1 /* $NetBSD: kern_lwp.c,v 1.136 2009/10/27 02:58:28 rmind Exp $ */ 2 3 /*- 4 * Copyright (c) 2001, 2006, 2007, 2008, 2009 The NetBSD Foundation, Inc. 5 * All rights reserved. 6 * 7 * This code is derived from software contributed to The NetBSD Foundation 8 * by Nathan J. Williams, and Andrew Doran. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS 20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 29 * POSSIBILITY OF SUCH DAMAGE. 30 */ 31 32 /* 33 * Overview 34 * 35 * Lightweight processes (LWPs) are the basic unit or thread of 36 * execution within the kernel. The core state of an LWP is described 37 * by "struct lwp", also known as lwp_t. 38 * 39 * Each LWP is contained within a process (described by "struct proc"), 40 * Every process contains at least one LWP, but may contain more. The 41 * process describes attributes shared among all of its LWPs such as a 42 * private address space, global execution state (stopped, active, 43 * zombie, ...), signal disposition and so on. On a multiprocessor 44 * machine, multiple LWPs be executing concurrently in the kernel. 45 * 46 * Execution states 47 * 48 * At any given time, an LWP has overall state that is described by 49 * lwp::l_stat. The states are broken into two sets below. The first 50 * set is guaranteed to represent the absolute, current state of the 51 * LWP: 52 * 53 * LSONPROC 54 * 55 * On processor: the LWP is executing on a CPU, either in the 56 * kernel or in user space. 57 * 58 * LSRUN 59 * 60 * Runnable: the LWP is parked on a run queue, and may soon be 61 * chosen to run by an idle processor, or by a processor that 62 * has been asked to preempt a currently runnning but lower 63 * priority LWP. 64 * 65 * LSIDL 66 * 67 * Idle: the LWP has been created but has not yet executed, 68 * or it has ceased executing a unit of work and is waiting 69 * to be started again. 70 * 71 * LSSUSPENDED: 72 * 73 * Suspended: the LWP has had its execution suspended by 74 * another LWP in the same process using the _lwp_suspend() 75 * system call. User-level LWPs also enter the suspended 76 * state when the system is shutting down. 77 * 78 * The second set represent a "statement of intent" on behalf of the 79 * LWP. The LWP may in fact be executing on a processor, may be 80 * sleeping or idle. It is expected to take the necessary action to 81 * stop executing or become "running" again within a short timeframe. 82 * The LP_RUNNING flag in lwp::l_pflag indicates that an LWP is running. 83 * Importantly, it indicates that its state is tied to a CPU. 84 * 85 * LSZOMB: 86 * 87 * Dead or dying: the LWP has released most of its resources 88 * and is about to switch away into oblivion, or has already 89 * switched away. When it switches away, its few remaining 90 * resources can be collected. 91 * 92 * LSSLEEP: 93 * 94 * Sleeping: the LWP has entered itself onto a sleep queue, and 95 * has switched away or will switch away shortly to allow other 96 * LWPs to run on the CPU. 97 * 98 * LSSTOP: 99 * 100 * Stopped: the LWP has been stopped as a result of a job 101 * control signal, or as a result of the ptrace() interface. 102 * 103 * Stopped LWPs may run briefly within the kernel to handle 104 * signals that they receive, but will not return to user space 105 * until their process' state is changed away from stopped. 106 * 107 * Single LWPs within a process can not be set stopped 108 * selectively: all actions that can stop or continue LWPs 109 * occur at the process level. 110 * 111 * State transitions 112 * 113 * Note that the LSSTOP state may only be set when returning to 114 * user space in userret(), or when sleeping interruptably. The 115 * LSSUSPENDED state may only be set in userret(). Before setting 116 * those states, we try to ensure that the LWPs will release all 117 * locks that they hold, and at a minimum try to ensure that the 118 * LWP can be set runnable again by a signal. 119 * 120 * LWPs may transition states in the following ways: 121 * 122 * RUN -------> ONPROC ONPROC -----> RUN 123 * > SLEEP 124 * > STOPPED 125 * > SUSPENDED 126 * > ZOMB 127 * > IDL (special cases) 128 * 129 * STOPPED ---> RUN SUSPENDED --> RUN 130 * > SLEEP 131 * 132 * SLEEP -----> ONPROC IDL --------> RUN 133 * > RUN > SUSPENDED 134 * > STOPPED > STOPPED 135 * > ONPROC (special cases) 136 * 137 * Some state transitions are only possible with kernel threads (eg 138 * ONPROC -> IDL) and happen under tightly controlled circumstances 139 * free of unwanted side effects. 140 * 141 * Migration 142 * 143 * Migration of threads from one CPU to another could be performed 144 * internally by the scheduler via sched_takecpu() or sched_catchlwp() 145 * functions. The universal lwp_migrate() function should be used for 146 * any other cases. Subsystems in the kernel must be aware that CPU 147 * of LWP may change, while it is not locked. 148 * 149 * Locking 150 * 151 * The majority of fields in 'struct lwp' are covered by a single, 152 * general spin lock pointed to by lwp::l_mutex. The locks covering 153 * each field are documented in sys/lwp.h. 154 * 155 * State transitions must be made with the LWP's general lock held, 156 * and may cause the LWP's lock pointer to change. Manipulation of 157 * the general lock is not performed directly, but through calls to 158 * lwp_lock(), lwp_relock() and similar. 159 * 160 * States and their associated locks: 161 * 162 * LSONPROC, LSZOMB: 163 * 164 * Always covered by spc_lwplock, which protects running LWPs. 165 * This is a per-CPU lock and matches lwp::l_cpu. 166 * 167 * LSIDL, LSRUN: 168 * 169 * Always covered by spc_mutex, which protects the run queues. 170 * This is a per-CPU lock and matches lwp::l_cpu. 171 * 172 * LSSLEEP: 173 * 174 * Covered by a lock associated with the sleep queue that the 175 * LWP resides on. Matches lwp::l_sleepq::sq_mutex. 176 * 177 * LSSTOP, LSSUSPENDED: 178 * 179 * If the LWP was previously sleeping (l_wchan != NULL), then 180 * l_mutex references the sleep queue lock. If the LWP was 181 * runnable or on the CPU when halted, or has been removed from 182 * the sleep queue since halted, then the lock is spc_lwplock. 183 * 184 * The lock order is as follows: 185 * 186 * spc::spc_lwplock -> 187 * sleeptab::st_mutex -> 188 * tschain_t::tc_mutex -> 189 * spc::spc_mutex 190 * 191 * Each process has an scheduler state lock (proc::p_lock), and a 192 * number of counters on LWPs and their states: p_nzlwps, p_nrlwps, and 193 * so on. When an LWP is to be entered into or removed from one of the 194 * following states, p_lock must be held and the process wide counters 195 * adjusted: 196 * 197 * LSIDL, LSZOMB, LSSTOP, LSSUSPENDED 198 * 199 * (But not always for kernel threads. There are some special cases 200 * as mentioned above. See kern_softint.c.) 201 * 202 * Note that an LWP is considered running or likely to run soon if in 203 * one of the following states. This affects the value of p_nrlwps: 204 * 205 * LSRUN, LSONPROC, LSSLEEP 206 * 207 * p_lock does not need to be held when transitioning among these 208 * three states, hence p_lock is rarely taken for state transitions. 209 */ 210 211 #include <sys/cdefs.h> 212 __KERNEL_RCSID(0, "$NetBSD: kern_lwp.c,v 1.136 2009/10/27 02:58:28 rmind Exp $"); 213 214 #include "opt_ddb.h" 215 #include "opt_lockdebug.h" 216 #include "opt_sa.h" 217 218 #define _LWP_API_PRIVATE 219 220 #include <sys/param.h> 221 #include <sys/systm.h> 222 #include <sys/cpu.h> 223 #include <sys/pool.h> 224 #include <sys/proc.h> 225 #include <sys/sa.h> 226 #include <sys/savar.h> 227 #include <sys/syscallargs.h> 228 #include <sys/syscall_stats.h> 229 #include <sys/kauth.h> 230 #include <sys/sleepq.h> 231 #include <sys/user.h> 232 #include <sys/lockdebug.h> 233 #include <sys/kmem.h> 234 #include <sys/pset.h> 235 #include <sys/intr.h> 236 #include <sys/lwpctl.h> 237 #include <sys/atomic.h> 238 #include <sys/filedesc.h> 239 240 #include <uvm/uvm_extern.h> 241 #include <uvm/uvm_object.h> 242 243 struct lwplist alllwp = LIST_HEAD_INITIALIZER(alllwp); 244 245 struct pool lwp_uc_pool; 246 247 static pool_cache_t lwp_cache; 248 static specificdata_domain_t lwp_specificdata_domain; 249 250 void 251 lwpinit(void) 252 { 253 254 pool_init(&lwp_uc_pool, sizeof(ucontext_t), 0, 0, 0, "lwpucpl", 255 &pool_allocator_nointr, IPL_NONE); 256 lwp_specificdata_domain = specificdata_domain_create(); 257 KASSERT(lwp_specificdata_domain != NULL); 258 lwp_sys_init(); 259 lwp_cache = pool_cache_init(sizeof(lwp_t), MIN_LWP_ALIGNMENT, 0, 0, 260 "lwppl", NULL, IPL_NONE, NULL, NULL, NULL); 261 } 262 263 /* 264 * Set an suspended. 265 * 266 * Must be called with p_lock held, and the LWP locked. Will unlock the 267 * LWP before return. 268 */ 269 int 270 lwp_suspend(struct lwp *curl, struct lwp *t) 271 { 272 int error; 273 274 KASSERT(mutex_owned(t->l_proc->p_lock)); 275 KASSERT(lwp_locked(t, NULL)); 276 277 KASSERT(curl != t || curl->l_stat == LSONPROC); 278 279 /* 280 * If the current LWP has been told to exit, we must not suspend anyone 281 * else or deadlock could occur. We won't return to userspace. 282 */ 283 if ((curl->l_flag & (LW_WEXIT | LW_WCORE)) != 0) { 284 lwp_unlock(t); 285 return (EDEADLK); 286 } 287 288 error = 0; 289 290 switch (t->l_stat) { 291 case LSRUN: 292 case LSONPROC: 293 t->l_flag |= LW_WSUSPEND; 294 lwp_need_userret(t); 295 lwp_unlock(t); 296 break; 297 298 case LSSLEEP: 299 t->l_flag |= LW_WSUSPEND; 300 301 /* 302 * Kick the LWP and try to get it to the kernel boundary 303 * so that it will release any locks that it holds. 304 * setrunnable() will release the lock. 305 */ 306 if ((t->l_flag & LW_SINTR) != 0) 307 setrunnable(t); 308 else 309 lwp_unlock(t); 310 break; 311 312 case LSSUSPENDED: 313 lwp_unlock(t); 314 break; 315 316 case LSSTOP: 317 t->l_flag |= LW_WSUSPEND; 318 setrunnable(t); 319 break; 320 321 case LSIDL: 322 case LSZOMB: 323 error = EINTR; /* It's what Solaris does..... */ 324 lwp_unlock(t); 325 break; 326 } 327 328 return (error); 329 } 330 331 /* 332 * Restart a suspended LWP. 333 * 334 * Must be called with p_lock held, and the LWP locked. Will unlock the 335 * LWP before return. 336 */ 337 void 338 lwp_continue(struct lwp *l) 339 { 340 341 KASSERT(mutex_owned(l->l_proc->p_lock)); 342 KASSERT(lwp_locked(l, NULL)); 343 344 /* If rebooting or not suspended, then just bail out. */ 345 if ((l->l_flag & LW_WREBOOT) != 0) { 346 lwp_unlock(l); 347 return; 348 } 349 350 l->l_flag &= ~LW_WSUSPEND; 351 352 if (l->l_stat != LSSUSPENDED) { 353 lwp_unlock(l); 354 return; 355 } 356 357 /* setrunnable() will release the lock. */ 358 setrunnable(l); 359 } 360 361 /* 362 * Wait for an LWP within the current process to exit. If 'lid' is 363 * non-zero, we are waiting for a specific LWP. 364 * 365 * Must be called with p->p_lock held. 366 */ 367 int 368 lwp_wait1(struct lwp *l, lwpid_t lid, lwpid_t *departed, int flags) 369 { 370 struct proc *p = l->l_proc; 371 struct lwp *l2; 372 int nfound, error; 373 lwpid_t curlid; 374 bool exiting; 375 376 KASSERT(mutex_owned(p->p_lock)); 377 378 p->p_nlwpwait++; 379 l->l_waitingfor = lid; 380 curlid = l->l_lid; 381 exiting = ((flags & LWPWAIT_EXITCONTROL) != 0); 382 383 for (;;) { 384 /* 385 * Avoid a race between exit1() and sigexit(): if the 386 * process is dumping core, then we need to bail out: call 387 * into lwp_userret() where we will be suspended until the 388 * deed is done. 389 */ 390 if ((p->p_sflag & PS_WCORE) != 0) { 391 mutex_exit(p->p_lock); 392 lwp_userret(l); 393 #ifdef DIAGNOSTIC 394 panic("lwp_wait1"); 395 #endif 396 /* NOTREACHED */ 397 } 398 399 /* 400 * First off, drain any detached LWP that is waiting to be 401 * reaped. 402 */ 403 while ((l2 = p->p_zomblwp) != NULL) { 404 p->p_zomblwp = NULL; 405 lwp_free(l2, false, false);/* releases proc mutex */ 406 mutex_enter(p->p_lock); 407 } 408 409 /* 410 * Now look for an LWP to collect. If the whole process is 411 * exiting, count detached LWPs as eligible to be collected, 412 * but don't drain them here. 413 */ 414 nfound = 0; 415 error = 0; 416 LIST_FOREACH(l2, &p->p_lwps, l_sibling) { 417 /* 418 * If a specific wait and the target is waiting on 419 * us, then avoid deadlock. This also traps LWPs 420 * that try to wait on themselves. 421 * 422 * Note that this does not handle more complicated 423 * cycles, like: t1 -> t2 -> t3 -> t1. The process 424 * can still be killed so it is not a major problem. 425 */ 426 if (l2->l_lid == lid && l2->l_waitingfor == curlid) { 427 error = EDEADLK; 428 break; 429 } 430 if (l2 == l) 431 continue; 432 if ((l2->l_prflag & LPR_DETACHED) != 0) { 433 nfound += exiting; 434 continue; 435 } 436 if (lid != 0) { 437 if (l2->l_lid != lid) 438 continue; 439 /* 440 * Mark this LWP as the first waiter, if there 441 * is no other. 442 */ 443 if (l2->l_waiter == 0) 444 l2->l_waiter = curlid; 445 } else if (l2->l_waiter != 0) { 446 /* 447 * It already has a waiter - so don't 448 * collect it. If the waiter doesn't 449 * grab it we'll get another chance 450 * later. 451 */ 452 nfound++; 453 continue; 454 } 455 nfound++; 456 457 /* No need to lock the LWP in order to see LSZOMB. */ 458 if (l2->l_stat != LSZOMB) 459 continue; 460 461 /* 462 * We're no longer waiting. Reset the "first waiter" 463 * pointer on the target, in case it was us. 464 */ 465 l->l_waitingfor = 0; 466 l2->l_waiter = 0; 467 p->p_nlwpwait--; 468 if (departed) 469 *departed = l2->l_lid; 470 sched_lwp_collect(l2); 471 472 /* lwp_free() releases the proc lock. */ 473 lwp_free(l2, false, false); 474 mutex_enter(p->p_lock); 475 return 0; 476 } 477 478 if (error != 0) 479 break; 480 if (nfound == 0) { 481 error = ESRCH; 482 break; 483 } 484 485 /* 486 * The kernel is careful to ensure that it can not deadlock 487 * when exiting - just keep waiting. 488 */ 489 if (exiting) { 490 KASSERT(p->p_nlwps > 1); 491 cv_wait(&p->p_lwpcv, p->p_lock); 492 continue; 493 } 494 495 /* 496 * If all other LWPs are waiting for exits or suspends 497 * and the supply of zombies and potential zombies is 498 * exhausted, then we are about to deadlock. 499 * 500 * If the process is exiting (and this LWP is not the one 501 * that is coordinating the exit) then bail out now. 502 */ 503 if ((p->p_sflag & PS_WEXIT) != 0 || 504 p->p_nrlwps + p->p_nzlwps - p->p_ndlwps <= p->p_nlwpwait) { 505 error = EDEADLK; 506 break; 507 } 508 509 /* 510 * Sit around and wait for something to happen. We'll be 511 * awoken if any of the conditions examined change: if an 512 * LWP exits, is collected, or is detached. 513 */ 514 if ((error = cv_wait_sig(&p->p_lwpcv, p->p_lock)) != 0) 515 break; 516 } 517 518 /* 519 * We didn't find any LWPs to collect, we may have received a 520 * signal, or some other condition has caused us to bail out. 521 * 522 * If waiting on a specific LWP, clear the waiters marker: some 523 * other LWP may want it. Then, kick all the remaining waiters 524 * so that they can re-check for zombies and for deadlock. 525 */ 526 if (lid != 0) { 527 LIST_FOREACH(l2, &p->p_lwps, l_sibling) { 528 if (l2->l_lid == lid) { 529 if (l2->l_waiter == curlid) 530 l2->l_waiter = 0; 531 break; 532 } 533 } 534 } 535 p->p_nlwpwait--; 536 l->l_waitingfor = 0; 537 cv_broadcast(&p->p_lwpcv); 538 539 return error; 540 } 541 542 /* 543 * Create a new LWP within process 'p2', using LWP 'l1' as a template. 544 * The new LWP is created in state LSIDL and must be set running, 545 * suspended, or stopped by the caller. 546 */ 547 int 548 lwp_create(lwp_t *l1, proc_t *p2, vaddr_t uaddr, int flags, 549 void *stack, size_t stacksize, void (*func)(void *), void *arg, 550 lwp_t **rnewlwpp, int sclass) 551 { 552 struct lwp *l2, *isfree; 553 turnstile_t *ts; 554 555 KASSERT(l1 == curlwp || l1->l_proc == &proc0); 556 557 /* 558 * First off, reap any detached LWP waiting to be collected. 559 * We can re-use its LWP structure and turnstile. 560 */ 561 isfree = NULL; 562 if (p2->p_zomblwp != NULL) { 563 mutex_enter(p2->p_lock); 564 if ((isfree = p2->p_zomblwp) != NULL) { 565 p2->p_zomblwp = NULL; 566 lwp_free(isfree, true, false);/* releases proc mutex */ 567 } else 568 mutex_exit(p2->p_lock); 569 } 570 if (isfree == NULL) { 571 l2 = pool_cache_get(lwp_cache, PR_WAITOK); 572 memset(l2, 0, sizeof(*l2)); 573 l2->l_ts = pool_cache_get(turnstile_cache, PR_WAITOK); 574 SLIST_INIT(&l2->l_pi_lenders); 575 } else { 576 l2 = isfree; 577 ts = l2->l_ts; 578 KASSERT(l2->l_inheritedprio == -1); 579 KASSERT(SLIST_EMPTY(&l2->l_pi_lenders)); 580 memset(l2, 0, sizeof(*l2)); 581 l2->l_ts = ts; 582 } 583 584 l2->l_stat = LSIDL; 585 l2->l_proc = p2; 586 l2->l_refcnt = 1; 587 l2->l_class = sclass; 588 589 /* 590 * If vfork(), we want the LWP to run fast and on the same CPU 591 * as its parent, so that it can reuse the VM context and cache 592 * footprint on the local CPU. 593 */ 594 l2->l_kpriority = ((flags & LWP_VFORK) ? true : false); 595 l2->l_kpribase = PRI_KERNEL; 596 l2->l_priority = l1->l_priority; 597 l2->l_inheritedprio = -1; 598 l2->l_flag = 0; 599 l2->l_pflag = LP_MPSAFE; 600 TAILQ_INIT(&l2->l_ld_locks); 601 602 /* 603 * If not the first LWP in the process, grab a reference to the 604 * descriptor table. 605 */ 606 l2->l_fd = p2->p_fd; 607 if (p2->p_nlwps != 0) { 608 KASSERT(l1->l_proc == p2); 609 fd_hold(l2); 610 } else { 611 KASSERT(l1->l_proc != p2); 612 } 613 614 if (p2->p_flag & PK_SYSTEM) { 615 /* Mark it as a system LWP. */ 616 l2->l_flag |= LW_SYSTEM; 617 } 618 619 kpreempt_disable(); 620 l2->l_mutex = l1->l_cpu->ci_schedstate.spc_mutex; 621 l2->l_cpu = l1->l_cpu; 622 kpreempt_enable(); 623 624 lwp_initspecific(l2); 625 sched_lwp_fork(l1, l2); 626 lwp_update_creds(l2); 627 callout_init(&l2->l_timeout_ch, CALLOUT_MPSAFE); 628 callout_setfunc(&l2->l_timeout_ch, sleepq_timeout, l2); 629 cv_init(&l2->l_sigcv, "sigwait"); 630 l2->l_syncobj = &sched_syncobj; 631 632 if (rnewlwpp != NULL) 633 *rnewlwpp = l2; 634 635 l2->l_addr = UAREA_TO_USER(uaddr); 636 uvm_lwp_fork(l1, l2, stack, stacksize, func, 637 (arg != NULL) ? arg : l2); 638 639 mutex_enter(p2->p_lock); 640 641 if ((flags & LWP_DETACHED) != 0) { 642 l2->l_prflag = LPR_DETACHED; 643 p2->p_ndlwps++; 644 } else 645 l2->l_prflag = 0; 646 647 l2->l_sigmask = l1->l_sigmask; 648 CIRCLEQ_INIT(&l2->l_sigpend.sp_info); 649 sigemptyset(&l2->l_sigpend.sp_set); 650 651 p2->p_nlwpid++; 652 if (p2->p_nlwpid == 0) 653 p2->p_nlwpid++; 654 l2->l_lid = p2->p_nlwpid; 655 LIST_INSERT_HEAD(&p2->p_lwps, l2, l_sibling); 656 p2->p_nlwps++; 657 658 if ((p2->p_flag & PK_SYSTEM) == 0) { 659 /* Inherit an affinity */ 660 if (l1->l_flag & LW_AFFINITY) { 661 /* 662 * Note that we hold the state lock while inheriting 663 * the affinity to avoid race with sched_setaffinity(). 664 */ 665 lwp_lock(l1); 666 if (l1->l_flag & LW_AFFINITY) { 667 kcpuset_use(l1->l_affinity); 668 l2->l_affinity = l1->l_affinity; 669 l2->l_flag |= LW_AFFINITY; 670 } 671 lwp_unlock(l1); 672 } 673 lwp_lock(l2); 674 /* Inherit a processor-set */ 675 l2->l_psid = l1->l_psid; 676 /* Look for a CPU to start */ 677 l2->l_cpu = sched_takecpu(l2); 678 lwp_unlock_to(l2, l2->l_cpu->ci_schedstate.spc_mutex); 679 } 680 mutex_exit(p2->p_lock); 681 682 mutex_enter(proc_lock); 683 LIST_INSERT_HEAD(&alllwp, l2, l_list); 684 mutex_exit(proc_lock); 685 686 SYSCALL_TIME_LWP_INIT(l2); 687 688 if (p2->p_emul->e_lwp_fork) 689 (*p2->p_emul->e_lwp_fork)(l1, l2); 690 691 return (0); 692 } 693 694 /* 695 * Called by MD code when a new LWP begins execution. Must be called 696 * with the previous LWP locked (so at splsched), or if there is no 697 * previous LWP, at splsched. 698 */ 699 void 700 lwp_startup(struct lwp *prev, struct lwp *new) 701 { 702 703 KASSERT(kpreempt_disabled()); 704 if (prev != NULL) { 705 /* 706 * Normalize the count of the spin-mutexes, it was 707 * increased in mi_switch(). Unmark the state of 708 * context switch - it is finished for previous LWP. 709 */ 710 curcpu()->ci_mtx_count++; 711 membar_exit(); 712 prev->l_ctxswtch = 0; 713 } 714 KPREEMPT_DISABLE(new); 715 spl0(); 716 pmap_activate(new); 717 LOCKDEBUG_BARRIER(NULL, 0); 718 KPREEMPT_ENABLE(new); 719 if ((new->l_pflag & LP_MPSAFE) == 0) { 720 KERNEL_LOCK(1, new); 721 } 722 } 723 724 /* 725 * Exit an LWP. 726 */ 727 void 728 lwp_exit(struct lwp *l) 729 { 730 struct proc *p = l->l_proc; 731 struct lwp *l2; 732 bool current; 733 734 current = (l == curlwp); 735 736 KASSERT(current || (l->l_stat == LSIDL && l->l_target_cpu == NULL)); 737 KASSERT(p == curproc); 738 739 /* 740 * Verify that we hold no locks other than the kernel lock. 741 */ 742 LOCKDEBUG_BARRIER(&kernel_lock, 0); 743 744 /* 745 * If we are the last live LWP in a process, we need to exit the 746 * entire process. We do so with an exit status of zero, because 747 * it's a "controlled" exit, and because that's what Solaris does. 748 * 749 * We are not quite a zombie yet, but for accounting purposes we 750 * must increment the count of zombies here. 751 * 752 * Note: the last LWP's specificdata will be deleted here. 753 */ 754 mutex_enter(p->p_lock); 755 if (p->p_nlwps - p->p_nzlwps == 1) { 756 KASSERT(current == true); 757 /* XXXSMP kernel_lock not held */ 758 exit1(l, 0); 759 /* NOTREACHED */ 760 } 761 p->p_nzlwps++; 762 mutex_exit(p->p_lock); 763 764 if (p->p_emul->e_lwp_exit) 765 (*p->p_emul->e_lwp_exit)(l); 766 767 /* Drop filedesc reference. */ 768 fd_free(); 769 770 /* Delete the specificdata while it's still safe to sleep. */ 771 specificdata_fini(lwp_specificdata_domain, &l->l_specdataref); 772 773 /* 774 * Release our cached credentials. 775 */ 776 kauth_cred_free(l->l_cred); 777 callout_destroy(&l->l_timeout_ch); 778 779 /* 780 * Remove the LWP from the global list. 781 */ 782 mutex_enter(proc_lock); 783 LIST_REMOVE(l, l_list); 784 mutex_exit(proc_lock); 785 786 /* 787 * Get rid of all references to the LWP that others (e.g. procfs) 788 * may have, and mark the LWP as a zombie. If the LWP is detached, 789 * mark it waiting for collection in the proc structure. Note that 790 * before we can do that, we need to free any other dead, deatched 791 * LWP waiting to meet its maker. 792 */ 793 mutex_enter(p->p_lock); 794 lwp_drainrefs(l); 795 796 if ((l->l_prflag & LPR_DETACHED) != 0) { 797 while ((l2 = p->p_zomblwp) != NULL) { 798 p->p_zomblwp = NULL; 799 lwp_free(l2, false, false);/* releases proc mutex */ 800 mutex_enter(p->p_lock); 801 l->l_refcnt++; 802 lwp_drainrefs(l); 803 } 804 p->p_zomblwp = l; 805 } 806 807 /* 808 * If we find a pending signal for the process and we have been 809 * asked to check for signals, then we loose: arrange to have 810 * all other LWPs in the process check for signals. 811 */ 812 if ((l->l_flag & LW_PENDSIG) != 0 && 813 firstsig(&p->p_sigpend.sp_set) != 0) { 814 LIST_FOREACH(l2, &p->p_lwps, l_sibling) { 815 lwp_lock(l2); 816 l2->l_flag |= LW_PENDSIG; 817 lwp_unlock(l2); 818 } 819 } 820 821 lwp_lock(l); 822 l->l_stat = LSZOMB; 823 if (l->l_name != NULL) 824 strcpy(l->l_name, "(zombie)"); 825 if (l->l_flag & LW_AFFINITY) { 826 l->l_flag &= ~LW_AFFINITY; 827 } else { 828 KASSERT(l->l_affinity == NULL); 829 } 830 lwp_unlock(l); 831 p->p_nrlwps--; 832 cv_broadcast(&p->p_lwpcv); 833 if (l->l_lwpctl != NULL) 834 l->l_lwpctl->lc_curcpu = LWPCTL_CPU_EXITED; 835 mutex_exit(p->p_lock); 836 837 /* Safe without lock since LWP is in zombie state */ 838 if (l->l_affinity) { 839 kcpuset_unuse(l->l_affinity, NULL); 840 l->l_affinity = NULL; 841 } 842 843 /* 844 * We can no longer block. At this point, lwp_free() may already 845 * be gunning for us. On a multi-CPU system, we may be off p_lwps. 846 * 847 * Free MD LWP resources. 848 */ 849 cpu_lwp_free(l, 0); 850 851 if (current) { 852 pmap_deactivate(l); 853 854 /* 855 * Release the kernel lock, and switch away into 856 * oblivion. 857 */ 858 #ifdef notyet 859 /* XXXSMP hold in lwp_userret() */ 860 KERNEL_UNLOCK_LAST(l); 861 #else 862 KERNEL_UNLOCK_ALL(l, NULL); 863 #endif 864 lwp_exit_switchaway(l); 865 } 866 } 867 868 /* 869 * Free a dead LWP's remaining resources. 870 * 871 * XXXLWP limits. 872 */ 873 void 874 lwp_free(struct lwp *l, bool recycle, bool last) 875 { 876 struct proc *p = l->l_proc; 877 struct rusage *ru; 878 ksiginfoq_t kq; 879 880 KASSERT(l != curlwp); 881 882 /* 883 * If this was not the last LWP in the process, then adjust 884 * counters and unlock. 885 */ 886 if (!last) { 887 /* 888 * Add the LWP's run time to the process' base value. 889 * This needs to co-incide with coming off p_lwps. 890 */ 891 bintime_add(&p->p_rtime, &l->l_rtime); 892 p->p_pctcpu += l->l_pctcpu; 893 ru = &p->p_stats->p_ru; 894 ruadd(ru, &l->l_ru); 895 ru->ru_nvcsw += (l->l_ncsw - l->l_nivcsw); 896 ru->ru_nivcsw += l->l_nivcsw; 897 LIST_REMOVE(l, l_sibling); 898 p->p_nlwps--; 899 p->p_nzlwps--; 900 if ((l->l_prflag & LPR_DETACHED) != 0) 901 p->p_ndlwps--; 902 903 /* 904 * Have any LWPs sleeping in lwp_wait() recheck for 905 * deadlock. 906 */ 907 cv_broadcast(&p->p_lwpcv); 908 mutex_exit(p->p_lock); 909 } 910 911 #ifdef MULTIPROCESSOR 912 /* 913 * In the unlikely event that the LWP is still on the CPU, 914 * then spin until it has switched away. We need to release 915 * all locks to avoid deadlock against interrupt handlers on 916 * the target CPU. 917 */ 918 if ((l->l_pflag & LP_RUNNING) != 0 || l->l_cpu->ci_curlwp == l) { 919 int count; 920 (void)count; /* XXXgcc */ 921 KERNEL_UNLOCK_ALL(curlwp, &count); 922 while ((l->l_pflag & LP_RUNNING) != 0 || 923 l->l_cpu->ci_curlwp == l) 924 SPINLOCK_BACKOFF_HOOK; 925 KERNEL_LOCK(count, curlwp); 926 } 927 #endif 928 929 /* 930 * Destroy the LWP's remaining signal information. 931 */ 932 ksiginfo_queue_init(&kq); 933 sigclear(&l->l_sigpend, NULL, &kq); 934 ksiginfo_queue_drain(&kq); 935 cv_destroy(&l->l_sigcv); 936 937 /* 938 * Free the LWP's turnstile and the LWP structure itself unless the 939 * caller wants to recycle them. Also, free the scheduler specific 940 * data. 941 * 942 * We can't return turnstile0 to the pool (it didn't come from it), 943 * so if it comes up just drop it quietly and move on. 944 * 945 * We don't recycle the VM resources at this time. 946 */ 947 if (l->l_lwpctl != NULL) 948 lwp_ctl_free(l); 949 950 if (!recycle && l->l_ts != &turnstile0) 951 pool_cache_put(turnstile_cache, l->l_ts); 952 if (l->l_name != NULL) 953 kmem_free(l->l_name, MAXCOMLEN); 954 955 cpu_lwp_free2(l); 956 uvm_lwp_exit(l); 957 958 KASSERT(SLIST_EMPTY(&l->l_pi_lenders)); 959 KASSERT(l->l_inheritedprio == -1); 960 if (!recycle) 961 pool_cache_put(lwp_cache, l); 962 } 963 964 /* 965 * Migrate the LWP to the another CPU. Unlocks the LWP. 966 */ 967 void 968 lwp_migrate(lwp_t *l, struct cpu_info *tci) 969 { 970 struct schedstate_percpu *tspc; 971 int lstat = l->l_stat; 972 973 KASSERT(lwp_locked(l, NULL)); 974 KASSERT(tci != NULL); 975 976 /* If LWP is still on the CPU, it must be handled like LSONPROC */ 977 if ((l->l_pflag & LP_RUNNING) != 0) { 978 lstat = LSONPROC; 979 } 980 981 /* 982 * The destination CPU could be changed while previous migration 983 * was not finished. 984 */ 985 if (l->l_target_cpu != NULL) { 986 l->l_target_cpu = tci; 987 lwp_unlock(l); 988 return; 989 } 990 991 /* Nothing to do if trying to migrate to the same CPU */ 992 if (l->l_cpu == tci) { 993 lwp_unlock(l); 994 return; 995 } 996 997 KASSERT(l->l_target_cpu == NULL); 998 tspc = &tci->ci_schedstate; 999 switch (lstat) { 1000 case LSRUN: 1001 l->l_target_cpu = tci; 1002 break; 1003 case LSIDL: 1004 l->l_cpu = tci; 1005 lwp_unlock_to(l, tspc->spc_mutex); 1006 return; 1007 case LSSLEEP: 1008 l->l_cpu = tci; 1009 break; 1010 case LSSTOP: 1011 case LSSUSPENDED: 1012 l->l_cpu = tci; 1013 if (l->l_wchan == NULL) { 1014 lwp_unlock_to(l, tspc->spc_lwplock); 1015 return; 1016 } 1017 break; 1018 case LSONPROC: 1019 l->l_target_cpu = tci; 1020 spc_lock(l->l_cpu); 1021 cpu_need_resched(l->l_cpu, RESCHED_KPREEMPT); 1022 spc_unlock(l->l_cpu); 1023 break; 1024 } 1025 lwp_unlock(l); 1026 } 1027 1028 /* 1029 * Find the LWP in the process. Arguments may be zero, in such case, 1030 * the calling process and first LWP in the list will be used. 1031 * On success - returns proc locked. 1032 */ 1033 struct lwp * 1034 lwp_find2(pid_t pid, lwpid_t lid) 1035 { 1036 proc_t *p; 1037 lwp_t *l; 1038 1039 /* Find the process */ 1040 p = (pid == 0) ? curlwp->l_proc : p_find(pid, PFIND_UNLOCK_FAIL); 1041 if (p == NULL) 1042 return NULL; 1043 mutex_enter(p->p_lock); 1044 if (pid != 0) { 1045 /* Case of p_find */ 1046 mutex_exit(proc_lock); 1047 } 1048 1049 /* Find the thread */ 1050 l = (lid == 0) ? LIST_FIRST(&p->p_lwps) : lwp_find(p, lid); 1051 if (l == NULL) { 1052 mutex_exit(p->p_lock); 1053 } 1054 1055 return l; 1056 } 1057 1058 /* 1059 * Look up a live LWP within the speicifed process, and return it locked. 1060 * 1061 * Must be called with p->p_lock held. 1062 */ 1063 struct lwp * 1064 lwp_find(struct proc *p, int id) 1065 { 1066 struct lwp *l; 1067 1068 KASSERT(mutex_owned(p->p_lock)); 1069 1070 LIST_FOREACH(l, &p->p_lwps, l_sibling) { 1071 if (l->l_lid == id) 1072 break; 1073 } 1074 1075 /* 1076 * No need to lock - all of these conditions will 1077 * be visible with the process level mutex held. 1078 */ 1079 if (l != NULL && (l->l_stat == LSIDL || l->l_stat == LSZOMB)) 1080 l = NULL; 1081 1082 return l; 1083 } 1084 1085 /* 1086 * Update an LWP's cached credentials to mirror the process' master copy. 1087 * 1088 * This happens early in the syscall path, on user trap, and on LWP 1089 * creation. A long-running LWP can also voluntarily choose to update 1090 * it's credentials by calling this routine. This may be called from 1091 * LWP_CACHE_CREDS(), which checks l->l_cred != p->p_cred beforehand. 1092 */ 1093 void 1094 lwp_update_creds(struct lwp *l) 1095 { 1096 kauth_cred_t oc; 1097 struct proc *p; 1098 1099 p = l->l_proc; 1100 oc = l->l_cred; 1101 1102 mutex_enter(p->p_lock); 1103 kauth_cred_hold(p->p_cred); 1104 l->l_cred = p->p_cred; 1105 l->l_prflag &= ~LPR_CRMOD; 1106 mutex_exit(p->p_lock); 1107 if (oc != NULL) 1108 kauth_cred_free(oc); 1109 } 1110 1111 /* 1112 * Verify that an LWP is locked, and optionally verify that the lock matches 1113 * one we specify. 1114 */ 1115 int 1116 lwp_locked(struct lwp *l, kmutex_t *mtx) 1117 { 1118 kmutex_t *cur = l->l_mutex; 1119 1120 return mutex_owned(cur) && (mtx == cur || mtx == NULL); 1121 } 1122 1123 /* 1124 * Lock an LWP. 1125 */ 1126 kmutex_t * 1127 lwp_lock_retry(struct lwp *l, kmutex_t *old) 1128 { 1129 1130 /* 1131 * XXXgcc ignoring kmutex_t * volatile on i386 1132 * 1133 * gcc version 4.1.2 20061021 prerelease (NetBSD nb1 20061021) 1134 */ 1135 #if 1 1136 while (l->l_mutex != old) { 1137 #else 1138 for (;;) { 1139 #endif 1140 mutex_spin_exit(old); 1141 old = l->l_mutex; 1142 mutex_spin_enter(old); 1143 1144 /* 1145 * mutex_enter() will have posted a read barrier. Re-test 1146 * l->l_mutex. If it has changed, we need to try again. 1147 */ 1148 #if 1 1149 } 1150 #else 1151 } while (__predict_false(l->l_mutex != old)); 1152 #endif 1153 1154 return old; 1155 } 1156 1157 /* 1158 * Lend a new mutex to an LWP. The old mutex must be held. 1159 */ 1160 void 1161 lwp_setlock(struct lwp *l, kmutex_t *new) 1162 { 1163 1164 KASSERT(mutex_owned(l->l_mutex)); 1165 1166 membar_exit(); 1167 l->l_mutex = new; 1168 } 1169 1170 /* 1171 * Lend a new mutex to an LWP, and release the old mutex. The old mutex 1172 * must be held. 1173 */ 1174 void 1175 lwp_unlock_to(struct lwp *l, kmutex_t *new) 1176 { 1177 kmutex_t *old; 1178 1179 KASSERT(mutex_owned(l->l_mutex)); 1180 1181 old = l->l_mutex; 1182 membar_exit(); 1183 l->l_mutex = new; 1184 mutex_spin_exit(old); 1185 } 1186 1187 /* 1188 * Acquire a new mutex, and donate it to an LWP. The LWP must already be 1189 * locked. 1190 */ 1191 void 1192 lwp_relock(struct lwp *l, kmutex_t *new) 1193 { 1194 kmutex_t *old; 1195 1196 KASSERT(mutex_owned(l->l_mutex)); 1197 1198 old = l->l_mutex; 1199 if (old != new) { 1200 mutex_spin_enter(new); 1201 l->l_mutex = new; 1202 mutex_spin_exit(old); 1203 } 1204 } 1205 1206 int 1207 lwp_trylock(struct lwp *l) 1208 { 1209 kmutex_t *old; 1210 1211 for (;;) { 1212 if (!mutex_tryenter(old = l->l_mutex)) 1213 return 0; 1214 if (__predict_true(l->l_mutex == old)) 1215 return 1; 1216 mutex_spin_exit(old); 1217 } 1218 } 1219 1220 void 1221 lwp_unsleep(lwp_t *l, bool cleanup) 1222 { 1223 1224 KASSERT(mutex_owned(l->l_mutex)); 1225 (*l->l_syncobj->sobj_unsleep)(l, cleanup); 1226 } 1227 1228 1229 /* 1230 * Handle exceptions for mi_userret(). Called if a member of LW_USERRET is 1231 * set. 1232 */ 1233 void 1234 lwp_userret(struct lwp *l) 1235 { 1236 struct proc *p; 1237 void (*hook)(void); 1238 int sig; 1239 1240 KASSERT(l == curlwp); 1241 KASSERT(l->l_stat == LSONPROC); 1242 p = l->l_proc; 1243 1244 #ifndef __HAVE_FAST_SOFTINTS 1245 /* Run pending soft interrupts. */ 1246 if (l->l_cpu->ci_data.cpu_softints != 0) 1247 softint_overlay(); 1248 #endif 1249 1250 #ifdef KERN_SA 1251 /* Generate UNBLOCKED upcall if needed */ 1252 if (l->l_flag & LW_SA_BLOCKING) { 1253 sa_unblock_userret(l); 1254 /* NOTREACHED */ 1255 } 1256 #endif 1257 1258 /* 1259 * It should be safe to do this read unlocked on a multiprocessor 1260 * system.. 1261 * 1262 * LW_SA_UPCALL will be handled after the while() loop, so don't 1263 * consider it now. 1264 */ 1265 while ((l->l_flag & (LW_USERRET & ~(LW_SA_UPCALL))) != 0) { 1266 /* 1267 * Process pending signals first, unless the process 1268 * is dumping core or exiting, where we will instead 1269 * enter the LW_WSUSPEND case below. 1270 */ 1271 if ((l->l_flag & (LW_PENDSIG | LW_WCORE | LW_WEXIT)) == 1272 LW_PENDSIG) { 1273 mutex_enter(p->p_lock); 1274 while ((sig = issignal(l)) != 0) 1275 postsig(sig); 1276 mutex_exit(p->p_lock); 1277 } 1278 1279 /* 1280 * Core-dump or suspend pending. 1281 * 1282 * In case of core dump, suspend ourselves, so that the 1283 * kernel stack and therefore the userland registers saved 1284 * in the trapframe are around for coredump() to write them 1285 * out. We issue a wakeup on p->p_lwpcv so that sigexit() 1286 * will write the core file out once all other LWPs are 1287 * suspended. 1288 */ 1289 if ((l->l_flag & LW_WSUSPEND) != 0) { 1290 mutex_enter(p->p_lock); 1291 p->p_nrlwps--; 1292 cv_broadcast(&p->p_lwpcv); 1293 lwp_lock(l); 1294 l->l_stat = LSSUSPENDED; 1295 lwp_unlock(l); 1296 mutex_exit(p->p_lock); 1297 lwp_lock(l); 1298 mi_switch(l); 1299 } 1300 1301 /* Process is exiting. */ 1302 if ((l->l_flag & LW_WEXIT) != 0) { 1303 lwp_exit(l); 1304 KASSERT(0); 1305 /* NOTREACHED */ 1306 } 1307 1308 /* Call userret hook; used by Linux emulation. */ 1309 if ((l->l_flag & LW_WUSERRET) != 0) { 1310 lwp_lock(l); 1311 l->l_flag &= ~LW_WUSERRET; 1312 lwp_unlock(l); 1313 hook = p->p_userret; 1314 p->p_userret = NULL; 1315 (*hook)(); 1316 } 1317 } 1318 1319 #ifdef KERN_SA 1320 /* 1321 * Timer events are handled specially. We only try once to deliver 1322 * pending timer upcalls; if if fails, we can try again on the next 1323 * loop around. If we need to re-enter lwp_userret(), MD code will 1324 * bounce us back here through the trap path after we return. 1325 */ 1326 if (p->p_timerpend) 1327 timerupcall(l); 1328 if (l->l_flag & LW_SA_UPCALL) 1329 sa_upcall_userret(l); 1330 #endif /* KERN_SA */ 1331 } 1332 1333 /* 1334 * Force an LWP to enter the kernel, to take a trip through lwp_userret(). 1335 */ 1336 void 1337 lwp_need_userret(struct lwp *l) 1338 { 1339 KASSERT(lwp_locked(l, NULL)); 1340 1341 /* 1342 * Since the tests in lwp_userret() are done unlocked, make sure 1343 * that the condition will be seen before forcing the LWP to enter 1344 * kernel mode. 1345 */ 1346 membar_producer(); 1347 cpu_signotify(l); 1348 } 1349 1350 /* 1351 * Add one reference to an LWP. This will prevent the LWP from 1352 * exiting, thus keep the lwp structure and PCB around to inspect. 1353 */ 1354 void 1355 lwp_addref(struct lwp *l) 1356 { 1357 1358 KASSERT(mutex_owned(l->l_proc->p_lock)); 1359 KASSERT(l->l_stat != LSZOMB); 1360 KASSERT(l->l_refcnt != 0); 1361 1362 l->l_refcnt++; 1363 } 1364 1365 /* 1366 * Remove one reference to an LWP. If this is the last reference, 1367 * then we must finalize the LWP's death. 1368 */ 1369 void 1370 lwp_delref(struct lwp *l) 1371 { 1372 struct proc *p = l->l_proc; 1373 1374 mutex_enter(p->p_lock); 1375 KASSERT(l->l_stat != LSZOMB); 1376 KASSERT(l->l_refcnt > 0); 1377 if (--l->l_refcnt == 0) 1378 cv_broadcast(&p->p_lwpcv); 1379 mutex_exit(p->p_lock); 1380 } 1381 1382 /* 1383 * Drain all references to the current LWP. 1384 */ 1385 void 1386 lwp_drainrefs(struct lwp *l) 1387 { 1388 struct proc *p = l->l_proc; 1389 1390 KASSERT(mutex_owned(p->p_lock)); 1391 KASSERT(l->l_refcnt != 0); 1392 1393 l->l_refcnt--; 1394 while (l->l_refcnt != 0) 1395 cv_wait(&p->p_lwpcv, p->p_lock); 1396 } 1397 1398 /* 1399 * Return true if the specified LWP is 'alive'. Only p->p_lock need 1400 * be held. 1401 */ 1402 bool 1403 lwp_alive(lwp_t *l) 1404 { 1405 1406 KASSERT(mutex_owned(l->l_proc->p_lock)); 1407 1408 switch (l->l_stat) { 1409 case LSSLEEP: 1410 case LSRUN: 1411 case LSONPROC: 1412 case LSSTOP: 1413 case LSSUSPENDED: 1414 return true; 1415 default: 1416 return false; 1417 } 1418 } 1419 1420 /* 1421 * Return first live LWP in the process. 1422 */ 1423 lwp_t * 1424 lwp_find_first(proc_t *p) 1425 { 1426 lwp_t *l; 1427 1428 KASSERT(mutex_owned(p->p_lock)); 1429 1430 LIST_FOREACH(l, &p->p_lwps, l_sibling) { 1431 if (lwp_alive(l)) { 1432 return l; 1433 } 1434 } 1435 1436 return NULL; 1437 } 1438 1439 /* 1440 * lwp_specific_key_create -- 1441 * Create a key for subsystem lwp-specific data. 1442 */ 1443 int 1444 lwp_specific_key_create(specificdata_key_t *keyp, specificdata_dtor_t dtor) 1445 { 1446 1447 return (specificdata_key_create(lwp_specificdata_domain, keyp, dtor)); 1448 } 1449 1450 /* 1451 * lwp_specific_key_delete -- 1452 * Delete a key for subsystem lwp-specific data. 1453 */ 1454 void 1455 lwp_specific_key_delete(specificdata_key_t key) 1456 { 1457 1458 specificdata_key_delete(lwp_specificdata_domain, key); 1459 } 1460 1461 /* 1462 * lwp_initspecific -- 1463 * Initialize an LWP's specificdata container. 1464 */ 1465 void 1466 lwp_initspecific(struct lwp *l) 1467 { 1468 int error; 1469 1470 error = specificdata_init(lwp_specificdata_domain, &l->l_specdataref); 1471 KASSERT(error == 0); 1472 } 1473 1474 /* 1475 * lwp_finispecific -- 1476 * Finalize an LWP's specificdata container. 1477 */ 1478 void 1479 lwp_finispecific(struct lwp *l) 1480 { 1481 1482 specificdata_fini(lwp_specificdata_domain, &l->l_specdataref); 1483 } 1484 1485 /* 1486 * lwp_getspecific -- 1487 * Return lwp-specific data corresponding to the specified key. 1488 * 1489 * Note: LWP specific data is NOT INTERLOCKED. An LWP should access 1490 * only its OWN SPECIFIC DATA. If it is necessary to access another 1491 * LWP's specifc data, care must be taken to ensure that doing so 1492 * would not cause internal data structure inconsistency (i.e. caller 1493 * can guarantee that the target LWP is not inside an lwp_getspecific() 1494 * or lwp_setspecific() call). 1495 */ 1496 void * 1497 lwp_getspecific(specificdata_key_t key) 1498 { 1499 1500 return (specificdata_getspecific_unlocked(lwp_specificdata_domain, 1501 &curlwp->l_specdataref, key)); 1502 } 1503 1504 void * 1505 _lwp_getspecific_by_lwp(struct lwp *l, specificdata_key_t key) 1506 { 1507 1508 return (specificdata_getspecific_unlocked(lwp_specificdata_domain, 1509 &l->l_specdataref, key)); 1510 } 1511 1512 /* 1513 * lwp_setspecific -- 1514 * Set lwp-specific data corresponding to the specified key. 1515 */ 1516 void 1517 lwp_setspecific(specificdata_key_t key, void *data) 1518 { 1519 1520 specificdata_setspecific(lwp_specificdata_domain, 1521 &curlwp->l_specdataref, key, data); 1522 } 1523 1524 /* 1525 * Allocate a new lwpctl structure for a user LWP. 1526 */ 1527 int 1528 lwp_ctl_alloc(vaddr_t *uaddr) 1529 { 1530 lcproc_t *lp; 1531 u_int bit, i, offset; 1532 struct uvm_object *uao; 1533 int error; 1534 lcpage_t *lcp; 1535 proc_t *p; 1536 lwp_t *l; 1537 1538 l = curlwp; 1539 p = l->l_proc; 1540 1541 if (l->l_lcpage != NULL) { 1542 lcp = l->l_lcpage; 1543 *uaddr = lcp->lcp_uaddr + (vaddr_t)l->l_lwpctl - lcp->lcp_kaddr; 1544 return (EINVAL); 1545 } 1546 1547 /* First time around, allocate header structure for the process. */ 1548 if ((lp = p->p_lwpctl) == NULL) { 1549 lp = kmem_alloc(sizeof(*lp), KM_SLEEP); 1550 mutex_init(&lp->lp_lock, MUTEX_DEFAULT, IPL_NONE); 1551 lp->lp_uao = NULL; 1552 TAILQ_INIT(&lp->lp_pages); 1553 mutex_enter(p->p_lock); 1554 if (p->p_lwpctl == NULL) { 1555 p->p_lwpctl = lp; 1556 mutex_exit(p->p_lock); 1557 } else { 1558 mutex_exit(p->p_lock); 1559 mutex_destroy(&lp->lp_lock); 1560 kmem_free(lp, sizeof(*lp)); 1561 lp = p->p_lwpctl; 1562 } 1563 } 1564 1565 /* 1566 * Set up an anonymous memory region to hold the shared pages. 1567 * Map them into the process' address space. The user vmspace 1568 * gets the first reference on the UAO. 1569 */ 1570 mutex_enter(&lp->lp_lock); 1571 if (lp->lp_uao == NULL) { 1572 lp->lp_uao = uao_create(LWPCTL_UAREA_SZ, 0); 1573 lp->lp_cur = 0; 1574 lp->lp_max = LWPCTL_UAREA_SZ; 1575 lp->lp_uva = p->p_emul->e_vm_default_addr(p, 1576 (vaddr_t)p->p_vmspace->vm_daddr, LWPCTL_UAREA_SZ); 1577 error = uvm_map(&p->p_vmspace->vm_map, &lp->lp_uva, 1578 LWPCTL_UAREA_SZ, lp->lp_uao, 0, 0, UVM_MAPFLAG(UVM_PROT_RW, 1579 UVM_PROT_RW, UVM_INH_NONE, UVM_ADV_NORMAL, 0)); 1580 if (error != 0) { 1581 uao_detach(lp->lp_uao); 1582 lp->lp_uao = NULL; 1583 mutex_exit(&lp->lp_lock); 1584 return error; 1585 } 1586 } 1587 1588 /* Get a free block and allocate for this LWP. */ 1589 TAILQ_FOREACH(lcp, &lp->lp_pages, lcp_chain) { 1590 if (lcp->lcp_nfree != 0) 1591 break; 1592 } 1593 if (lcp == NULL) { 1594 /* Nothing available - try to set up a free page. */ 1595 if (lp->lp_cur == lp->lp_max) { 1596 mutex_exit(&lp->lp_lock); 1597 return ENOMEM; 1598 } 1599 lcp = kmem_alloc(LWPCTL_LCPAGE_SZ, KM_SLEEP); 1600 if (lcp == NULL) { 1601 mutex_exit(&lp->lp_lock); 1602 return ENOMEM; 1603 } 1604 /* 1605 * Wire the next page down in kernel space. Since this 1606 * is a new mapping, we must add a reference. 1607 */ 1608 uao = lp->lp_uao; 1609 (*uao->pgops->pgo_reference)(uao); 1610 lcp->lcp_kaddr = vm_map_min(kernel_map); 1611 error = uvm_map(kernel_map, &lcp->lcp_kaddr, PAGE_SIZE, 1612 uao, lp->lp_cur, PAGE_SIZE, 1613 UVM_MAPFLAG(UVM_PROT_RW, UVM_PROT_RW, 1614 UVM_INH_NONE, UVM_ADV_RANDOM, 0)); 1615 if (error != 0) { 1616 mutex_exit(&lp->lp_lock); 1617 kmem_free(lcp, LWPCTL_LCPAGE_SZ); 1618 (*uao->pgops->pgo_detach)(uao); 1619 return error; 1620 } 1621 error = uvm_map_pageable(kernel_map, lcp->lcp_kaddr, 1622 lcp->lcp_kaddr + PAGE_SIZE, FALSE, 0); 1623 if (error != 0) { 1624 mutex_exit(&lp->lp_lock); 1625 uvm_unmap(kernel_map, lcp->lcp_kaddr, 1626 lcp->lcp_kaddr + PAGE_SIZE); 1627 kmem_free(lcp, LWPCTL_LCPAGE_SZ); 1628 return error; 1629 } 1630 /* Prepare the page descriptor and link into the list. */ 1631 lcp->lcp_uaddr = lp->lp_uva + lp->lp_cur; 1632 lp->lp_cur += PAGE_SIZE; 1633 lcp->lcp_nfree = LWPCTL_PER_PAGE; 1634 lcp->lcp_rotor = 0; 1635 memset(lcp->lcp_bitmap, 0xff, LWPCTL_BITMAP_SZ); 1636 TAILQ_INSERT_HEAD(&lp->lp_pages, lcp, lcp_chain); 1637 } 1638 for (i = lcp->lcp_rotor; lcp->lcp_bitmap[i] == 0;) { 1639 if (++i >= LWPCTL_BITMAP_ENTRIES) 1640 i = 0; 1641 } 1642 bit = ffs(lcp->lcp_bitmap[i]) - 1; 1643 lcp->lcp_bitmap[i] ^= (1 << bit); 1644 lcp->lcp_rotor = i; 1645 lcp->lcp_nfree--; 1646 l->l_lcpage = lcp; 1647 offset = (i << 5) + bit; 1648 l->l_lwpctl = (lwpctl_t *)lcp->lcp_kaddr + offset; 1649 *uaddr = lcp->lcp_uaddr + offset * sizeof(lwpctl_t); 1650 mutex_exit(&lp->lp_lock); 1651 1652 KPREEMPT_DISABLE(l); 1653 l->l_lwpctl->lc_curcpu = (int)curcpu()->ci_data.cpu_index; 1654 KPREEMPT_ENABLE(l); 1655 1656 return 0; 1657 } 1658 1659 /* 1660 * Free an lwpctl structure back to the per-process list. 1661 */ 1662 void 1663 lwp_ctl_free(lwp_t *l) 1664 { 1665 lcproc_t *lp; 1666 lcpage_t *lcp; 1667 u_int map, offset; 1668 1669 lp = l->l_proc->p_lwpctl; 1670 KASSERT(lp != NULL); 1671 1672 lcp = l->l_lcpage; 1673 offset = (u_int)((lwpctl_t *)l->l_lwpctl - (lwpctl_t *)lcp->lcp_kaddr); 1674 KASSERT(offset < LWPCTL_PER_PAGE); 1675 1676 mutex_enter(&lp->lp_lock); 1677 lcp->lcp_nfree++; 1678 map = offset >> 5; 1679 lcp->lcp_bitmap[map] |= (1 << (offset & 31)); 1680 if (lcp->lcp_bitmap[lcp->lcp_rotor] == 0) 1681 lcp->lcp_rotor = map; 1682 if (TAILQ_FIRST(&lp->lp_pages)->lcp_nfree == 0) { 1683 TAILQ_REMOVE(&lp->lp_pages, lcp, lcp_chain); 1684 TAILQ_INSERT_HEAD(&lp->lp_pages, lcp, lcp_chain); 1685 } 1686 mutex_exit(&lp->lp_lock); 1687 } 1688 1689 /* 1690 * Process is exiting; tear down lwpctl state. This can only be safely 1691 * called by the last LWP in the process. 1692 */ 1693 void 1694 lwp_ctl_exit(void) 1695 { 1696 lcpage_t *lcp, *next; 1697 lcproc_t *lp; 1698 proc_t *p; 1699 lwp_t *l; 1700 1701 l = curlwp; 1702 l->l_lwpctl = NULL; 1703 l->l_lcpage = NULL; 1704 p = l->l_proc; 1705 lp = p->p_lwpctl; 1706 1707 KASSERT(lp != NULL); 1708 KASSERT(p->p_nlwps == 1); 1709 1710 for (lcp = TAILQ_FIRST(&lp->lp_pages); lcp != NULL; lcp = next) { 1711 next = TAILQ_NEXT(lcp, lcp_chain); 1712 uvm_unmap(kernel_map, lcp->lcp_kaddr, 1713 lcp->lcp_kaddr + PAGE_SIZE); 1714 kmem_free(lcp, LWPCTL_LCPAGE_SZ); 1715 } 1716 1717 if (lp->lp_uao != NULL) { 1718 uvm_unmap(&p->p_vmspace->vm_map, lp->lp_uva, 1719 lp->lp_uva + LWPCTL_UAREA_SZ); 1720 } 1721 1722 mutex_destroy(&lp->lp_lock); 1723 kmem_free(lp, sizeof(*lp)); 1724 p->p_lwpctl = NULL; 1725 } 1726 1727 /* 1728 * Return the current LWP's "preemption counter". Used to detect 1729 * preemption across operations that can tolerate preemption without 1730 * crashing, but which may generate incorrect results if preempted. 1731 */ 1732 uint64_t 1733 lwp_pctr(void) 1734 { 1735 1736 return curlwp->l_ncsw; 1737 } 1738 1739 #if defined(DDB) 1740 void 1741 lwp_whatis(uintptr_t addr, void (*pr)(const char *, ...)) 1742 { 1743 lwp_t *l; 1744 1745 LIST_FOREACH(l, &alllwp, l_list) { 1746 uintptr_t stack = (uintptr_t)KSTACK_LOWEST_ADDR(l); 1747 1748 if (addr < stack || stack + KSTACK_SIZE <= addr) { 1749 continue; 1750 } 1751 (*pr)("%p is %p+%zu, LWP %p's stack\n", 1752 (void *)addr, (void *)stack, 1753 (size_t)(addr - stack), l); 1754 } 1755 } 1756 #endif /* defined(DDB) */ 1757