP. 332 * 333 * Must be called with p_lock held, and the LWP locked. Will unlock the 334 * LWP before return. 335 */ 336 void 337 lwp_continue(struct lwp *l) 338 { 339 340 KASSERT(mutex_owned(l->l_proc->p_lock)); 341 KASSERT(lwp_locked(l, NULL)); 342 343 /* If rebooting or not suspended, then just bail out. */ 344 if ((l->l_flag & LW_WREBOOT) != 0) { 345 lwp_unlock(l); 346 return; 347 } 348 349 l->l_flag &= ~LW_WSUSPEND; 350 351 if (l->l_stat != LSSUSPENDED) { 352 lwp_unlock(l); 353 return; 354 } 355 356 /* setrunnable() will release the lock. */ 357 setrunnable(l); 358 } 359 360 /* 361 * Wait for an LWP within the current process to exit. If 'lid' is 362 * non-zero, we are waiting for a specific LWP. 363 * 364 * Must be called with p->p_lock held. 365 */ 366 int 367 lwp_wait1(struct lwp *l, lwpid_t lid, lwpid_t *departed, int flags) 368 { 369 struct proc *p = l->l_proc; 370 struct lwp *l2; 371 int nfound, error; 372 lwpid_t curlid; 373 bool exiting; 374 375 KASSERT(mutex_owned(p->p_lock)); 376 377 p->p_nlwpwait++; 378 l->l_waitingfor = lid; 379 curlid = l->l_lid; 380 exiting = ((flags & LWPWAIT_EXITCONTROL) != 0); 381 382 for (;;) { 383 /* 384 * Avoid a race between exit1() and sigexit(): if the 385 * process is dumping core, then we need to bail out: call 386 * into lwp_userret() where we will be suspended until the 387 * deed is done. 388 */ 389 if ((p->p_sflag & PS_WCORE) != 0) { 390 mutex_exit(p->p_lock); 391 lwp_userret(l); 392 #ifdef DIAGNOSTIC 393 panic("lwp_wait1"); 394 #endif 395 /* NOTREACHED */ 396 } 397 398 /* 399 * First off, drain any detached LWP that is waiting to be 400 * reaped. 401 */ 402 while ((l2 = p->p_zomblwp) != NULL) { 403 p->p_zomblwp = NULL; 404 lwp_free(l2, false, false);/* releases proc mutex */ 405 mutex_enter(p->p_lock); 406 } 407 408 /* 409 * Now look for an LWP to collect. If the whole process is 410 * exiting, count detached LWPs as eligible to be collected, 411 * but don't drain them here. 412 */ 413 nfound = 0; 414 error = 0; 415 LIST_FOREACH(l2, &p->p_lwps, l_sibling) { 416 /* 417 * If a specific wait and the target is waiting on 418 * us, then avoid deadlock. This also traps LWPs 419 * that try to wait on themselves. 420 * 421 * Note that this does not handle more complicated 422 * cycles, like: t1 -> t2 -> t3 -> t1. The process 423 * can still be killed so it is not a major problem. 424 */ 425 if (l2->l_lid == lid && l2->l_waitingfor == curlid) { 426 error = EDEADLK; 427 break; 428 } 429 if (l2 == l) 430 continue; 431 if ((l2->l_prflag & LPR_DETACHED) != 0) { 432 nfound += exiting; 433 continue; 434 } 435 if (lid != 0) { 436 if (l2->l_lid != lid) 437 continue; 438 /* 439 * Mark this LWP as the first waiter, if there 440 * is no other. 441 */ 442 if (l2->l_waiter == 0) 443 l2->l_waiter = curlid; 444 } else if (l2->l_waiter != 0) { 445 /* 446 * It already has a waiter - so don't 447 * collect it. If the waiter doesn't 448 * grab it we'll get another chance 449 * later. 450 */ 451 nfound++; 452 continue; 453 } 454 nfound++; 455 456 /* No need to lock the LWP in order to see LSZOMB. */ 457 if (l2->l_stat != LSZOMB) 458 continue; 459 460 /* 461 * We're no longer waiting. Reset the "first waiter" 462 * pointer on the target, in case it was us. 463 */ 464 l->l_waitingfor = 0; 465 l2->l_waiter = 0; 466 p->p_nlwpwait--; 467 if (departed) 468 *departed = l2->l_lid; 469 sched_lwp_collect(l2); 470 471 /* lwp_free() releases the proc lock. */ 472 lwp_free(l2, false, false); 473 mutex_enter(p->p_lock); 474 return 0; 475 } 476 477 if (error != 0) 478 break; 479 if (nfound == 0) { 480 error = ESRCH; 481 break; 482 } 483 484 /* 485 * The kernel is careful to ensure that it can not deadlock 486 * when exiting - just keep waiting. 487 */ 488 if (exiting) { 489 KASSERT(p->p_nlwps > 1); 490 cv_wait(&p->p_lwpcv, p->p_lock); 491 continue; 492 } 493 494 /* 495 * If all other LWPs are waiting for exits or suspends 496 * and the supply of zombies and potential zombies is 497 * exhausted, then we are about to deadlock. 498 * 499 * If the process is exiting (and this LWP is not the one 500 * that is coordinating the exit) then bail out now. 501 */ 502 if ((p->p_sflag & PS_WEXIT) != 0 || 503 p->p_nrlwps + p->p_nzlwps - p->p_ndlwps <= p->p_nlwpwait) { 504 error = EDEADLK; 505 break; 506 } 507 508 /* 509 * Sit around and wait for something to happen. We'll be 510 * awoken if any of the conditions examined change: if an 511 * LWP exits, is collected, or is detached. 512 */ 513 if ((error = cv_wait_sig(&p->p_lwpcv, p->p_lock)) != 0) 514 break; 515 } 516 517 /* 518 * We didn't find any LWPs to collect, we may have received a 519 * signal, or some other condition has caused us to bail out. 520 * 521 * If waiting on a specific LWP, clear the waiters marker: some 522 * other LWP may want it. Then, kick all the remaining waiters 523 * so that they can re-check for zombies and for deadlock. 524 */ 525 if (lid != 0) { 526 LIST_FOREACH(l2, &p->p_lwps, l_sibling) { 527 if (l2->l_lid == lid) { 528 if (l2->l_waiter == curlid) 529 l2->l_waiter = 0; 530 break; 531 } 532 } 533 } 534 p->p_nlwpwait--; 535 l->l_waitingfor = 0; 536 cv_broadcast(&p->p_lwpcv); 537 538 return error; 539 } 540 541 /* 542 * Create a new LWP within process 'p2', using LWP 'l1' as a template. 543 * The new LWP is created in state LSIDL and must be set running, 544 * suspended, or stopped by the caller. 545 */ 546 int 547 lwp_create(lwp_t *l1, proc_t *p2, vaddr_t uaddr, bool inmem, int flags, 548 void *stack, size_t stacksize, void (*func)(void *), void *arg, 549 lwp_t **rnewlwpp, int sclass) 550 { 551 struct lwp *l2, *isfree; 552 turnstile_t *ts; 553 554 KASSERT(l1 == curlwp || l1->l_proc == &proc0); 555 556 /* 557 * First off, reap any detached LWP waiting to be collected. 558 * We can re-use its LWP structure and turnstile. 559 */ 560 isfree = NULL; 561 if (p2->p_zomblwp != NULL) { 562 mutex_enter(p2->p_lock); 563 if ((isfree = p2->p_zomblwp) != NULL) { 564 p2->p_zomblwp = NULL; 565 lwp_free(isfree, true, false);/* releases proc mutex */ 566 } else 567 mutex_exit(p2->p_lock); 568 } 569 if (isfree == NULL) { 570 l2 = pool_cache_get(lwp_cache, PR_WAITOK); 571 memset(l2, 0, sizeof(*l2)); 572 l2->l_ts = pool_cache_get(turnstile_cache, PR_WAITOK); 573 SLIST_INIT(&l2->l_pi_lenders); 574 } else { 575 l2 = isfree; 576 ts = l2->l_ts; 577 KASSERT(l2->l_inheritedprio == -1); 578 KASSERT(SLIST_EMPTY(&l2->l_pi_lenders)); 579 memset(l2, 0, sizeof(*l2)); 580 l2->l_ts = ts; 581 } 582 583 l2->l_stat = LSIDL; 584 l2->l_proc = p2; 585 l2->l_refcnt = 1; 586 l2->l_class = sclass; 587 588 /* 589 * If vfork(), we want the LWP to run fast and on the same CPU 590 * as its parent, so that it can reuse the VM context and cache 591 * footprint on the local CPU. 592 */ 593 l2->l_kpriority = ((flags & LWP_VFORK) ? true : false); 594 l2->l_kpribase = PRI_KERNEL; 595 l2->l_priority = l1->l_priority; 596 l2->l_inheritedprio = -1; 597 l2->l_flag = inmem ? LW_INMEM : 0; 598 l2->l_pflag = LP_MPSAFE; 599 l2->l_fd = p2->p_fd; 600 TAILQ_INIT(&l2->l_ld_locks); 601 602 if (p2->p_flag & PK_SYSTEM) { 603 /* Mark it as a system LWP and not a candidate for swapping */ 604 l2->l_flag |= LW_SYSTEM; 605 } 606 607 kpreempt_disable(); 608 l2->l_mutex = l1->l_cpu->ci_schedstate.spc_mutex; 609 l2->l_cpu = l1->l_cpu; 610 kpreempt_enable(); 611 612 lwp_initspecific(l2); 613 sched_lwp_fork(l1, l2); 614 lwp_update_creds(l2); 615 callout_init(&l2->l_timeout_ch, CALLOUT_MPSAFE); 616 callout_setfunc(&l2->l_timeout_ch, sleepq_timeout, l2); 617 mutex_init(&l2->l_swaplock, MUTEX_DEFAULT, IPL_NONE); 618 cv_init(&l2->l_sigcv, "sigwait"); 619 l2->l_syncobj = &sched_syncobj; 620 621 if (rnewlwpp != NULL) 622 *rnewlwpp = l2; 623 624 l2->l_addr = UAREA_TO_USER(uaddr); 625 uvm_lwp_fork(l1, l2, stack, stacksize, func, 626 (arg != NULL) ? arg : l2); 627 628 mutex_enter(p2->p_lock); 629 630 if ((flags & LWP_DETACHED) != 0) { 631 l2->l_prflag = LPR_DETACHED; 632 p2->p_ndlwps++; 633 } else 634 l2->l_prflag = 0; 635 636 l2->l_sigmask = l1->l_sigmask; 637 CIRCLEQ_INIT(&l2->l_sigpend.sp_info); 638 sigemptyset(&l2->l_sigpend.sp_set); 639 640 p2->p_nlwpid++; 641 if (p2->p_nlwpid == 0) 642 p2->p_nlwpid++; 643 l2->l_lid = p2->p_nlwpid; 644 LIST_INSERT_HEAD(&p2->p_lwps, l2, l_sibling); 645 p2->p_nlwps++; 646 647 if ((p2->p_flag & PK_SYSTEM) == 0) { 648 /* Inherit an affinity */ 649 if (l1->l_flag & LW_AFFINITY) { 650 /* 651 * Note that we hold the state lock while inheriting 652 * the affinity to avoid race with sched_setaffinity(). 653 */ 654 lwp_lock(l1); 655 if (l1->l_flag & LW_AFFINITY) { 656 kcpuset_use(l1->l_affinity); 657 l2->l_affinity = l1->l_affinity; 658 l2->l_flag |= LW_AFFINITY; 659 } 660 lwp_unlock(l1); 661 } 662 lwp_lock(l2); 663 /* Inherit a processor-set */ 664 l2->l_psid = l1->l_psid; 665 /* Look for a CPU to start */ 666 l2->l_cpu = sched_takecpu(l2); 667 lwp_unlock_to(l2, l2->l_cpu->ci_schedstate.spc_mutex); 668 } 669 mutex_exit(p2->p_lock); 670 671 mutex_enter(proc_lock); 672 LIST_INSERT_HEAD(&alllwp, l2, l_list); 673 mutex_exit(proc_lock); 674 675 SYSCALL_TIME_LWP_INIT(l2); 676 677 if (p2->p_emul->e_lwp_fork) 678 (*p2->p_emul->e_lwp_fork)(l1, l2); 679 680 return (0); 681 } 682 683 /* 684 * Called by MD code when a new LWP begins execution. Must be called 685 * with the previous LWP locked (so at splsched), or if there is no 686 * previous LWP, at splsched. 687 */ 688 void 689 lwp_startup(struct lwp *prev, struct lwp *new) 690 { 691 692 KASSERT(kpreempt_disabled()); 693 if (prev != NULL) { 694 /* 695 * Normalize the count of the spin-mutexes, it was 696 * increased in mi_switch(). Unmark the state of 697 * context switch - it is finished for previous LWP. 698 */ 699 curcpu()->ci_mtx_count++; 700 membar_exit(); 701 prev->l_ctxswtch = 0; 702 } 703 KPREEMPT_DISABLE(new); 704 spl0(); 705 pmap_activate(new); 706 LOCKDEBUG_BARRIER(NULL, 0); 707 KPREEMPT_ENABLE(new); 708 if ((new->l_pflag & LP_MPSAFE) == 0) { 709 KERNEL_LOCK(1, new); 710 } 711 } 712 713 /* 714 * Exit an LWP. 715 */ 716 void 717 lwp_exit(struct lwp *l) 718 { 719 struct proc *p = l->l_proc; 720 struct lwp *l2; 721 bool current; 722 723 current = (l == curlwp); 724 725 KASSERT(current || (l->l_stat == LSIDL && l->l_target_cpu == NULL)); 726 727 /* 728 * Verify that we hold no locks other than the kernel lock. 729 */ 730 LOCKDEBUG_BARRIER(&kernel_lock, 0); 731 732 /* 733 * If we are the last live LWP in a process, we need to exit the 734 * entire process. We do so with an exit status of zero, because 735 * it's a "controlled" exit, and because that's what Solaris does. 736 * 737 * We are not quite a zombie yet, but for accounting purposes we 738 * must increment the count of zombies here. 739 * 740 * Note: the last LWP's specificdata will be deleted here. 741 */ 742 mutex_enter(p->p_lock); 743 if (p->p_nlwps - p->p_nzlwps == 1) { 744 KASSERT(current == true); 745 /* XXXSMP kernel_lock not held */ 746 exit1(l, 0); 747 /* NOTREACHED */ 748 } 749 p->p_nzlwps++; 750 mutex_exit(p->p_lock); 751 752 if (p->p_emul->e_lwp_exit) 753 (*p->p_emul->e_lwp_exit)(l); 754 755 /* Delete the specificdata while it's still safe to sleep. */ 756 specificdata_fini(lwp_specificdata_domain, &l->l_specdataref); 757 758 /* 759 * Release our cached credentials. 760 */ 761 kauth_cred_free(l->l_cred); 762 callout_destroy(&l->l_timeout_ch); 763 764 /* 765 * While we can still block, mark the LWP as unswappable to 766 * prevent conflicts with the with the swapper. 767 */ 768 if (current) 769 uvm_lwp_hold(l); 770 771 /* 772 * Remove the LWP from the global list. 773 */ 774 mutex_enter(proc_lock); 775 LIST_REMOVE(l, l_list); 776 mutex_exit(proc_lock); 777 778 /* 779 * Get rid of all references to the LWP that others (e.g. procfs) 780 * may have, and mark the LWP as a zombie. If the LWP is detached, 781 * mark it waiting for collection in the proc structure. Note that 782 * before we can do that, we need to free any other dead, deatched 783 * LWP waiting to meet its maker. 784 */ 785 mutex_enter(p->p_lock); 786 lwp_drainrefs(l); 787 788 if ((l->l_prflag & LPR_DETACHED) != 0) { 789 while ((l2 = p->p_zomblwp) != NULL) { 790 p->p_zomblwp = NULL; 791 lwp_free(l2, false, false);/* releases proc mutex */ 792 mutex_enter(p->p_lock); 793 l->l_refcnt++; 794 lwp_drainrefs(l); 795 } 796 p->p_zomblwp = l; 797 } 798 799 /* 800 * If we find a pending signal for the process and we have been 801 * asked to check for signals, then we loose: arrange to have 802 * all other LWPs in the process check for signals. 803 */ 804 if ((l->l_flag & LW_PENDSIG) != 0 && 805 firstsig(&p->p_sigpend.sp_set) != 0) { 806 LIST_FOREACH(l2, &p->p_lwps, l_sibling) { 807 lwp_lock(l2); 808 l2->l_flag |= LW_PENDSIG; 809 lwp_unlock(l2); 810 } 811 } 812 813 lwp_lock(l); 814 l->l_stat = LSZOMB; 815 if (l->l_name != NULL) 816 strcpy(l->l_name, "(zombie)"); 817 if (l->l_flag & LW_AFFINITY) { 818 l->l_flag &= ~LW_AFFINITY; 819 } else { 820 KASSERT(l->l_affinity == NULL); 821 } 822 lwp_unlock(l); 823 p->p_nrlwps--; 824 cv_broadcast(&p->p_lwpcv); 825 if (l->l_lwpctl != NULL) 826 l->l_lwpctl->lc_curcpu = LWPCTL_CPU_EXITED; 827 mutex_exit(p->p_lock); 828 829 /* Safe without lock since LWP is in zombie state */ 830 if (l->l_affinity) { 831 kcpuset_unuse(l->l_affinity, NULL); 832 l->l_affinity = NULL; 833 } 834 835 /* 836 * We can no longer block. At this point, lwp_free() may already 837 * be gunning for us. On a multi-CPU system, we may be off p_lwps. 838 * 839 * Free MD LWP resources. 840 */ 841 #ifndef __NO_CPU_LWP_FREE 842 cpu_lwp_free(l, 0); 843 #endif 844 845 if (current) { 846 pmap_deactivate(l); 847 848 /* 849 * Release the kernel lock, and switch away into 850 * oblivion. 851 */ 852 #ifdef notyet 853 /* XXXSMP hold in lwp_userret() */ 854 KERNEL_UNLOCK_LAST(l); 855 #else 856 KERNEL_UNLOCK_ALL(l, NULL); 857 #endif 858 lwp_exit_switchaway(l); 859 } 860 } 861 862 /* 863 * Free a dead LWP's remaining resources. 864 * 865 * XXXLWP limits. 866 */ 867 void 868 lwp_free(struct lwp *l, bool recycle, bool last) 869 { 870 struct proc *p = l->l_proc; 871 struct rusage *ru; 872 ksiginfoq_t kq; 873 874 KASSERT(l != curlwp); 875 876 /* 877 * If this was not the last LWP in the process, then adjust 878 * counters and unlock. 879 */ 880 if (!last) { 881 /* 882 * Add the LWP's run time to the process' base value. 883 * This needs to co-incide with coming off p_lwps. 884 */ 885 bintime_add(&p->p_rtime, &l->l_rtime); 886 p->p_pctcpu += l->l_pctcpu; 887 ru = &p->p_stats->p_ru; 888 ruadd(ru, &l->l_ru); 889 ru->ru_nvcsw += (l->l_ncsw - l->l_nivcsw); 890 ru->ru_nivcsw += l->l_nivcsw; 891 LIST_REMOVE(l, l_sibling); 892 p->p_nlwps--; 893 p->p_nzlwps--; 894 if ((l->l_prflag & LPR_DETACHED) != 0) 895 p->p_ndlwps--; 896 897 /* 898 * Have any LWPs sleeping in lwp_wait() recheck for 899 * deadlock. 900 */ 901 cv_broadcast(&p->p_lwpcv); 902 mutex_exit(p->p_lock); 903 } 904 905 #ifdef MULTIPROCESSOR 906 /* 907 * In the unlikely event that the LWP is still on the CPU, 908 * then spin until it has switched away. We need to release 909 * all locks to avoid deadlock against interrupt handlers on 910 * the target CPU. 911 */ 912 if ((l->l_pflag & LP_RUNNING) != 0 || l->l_cpu->ci_curlwp == l) { 913 int count; 914 (void)count; /* XXXgcc */ 915 KERNEL_UNLOCK_ALL(curlwp, &count); 916 while ((l->l_pflag & LP_RUNNING) != 0 || 917 l->l_cpu->ci_curlwp == l) 918 SPINLOCK_BACKOFF_HOOK; 919 KERNEL_LOCK(count, curlwp); 920 } 921 #endif 922 923 /* 924 * Destroy the LWP's remaining signal information. 925 */ 926 ksiginfo_queue_init(&kq); 927 sigclear(&l->l_sigpend, NULL, &kq); 928 ksiginfo_queue_drain(&kq); 929 cv_destroy(&l->l_sigcv); 930 mutex_destroy(&l->l_swaplock); 931 932 /* 933 * Free the LWP's turnstile and the LWP structure itself unless the 934 * caller wants to recycle them. Also, free the scheduler specific 935 * data. 936 * 937 * We can't return turnstile0 to the pool (it didn't come from it), 938 * so if it comes up just drop it quietly and move on. 939 * 940 * We don't recycle the VM resources at this time. 941 */ 942 if (l->l_lwpctl != NULL) 943 lwp_ctl_free(l); 944 945 if (!recycle && l->l_ts != &turnstile0) 946 pool_cache_put(turnstile_cache, l->l_ts); 947 if (l->l_name != NULL) 948 kmem_free(l->l_name, MAXCOMLEN); 949 #ifndef __NO_CPU_LWP_FREE 950 cpu_lwp_free2(l); 951 #endif 952 KASSERT((l->l_flag & LW_INMEM) != 0); 953 uvm_lwp_exit(l); 954 KASSERT(SLIST_EMPTY(&l->l_pi_lenders)); 955 KASSERT(l->l_inheritedprio == -1); 956 if (!recycle) 957 pool_cache_put(lwp_cache, l); 958 } 959 960 /* 961 * Migrate the LWP to the another CPU. Unlocks the LWP. 962 */ 963 void 964 lwp_migrate(lwp_t *l, struct cpu_info *tci) 965 { 966 struct schedstate_percpu *tspc; 967 int lstat = l->l_stat; 968 969 KASSERT(lwp_locked(l, NULL)); 970 KASSERT(tci != NULL); 971 972 /* If LWP is still on the CPU, it must be handled like LSONPROC */ 973 if ((l->l_pflag & LP_RUNNING) != 0) { 974 lstat = LSONPROC; 975 } 976 977 /* 978 * The destination CPU could be changed while previous migration 979 * was not finished. 980 */ 981 if (l->l_target_cpu != NULL) { 982 l->l_target_cpu = tci; 983 lwp_unlock(l); 984 return; 985 } 986 987 /* Nothing to do if trying to migrate to the same CPU */ 988 if (l->l_cpu == tci) { 989 lwp_unlock(l); 990 return; 991 } 992 993 KASSERT(l->l_target_cpu == NULL); 994 tspc = &tci->ci_schedstate; 995 switch (lstat) { 996 case LSRUN: 997 if (l->l_flag & LW_INMEM) { 998 l->l_target_cpu = tci; 999 lwp_unlock(l); 1000 return; 1001 } 1002 case LSIDL: 1003 l->l_cpu = tci; 1004 lwp_unlock_to(l, tspc->spc_mutex); 1005 return; 1006 case LSSLEEP: 1007 l->l_cpu = tci; 1008 break; 1009 case LSSTOP: 1010 case LSSUSPENDED: 1011 l->l_cpu = tci; 1012 if (l->l_wchan == NULL) { 1013 lwp_unlock_to(l, tspc->spc_lwplock); 1014 return; 1015 } 1016 break; 1017 case LSONPROC: 1018 l->l_target_cpu = tci; 1019 spc_lock(l->l_cpu); 1020 cpu_need_resched(l->l_cpu, RESCHED_KPREEMPT); 1021 spc_unlock(l->l_cpu); 1022 break; 1023 } 1024 lwp_unlock(l); 1025 } 1026 1027 /* 1028 * Find the LWP in the process. Arguments may be zero, in such case, 1029 * the calling process and first LWP in the list will be used. 1030 * On success - returns proc locked. 1031 */ 1032 struct lwp * 1033 lwp_find2(pid_t pid, lwpid_t lid) 1034 { 1035 proc_t *p; 1036 lwp_t *l; 1037 1038 /* Find the process */ 1039 p = (pid == 0) ? curlwp->l_proc : p_find(pid, PFIND_UNLOCK_FAIL); 1040 if (p == NULL) 1041 return NULL; 1042 mutex_enter(p->p_lock); 1043 if (pid != 0) { 1044 /* Case of p_find */ 1045 mutex_exit(proc_lock); 1046 } 1047 1048 /* Find the thread */ 1049 l = (lid == 0) ? LIST_FIRST(&p->p_lwps) : lwp_find(p, lid); 1050 if (l == NULL) { 1051 mutex_exit(p->p_lock); 1052 } 1053 1054 return l; 1055 } 1056 1057 /* 1058 * Look up a live LWP within the speicifed process, and return it locked. 1059 * 1060 * Must be called with p->p_lock held. 1061 */ 1062 struct lwp * 1063 lwp_find(struct proc *p, int id) 1064 { 1065 struct lwp *l; 1066 1067 KASSERT(mutex_owned(p->p_lock)); 1068 1069 LIST_FOREACH(l, &p->p_lwps, l_sibling) { 1070 if (l->l_lid == id) 1071 break; 1072 } 1073 1074 /* 1075 * No need to lock - all of these conditions will 1076 * be visible with the process level mutex held. 1077 */ 1078 if (l != NULL && (l->l_stat == LSIDL || l->l_stat == LSZOMB)) 1079 l = NULL; 1080 1081 return l; 1082 } 1083 1084 /* 1085 * Update an LWP's cached credentials to mirror the process' master copy. 1086 * 1087 * This happens early in the syscall path, on user trap, and on LWP 1088 * creation. A long-running LWP can also voluntarily choose to update 1089 * it's credentials by calling this routine. This may be called from 1090 * LWP_CACHE_CREDS(), which checks l->l_cred != p->p_cred beforehand. 1091 */ 1092 void 1093 lwp_update_creds(struct lwp *l) 1094 { 1095 kauth_cred_t oc; 1096 struct proc *p; 1097 1098 p = l->l_proc; 1099 oc = l->l_cred; 1100 1101 mutex_enter(p->p_lock); 1102 kauth_cred_hold(p->p_cred); 1103 l->l_cred = p->p_cred; 1104 l->l_prflag &= ~LPR_CRMOD; 1105 mutex_exit(p->p_lock); 1106 if (oc != NULL) 1107 kauth_cred_free(oc); 1108 } 1109 1110 /* 1111 * Verify that an LWP is locked, and optionally verify that the lock matches 1112 * one we specify. 1113 */ 1114 int 1115 lwp_locked(struct lwp *l, kmutex_t *mtx) 1116 { 1117 kmutex_t *cur = l->l_mutex; 1118 1119 return mutex_owned(cur) && (mtx == cur || mtx == NULL); 1120 } 1121 1122 /* 1123 * Lock an LWP. 1124 */ 1125 kmutex_t * 1126 lwp_lock_retry(struct lwp *l, kmutex_t *old) 1127 { 1128 1129 /* 1130 * XXXgcc ignoring kmutex_t * volatile on i386 1131 * 1132 * gcc version 4.1.2 20061021 prerelease (NetBSD nb1 20061021) 1133 */ 1134 #if 1 1135 while (l->l_mutex != old) { 1136 #else 1137 for (;;) { 1138 #endif 1139 mutex_spin_exit(old); 1140 old = l->l_mutex; 1141 mutex_spin_enter(old); 1142 1143 /* 1144 * mutex_enter() will have posted a read barrier. Re-test 1145 * l->l_mutex. If it has changed, we need to try again. 1146 */ 1147 #if 1 1148 } 1149 #else 1150 } while (__predict_false(l->l_mutex != old)); 1151 #endif 1152 1153 return old; 1154 } 1155 1156 /* 1157 * Lend a new mutex to an LWP. The old mutex must be held. 1158 */ 1159 void 1160 lwp_setlock(struct lwp *l, kmutex_t *new) 1161 { 1162 1163 KASSERT(mutex_owned(l->l_mutex)); 1164 1165 membar_exit(); 1166 l->l_mutex = new; 1167 } 1168 1169 /* 1170 * Lend a new mutex to an LWP, and release the old mutex. The old mutex 1171 * must be held. 1172 */ 1173 void 1174 lwp_unlock_to(struct lwp *l, kmutex_t *new) 1175 { 1176 kmutex_t *old; 1177 1178 KASSERT(mutex_owned(l->l_mutex)); 1179 1180 old = l->l_mutex; 1181 membar_exit(); 1182 l->l_mutex = new; 1183 mutex_spin_exit(old); 1184 } 1185 1186 /* 1187 * Acquire a new mutex, and donate it to an LWP. The LWP must already be 1188 * locked. 1189 */ 1190 void 1191 lwp_relock(struct lwp *l, kmutex_t *new) 1192 { 1193 kmutex_t *old; 1194 1195 KASSERT(mutex_owned(l->l_mutex)); 1196 1197 old = l->l_mutex; 1198 if (old != new) { 1199 mutex_spin_enter(new); 1200 l->l_mutex = new; 1201 mutex_spin_exit(old); 1202 } 1203 } 1204 1205 int 1206 lwp_trylock(struct lwp *l) 1207 { 1208 kmutex_t *old; 1209 1210 for (;;) { 1211 if (!mutex_tryenter(old = l->l_mutex)) 1212 return 0; 1213 if (__predict_true(l->l_mutex == old)) 1214 return 1; 1215 mutex_spin_exit(old); 1216 } 1217 } 1218 1219 u_int 1220 lwp_unsleep(lwp_t *l, bool cleanup) 1221 { 1222 1223 KASSERT(mutex_owned(l->l_mutex)); 1224 1225 return (*l->l_syncobj->sobj_unsleep)(l, cleanup); 1226 } 1227 1228 1229 /* 1230 * Handle exceptions for mi_userret(). Called if a member of LW_USERRET is 1231 * set. 1232 */ 1233 void 1234 lwp_userret(struct lwp *l) 1235 { 1236 struct proc *p; 1237 void (*hook)(void); 1238 int sig; 1239 1240 KASSERT(l == curlwp); 1241 KASSERT(l->l_stat == LSONPROC); 1242 p = l->l_proc; 1243 1244 #ifndef __HAVE_FAST_SOFTINTS 1245 /* Run pending soft interrupts. */ 1246 if (l->l_cpu->ci_data.cpu_softints != 0) 1247 softint_overlay(); 1248 #endif 1249 1250 #ifdef KERN_SA 1251 /* Generate UNBLOCKED upcall if needed */ 1252 if (l->l_flag & LW_SA_BLOCKING) { 1253 sa_unblock_userret(l); 1254 /* NOTREACHED */ 1255 } 1256 #endif 1257 1258 /* 1259 * It should be safe to do this read unlocked on a multiprocessor 1260 * system.. 1261 * 1262 * LW_SA_UPCALL will be handled after the while() loop, so don't 1263 * consider it now. 1264 */ 1265 while ((l->l_flag & (LW_USERRET & ~(LW_SA_UPCALL))) != 0) { 1266 /* 1267 * Process pending signals first, unless the process 1268 * is dumping core or exiting, where we will instead 1269 * enter the LW_WSUSPEND case below. 1270 */ 1271 if ((l->l_flag & (LW_PENDSIG | LW_WCORE | LW_WEXIT)) == 1272 LW_PENDSIG) { 1273 mutex_enter(p->p_lock); 1274 while ((sig = issignal(l)) != 0) 1275 postsig(sig); 1276 mutex_exit(p->p_lock); 1277 } 1278 1279 /* 1280 * Core-dump or suspend pending. 1281 * 1282 * In case of core dump, suspend ourselves, so that the 1283 * kernel stack and therefore the userland registers saved 1284 * in the trapframe are around for coredump() to write them 1285 * out. We issue a wakeup on p->p_lwpcv so that sigexit() 1286 * will write the core file out once all other LWPs are 1287 * suspended. 1288 */ 1289 if ((l->l_flag & LW_WSUSPEND) != 0) { 1290 mutex_enter(p->p_lock); 1291 p->p_nrlwps--; 1292 cv_broadcast(&p->p_lwpcv); 1293 lwp_lock(l); 1294 l->l_stat = LSSUSPENDED; 1295 lwp_unlock(l); 1296 mutex_exit(p->p_lock); 1297 lwp_lock(l); 1298 mi_switch(l); 1299 } 1300 1301 /* Process is exiting. */ 1302 if ((l->l_flag & LW_WEXIT) != 0) { 1303 lwp_exit(l); 1304 KASSERT(0); 1305 /* NOTREACHED */ 1306 } 1307 1308 /* Call userret hook; used by Linux emulation. */ 1309 if ((l->l_flag & LW_WUSERRET) != 0) { 1310 lwp_lock(l); 1311 l->l_flag &= ~LW_WUSERRET; 1312 lwp_unlock(l); 1313 hook = p->p_userret; 1314 p->p_userret = NULL; 1315 (*hook)(); 1316 } 1317 } 1318 1319 #ifdef KERN_SA 1320 /* 1321 * Timer events are handled specially. We only try once to deliver 1322 * pending timer upcalls; if if fails, we can try again on the next 1323 * loop around. If we need to re-enter lwp_userret(), MD code will 1324 * bounce us back here through the trap path after we return. 1325 */ 1326 if (p->p_timerpend) 1327 timerupcall(l); 1328 if (l->l_flag & LW_SA_UPCALL) 1329 sa_upcall_userret(l); 1330 #endif /* KERN_SA */ 1331 } 1332 1333 /* 1334 * Force an LWP to enter the kernel, to take a trip through lwp_userret(). 1335 */ 1336 void 1337 lwp_need_userret(struct lwp *l) 1338 { 1339 KASSERT(lwp_locked(l, NULL)); 1340 1341 /* 1342 * Since the tests in lwp_userret() are done unlocked, make sure 1343 * that the condition will be seen before forcing the LWP to enter 1344 * kernel mode. 1345 */ 1346 membar_producer(); 1347 cpu_signotify(l); 1348 } 1349 1350 /* 1351 * Add one reference to an LWP. This will prevent the LWP from 1352 * exiting, thus keep the lwp structure and PCB around to inspect. 1353 */ 1354 void 1355 lwp_addref(struct lwp *l) 1356 { 1357 1358 KASSERT(mutex_owned(l->l_proc->p_lock)); 1359 KASSERT(l->l_stat != LSZOMB); 1360 KASSERT(l->l_refcnt != 0); 1361 1362 l->l_refcnt++; 1363 } 1364 1365 /* 1366 * Remove one reference to an LWP. If this is the last reference, 1367 * then we must finalize the LWP's death. 1368 */ 1369 void 1370 lwp_delref(struct lwp *l) 1371 { 1372 struct proc *p = l->l_proc; 1373 1374 mutex_enter(p->p_lock); 1375 KASSERT(l->l_stat != LSZOMB); 1376 KASSERT(l->l_refcnt > 0); 1377 if (--l->l_refcnt == 0) 1378 cv_broadcast(&p->p_lwpcv); 1379 mutex_exit(p->p_lock); 1380 } 1381 1382 /* 1383 * Drain all references to the current LWP. 1384 */ 1385 void 1386 lwp_drainrefs(struct lwp *l) 1387 { 1388 struct proc *p = l->l_proc; 1389 1390 KASSERT(mutex_owned(p->p_lock)); 1391 KASSERT(l->l_refcnt != 0); 1392 1393 l->l_refcnt--; 1394 while (l->l_refcnt != 0) 1395 cv_wait(&p->p_lwpcv, p->p_lock); 1396 } 1397 1398 /* 1399 * Return true if the specified LWP is 'alive'. Only p->p_lock need 1400 * be held. 1401 */ 1402 bool 1403 lwp_alive(lwp_t *l) 1404 { 1405 1406 KASSERT(mutex_owned(l->l_proc->p_lock)); 1407 1408 switch (l->l_stat) { 1409 case LSSLEEP: 1410 case LSRUN: 1411 case LSONPROC: 1412 case LSSTOP: 1413 case LSSUSPENDED: 1414 return true; 1415 default: 1416 return false; 1417 } 1418 } 1419 1420 /* 1421 * Return first live LWP in the process. 1422 */ 1423 lwp_t * 1424 lwp_find_first(proc_t *p) 1425 { 1426 lwp_t *l; 1427 1428 KASSERT(mutex_owned(p->p_lock)); 1429 1430 LIST_FOREACH(l, &p->p_lwps, l_sibling) { 1431 if (lwp_alive(l)) { 1432 return l; 1433 } 1434 } 1435 1436 return NULL; 1437 } 1438 1439 /* 1440 * lwp_specific_key_create -- 1441 * Create a key for subsystem lwp-specific data. 1442 */ 1443 int 1444 lwp_specific_key_create(specificdata_key_t *keyp, specificdata_dtor_t dtor) 1445 { 1446 1447 return (specificdata_key_create(lwp_specificdata_domain, keyp, dtor)); 1448 } 1449 1450 /* 1451 * lwp_specific_key_delete -- 1452 * Delete a key for subsystem lwp-specific data. 1453 */ 1454 void 1455 lwp_specific_key_delete(specificdata_key_t key) 1456 { 1457 1458 specificdata_key_delete(lwp_specificdata_domain, key); 1459 } 1460 1461 /* 1462 * lwp_initspecific -- 1463 * Initialize an LWP's specificdata container. 1464 */ 1465 void 1466 lwp_initspecific(struct lwp *l) 1467 { 1468 int error; 1469 1470 error = specificdata_init(lwp_specificdata_domain, &l->l_specdataref); 1471 KASSERT(error == 0); 1472 } 1473 1474 /* 1475 * lwp_finispecific -- 1476 * Finalize an LWP's specificdata container. 1477 */ 1478 void 1479 lwp_finispecific(struct lwp *l) 1480 { 1481 1482 specificdata_fini(lwp_specificdata_domain, &l->l_specdataref); 1483 } 1484 1485 /* 1486 * lwp_getspecific -- 1487 * Return lwp-specific data corresponding to the specified key. 1488 * 1489 * Note: LWP specific data is NOT INTERLOCKED. An LWP should access 1490 * only its OWN SPECIFIC DATA. If it is necessary to access another 1491 * LWP's specifc data, care must be taken to ensure that doing so 1492 * would not cause internal data structure inconsistency (i.e. caller 1493 * can guarantee that the target LWP is not inside an lwp_getspecific() 1494 * or lwp_setspecific() call). 1495 */ 1496 void * 1497 lwp_getspecific(specificdata_key_t key) 1498 { 1499 1500 return (specificdata_getspecific_unlocked(lwp_specificdata_domain, 1501 &curlwp->l_specdataref, key)); 1502 } 1503 1504 void * 1505 _lwp_getspecific_by_lwp(struct lwp *l, specificdata_key_t key) 1506 { 1507 1508 return (specificdata_getspecific_unlocked(lwp_specificdata_domain, 1509 &l->l_specdataref, key)); 1510 } 1511 1512 /* 1513 * lwp_setspecific -- 1514 * Set lwp-specific data corresponding to the specified key. 1515 */ 1516 void 1517 lwp_setspecific(specificdata_key_t key, void *data) 1518 { 1519 1520 specificdata_setspecific(lwp_specificdata_domain, 1521 &curlwp->l_specdataref, key, data); 1522 } 1523 1524 /* 1525 * Allocate a new lwpctl structure for a user LWP. 1526 */ 1527 int 1528 lwp_ctl_alloc(vaddr_t *uaddr) 1529 { 1530 lcproc_t *lp; 1531 u_int bit, i, offset; 1532 struct uvm_object *uao; 1533 int error; 1534 lcpage_t *lcp; 1535 proc_t *p; 1536 lwp_t *l; 1537 1538 l = curlwp; 1539 p = l->l_proc; 1540 1541 if (l->l_lcpage != NULL) { 1542 lcp = l->l_lcpage; 1543 *uaddr = lcp->lcp_uaddr + (vaddr_t)l->l_lwpctl - lcp->lcp_kaddr; 1544 return (EINVAL); 1545 } 1546 1547 /* First time around, allocate header structure for the process. */ 1548 if ((lp = p->p_lwpctl) == NULL) { 1549 lp = kmem_alloc(sizeof(*lp), KM_SLEEP); 1550 mutex_init(&lp->lp_lock, MUTEX_DEFAULT, IPL_NONE); 1551 lp->lp_uao = NULL; 1552 TAILQ_INIT(&lp->lp_pages); 1553 mutex_enter(p->p_lock); 1554 if (p->p_lwpctl == NULL) { 1555 p->p_lwpctl = lp; 1556 mutex_exit(p->p_lock); 1557 } else { 1558 mutex_exit(p->p_lock); 1559 mutex_destroy(&lp->lp_lock); 1560 kmem_free(lp, sizeof(*lp)); 1561 lp = p->p_lwpctl; 1562 } 1563 } 1564 1565 /* 1566 * Set up an anonymous memory region to hold the shared pages. 1567 * Map them into the process' address space. The user vmspace 1568 * gets the first reference on the UAO. 1569 */ 1570 mutex_enter(&lp->lp_lock); 1571 if (lp->lp_uao == NULL) { 1572 lp->lp_uao = uao_create(LWPCTL_UAREA_SZ, 0); 1573 lp->lp_cur = 0; 1574 lp->lp_max = LWPCTL_UAREA_SZ; 1575 lp->lp_uva = p->p_emul->e_vm_default_addr(p, 1576 (vaddr_t)p->p_vmspace->vm_daddr, LWPCTL_UAREA_SZ); 1577 error = uvm_map(&p->p_vmspace->vm_map, &lp->lp_uva, 1578 LWPCTL_UAREA_SZ, lp->lp_uao, 0, 0, UVM_MAPFLAG(UVM_PROT_RW, 1579 UVM_PROT_RW, UVM_INH_NONE, UVM_ADV_NORMAL, 0)); 1580 if (error != 0) { 1581 uao_detach(lp->lp_uao); 1582 lp->lp_uao = NULL; 1583 mutex_exit(&lp->lp_lock); 1584 return error; 1585 } 1586 } 1587 1588 /* Get a free block and allocate for this LWP. */ 1589 TAILQ_FOREACH(lcp, &lp->lp_pages, lcp_chain) { 1590 if (lcp->lcp_nfree != 0) 1591 break; 1592 } 1593 if (lcp == NULL) { 1594 /* Nothing available - try to set up a free page. */ 1595 if (lp->lp_cur == lp->lp_max) { 1596 mutex_exit(&lp->lp_lock); 1597 return ENOMEM; 1598 } 1599 lcp = kmem_alloc(LWPCTL_LCPAGE_SZ, KM_SLEEP); 1600 if (lcp == NULL) { 1601 mutex_exit(&lp->lp_lock); 1602 return ENOMEM; 1603 } 1604 /* 1605 * Wire the next page down in kernel space. Since this 1606 * is a new mapping, we must add a reference. 1607 */ 1608 uao = lp->lp_uao; 1609 (*uao->pgops->pgo_reference)(uao); 1610 lcp->lcp_kaddr = vm_map_min(kernel_map); 1611 error = uvm_map(kernel_map, &lcp->lcp_kaddr, PAGE_SIZE, 1612 uao, lp->lp_cur, PAGE_SIZE, 1613 UVM_MAPFLAG(UVM_PROT_RW, UVM_PROT_RW, 1614 UVM_INH_NONE, UVM_ADV_RANDOM, 0)); 1615 if (error != 0) { 1616 mutex_exit(&lp->lp_lock); 1617 kmem_free(lcp, LWPCTL_LCPAGE_SZ); 1618 (*uao->pgops->pgo_detach)(uao); 1619 return error; 1620 } 1621 error = uvm_map_pageable(kernel_map, lcp->lcp_kaddr, 1622 lcp->lcp_kaddr + PAGE_SIZE, FALSE, 0); 1623 if (error != 0) { 1624 mutex_exit(&lp->lp_lock); 1625 uvm_unmap(kernel_map, lcp->lcp_kaddr, 1626 lcp->lcp_kaddr + PAGE_SIZE); 1627 kmem_free(lcp, LWPCTL_LCPAGE_SZ); 1628 return error; 1629 } 1630 /* Prepare the page descriptor and link into the list. */ 1631 lcp->lcp_uaddr = lp->lp_uva + lp->lp_cur; 1632 lp->lp_cur += PAGE_SIZE; 1633 lcp->lcp_nfree = LWPCTL_PER_PAGE; 1634 lcp->lcp_rotor = 0; 1635 memset(lcp->lcp_bitmap, 0xff, LWPCTL_BITMAP_SZ); 1636 TAILQ_INSERT_HEAD(&lp->lp_pages, lcp, lcp_chain); 1637 } 1638 for (i = lcp->lcp_rotor; lcp->lcp_bitmap[i] == 0;) { 1639 if (++i >= LWPCTL_BITMAP_ENTRIES) 1640 i = 0; 1641 } 1642 bit = ffs(lcp->lcp_bitmap[i]) - 1; 1643 lcp->lcp_bitmap[i] ^= (1 << bit); 1644 lcp->lcp_rotor = i; 1645 lcp->lcp_nfree--; 1646 l->l_lcpage = lcp; 1647 offset = (i << 5) + bit; 1648 l->l_lwpctl = (lwpctl_t *)lcp->lcp_kaddr + offset; 1649 *uaddr = lcp->lcp_uaddr + offset * sizeof(lwpctl_t); 1650 mutex_exit(&lp->lp_lock); 1651 1652 KPREEMPT_DISABLE(l); 1653 l->l_lwpctl->lc_curcpu = (int)curcpu()->ci_data.cpu_index; 1654 KPREEMPT_ENABLE(l); 1655 1656 return 0; 1657 } 1658 1659 /* 1660 * Free an lwpctl structure back to the per-process list. 1661 */ 1662 void 1663 lwp_ctl_free(lwp_t *l) 1664 { 1665 lcproc_t *lp; 1666 lcpage_t *lcp; 1667 u_int map, offset; 1668 1669 lp = l->l_proc->p_lwpctl; 1670 KASSERT(lp != NULL); 1671 1672 lcp = l->l_lcpage; 1673 offset = (u_int)((lwpctl_t *)l->l_lwpctl - (lwpctl_t *)lcp->lcp_kaddr); 1674 KASSERT(offset < LWPCTL_PER_PAGE); 1675 1676 mutex_enter(&lp->lp_lock); 1677 lcp->lcp_nfree++; 1678 map = offset >> 5; 1679 lcp->lcp_bitmap[map] |= (1 << (offset & 31)); 1680 if (lcp->lcp_bitmap[lcp->lcp_rotor] == 0) 1681 lcp->lcp_rotor = map; 1682 if (TAILQ_FIRST(&lp->lp_pages)->lcp_nfree == 0) { 1683 TAILQ_REMOVE(&lp->lp_pages, lcp, lcp_chain); 1684 TAILQ_INSERT_HEAD(&lp->lp_pages, lcp, lcp_chain); 1685 } 1686 mutex_exit(&lp->lp_lock); 1687 } 1688 1689 /* 1690 * Process is exiting; tear down lwpctl state. This can only be safely 1691 * called by the last LWP in the process. 1692 */ 1693 void 1694 lwp_ctl_exit(void) 1695 { 1696 lcpage_t *lcp, *next; 1697 lcproc_t *lp; 1698 proc_t *p; 1699 lwp_t *l; 1700 1701 l = curlwp; 1702 l->l_lwpctl = NULL; 1703 l->l_lcpage = NULL; 1704 p = l->l_proc; 1705 lp = p->p_lwpctl; 1706 1707 KASSERT(lp != NULL); 1708 KASSERT(p->p_nlwps == 1); 1709 1710 for (lcp = TAILQ_FIRST(&lp->lp_pages); lcp != NULL; lcp = next) { 1711 next = TAILQ_NEXT(lcp, lcp_chain); 1712 uvm_unmap(kernel_map, lcp->lcp_kaddr, 1713 lcp->lcp_kaddr + PAGE_SIZE); 1714 kmem_free(lcp, LWPCTL_LCPAGE_SZ); 1715 } 1716 1717 if (lp->lp_uao != NULL) { 1718 uvm_unmap(&p->p_vmspace->vm_map, lp->lp_uva, 1719 lp->lp_uva + LWPCTL_UAREA_SZ); 1720 } 1721 1722 mutex_destroy(&lp->lp_lock); 1723 kmem_free(lp, sizeof(*lp)); 1724 p->p_lwpctl = NULL; 1725 } 1726 1727 #if defined(DDB) 1728 void 1729 lwp_whatis(uintptr_t addr, void (*pr)(const char *, ...)) 1730 { 1731 lwp_t *l; 1732 1733 LIST_FOREACH(l, &alllwp, l_list) { 1734 uintptr_t stack = (uintptr_t)KSTACK_LOWEST_ADDR(l); 1735 1736 if (addr < stack || stack + KSTACK_SIZE <= addr) { 1737 continue; 1738 } 1739 (*pr)("%p is %p+%zu, LWP %p's stack\n", 1740 (void *)addr, (void *)stack, 1741 (size_t)(addr - stack), l); 1742 } 1743 } 1744 #endif /* defined(DDB) */ 1745