1 /* $NetBSD: kern_lwp.c,v 1.164 2011/10/19 10:51:47 yamt Exp $ */ 2 3 /*- 4 * Copyright (c) 2001, 2006, 2007, 2008, 2009 The NetBSD Foundation, Inc. 5 * All rights reserved. 6 * 7 * This code is derived from software contributed to The NetBSD Foundation 8 * by Nathan J. Williams, and Andrew Doran. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS 20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 29 * POSSIBILITY OF SUCH DAMAGE. 30 */ 31 32 /* 33 * Overview 34 * 35 * Lightweight processes (LWPs) are the basic unit or thread of 36 * execution within the kernel. The core state of an LWP is described 37 * by "struct lwp", also known as lwp_t. 38 * 39 * Each LWP is contained within a process (described by "struct proc"), 40 * Every process contains at least one LWP, but may contain more. The 41 * process describes attributes shared among all of its LWPs such as a 42 * private address space, global execution state (stopped, active, 43 * zombie, ...), signal disposition and so on. On a multiprocessor 44 * machine, multiple LWPs be executing concurrently in the kernel. 45 * 46 * Execution states 47 * 48 * At any given time, an LWP has overall state that is described by 49 * lwp::l_stat. The states are broken into two sets below. The first 50 * set is guaranteed to represent the absolute, current state of the 51 * LWP: 52 * 53 * LSONPROC 54 * 55 * On processor: the LWP is executing on a CPU, either in the 56 * kernel or in user space. 57 * 58 * LSRUN 59 * 60 * Runnable: the LWP is parked on a run queue, and may soon be 61 * chosen to run by an idle processor, or by a processor that 62 * has been asked to preempt a currently runnning but lower 63 * priority LWP. 64 * 65 * LSIDL 66 * 67 * Idle: the LWP has been created but has not yet executed, 68 * or it has ceased executing a unit of work and is waiting 69 * to be started again. 70 * 71 * LSSUSPENDED: 72 * 73 * Suspended: the LWP has had its execution suspended by 74 * another LWP in the same process using the _lwp_suspend() 75 * system call. User-level LWPs also enter the suspended 76 * state when the system is shutting down. 77 * 78 * The second set represent a "statement of intent" on behalf of the 79 * LWP. The LWP may in fact be executing on a processor, may be 80 * sleeping or idle. It is expected to take the necessary action to 81 * stop executing or become "running" again within a short timeframe. 82 * The LP_RUNNING flag in lwp::l_pflag indicates that an LWP is running. 83 * Importantly, it indicates that its state is tied to a CPU. 84 * 85 * LSZOMB: 86 * 87 * Dead or dying: the LWP has released most of its resources 88 * and is about to switch away into oblivion, or has already 89 * switched away. When it switches away, its few remaining 90 * resources can be collected. 91 * 92 * LSSLEEP: 93 * 94 * Sleeping: the LWP has entered itself onto a sleep queue, and 95 * has switched away or will switch away shortly to allow other 96 * LWPs to run on the CPU. 97 * 98 * LSSTOP: 99 * 100 * Stopped: the LWP has been stopped as a result of a job 101 * control signal, or as a result of the ptrace() interface. 102 * 103 * Stopped LWPs may run briefly within the kernel to handle 104 * signals that they receive, but will not return to user space 105 * until their process' state is changed away from stopped. 106 * 107 * Single LWPs within a process can not be set stopped 108 * selectively: all actions that can stop or continue LWPs 109 * occur at the process level. 110 * 111 * State transitions 112 * 113 * Note that the LSSTOP state may only be set when returning to 114 * user space in userret(), or when sleeping interruptably. The 115 * LSSUSPENDED state may only be set in userret(). Before setting 116 * those states, we try to ensure that the LWPs will release all 117 * locks that they hold, and at a minimum try to ensure that the 118 * LWP can be set runnable again by a signal. 119 * 120 * LWPs may transition states in the following ways: 121 * 122 * RUN -------> ONPROC ONPROC -----> RUN 123 * > SLEEP 124 * > STOPPED 125 * > SUSPENDED 126 * > ZOMB 127 * > IDL (special cases) 128 * 129 * STOPPED ---> RUN SUSPENDED --> RUN 130 * > SLEEP 131 * 132 * SLEEP -----> ONPROC IDL --------> RUN 133 * > RUN > SUSPENDED 134 * > STOPPED > STOPPED 135 * > ONPROC (special cases) 136 * 137 * Some state transitions are only possible with kernel threads (eg 138 * ONPROC -> IDL) and happen under tightly controlled circumstances 139 * free of unwanted side effects. 140 * 141 * Migration 142 * 143 * Migration of threads from one CPU to another could be performed 144 * internally by the scheduler via sched_takecpu() or sched_catchlwp() 145 * functions. The universal lwp_migrate() function should be used for 146 * any other cases. Subsystems in the kernel must be aware that CPU 147 * of LWP may change, while it is not locked. 148 * 149 * Locking 150 * 151 * The majority of fields in 'struct lwp' are covered by a single, 152 * general spin lock pointed to by lwp::l_mutex. The locks covering 153 * each field are documented in sys/lwp.h. 154 * 155 * State transitions must be made with the LWP's general lock held, 156 * and may cause the LWP's lock pointer to change. Manipulation of 157 * the general lock is not performed directly, but through calls to 158 * lwp_lock(), lwp_unlock() and others. It should be noted that the 159 * adaptive locks are not allowed to be released while the LWP's lock 160 * is being held (unlike for other spin-locks). 161 * 162 * States and their associated locks: 163 * 164 * LSONPROC, LSZOMB: 165 * 166 * Always covered by spc_lwplock, which protects running LWPs. 167 * This is a per-CPU lock and matches lwp::l_cpu. 168 * 169 * LSIDL, LSRUN: 170 * 171 * Always covered by spc_mutex, which protects the run queues. 172 * This is a per-CPU lock and matches lwp::l_cpu. 173 * 174 * LSSLEEP: 175 * 176 * Covered by a lock associated with the sleep queue that the 177 * LWP resides on. Matches lwp::l_sleepq::sq_mutex. 178 * 179 * LSSTOP, LSSUSPENDED: 180 * 181 * If the LWP was previously sleeping (l_wchan != NULL), then 182 * l_mutex references the sleep queue lock. If the LWP was 183 * runnable or on the CPU when halted, or has been removed from 184 * the sleep queue since halted, then the lock is spc_lwplock. 185 * 186 * The lock order is as follows: 187 * 188 * spc::spc_lwplock -> 189 * sleeptab::st_mutex -> 190 * tschain_t::tc_mutex -> 191 * spc::spc_mutex 192 * 193 * Each process has an scheduler state lock (proc::p_lock), and a 194 * number of counters on LWPs and their states: p_nzlwps, p_nrlwps, and 195 * so on. When an LWP is to be entered into or removed from one of the 196 * following states, p_lock must be held and the process wide counters 197 * adjusted: 198 * 199 * LSIDL, LSZOMB, LSSTOP, LSSUSPENDED 200 * 201 * (But not always for kernel threads. There are some special cases 202 * as mentioned above. See kern_softint.c.) 203 * 204 * Note that an LWP is considered running or likely to run soon if in 205 * one of the following states. This affects the value of p_nrlwps: 206 * 207 * LSRUN, LSONPROC, LSSLEEP 208 * 209 * p_lock does not need to be held when transitioning among these 210 * three states, hence p_lock is rarely taken for state transitions. 211 */ 212 213 #include <sys/cdefs.h> 214 __KERNEL_RCSID(0, "$NetBSD: kern_lwp.c,v 1.164 2011/10/19 10:51:47 yamt Exp $"); 215 216 #include "opt_ddb.h" 217 #include "opt_lockdebug.h" 218 #include "opt_sa.h" 219 #include "opt_dtrace.h" 220 221 #define _LWP_API_PRIVATE 222 223 #include <sys/param.h> 224 #include <sys/systm.h> 225 #include <sys/cpu.h> 226 #include <sys/pool.h> 227 #include <sys/proc.h> 228 #include <sys/sa.h> 229 #include <sys/savar.h> 230 #include <sys/syscallargs.h> 231 #include <sys/syscall_stats.h> 232 #include <sys/kauth.h> 233 #include <sys/pserialize.h> 234 #include <sys/sleepq.h> 235 #include <sys/lockdebug.h> 236 #include <sys/kmem.h> 237 #include <sys/pset.h> 238 #include <sys/intr.h> 239 #include <sys/lwpctl.h> 240 #include <sys/atomic.h> 241 #include <sys/filedesc.h> 242 #include <sys/dtrace_bsd.h> 243 #include <sys/sdt.h> 244 #include <sys/xcall.h> 245 246 #include <uvm/uvm_extern.h> 247 #include <uvm/uvm_object.h> 248 249 static pool_cache_t lwp_cache __read_mostly; 250 struct lwplist alllwp __cacheline_aligned; 251 252 static void lwp_dtor(void *, void *); 253 254 /* DTrace proc provider probes */ 255 SDT_PROBE_DEFINE(proc,,,lwp_create, 256 "struct lwp *", NULL, 257 NULL, NULL, NULL, NULL, 258 NULL, NULL, NULL, NULL); 259 SDT_PROBE_DEFINE(proc,,,lwp_start, 260 "struct lwp *", NULL, 261 NULL, NULL, NULL, NULL, 262 NULL, NULL, NULL, NULL); 263 SDT_PROBE_DEFINE(proc,,,lwp_exit, 264 "struct lwp *", NULL, 265 NULL, NULL, NULL, NULL, 266 NULL, NULL, NULL, NULL); 267 268 struct turnstile turnstile0; 269 struct lwp lwp0 __aligned(MIN_LWP_ALIGNMENT) = { 270 #ifdef LWP0_CPU_INFO 271 .l_cpu = LWP0_CPU_INFO, 272 #endif 273 #ifdef LWP0_MD_INITIALIZER 274 .l_md = LWP0_MD_INITIALIZER, 275 #endif 276 .l_proc = &proc0, 277 .l_lid = 1, 278 .l_flag = LW_SYSTEM, 279 .l_stat = LSONPROC, 280 .l_ts = &turnstile0, 281 .l_syncobj = &sched_syncobj, 282 .l_refcnt = 1, 283 .l_priority = PRI_USER + NPRI_USER - 1, 284 .l_inheritedprio = -1, 285 .l_class = SCHED_OTHER, 286 .l_psid = PS_NONE, 287 .l_pi_lenders = SLIST_HEAD_INITIALIZER(&lwp0.l_pi_lenders), 288 .l_name = __UNCONST("swapper"), 289 .l_fd = &filedesc0, 290 }; 291 292 void 293 lwpinit(void) 294 { 295 296 LIST_INIT(&alllwp); 297 lwpinit_specificdata(); 298 lwp_sys_init(); 299 lwp_cache = pool_cache_init(sizeof(lwp_t), MIN_LWP_ALIGNMENT, 0, 0, 300 "lwppl", NULL, IPL_NONE, NULL, lwp_dtor, NULL); 301 } 302 303 void 304 lwp0_init(void) 305 { 306 struct lwp *l = &lwp0; 307 308 KASSERT((void *)uvm_lwp_getuarea(l) != NULL); 309 KASSERT(l->l_lid == proc0.p_nlwpid); 310 311 LIST_INSERT_HEAD(&alllwp, l, l_list); 312 313 callout_init(&l->l_timeout_ch, CALLOUT_MPSAFE); 314 callout_setfunc(&l->l_timeout_ch, sleepq_timeout, l); 315 cv_init(&l->l_sigcv, "sigwait"); 316 317 kauth_cred_hold(proc0.p_cred); 318 l->l_cred = proc0.p_cred; 319 320 kdtrace_thread_ctor(NULL, l); 321 lwp_initspecific(l); 322 323 SYSCALL_TIME_LWP_INIT(l); 324 } 325 326 static void 327 lwp_dtor(void *arg, void *obj) 328 { 329 lwp_t *l = obj; 330 uint64_t where; 331 (void)l; 332 333 /* 334 * Provide a barrier to ensure that all mutex_oncpu() and rw_oncpu() 335 * calls will exit before memory of LWP is returned to the pool, where 336 * KVA of LWP structure might be freed and re-used for other purposes. 337 * Kernel preemption is disabled around mutex_oncpu() and rw_oncpu() 338 * callers, therefore cross-call to all CPUs will do the job. Also, 339 * the value of l->l_cpu must be still valid at this point. 340 */ 341 KASSERT(l->l_cpu != NULL); 342 where = xc_broadcast(0, (xcfunc_t)nullop, NULL, NULL); 343 xc_wait(where); 344 } 345 346 /* 347 * Set an suspended. 348 * 349 * Must be called with p_lock held, and the LWP locked. Will unlock the 350 * LWP before return. 351 */ 352 int 353 lwp_suspend(struct lwp *curl, struct lwp *t) 354 { 355 int error; 356 357 KASSERT(mutex_owned(t->l_proc->p_lock)); 358 KASSERT(lwp_locked(t, NULL)); 359 360 KASSERT(curl != t || curl->l_stat == LSONPROC); 361 362 /* 363 * If the current LWP has been told to exit, we must not suspend anyone 364 * else or deadlock could occur. We won't return to userspace. 365 */ 366 if ((curl->l_flag & (LW_WEXIT | LW_WCORE)) != 0) { 367 lwp_unlock(t); 368 return (EDEADLK); 369 } 370 371 error = 0; 372 373 switch (t->l_stat) { 374 case LSRUN: 375 case LSONPROC: 376 t->l_flag |= LW_WSUSPEND; 377 lwp_need_userret(t); 378 lwp_unlock(t); 379 break; 380 381 case LSSLEEP: 382 t->l_flag |= LW_WSUSPEND; 383 384 /* 385 * Kick the LWP and try to get it to the kernel boundary 386 * so that it will release any locks that it holds. 387 * setrunnable() will release the lock. 388 */ 389 if ((t->l_flag & LW_SINTR) != 0) 390 setrunnable(t); 391 else 392 lwp_unlock(t); 393 break; 394 395 case LSSUSPENDED: 396 lwp_unlock(t); 397 break; 398 399 case LSSTOP: 400 t->l_flag |= LW_WSUSPEND; 401 setrunnable(t); 402 break; 403 404 case LSIDL: 405 case LSZOMB: 406 error = EINTR; /* It's what Solaris does..... */ 407 lwp_unlock(t); 408 break; 409 } 410 411 return (error); 412 } 413 414 /* 415 * Restart a suspended LWP. 416 * 417 * Must be called with p_lock held, and the LWP locked. Will unlock the 418 * LWP before return. 419 */ 420 void 421 lwp_continue(struct lwp *l) 422 { 423 424 KASSERT(mutex_owned(l->l_proc->p_lock)); 425 KASSERT(lwp_locked(l, NULL)); 426 427 /* If rebooting or not suspended, then just bail out. */ 428 if ((l->l_flag & LW_WREBOOT) != 0) { 429 lwp_unlock(l); 430 return; 431 } 432 433 l->l_flag &= ~LW_WSUSPEND; 434 435 if (l->l_stat != LSSUSPENDED) { 436 lwp_unlock(l); 437 return; 438 } 439 440 /* setrunnable() will release the lock. */ 441 setrunnable(l); 442 } 443 444 /* 445 * Restart a stopped LWP. 446 * 447 * Must be called with p_lock held, and the LWP NOT locked. Will unlock the 448 * LWP before return. 449 */ 450 void 451 lwp_unstop(struct lwp *l) 452 { 453 struct proc *p = l->l_proc; 454 455 KASSERT(mutex_owned(proc_lock)); 456 KASSERT(mutex_owned(p->p_lock)); 457 458 lwp_lock(l); 459 460 /* If not stopped, then just bail out. */ 461 if (l->l_stat != LSSTOP) { 462 lwp_unlock(l); 463 return; 464 } 465 466 p->p_stat = SACTIVE; 467 p->p_sflag &= ~PS_STOPPING; 468 469 if (!p->p_waited) 470 p->p_pptr->p_nstopchild--; 471 472 if (l->l_wchan == NULL) { 473 /* setrunnable() will release the lock. */ 474 setrunnable(l); 475 } else if (p->p_xstat && (l->l_flag & LW_SINTR) != 0) { 476 /* setrunnable() so we can receive the signal */ 477 setrunnable(l); 478 } else { 479 l->l_stat = LSSLEEP; 480 p->p_nrlwps++; 481 lwp_unlock(l); 482 } 483 } 484 485 /* 486 * Wait for an LWP within the current process to exit. If 'lid' is 487 * non-zero, we are waiting for a specific LWP. 488 * 489 * Must be called with p->p_lock held. 490 */ 491 int 492 lwp_wait1(struct lwp *l, lwpid_t lid, lwpid_t *departed, int flags) 493 { 494 struct proc *p = l->l_proc; 495 struct lwp *l2; 496 int nfound, error; 497 lwpid_t curlid; 498 bool exiting; 499 500 KASSERT(mutex_owned(p->p_lock)); 501 502 p->p_nlwpwait++; 503 l->l_waitingfor = lid; 504 curlid = l->l_lid; 505 exiting = ((flags & LWPWAIT_EXITCONTROL) != 0); 506 507 for (;;) { 508 /* 509 * Avoid a race between exit1() and sigexit(): if the 510 * process is dumping core, then we need to bail out: call 511 * into lwp_userret() where we will be suspended until the 512 * deed is done. 513 */ 514 if ((p->p_sflag & PS_WCORE) != 0) { 515 mutex_exit(p->p_lock); 516 lwp_userret(l); 517 #ifdef DIAGNOSTIC 518 panic("lwp_wait1"); 519 #endif 520 /* NOTREACHED */ 521 } 522 523 /* 524 * First off, drain any detached LWP that is waiting to be 525 * reaped. 526 */ 527 while ((l2 = p->p_zomblwp) != NULL) { 528 p->p_zomblwp = NULL; 529 lwp_free(l2, false, false);/* releases proc mutex */ 530 mutex_enter(p->p_lock); 531 } 532 533 /* 534 * Now look for an LWP to collect. If the whole process is 535 * exiting, count detached LWPs as eligible to be collected, 536 * but don't drain them here. 537 */ 538 nfound = 0; 539 error = 0; 540 LIST_FOREACH(l2, &p->p_lwps, l_sibling) { 541 /* 542 * If a specific wait and the target is waiting on 543 * us, then avoid deadlock. This also traps LWPs 544 * that try to wait on themselves. 545 * 546 * Note that this does not handle more complicated 547 * cycles, like: t1 -> t2 -> t3 -> t1. The process 548 * can still be killed so it is not a major problem. 549 */ 550 if (l2->l_lid == lid && l2->l_waitingfor == curlid) { 551 error = EDEADLK; 552 break; 553 } 554 if (l2 == l) 555 continue; 556 if ((l2->l_prflag & LPR_DETACHED) != 0) { 557 nfound += exiting; 558 continue; 559 } 560 if (lid != 0) { 561 if (l2->l_lid != lid) 562 continue; 563 /* 564 * Mark this LWP as the first waiter, if there 565 * is no other. 566 */ 567 if (l2->l_waiter == 0) 568 l2->l_waiter = curlid; 569 } else if (l2->l_waiter != 0) { 570 /* 571 * It already has a waiter - so don't 572 * collect it. If the waiter doesn't 573 * grab it we'll get another chance 574 * later. 575 */ 576 nfound++; 577 continue; 578 } 579 nfound++; 580 581 /* No need to lock the LWP in order to see LSZOMB. */ 582 if (l2->l_stat != LSZOMB) 583 continue; 584 585 /* 586 * We're no longer waiting. Reset the "first waiter" 587 * pointer on the target, in case it was us. 588 */ 589 l->l_waitingfor = 0; 590 l2->l_waiter = 0; 591 p->p_nlwpwait--; 592 if (departed) 593 *departed = l2->l_lid; 594 sched_lwp_collect(l2); 595 596 /* lwp_free() releases the proc lock. */ 597 lwp_free(l2, false, false); 598 mutex_enter(p->p_lock); 599 return 0; 600 } 601 602 if (error != 0) 603 break; 604 if (nfound == 0) { 605 error = ESRCH; 606 break; 607 } 608 609 /* 610 * The kernel is careful to ensure that it can not deadlock 611 * when exiting - just keep waiting. 612 */ 613 if (exiting) { 614 KASSERT(p->p_nlwps > 1); 615 cv_wait(&p->p_lwpcv, p->p_lock); 616 continue; 617 } 618 619 /* 620 * If all other LWPs are waiting for exits or suspends 621 * and the supply of zombies and potential zombies is 622 * exhausted, then we are about to deadlock. 623 * 624 * If the process is exiting (and this LWP is not the one 625 * that is coordinating the exit) then bail out now. 626 */ 627 if ((p->p_sflag & PS_WEXIT) != 0 || 628 p->p_nrlwps + p->p_nzlwps - p->p_ndlwps <= p->p_nlwpwait) { 629 error = EDEADLK; 630 break; 631 } 632 633 /* 634 * Sit around and wait for something to happen. We'll be 635 * awoken if any of the conditions examined change: if an 636 * LWP exits, is collected, or is detached. 637 */ 638 if ((error = cv_wait_sig(&p->p_lwpcv, p->p_lock)) != 0) 639 break; 640 } 641 642 /* 643 * We didn't find any LWPs to collect, we may have received a 644 * signal, or some other condition has caused us to bail out. 645 * 646 * If waiting on a specific LWP, clear the waiters marker: some 647 * other LWP may want it. Then, kick all the remaining waiters 648 * so that they can re-check for zombies and for deadlock. 649 */ 650 if (lid != 0) { 651 LIST_FOREACH(l2, &p->p_lwps, l_sibling) { 652 if (l2->l_lid == lid) { 653 if (l2->l_waiter == curlid) 654 l2->l_waiter = 0; 655 break; 656 } 657 } 658 } 659 p->p_nlwpwait--; 660 l->l_waitingfor = 0; 661 cv_broadcast(&p->p_lwpcv); 662 663 return error; 664 } 665 666 /* 667 * Create a new LWP within process 'p2', using LWP 'l1' as a template. 668 * The new LWP is created in state LSIDL and must be set running, 669 * suspended, or stopped by the caller. 670 */ 671 int 672 lwp_create(lwp_t *l1, proc_t *p2, vaddr_t uaddr, int flags, 673 void *stack, size_t stacksize, void (*func)(void *), void *arg, 674 lwp_t **rnewlwpp, int sclass) 675 { 676 struct lwp *l2, *isfree; 677 turnstile_t *ts; 678 lwpid_t lid; 679 680 KASSERT(l1 == curlwp || l1->l_proc == &proc0); 681 682 /* 683 * First off, reap any detached LWP waiting to be collected. 684 * We can re-use its LWP structure and turnstile. 685 */ 686 isfree = NULL; 687 if (p2->p_zomblwp != NULL) { 688 mutex_enter(p2->p_lock); 689 if ((isfree = p2->p_zomblwp) != NULL) { 690 p2->p_zomblwp = NULL; 691 lwp_free(isfree, true, false);/* releases proc mutex */ 692 } else 693 mutex_exit(p2->p_lock); 694 } 695 if (isfree == NULL) { 696 l2 = pool_cache_get(lwp_cache, PR_WAITOK); 697 memset(l2, 0, sizeof(*l2)); 698 l2->l_ts = pool_cache_get(turnstile_cache, PR_WAITOK); 699 SLIST_INIT(&l2->l_pi_lenders); 700 } else { 701 l2 = isfree; 702 ts = l2->l_ts; 703 KASSERT(l2->l_inheritedprio == -1); 704 KASSERT(SLIST_EMPTY(&l2->l_pi_lenders)); 705 memset(l2, 0, sizeof(*l2)); 706 l2->l_ts = ts; 707 } 708 709 l2->l_stat = LSIDL; 710 l2->l_proc = p2; 711 l2->l_refcnt = 1; 712 l2->l_class = sclass; 713 714 /* 715 * If vfork(), we want the LWP to run fast and on the same CPU 716 * as its parent, so that it can reuse the VM context and cache 717 * footprint on the local CPU. 718 */ 719 l2->l_kpriority = ((flags & LWP_VFORK) ? true : false); 720 l2->l_kpribase = PRI_KERNEL; 721 l2->l_priority = l1->l_priority; 722 l2->l_inheritedprio = -1; 723 l2->l_flag = 0; 724 l2->l_pflag = LP_MPSAFE; 725 TAILQ_INIT(&l2->l_ld_locks); 726 727 /* 728 * For vfork, borrow parent's lwpctl context if it exists. 729 * This also causes us to return via lwp_userret. 730 */ 731 if (flags & LWP_VFORK && l1->l_lwpctl) { 732 l2->l_lwpctl = l1->l_lwpctl; 733 l2->l_flag |= LW_LWPCTL; 734 } 735 736 /* 737 * If not the first LWP in the process, grab a reference to the 738 * descriptor table. 739 */ 740 l2->l_fd = p2->p_fd; 741 if (p2->p_nlwps != 0) { 742 KASSERT(l1->l_proc == p2); 743 fd_hold(l2); 744 } else { 745 KASSERT(l1->l_proc != p2); 746 } 747 748 if (p2->p_flag & PK_SYSTEM) { 749 /* Mark it as a system LWP. */ 750 l2->l_flag |= LW_SYSTEM; 751 } 752 753 kpreempt_disable(); 754 l2->l_mutex = l1->l_cpu->ci_schedstate.spc_mutex; 755 l2->l_cpu = l1->l_cpu; 756 kpreempt_enable(); 757 758 kdtrace_thread_ctor(NULL, l2); 759 lwp_initspecific(l2); 760 sched_lwp_fork(l1, l2); 761 lwp_update_creds(l2); 762 callout_init(&l2->l_timeout_ch, CALLOUT_MPSAFE); 763 callout_setfunc(&l2->l_timeout_ch, sleepq_timeout, l2); 764 cv_init(&l2->l_sigcv, "sigwait"); 765 l2->l_syncobj = &sched_syncobj; 766 767 if (rnewlwpp != NULL) 768 *rnewlwpp = l2; 769 770 /* 771 * PCU state needs to be saved before calling uvm_lwp_fork() so that 772 * the MD cpu_lwp_fork() can copy the saved state to the new LWP. 773 */ 774 pcu_save_all(l1); 775 776 uvm_lwp_setuarea(l2, uaddr); 777 uvm_lwp_fork(l1, l2, stack, stacksize, func, 778 (arg != NULL) ? arg : l2); 779 780 if ((flags & LWP_PIDLID) != 0) { 781 lid = proc_alloc_pid(p2); 782 l2->l_pflag |= LP_PIDLID; 783 } else { 784 lid = 0; 785 } 786 787 mutex_enter(p2->p_lock); 788 789 if ((flags & LWP_DETACHED) != 0) { 790 l2->l_prflag = LPR_DETACHED; 791 p2->p_ndlwps++; 792 } else 793 l2->l_prflag = 0; 794 795 l2->l_sigmask = l1->l_sigmask; 796 CIRCLEQ_INIT(&l2->l_sigpend.sp_info); 797 sigemptyset(&l2->l_sigpend.sp_set); 798 799 if (lid == 0) { 800 p2->p_nlwpid++; 801 if (p2->p_nlwpid == 0) 802 p2->p_nlwpid++; 803 lid = p2->p_nlwpid; 804 } 805 l2->l_lid = lid; 806 LIST_INSERT_HEAD(&p2->p_lwps, l2, l_sibling); 807 p2->p_nlwps++; 808 p2->p_nrlwps++; 809 810 KASSERT(l2->l_affinity == NULL); 811 812 if ((p2->p_flag & PK_SYSTEM) == 0) { 813 /* Inherit the affinity mask. */ 814 if (l1->l_affinity) { 815 /* 816 * Note that we hold the state lock while inheriting 817 * the affinity to avoid race with sched_setaffinity(). 818 */ 819 lwp_lock(l1); 820 if (l1->l_affinity) { 821 kcpuset_use(l1->l_affinity); 822 l2->l_affinity = l1->l_affinity; 823 } 824 lwp_unlock(l1); 825 } 826 lwp_lock(l2); 827 /* Inherit a processor-set */ 828 l2->l_psid = l1->l_psid; 829 /* Look for a CPU to start */ 830 l2->l_cpu = sched_takecpu(l2); 831 lwp_unlock_to(l2, l2->l_cpu->ci_schedstate.spc_mutex); 832 } 833 mutex_exit(p2->p_lock); 834 835 SDT_PROBE(proc,,,lwp_create, l2, 0,0,0,0); 836 837 mutex_enter(proc_lock); 838 LIST_INSERT_HEAD(&alllwp, l2, l_list); 839 mutex_exit(proc_lock); 840 841 SYSCALL_TIME_LWP_INIT(l2); 842 843 if (p2->p_emul->e_lwp_fork) 844 (*p2->p_emul->e_lwp_fork)(l1, l2); 845 846 return (0); 847 } 848 849 /* 850 * Called by MD code when a new LWP begins execution. Must be called 851 * with the previous LWP locked (so at splsched), or if there is no 852 * previous LWP, at splsched. 853 */ 854 void 855 lwp_startup(struct lwp *prev, struct lwp *new) 856 { 857 858 SDT_PROBE(proc,,,lwp_start, new, 0,0,0,0); 859 860 KASSERT(kpreempt_disabled()); 861 if (prev != NULL) { 862 /* 863 * Normalize the count of the spin-mutexes, it was 864 * increased in mi_switch(). Unmark the state of 865 * context switch - it is finished for previous LWP. 866 */ 867 curcpu()->ci_mtx_count++; 868 membar_exit(); 869 prev->l_ctxswtch = 0; 870 } 871 KPREEMPT_DISABLE(new); 872 spl0(); 873 pmap_activate(new); 874 875 /* Note trip through cpu_switchto(). */ 876 pserialize_switchpoint(); 877 878 LOCKDEBUG_BARRIER(NULL, 0); 879 KPREEMPT_ENABLE(new); 880 if ((new->l_pflag & LP_MPSAFE) == 0) { 881 KERNEL_LOCK(1, new); 882 } 883 } 884 885 /* 886 * Exit an LWP. 887 */ 888 void 889 lwp_exit(struct lwp *l) 890 { 891 struct proc *p = l->l_proc; 892 struct lwp *l2; 893 bool current; 894 895 current = (l == curlwp); 896 897 KASSERT(current || (l->l_stat == LSIDL && l->l_target_cpu == NULL)); 898 KASSERT(p == curproc); 899 900 SDT_PROBE(proc,,,lwp_exit, l, 0,0,0,0); 901 902 /* 903 * Verify that we hold no locks other than the kernel lock. 904 */ 905 LOCKDEBUG_BARRIER(&kernel_lock, 0); 906 907 /* 908 * If we are the last live LWP in a process, we need to exit the 909 * entire process. We do so with an exit status of zero, because 910 * it's a "controlled" exit, and because that's what Solaris does. 911 * 912 * We are not quite a zombie yet, but for accounting purposes we 913 * must increment the count of zombies here. 914 * 915 * Note: the last LWP's specificdata will be deleted here. 916 */ 917 mutex_enter(p->p_lock); 918 if (p->p_nlwps - p->p_nzlwps == 1) { 919 KASSERT(current == true); 920 /* XXXSMP kernel_lock not held */ 921 exit1(l, 0); 922 /* NOTREACHED */ 923 } 924 p->p_nzlwps++; 925 mutex_exit(p->p_lock); 926 927 if (p->p_emul->e_lwp_exit) 928 (*p->p_emul->e_lwp_exit)(l); 929 930 /* Drop filedesc reference. */ 931 fd_free(); 932 933 /* Delete the specificdata while it's still safe to sleep. */ 934 lwp_finispecific(l); 935 936 /* 937 * Release our cached credentials. 938 */ 939 kauth_cred_free(l->l_cred); 940 callout_destroy(&l->l_timeout_ch); 941 942 /* 943 * Remove the LWP from the global list. 944 * Free its LID from the PID namespace if needed. 945 */ 946 mutex_enter(proc_lock); 947 LIST_REMOVE(l, l_list); 948 if ((l->l_pflag & LP_PIDLID) != 0 && l->l_lid != p->p_pid) { 949 proc_free_pid(l->l_lid); 950 } 951 mutex_exit(proc_lock); 952 953 /* 954 * Get rid of all references to the LWP that others (e.g. procfs) 955 * may have, and mark the LWP as a zombie. If the LWP is detached, 956 * mark it waiting for collection in the proc structure. Note that 957 * before we can do that, we need to free any other dead, deatched 958 * LWP waiting to meet its maker. 959 */ 960 mutex_enter(p->p_lock); 961 lwp_drainrefs(l); 962 963 if ((l->l_prflag & LPR_DETACHED) != 0) { 964 while ((l2 = p->p_zomblwp) != NULL) { 965 p->p_zomblwp = NULL; 966 lwp_free(l2, false, false);/* releases proc mutex */ 967 mutex_enter(p->p_lock); 968 l->l_refcnt++; 969 lwp_drainrefs(l); 970 } 971 p->p_zomblwp = l; 972 } 973 974 /* 975 * If we find a pending signal for the process and we have been 976 * asked to check for signals, then we lose: arrange to have 977 * all other LWPs in the process check for signals. 978 */ 979 if ((l->l_flag & LW_PENDSIG) != 0 && 980 firstsig(&p->p_sigpend.sp_set) != 0) { 981 LIST_FOREACH(l2, &p->p_lwps, l_sibling) { 982 lwp_lock(l2); 983 l2->l_flag |= LW_PENDSIG; 984 lwp_unlock(l2); 985 } 986 } 987 988 /* 989 * Release any PCU resources before becoming a zombie. 990 */ 991 pcu_discard_all(l); 992 993 lwp_lock(l); 994 l->l_stat = LSZOMB; 995 if (l->l_name != NULL) { 996 strcpy(l->l_name, "(zombie)"); 997 } 998 lwp_unlock(l); 999 p->p_nrlwps--; 1000 cv_broadcast(&p->p_lwpcv); 1001 if (l->l_lwpctl != NULL) 1002 l->l_lwpctl->lc_curcpu = LWPCTL_CPU_EXITED; 1003 mutex_exit(p->p_lock); 1004 1005 /* 1006 * We can no longer block. At this point, lwp_free() may already 1007 * be gunning for us. On a multi-CPU system, we may be off p_lwps. 1008 * 1009 * Free MD LWP resources. 1010 */ 1011 cpu_lwp_free(l, 0); 1012 1013 if (current) { 1014 pmap_deactivate(l); 1015 1016 /* 1017 * Release the kernel lock, and switch away into 1018 * oblivion. 1019 */ 1020 #ifdef notyet 1021 /* XXXSMP hold in lwp_userret() */ 1022 KERNEL_UNLOCK_LAST(l); 1023 #else 1024 KERNEL_UNLOCK_ALL(l, NULL); 1025 #endif 1026 lwp_exit_switchaway(l); 1027 } 1028 } 1029 1030 /* 1031 * Free a dead LWP's remaining resources. 1032 * 1033 * XXXLWP limits. 1034 */ 1035 void 1036 lwp_free(struct lwp *l, bool recycle, bool last) 1037 { 1038 struct proc *p = l->l_proc; 1039 struct rusage *ru; 1040 ksiginfoq_t kq; 1041 1042 KASSERT(l != curlwp); 1043 KASSERT(last || mutex_owned(p->p_lock)); 1044 1045 /* 1046 * If this was not the last LWP in the process, then adjust 1047 * counters and unlock. 1048 */ 1049 if (!last) { 1050 /* 1051 * Add the LWP's run time to the process' base value. 1052 * This needs to co-incide with coming off p_lwps. 1053 */ 1054 bintime_add(&p->p_rtime, &l->l_rtime); 1055 p->p_pctcpu += l->l_pctcpu; 1056 ru = &p->p_stats->p_ru; 1057 ruadd(ru, &l->l_ru); 1058 ru->ru_nvcsw += (l->l_ncsw - l->l_nivcsw); 1059 ru->ru_nivcsw += l->l_nivcsw; 1060 LIST_REMOVE(l, l_sibling); 1061 p->p_nlwps--; 1062 p->p_nzlwps--; 1063 if ((l->l_prflag & LPR_DETACHED) != 0) 1064 p->p_ndlwps--; 1065 1066 /* 1067 * Have any LWPs sleeping in lwp_wait() recheck for 1068 * deadlock. 1069 */ 1070 cv_broadcast(&p->p_lwpcv); 1071 mutex_exit(p->p_lock); 1072 } 1073 1074 #ifdef MULTIPROCESSOR 1075 /* 1076 * In the unlikely event that the LWP is still on the CPU, 1077 * then spin until it has switched away. We need to release 1078 * all locks to avoid deadlock against interrupt handlers on 1079 * the target CPU. 1080 */ 1081 if ((l->l_pflag & LP_RUNNING) != 0 || l->l_cpu->ci_curlwp == l) { 1082 int count; 1083 (void)count; /* XXXgcc */ 1084 KERNEL_UNLOCK_ALL(curlwp, &count); 1085 while ((l->l_pflag & LP_RUNNING) != 0 || 1086 l->l_cpu->ci_curlwp == l) 1087 SPINLOCK_BACKOFF_HOOK; 1088 KERNEL_LOCK(count, curlwp); 1089 } 1090 #endif 1091 1092 /* 1093 * Destroy the LWP's remaining signal information. 1094 */ 1095 ksiginfo_queue_init(&kq); 1096 sigclear(&l->l_sigpend, NULL, &kq); 1097 ksiginfo_queue_drain(&kq); 1098 cv_destroy(&l->l_sigcv); 1099 1100 /* 1101 * Free lwpctl structure and affinity. 1102 */ 1103 if (l->l_lwpctl) { 1104 lwp_ctl_free(l); 1105 } 1106 if (l->l_affinity) { 1107 kcpuset_unuse(l->l_affinity, NULL); 1108 l->l_affinity = NULL; 1109 } 1110 1111 /* 1112 * Free the LWP's turnstile and the LWP structure itself unless the 1113 * caller wants to recycle them. Also, free the scheduler specific 1114 * data. 1115 * 1116 * We can't return turnstile0 to the pool (it didn't come from it), 1117 * so if it comes up just drop it quietly and move on. 1118 * 1119 * We don't recycle the VM resources at this time. 1120 */ 1121 1122 if (!recycle && l->l_ts != &turnstile0) 1123 pool_cache_put(turnstile_cache, l->l_ts); 1124 if (l->l_name != NULL) 1125 kmem_free(l->l_name, MAXCOMLEN); 1126 1127 cpu_lwp_free2(l); 1128 uvm_lwp_exit(l); 1129 1130 KASSERT(SLIST_EMPTY(&l->l_pi_lenders)); 1131 KASSERT(l->l_inheritedprio == -1); 1132 KASSERT(l->l_blcnt == 0); 1133 kdtrace_thread_dtor(NULL, l); 1134 if (!recycle) 1135 pool_cache_put(lwp_cache, l); 1136 } 1137 1138 /* 1139 * Migrate the LWP to the another CPU. Unlocks the LWP. 1140 */ 1141 void 1142 lwp_migrate(lwp_t *l, struct cpu_info *tci) 1143 { 1144 struct schedstate_percpu *tspc; 1145 int lstat = l->l_stat; 1146 1147 KASSERT(lwp_locked(l, NULL)); 1148 KASSERT(tci != NULL); 1149 1150 /* If LWP is still on the CPU, it must be handled like LSONPROC */ 1151 if ((l->l_pflag & LP_RUNNING) != 0) { 1152 lstat = LSONPROC; 1153 } 1154 1155 /* 1156 * The destination CPU could be changed while previous migration 1157 * was not finished. 1158 */ 1159 if (l->l_target_cpu != NULL) { 1160 l->l_target_cpu = tci; 1161 lwp_unlock(l); 1162 return; 1163 } 1164 1165 /* Nothing to do if trying to migrate to the same CPU */ 1166 if (l->l_cpu == tci) { 1167 lwp_unlock(l); 1168 return; 1169 } 1170 1171 KASSERT(l->l_target_cpu == NULL); 1172 tspc = &tci->ci_schedstate; 1173 switch (lstat) { 1174 case LSRUN: 1175 l->l_target_cpu = tci; 1176 break; 1177 case LSIDL: 1178 l->l_cpu = tci; 1179 lwp_unlock_to(l, tspc->spc_mutex); 1180 return; 1181 case LSSLEEP: 1182 l->l_cpu = tci; 1183 break; 1184 case LSSTOP: 1185 case LSSUSPENDED: 1186 l->l_cpu = tci; 1187 if (l->l_wchan == NULL) { 1188 lwp_unlock_to(l, tspc->spc_lwplock); 1189 return; 1190 } 1191 break; 1192 case LSONPROC: 1193 l->l_target_cpu = tci; 1194 spc_lock(l->l_cpu); 1195 cpu_need_resched(l->l_cpu, RESCHED_KPREEMPT); 1196 spc_unlock(l->l_cpu); 1197 break; 1198 } 1199 lwp_unlock(l); 1200 } 1201 1202 /* 1203 * Find the LWP in the process. Arguments may be zero, in such case, 1204 * the calling process and first LWP in the list will be used. 1205 * On success - returns proc locked. 1206 */ 1207 struct lwp * 1208 lwp_find2(pid_t pid, lwpid_t lid) 1209 { 1210 proc_t *p; 1211 lwp_t *l; 1212 1213 /* Find the process. */ 1214 if (pid != 0) { 1215 mutex_enter(proc_lock); 1216 p = proc_find(pid); 1217 if (p == NULL) { 1218 mutex_exit(proc_lock); 1219 return NULL; 1220 } 1221 mutex_enter(p->p_lock); 1222 mutex_exit(proc_lock); 1223 } else { 1224 p = curlwp->l_proc; 1225 mutex_enter(p->p_lock); 1226 } 1227 /* Find the thread. */ 1228 if (lid != 0) { 1229 l = lwp_find(p, lid); 1230 } else { 1231 l = LIST_FIRST(&p->p_lwps); 1232 } 1233 if (l == NULL) { 1234 mutex_exit(p->p_lock); 1235 } 1236 return l; 1237 } 1238 1239 /* 1240 * Look up a live LWP within the specified process, and return it locked. 1241 * 1242 * Must be called with p->p_lock held. 1243 */ 1244 struct lwp * 1245 lwp_find(struct proc *p, lwpid_t id) 1246 { 1247 struct lwp *l; 1248 1249 KASSERT(mutex_owned(p->p_lock)); 1250 1251 LIST_FOREACH(l, &p->p_lwps, l_sibling) { 1252 if (l->l_lid == id) 1253 break; 1254 } 1255 1256 /* 1257 * No need to lock - all of these conditions will 1258 * be visible with the process level mutex held. 1259 */ 1260 if (l != NULL && (l->l_stat == LSIDL || l->l_stat == LSZOMB)) 1261 l = NULL; 1262 1263 return l; 1264 } 1265 1266 /* 1267 * Update an LWP's cached credentials to mirror the process' master copy. 1268 * 1269 * This happens early in the syscall path, on user trap, and on LWP 1270 * creation. A long-running LWP can also voluntarily choose to update 1271 * it's credentials by calling this routine. This may be called from 1272 * LWP_CACHE_CREDS(), which checks l->l_cred != p->p_cred beforehand. 1273 */ 1274 void 1275 lwp_update_creds(struct lwp *l) 1276 { 1277 kauth_cred_t oc; 1278 struct proc *p; 1279 1280 p = l->l_proc; 1281 oc = l->l_cred; 1282 1283 mutex_enter(p->p_lock); 1284 kauth_cred_hold(p->p_cred); 1285 l->l_cred = p->p_cred; 1286 l->l_prflag &= ~LPR_CRMOD; 1287 mutex_exit(p->p_lock); 1288 if (oc != NULL) 1289 kauth_cred_free(oc); 1290 } 1291 1292 /* 1293 * Verify that an LWP is locked, and optionally verify that the lock matches 1294 * one we specify. 1295 */ 1296 int 1297 lwp_locked(struct lwp *l, kmutex_t *mtx) 1298 { 1299 kmutex_t *cur = l->l_mutex; 1300 1301 return mutex_owned(cur) && (mtx == cur || mtx == NULL); 1302 } 1303 1304 /* 1305 * Lend a new mutex to an LWP. The old mutex must be held. 1306 */ 1307 void 1308 lwp_setlock(struct lwp *l, kmutex_t *new) 1309 { 1310 1311 KASSERT(mutex_owned(l->l_mutex)); 1312 1313 membar_exit(); 1314 l->l_mutex = new; 1315 } 1316 1317 /* 1318 * Lend a new mutex to an LWP, and release the old mutex. The old mutex 1319 * must be held. 1320 */ 1321 void 1322 lwp_unlock_to(struct lwp *l, kmutex_t *new) 1323 { 1324 kmutex_t *old; 1325 1326 KASSERT(lwp_locked(l, NULL)); 1327 1328 old = l->l_mutex; 1329 membar_exit(); 1330 l->l_mutex = new; 1331 mutex_spin_exit(old); 1332 } 1333 1334 int 1335 lwp_trylock(struct lwp *l) 1336 { 1337 kmutex_t *old; 1338 1339 for (;;) { 1340 if (!mutex_tryenter(old = l->l_mutex)) 1341 return 0; 1342 if (__predict_true(l->l_mutex == old)) 1343 return 1; 1344 mutex_spin_exit(old); 1345 } 1346 } 1347 1348 void 1349 lwp_unsleep(lwp_t *l, bool cleanup) 1350 { 1351 1352 KASSERT(mutex_owned(l->l_mutex)); 1353 (*l->l_syncobj->sobj_unsleep)(l, cleanup); 1354 } 1355 1356 /* 1357 * Handle exceptions for mi_userret(). Called if a member of LW_USERRET is 1358 * set. 1359 */ 1360 void 1361 lwp_userret(struct lwp *l) 1362 { 1363 struct proc *p; 1364 int sig; 1365 1366 KASSERT(l == curlwp); 1367 KASSERT(l->l_stat == LSONPROC); 1368 p = l->l_proc; 1369 1370 #ifndef __HAVE_FAST_SOFTINTS 1371 /* Run pending soft interrupts. */ 1372 if (l->l_cpu->ci_data.cpu_softints != 0) 1373 softint_overlay(); 1374 #endif 1375 1376 #ifdef KERN_SA 1377 /* Generate UNBLOCKED upcall if needed */ 1378 if (l->l_flag & LW_SA_BLOCKING) { 1379 sa_unblock_userret(l); 1380 /* NOTREACHED */ 1381 } 1382 #endif 1383 1384 /* 1385 * It should be safe to do this read unlocked on a multiprocessor 1386 * system.. 1387 * 1388 * LW_SA_UPCALL will be handled after the while() loop, so don't 1389 * consider it now. 1390 */ 1391 while ((l->l_flag & (LW_USERRET & ~(LW_SA_UPCALL))) != 0) { 1392 /* 1393 * Process pending signals first, unless the process 1394 * is dumping core or exiting, where we will instead 1395 * enter the LW_WSUSPEND case below. 1396 */ 1397 if ((l->l_flag & (LW_PENDSIG | LW_WCORE | LW_WEXIT)) == 1398 LW_PENDSIG) { 1399 mutex_enter(p->p_lock); 1400 while ((sig = issignal(l)) != 0) 1401 postsig(sig); 1402 mutex_exit(p->p_lock); 1403 } 1404 1405 /* 1406 * Core-dump or suspend pending. 1407 * 1408 * In case of core dump, suspend ourselves, so that the kernel 1409 * stack and therefore the userland registers saved in the 1410 * trapframe are around for coredump() to write them out. 1411 * We also need to save any PCU resources that we have so that 1412 * they accessible for coredump(). We issue a wakeup on 1413 * p->p_lwpcv so that sigexit() will write the core file out 1414 * once all other LWPs are suspended. 1415 */ 1416 if ((l->l_flag & LW_WSUSPEND) != 0) { 1417 pcu_save_all(l); 1418 mutex_enter(p->p_lock); 1419 p->p_nrlwps--; 1420 cv_broadcast(&p->p_lwpcv); 1421 lwp_lock(l); 1422 l->l_stat = LSSUSPENDED; 1423 lwp_unlock(l); 1424 mutex_exit(p->p_lock); 1425 lwp_lock(l); 1426 mi_switch(l); 1427 } 1428 1429 /* Process is exiting. */ 1430 if ((l->l_flag & LW_WEXIT) != 0) { 1431 lwp_exit(l); 1432 KASSERT(0); 1433 /* NOTREACHED */ 1434 } 1435 1436 /* update lwpctl processor (for vfork child_return) */ 1437 if (l->l_flag & LW_LWPCTL) { 1438 lwp_lock(l); 1439 KASSERT(kpreempt_disabled()); 1440 l->l_lwpctl->lc_curcpu = (int)cpu_index(l->l_cpu); 1441 l->l_lwpctl->lc_pctr++; 1442 l->l_flag &= ~LW_LWPCTL; 1443 lwp_unlock(l); 1444 } 1445 } 1446 1447 #ifdef KERN_SA 1448 /* 1449 * Timer events are handled specially. We only try once to deliver 1450 * pending timer upcalls; if if fails, we can try again on the next 1451 * loop around. If we need to re-enter lwp_userret(), MD code will 1452 * bounce us back here through the trap path after we return. 1453 */ 1454 if (p->p_timerpend) 1455 timerupcall(l); 1456 if (l->l_flag & LW_SA_UPCALL) 1457 sa_upcall_userret(l); 1458 #endif /* KERN_SA */ 1459 } 1460 1461 /* 1462 * Force an LWP to enter the kernel, to take a trip through lwp_userret(). 1463 */ 1464 void 1465 lwp_need_userret(struct lwp *l) 1466 { 1467 KASSERT(lwp_locked(l, NULL)); 1468 1469 /* 1470 * Since the tests in lwp_userret() are done unlocked, make sure 1471 * that the condition will be seen before forcing the LWP to enter 1472 * kernel mode. 1473 */ 1474 membar_producer(); 1475 cpu_signotify(l); 1476 } 1477 1478 /* 1479 * Add one reference to an LWP. This will prevent the LWP from 1480 * exiting, thus keep the lwp structure and PCB around to inspect. 1481 */ 1482 void 1483 lwp_addref(struct lwp *l) 1484 { 1485 1486 KASSERT(mutex_owned(l->l_proc->p_lock)); 1487 KASSERT(l->l_stat != LSZOMB); 1488 KASSERT(l->l_refcnt != 0); 1489 1490 l->l_refcnt++; 1491 } 1492 1493 /* 1494 * Remove one reference to an LWP. If this is the last reference, 1495 * then we must finalize the LWP's death. 1496 */ 1497 void 1498 lwp_delref(struct lwp *l) 1499 { 1500 struct proc *p = l->l_proc; 1501 1502 mutex_enter(p->p_lock); 1503 lwp_delref2(l); 1504 mutex_exit(p->p_lock); 1505 } 1506 1507 /* 1508 * Remove one reference to an LWP. If this is the last reference, 1509 * then we must finalize the LWP's death. The proc mutex is held 1510 * on entry. 1511 */ 1512 void 1513 lwp_delref2(struct lwp *l) 1514 { 1515 struct proc *p = l->l_proc; 1516 1517 KASSERT(mutex_owned(p->p_lock)); 1518 KASSERT(l->l_stat != LSZOMB); 1519 KASSERT(l->l_refcnt > 0); 1520 if (--l->l_refcnt == 0) 1521 cv_broadcast(&p->p_lwpcv); 1522 } 1523 1524 /* 1525 * Drain all references to the current LWP. 1526 */ 1527 void 1528 lwp_drainrefs(struct lwp *l) 1529 { 1530 struct proc *p = l->l_proc; 1531 1532 KASSERT(mutex_owned(p->p_lock)); 1533 KASSERT(l->l_refcnt != 0); 1534 1535 l->l_refcnt--; 1536 while (l->l_refcnt != 0) 1537 cv_wait(&p->p_lwpcv, p->p_lock); 1538 } 1539 1540 /* 1541 * Return true if the specified LWP is 'alive'. Only p->p_lock need 1542 * be held. 1543 */ 1544 bool 1545 lwp_alive(lwp_t *l) 1546 { 1547 1548 KASSERT(mutex_owned(l->l_proc->p_lock)); 1549 1550 switch (l->l_stat) { 1551 case LSSLEEP: 1552 case LSRUN: 1553 case LSONPROC: 1554 case LSSTOP: 1555 case LSSUSPENDED: 1556 return true; 1557 default: 1558 return false; 1559 } 1560 } 1561 1562 /* 1563 * Return first live LWP in the process. 1564 */ 1565 lwp_t * 1566 lwp_find_first(proc_t *p) 1567 { 1568 lwp_t *l; 1569 1570 KASSERT(mutex_owned(p->p_lock)); 1571 1572 LIST_FOREACH(l, &p->p_lwps, l_sibling) { 1573 if (lwp_alive(l)) { 1574 return l; 1575 } 1576 } 1577 1578 return NULL; 1579 } 1580 1581 /* 1582 * Allocate a new lwpctl structure for a user LWP. 1583 */ 1584 int 1585 lwp_ctl_alloc(vaddr_t *uaddr) 1586 { 1587 lcproc_t *lp; 1588 u_int bit, i, offset; 1589 struct uvm_object *uao; 1590 int error; 1591 lcpage_t *lcp; 1592 proc_t *p; 1593 lwp_t *l; 1594 1595 l = curlwp; 1596 p = l->l_proc; 1597 1598 /* don't allow a vforked process to create lwp ctls */ 1599 if (p->p_lflag & PL_PPWAIT) 1600 return EBUSY; 1601 1602 if (l->l_lcpage != NULL) { 1603 lcp = l->l_lcpage; 1604 *uaddr = lcp->lcp_uaddr + (vaddr_t)l->l_lwpctl - lcp->lcp_kaddr; 1605 return 0; 1606 } 1607 1608 /* First time around, allocate header structure for the process. */ 1609 if ((lp = p->p_lwpctl) == NULL) { 1610 lp = kmem_alloc(sizeof(*lp), KM_SLEEP); 1611 mutex_init(&lp->lp_lock, MUTEX_DEFAULT, IPL_NONE); 1612 lp->lp_uao = NULL; 1613 TAILQ_INIT(&lp->lp_pages); 1614 mutex_enter(p->p_lock); 1615 if (p->p_lwpctl == NULL) { 1616 p->p_lwpctl = lp; 1617 mutex_exit(p->p_lock); 1618 } else { 1619 mutex_exit(p->p_lock); 1620 mutex_destroy(&lp->lp_lock); 1621 kmem_free(lp, sizeof(*lp)); 1622 lp = p->p_lwpctl; 1623 } 1624 } 1625 1626 /* 1627 * Set up an anonymous memory region to hold the shared pages. 1628 * Map them into the process' address space. The user vmspace 1629 * gets the first reference on the UAO. 1630 */ 1631 mutex_enter(&lp->lp_lock); 1632 if (lp->lp_uao == NULL) { 1633 lp->lp_uao = uao_create(LWPCTL_UAREA_SZ, 0); 1634 lp->lp_cur = 0; 1635 lp->lp_max = LWPCTL_UAREA_SZ; 1636 lp->lp_uva = p->p_emul->e_vm_default_addr(p, 1637 (vaddr_t)p->p_vmspace->vm_daddr, LWPCTL_UAREA_SZ); 1638 error = uvm_map(&p->p_vmspace->vm_map, &lp->lp_uva, 1639 LWPCTL_UAREA_SZ, lp->lp_uao, 0, 0, UVM_MAPFLAG(UVM_PROT_RW, 1640 UVM_PROT_RW, UVM_INH_NONE, UVM_ADV_NORMAL, 0)); 1641 if (error != 0) { 1642 uao_detach(lp->lp_uao); 1643 lp->lp_uao = NULL; 1644 mutex_exit(&lp->lp_lock); 1645 return error; 1646 } 1647 } 1648 1649 /* Get a free block and allocate for this LWP. */ 1650 TAILQ_FOREACH(lcp, &lp->lp_pages, lcp_chain) { 1651 if (lcp->lcp_nfree != 0) 1652 break; 1653 } 1654 if (lcp == NULL) { 1655 /* Nothing available - try to set up a free page. */ 1656 if (lp->lp_cur == lp->lp_max) { 1657 mutex_exit(&lp->lp_lock); 1658 return ENOMEM; 1659 } 1660 lcp = kmem_alloc(LWPCTL_LCPAGE_SZ, KM_SLEEP); 1661 if (lcp == NULL) { 1662 mutex_exit(&lp->lp_lock); 1663 return ENOMEM; 1664 } 1665 /* 1666 * Wire the next page down in kernel space. Since this 1667 * is a new mapping, we must add a reference. 1668 */ 1669 uao = lp->lp_uao; 1670 (*uao->pgops->pgo_reference)(uao); 1671 lcp->lcp_kaddr = vm_map_min(kernel_map); 1672 error = uvm_map(kernel_map, &lcp->lcp_kaddr, PAGE_SIZE, 1673 uao, lp->lp_cur, PAGE_SIZE, 1674 UVM_MAPFLAG(UVM_PROT_RW, UVM_PROT_RW, 1675 UVM_INH_NONE, UVM_ADV_RANDOM, 0)); 1676 if (error != 0) { 1677 mutex_exit(&lp->lp_lock); 1678 kmem_free(lcp, LWPCTL_LCPAGE_SZ); 1679 (*uao->pgops->pgo_detach)(uao); 1680 return error; 1681 } 1682 error = uvm_map_pageable(kernel_map, lcp->lcp_kaddr, 1683 lcp->lcp_kaddr + PAGE_SIZE, FALSE, 0); 1684 if (error != 0) { 1685 mutex_exit(&lp->lp_lock); 1686 uvm_unmap(kernel_map, lcp->lcp_kaddr, 1687 lcp->lcp_kaddr + PAGE_SIZE); 1688 kmem_free(lcp, LWPCTL_LCPAGE_SZ); 1689 return error; 1690 } 1691 /* Prepare the page descriptor and link into the list. */ 1692 lcp->lcp_uaddr = lp->lp_uva + lp->lp_cur; 1693 lp->lp_cur += PAGE_SIZE; 1694 lcp->lcp_nfree = LWPCTL_PER_PAGE; 1695 lcp->lcp_rotor = 0; 1696 memset(lcp->lcp_bitmap, 0xff, LWPCTL_BITMAP_SZ); 1697 TAILQ_INSERT_HEAD(&lp->lp_pages, lcp, lcp_chain); 1698 } 1699 for (i = lcp->lcp_rotor; lcp->lcp_bitmap[i] == 0;) { 1700 if (++i >= LWPCTL_BITMAP_ENTRIES) 1701 i = 0; 1702 } 1703 bit = ffs(lcp->lcp_bitmap[i]) - 1; 1704 lcp->lcp_bitmap[i] ^= (1 << bit); 1705 lcp->lcp_rotor = i; 1706 lcp->lcp_nfree--; 1707 l->l_lcpage = lcp; 1708 offset = (i << 5) + bit; 1709 l->l_lwpctl = (lwpctl_t *)lcp->lcp_kaddr + offset; 1710 *uaddr = lcp->lcp_uaddr + offset * sizeof(lwpctl_t); 1711 mutex_exit(&lp->lp_lock); 1712 1713 KPREEMPT_DISABLE(l); 1714 l->l_lwpctl->lc_curcpu = (int)curcpu()->ci_data.cpu_index; 1715 KPREEMPT_ENABLE(l); 1716 1717 return 0; 1718 } 1719 1720 /* 1721 * Free an lwpctl structure back to the per-process list. 1722 */ 1723 void 1724 lwp_ctl_free(lwp_t *l) 1725 { 1726 struct proc *p = l->l_proc; 1727 lcproc_t *lp; 1728 lcpage_t *lcp; 1729 u_int map, offset; 1730 1731 /* don't free a lwp context we borrowed for vfork */ 1732 if (p->p_lflag & PL_PPWAIT) { 1733 l->l_lwpctl = NULL; 1734 return; 1735 } 1736 1737 lp = p->p_lwpctl; 1738 KASSERT(lp != NULL); 1739 1740 lcp = l->l_lcpage; 1741 offset = (u_int)((lwpctl_t *)l->l_lwpctl - (lwpctl_t *)lcp->lcp_kaddr); 1742 KASSERT(offset < LWPCTL_PER_PAGE); 1743 1744 mutex_enter(&lp->lp_lock); 1745 lcp->lcp_nfree++; 1746 map = offset >> 5; 1747 lcp->lcp_bitmap[map] |= (1 << (offset & 31)); 1748 if (lcp->lcp_bitmap[lcp->lcp_rotor] == 0) 1749 lcp->lcp_rotor = map; 1750 if (TAILQ_FIRST(&lp->lp_pages)->lcp_nfree == 0) { 1751 TAILQ_REMOVE(&lp->lp_pages, lcp, lcp_chain); 1752 TAILQ_INSERT_HEAD(&lp->lp_pages, lcp, lcp_chain); 1753 } 1754 mutex_exit(&lp->lp_lock); 1755 } 1756 1757 /* 1758 * Process is exiting; tear down lwpctl state. This can only be safely 1759 * called by the last LWP in the process. 1760 */ 1761 void 1762 lwp_ctl_exit(void) 1763 { 1764 lcpage_t *lcp, *next; 1765 lcproc_t *lp; 1766 proc_t *p; 1767 lwp_t *l; 1768 1769 l = curlwp; 1770 l->l_lwpctl = NULL; 1771 l->l_lcpage = NULL; 1772 p = l->l_proc; 1773 lp = p->p_lwpctl; 1774 1775 KASSERT(lp != NULL); 1776 KASSERT(p->p_nlwps == 1); 1777 1778 for (lcp = TAILQ_FIRST(&lp->lp_pages); lcp != NULL; lcp = next) { 1779 next = TAILQ_NEXT(lcp, lcp_chain); 1780 uvm_unmap(kernel_map, lcp->lcp_kaddr, 1781 lcp->lcp_kaddr + PAGE_SIZE); 1782 kmem_free(lcp, LWPCTL_LCPAGE_SZ); 1783 } 1784 1785 if (lp->lp_uao != NULL) { 1786 uvm_unmap(&p->p_vmspace->vm_map, lp->lp_uva, 1787 lp->lp_uva + LWPCTL_UAREA_SZ); 1788 } 1789 1790 mutex_destroy(&lp->lp_lock); 1791 kmem_free(lp, sizeof(*lp)); 1792 p->p_lwpctl = NULL; 1793 } 1794 1795 /* 1796 * Return the current LWP's "preemption counter". Used to detect 1797 * preemption across operations that can tolerate preemption without 1798 * crashing, but which may generate incorrect results if preempted. 1799 */ 1800 uint64_t 1801 lwp_pctr(void) 1802 { 1803 1804 return curlwp->l_ncsw; 1805 } 1806 1807 /* 1808 * Set an LWP's private data pointer. 1809 */ 1810 int 1811 lwp_setprivate(struct lwp *l, void *ptr) 1812 { 1813 int error = 0; 1814 1815 l->l_private = ptr; 1816 #ifdef __HAVE_CPU_LWP_SETPRIVATE 1817 error = cpu_lwp_setprivate(l, ptr); 1818 #endif 1819 return error; 1820 } 1821 1822 #if defined(DDB) 1823 #include <machine/pcb.h> 1824 1825 void 1826 lwp_whatis(uintptr_t addr, void (*pr)(const char *, ...)) 1827 { 1828 lwp_t *l; 1829 1830 LIST_FOREACH(l, &alllwp, l_list) { 1831 uintptr_t stack = (uintptr_t)KSTACK_LOWEST_ADDR(l); 1832 1833 if (addr < stack || stack + KSTACK_SIZE <= addr) { 1834 continue; 1835 } 1836 (*pr)("%p is %p+%zu, LWP %p's stack\n", 1837 (void *)addr, (void *)stack, 1838 (size_t)(addr - stack), l); 1839 } 1840 } 1841 #endif /* defined(DDB) */ 1842