1 /* $NetBSD: kern_lwp.c,v 1.85 2007/12/13 05:25:03 yamt Exp $ */ 2 3 /*- 4 * Copyright (c) 2001, 2006, 2007 The NetBSD Foundation, Inc. 5 * All rights reserved. 6 * 7 * This code is derived from software contributed to The NetBSD Foundation 8 * by Nathan J. Williams, and Andrew Doran. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 3. All advertising materials mentioning features or use of this software 19 * must display the following acknowledgement: 20 * This product includes software developed by the NetBSD 21 * Foundation, Inc. and its contributors. 22 * 4. Neither the name of The NetBSD Foundation nor the names of its 23 * contributors may be used to endorse or promote products derived 24 * from this software without specific prior written permission. 25 * 26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS 27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 36 * POSSIBILITY OF SUCH DAMAGE. 37 */ 38 39 /* 40 * Overview 41 * 42 * Lightweight processes (LWPs) are the basic unit or thread of 43 * execution within the kernel. The core state of an LWP is described 44 * by "struct lwp", also known as lwp_t. 45 * 46 * Each LWP is contained within a process (described by "struct proc"), 47 * Every process contains at least one LWP, but may contain more. The 48 * process describes attributes shared among all of its LWPs such as a 49 * private address space, global execution state (stopped, active, 50 * zombie, ...), signal disposition and so on. On a multiprocessor 51 * machine, multiple LWPs be executing concurrently in the kernel. 52 * 53 * Execution states 54 * 55 * At any given time, an LWP has overall state that is described by 56 * lwp::l_stat. The states are broken into two sets below. The first 57 * set is guaranteed to represent the absolute, current state of the 58 * LWP: 59 * 60 * LSONPROC 61 * 62 * On processor: the LWP is executing on a CPU, either in the 63 * kernel or in user space. 64 * 65 * LSRUN 66 * 67 * Runnable: the LWP is parked on a run queue, and may soon be 68 * chosen to run by a idle processor, or by a processor that 69 * has been asked to preempt a currently runnning but lower 70 * priority LWP. If the LWP is not swapped in (L_INMEM == 0) 71 * then the LWP is not on a run queue, but may be soon. 72 * 73 * LSIDL 74 * 75 * Idle: the LWP has been created but has not yet executed, 76 * or it has ceased executing a unit of work and is waiting 77 * to be started again. 78 * 79 * LSSUSPENDED: 80 * 81 * Suspended: the LWP has had its execution suspended by 82 * another LWP in the same process using the _lwp_suspend() 83 * system call. User-level LWPs also enter the suspended 84 * state when the system is shutting down. 85 * 86 * The second set represent a "statement of intent" on behalf of the 87 * LWP. The LWP may in fact be executing on a processor, may be 88 * sleeping or idle. It is expected to take the necessary action to 89 * stop executing or become "running" again within a short timeframe. 90 * The LW_RUNNING flag in lwp::l_flag indicates that an LWP is running. 91 * Importantly, in indicates that its state is tied to a CPU. 92 * 93 * LSZOMB: 94 * 95 * Dead or dying: the LWP has released most of its resources 96 * and is a) about to switch away into oblivion b) has already 97 * switched away. When it switches away, its few remaining 98 * resources can be collected. 99 * 100 * LSSLEEP: 101 * 102 * Sleeping: the LWP has entered itself onto a sleep queue, and 103 * has switched away or will switch away shortly to allow other 104 * LWPs to run on the CPU. 105 * 106 * LSSTOP: 107 * 108 * Stopped: the LWP has been stopped as a result of a job 109 * control signal, or as a result of the ptrace() interface. 110 * 111 * Stopped LWPs may run briefly within the kernel to handle 112 * signals that they receive, but will not return to user space 113 * until their process' state is changed away from stopped. 114 * 115 * Single LWPs within a process can not be set stopped 116 * selectively: all actions that can stop or continue LWPs 117 * occur at the process level. 118 * 119 * State transitions 120 * 121 * Note that the LSSTOP state may only be set when returning to 122 * user space in userret(), or when sleeping interruptably. The 123 * LSSUSPENDED state may only be set in userret(). Before setting 124 * those states, we try to ensure that the LWPs will release all 125 * locks that they hold, and at a minimum try to ensure that the 126 * LWP can be set runnable again by a signal. 127 * 128 * LWPs may transition states in the following ways: 129 * 130 * RUN -------> ONPROC ONPROC -----> RUN 131 * > STOPPED > SLEEP 132 * > SUSPENDED > STOPPED 133 * > SUSPENDED 134 * > ZOMB 135 * 136 * STOPPED ---> RUN SUSPENDED --> RUN 137 * > SLEEP > SLEEP 138 * 139 * SLEEP -----> ONPROC IDL --------> RUN 140 * > RUN > SUSPENDED 141 * > STOPPED > STOPPED 142 * > SUSPENDED 143 * 144 * Other state transitions are possible with kernel threads (eg 145 * ONPROC -> IDL), but only happen under tightly controlled 146 * circumstances the side effects are understood. 147 * 148 * Locking 149 * 150 * The majority of fields in 'struct lwp' are covered by a single, 151 * general spin lock pointed to by lwp::l_mutex. The locks covering 152 * each field are documented in sys/lwp.h. 153 * 154 * State transitions must be made with the LWP's general lock held, 155 * and may cause the LWP's lock pointer to change. Manipulation of 156 * the general lock is not performed directly, but through calls to 157 * lwp_lock(), lwp_relock() and similar. 158 * 159 * States and their associated locks: 160 * 161 * LSONPROC, LSZOMB: 162 * 163 * Always covered by spc_lwplock, which protects running LWPs. 164 * This is a per-CPU lock. 165 * 166 * LSIDL, LSRUN: 167 * 168 * Always covered by spc_mutex, which protects the run queues. 169 * This may be a per-CPU lock, depending on the scheduler. 170 * 171 * LSSLEEP: 172 * 173 * Covered by a lock associated with the sleep queue that the 174 * LWP resides on, indirectly referenced by l_sleepq->sq_mutex. 175 * 176 * LSSTOP, LSSUSPENDED: 177 * 178 * If the LWP was previously sleeping (l_wchan != NULL), then 179 * l_mutex references the sleep queue lock. If the LWP was 180 * runnable or on the CPU when halted, or has been removed from 181 * the sleep queue since halted, then the lock is spc_lwplock. 182 * 183 * The lock order is as follows: 184 * 185 * spc::spc_lwplock -> 186 * sleepq_t::sq_mutex -> 187 * tschain_t::tc_mutex -> 188 * spc::spc_mutex 189 * 190 * Each process has an scheduler state lock (proc::p_smutex), and a 191 * number of counters on LWPs and their states: p_nzlwps, p_nrlwps, and 192 * so on. When an LWP is to be entered into or removed from one of the 193 * following states, p_mutex must be held and the process wide counters 194 * adjusted: 195 * 196 * LSIDL, LSZOMB, LSSTOP, LSSUSPENDED 197 * 198 * Note that an LWP is considered running or likely to run soon if in 199 * one of the following states. This affects the value of p_nrlwps: 200 * 201 * LSRUN, LSONPROC, LSSLEEP 202 * 203 * p_smutex does not need to be held when transitioning among these 204 * three states. 205 */ 206 207 #include <sys/cdefs.h> 208 __KERNEL_RCSID(0, "$NetBSD: kern_lwp.c,v 1.85 2007/12/13 05:25:03 yamt Exp $"); 209 210 #include "opt_ddb.h" 211 #include "opt_multiprocessor.h" 212 #include "opt_lockdebug.h" 213 214 #define _LWP_API_PRIVATE 215 216 #include <sys/param.h> 217 #include <sys/systm.h> 218 #include <sys/cpu.h> 219 #include <sys/pool.h> 220 #include <sys/proc.h> 221 #include <sys/syscallargs.h> 222 #include <sys/syscall_stats.h> 223 #include <sys/kauth.h> 224 #include <sys/sleepq.h> 225 #include <sys/user.h> 226 #include <sys/lockdebug.h> 227 #include <sys/kmem.h> 228 #include <sys/intr.h> 229 #include <sys/lwpctl.h> 230 #include <sys/atomic.h> 231 232 #include <uvm/uvm_extern.h> 233 #include <uvm/uvm_object.h> 234 235 struct lwplist alllwp = LIST_HEAD_INITIALIZER(alllwp); 236 237 POOL_INIT(lwp_pool, sizeof(struct lwp), MIN_LWP_ALIGNMENT, 0, 0, "lwppl", 238 &pool_allocator_nointr, IPL_NONE); 239 POOL_INIT(lwp_uc_pool, sizeof(ucontext_t), 0, 0, 0, "lwpucpl", 240 &pool_allocator_nointr, IPL_NONE); 241 242 static specificdata_domain_t lwp_specificdata_domain; 243 244 void 245 lwpinit(void) 246 { 247 248 lwp_specificdata_domain = specificdata_domain_create(); 249 KASSERT(lwp_specificdata_domain != NULL); 250 lwp_sys_init(); 251 } 252 253 /* 254 * Set an suspended. 255 * 256 * Must be called with p_smutex held, and the LWP locked. Will unlock the 257 * LWP before return. 258 */ 259 int 260 lwp_suspend(struct lwp *curl, struct lwp *t) 261 { 262 int error; 263 264 KASSERT(mutex_owned(&t->l_proc->p_smutex)); 265 KASSERT(lwp_locked(t, NULL)); 266 267 KASSERT(curl != t || curl->l_stat == LSONPROC); 268 269 /* 270 * If the current LWP has been told to exit, we must not suspend anyone 271 * else or deadlock could occur. We won't return to userspace. 272 */ 273 if ((curl->l_stat & (LW_WEXIT | LW_WCORE)) != 0) { 274 lwp_unlock(t); 275 return (EDEADLK); 276 } 277 278 error = 0; 279 280 switch (t->l_stat) { 281 case LSRUN: 282 case LSONPROC: 283 t->l_flag |= LW_WSUSPEND; 284 lwp_need_userret(t); 285 lwp_unlock(t); 286 break; 287 288 case LSSLEEP: 289 t->l_flag |= LW_WSUSPEND; 290 291 /* 292 * Kick the LWP and try to get it to the kernel boundary 293 * so that it will release any locks that it holds. 294 * setrunnable() will release the lock. 295 */ 296 if ((t->l_flag & LW_SINTR) != 0) 297 setrunnable(t); 298 else 299 lwp_unlock(t); 300 break; 301 302 case LSSUSPENDED: 303 lwp_unlock(t); 304 break; 305 306 case LSSTOP: 307 t->l_flag |= LW_WSUSPEND; 308 setrunnable(t); 309 break; 310 311 case LSIDL: 312 case LSZOMB: 313 error = EINTR; /* It's what Solaris does..... */ 314 lwp_unlock(t); 315 break; 316 } 317 318 return (error); 319 } 320 321 /* 322 * Restart a suspended LWP. 323 * 324 * Must be called with p_smutex held, and the LWP locked. Will unlock the 325 * LWP before return. 326 */ 327 void 328 lwp_continue(struct lwp *l) 329 { 330 331 KASSERT(mutex_owned(&l->l_proc->p_smutex)); 332 KASSERT(lwp_locked(l, NULL)); 333 334 /* If rebooting or not suspended, then just bail out. */ 335 if ((l->l_flag & LW_WREBOOT) != 0) { 336 lwp_unlock(l); 337 return; 338 } 339 340 l->l_flag &= ~LW_WSUSPEND; 341 342 if (l->l_stat != LSSUSPENDED) { 343 lwp_unlock(l); 344 return; 345 } 346 347 /* setrunnable() will release the lock. */ 348 setrunnable(l); 349 } 350 351 /* 352 * Wait for an LWP within the current process to exit. If 'lid' is 353 * non-zero, we are waiting for a specific LWP. 354 * 355 * Must be called with p->p_smutex held. 356 */ 357 int 358 lwp_wait1(struct lwp *l, lwpid_t lid, lwpid_t *departed, int flags) 359 { 360 struct proc *p = l->l_proc; 361 struct lwp *l2; 362 int nfound, error; 363 lwpid_t curlid; 364 bool exiting; 365 366 KASSERT(mutex_owned(&p->p_smutex)); 367 368 p->p_nlwpwait++; 369 l->l_waitingfor = lid; 370 curlid = l->l_lid; 371 exiting = ((flags & LWPWAIT_EXITCONTROL) != 0); 372 373 for (;;) { 374 /* 375 * Avoid a race between exit1() and sigexit(): if the 376 * process is dumping core, then we need to bail out: call 377 * into lwp_userret() where we will be suspended until the 378 * deed is done. 379 */ 380 if ((p->p_sflag & PS_WCORE) != 0) { 381 mutex_exit(&p->p_smutex); 382 lwp_userret(l); 383 #ifdef DIAGNOSTIC 384 panic("lwp_wait1"); 385 #endif 386 /* NOTREACHED */ 387 } 388 389 /* 390 * First off, drain any detached LWP that is waiting to be 391 * reaped. 392 */ 393 while ((l2 = p->p_zomblwp) != NULL) { 394 p->p_zomblwp = NULL; 395 lwp_free(l2, false, false);/* releases proc mutex */ 396 mutex_enter(&p->p_smutex); 397 } 398 399 /* 400 * Now look for an LWP to collect. If the whole process is 401 * exiting, count detached LWPs as eligible to be collected, 402 * but don't drain them here. 403 */ 404 nfound = 0; 405 error = 0; 406 LIST_FOREACH(l2, &p->p_lwps, l_sibling) { 407 /* 408 * If a specific wait and the target is waiting on 409 * us, then avoid deadlock. This also traps LWPs 410 * that try to wait on themselves. 411 * 412 * Note that this does not handle more complicated 413 * cycles, like: t1 -> t2 -> t3 -> t1. The process 414 * can still be killed so it is not a major problem. 415 */ 416 if (l2->l_lid == lid && l2->l_waitingfor == curlid) { 417 error = EDEADLK; 418 break; 419 } 420 if (l2 == l) 421 continue; 422 if ((l2->l_prflag & LPR_DETACHED) != 0) { 423 nfound += exiting; 424 continue; 425 } 426 if (lid != 0) { 427 if (l2->l_lid != lid) 428 continue; 429 /* 430 * Mark this LWP as the first waiter, if there 431 * is no other. 432 */ 433 if (l2->l_waiter == 0) 434 l2->l_waiter = curlid; 435 } else if (l2->l_waiter != 0) { 436 /* 437 * It already has a waiter - so don't 438 * collect it. If the waiter doesn't 439 * grab it we'll get another chance 440 * later. 441 */ 442 nfound++; 443 continue; 444 } 445 nfound++; 446 447 /* No need to lock the LWP in order to see LSZOMB. */ 448 if (l2->l_stat != LSZOMB) 449 continue; 450 451 /* 452 * We're no longer waiting. Reset the "first waiter" 453 * pointer on the target, in case it was us. 454 */ 455 l->l_waitingfor = 0; 456 l2->l_waiter = 0; 457 p->p_nlwpwait--; 458 if (departed) 459 *departed = l2->l_lid; 460 sched_lwp_collect(l2); 461 462 /* lwp_free() releases the proc lock. */ 463 lwp_free(l2, false, false); 464 mutex_enter(&p->p_smutex); 465 return 0; 466 } 467 468 if (error != 0) 469 break; 470 if (nfound == 0) { 471 error = ESRCH; 472 break; 473 } 474 475 /* 476 * The kernel is careful to ensure that it can not deadlock 477 * when exiting - just keep waiting. 478 */ 479 if (exiting) { 480 KASSERT(p->p_nlwps > 1); 481 cv_wait(&p->p_lwpcv, &p->p_smutex); 482 continue; 483 } 484 485 /* 486 * If all other LWPs are waiting for exits or suspends 487 * and the supply of zombies and potential zombies is 488 * exhausted, then we are about to deadlock. 489 * 490 * If the process is exiting (and this LWP is not the one 491 * that is coordinating the exit) then bail out now. 492 */ 493 if ((p->p_sflag & PS_WEXIT) != 0 || 494 p->p_nrlwps + p->p_nzlwps - p->p_ndlwps <= p->p_nlwpwait) { 495 error = EDEADLK; 496 break; 497 } 498 499 /* 500 * Sit around and wait for something to happen. We'll be 501 * awoken if any of the conditions examined change: if an 502 * LWP exits, is collected, or is detached. 503 */ 504 if ((error = cv_wait_sig(&p->p_lwpcv, &p->p_smutex)) != 0) 505 break; 506 } 507 508 /* 509 * We didn't find any LWPs to collect, we may have received a 510 * signal, or some other condition has caused us to bail out. 511 * 512 * If waiting on a specific LWP, clear the waiters marker: some 513 * other LWP may want it. Then, kick all the remaining waiters 514 * so that they can re-check for zombies and for deadlock. 515 */ 516 if (lid != 0) { 517 LIST_FOREACH(l2, &p->p_lwps, l_sibling) { 518 if (l2->l_lid == lid) { 519 if (l2->l_waiter == curlid) 520 l2->l_waiter = 0; 521 break; 522 } 523 } 524 } 525 p->p_nlwpwait--; 526 l->l_waitingfor = 0; 527 cv_broadcast(&p->p_lwpcv); 528 529 return error; 530 } 531 532 /* 533 * Create a new LWP within process 'p2', using LWP 'l1' as a template. 534 * The new LWP is created in state LSIDL and must be set running, 535 * suspended, or stopped by the caller. 536 */ 537 int 538 lwp_create(lwp_t *l1, proc_t *p2, vaddr_t uaddr, bool inmem, int flags, 539 void *stack, size_t stacksize, void (*func)(void *), void *arg, 540 lwp_t **rnewlwpp, int sclass) 541 { 542 struct lwp *l2, *isfree; 543 turnstile_t *ts; 544 545 /* 546 * First off, reap any detached LWP waiting to be collected. 547 * We can re-use its LWP structure and turnstile. 548 */ 549 isfree = NULL; 550 if (p2->p_zomblwp != NULL) { 551 mutex_enter(&p2->p_smutex); 552 if ((isfree = p2->p_zomblwp) != NULL) { 553 p2->p_zomblwp = NULL; 554 lwp_free(isfree, true, false);/* releases proc mutex */ 555 } else 556 mutex_exit(&p2->p_smutex); 557 } 558 if (isfree == NULL) { 559 l2 = pool_get(&lwp_pool, PR_WAITOK); 560 memset(l2, 0, sizeof(*l2)); 561 l2->l_ts = pool_cache_get(turnstile_cache, PR_WAITOK); 562 SLIST_INIT(&l2->l_pi_lenders); 563 } else { 564 l2 = isfree; 565 ts = l2->l_ts; 566 KASSERT(l2->l_inheritedprio == -1); 567 KASSERT(SLIST_EMPTY(&l2->l_pi_lenders)); 568 memset(l2, 0, sizeof(*l2)); 569 l2->l_ts = ts; 570 } 571 572 l2->l_stat = LSIDL; 573 l2->l_proc = p2; 574 l2->l_refcnt = 1; 575 l2->l_class = sclass; 576 l2->l_kpriority = l1->l_kpriority; 577 l2->l_kpribase = PRI_KERNEL; 578 l2->l_priority = l1->l_priority; 579 l2->l_inheritedprio = -1; 580 l2->l_mutex = l1->l_cpu->ci_schedstate.spc_mutex; 581 l2->l_cpu = l1->l_cpu; 582 l2->l_flag = inmem ? LW_INMEM : 0; 583 584 if (p2->p_flag & PK_SYSTEM) { 585 /* 586 * Mark it as a system process and not a candidate for 587 * swapping. 588 */ 589 l2->l_flag |= LW_SYSTEM; 590 } else { 591 /* Look for a CPU to start */ 592 l2->l_cpu = sched_takecpu(l2); 593 l2->l_mutex = l2->l_cpu->ci_schedstate.spc_mutex; 594 } 595 596 lwp_initspecific(l2); 597 sched_lwp_fork(l1, l2); 598 lwp_update_creds(l2); 599 callout_init(&l2->l_timeout_ch, CALLOUT_MPSAFE); 600 callout_setfunc(&l2->l_timeout_ch, sleepq_timeout, l2); 601 mutex_init(&l2->l_swaplock, MUTEX_DEFAULT, IPL_NONE); 602 cv_init(&l2->l_sigcv, "sigwait"); 603 l2->l_syncobj = &sched_syncobj; 604 605 if (rnewlwpp != NULL) 606 *rnewlwpp = l2; 607 608 l2->l_addr = UAREA_TO_USER(uaddr); 609 uvm_lwp_fork(l1, l2, stack, stacksize, func, 610 (arg != NULL) ? arg : l2); 611 612 mutex_enter(&p2->p_smutex); 613 614 if ((flags & LWP_DETACHED) != 0) { 615 l2->l_prflag = LPR_DETACHED; 616 p2->p_ndlwps++; 617 } else 618 l2->l_prflag = 0; 619 620 l2->l_sigmask = l1->l_sigmask; 621 CIRCLEQ_INIT(&l2->l_sigpend.sp_info); 622 sigemptyset(&l2->l_sigpend.sp_set); 623 624 p2->p_nlwpid++; 625 if (p2->p_nlwpid == 0) 626 p2->p_nlwpid++; 627 l2->l_lid = p2->p_nlwpid; 628 LIST_INSERT_HEAD(&p2->p_lwps, l2, l_sibling); 629 p2->p_nlwps++; 630 631 mutex_exit(&p2->p_smutex); 632 633 mutex_enter(&proclist_lock); 634 LIST_INSERT_HEAD(&alllwp, l2, l_list); 635 mutex_exit(&proclist_lock); 636 637 SYSCALL_TIME_LWP_INIT(l2); 638 639 if (p2->p_emul->e_lwp_fork) 640 (*p2->p_emul->e_lwp_fork)(l1, l2); 641 642 return (0); 643 } 644 645 /* 646 * Called by MD code when a new LWP begins execution. Must be called 647 * with the previous LWP locked (so at splsched), or if there is no 648 * previous LWP, at splsched. 649 */ 650 void 651 lwp_startup(struct lwp *prev, struct lwp *new) 652 { 653 654 if (prev != NULL) { 655 /* 656 * Normalize the count of the spin-mutexes, it was 657 * increased in mi_switch(). Unmark the state of 658 * context switch - it is finished for previous LWP. 659 */ 660 curcpu()->ci_mtx_count++; 661 membar_exit(); 662 prev->l_ctxswtch = 0; 663 } 664 spl0(); 665 pmap_activate(new); 666 LOCKDEBUG_BARRIER(NULL, 0); 667 if ((new->l_pflag & LP_MPSAFE) == 0) { 668 KERNEL_LOCK(1, new); 669 } 670 } 671 672 /* 673 * Exit an LWP. 674 */ 675 void 676 lwp_exit(struct lwp *l) 677 { 678 struct proc *p = l->l_proc; 679 struct lwp *l2; 680 bool current; 681 682 current = (l == curlwp); 683 684 KASSERT(current || l->l_stat == LSIDL); 685 686 /* 687 * Verify that we hold no locks other than the kernel lock. 688 */ 689 #ifdef MULTIPROCESSOR 690 LOCKDEBUG_BARRIER(&kernel_lock, 0); 691 #else 692 LOCKDEBUG_BARRIER(NULL, 0); 693 #endif 694 695 /* 696 * If we are the last live LWP in a process, we need to exit the 697 * entire process. We do so with an exit status of zero, because 698 * it's a "controlled" exit, and because that's what Solaris does. 699 * 700 * We are not quite a zombie yet, but for accounting purposes we 701 * must increment the count of zombies here. 702 * 703 * Note: the last LWP's specificdata will be deleted here. 704 */ 705 mutex_enter(&p->p_smutex); 706 if (p->p_nlwps - p->p_nzlwps == 1) { 707 KASSERT(current == true); 708 exit1(l, 0); 709 /* NOTREACHED */ 710 } 711 p->p_nzlwps++; 712 mutex_exit(&p->p_smutex); 713 714 if (p->p_emul->e_lwp_exit) 715 (*p->p_emul->e_lwp_exit)(l); 716 717 /* Delete the specificdata while it's still safe to sleep. */ 718 specificdata_fini(lwp_specificdata_domain, &l->l_specdataref); 719 720 /* 721 * Release our cached credentials. 722 */ 723 kauth_cred_free(l->l_cred); 724 callout_destroy(&l->l_timeout_ch); 725 726 /* 727 * While we can still block, mark the LWP as unswappable to 728 * prevent conflicts with the with the swapper. 729 */ 730 if (current) 731 uvm_lwp_hold(l); 732 733 /* 734 * Remove the LWP from the global list. 735 */ 736 mutex_enter(&proclist_lock); 737 mutex_enter(&proclist_mutex); 738 LIST_REMOVE(l, l_list); 739 mutex_exit(&proclist_mutex); 740 mutex_exit(&proclist_lock); 741 742 /* 743 * Get rid of all references to the LWP that others (e.g. procfs) 744 * may have, and mark the LWP as a zombie. If the LWP is detached, 745 * mark it waiting for collection in the proc structure. Note that 746 * before we can do that, we need to free any other dead, deatched 747 * LWP waiting to meet its maker. 748 * 749 * XXXSMP disable preemption. 750 */ 751 mutex_enter(&p->p_smutex); 752 lwp_drainrefs(l); 753 754 if ((l->l_prflag & LPR_DETACHED) != 0) { 755 while ((l2 = p->p_zomblwp) != NULL) { 756 p->p_zomblwp = NULL; 757 lwp_free(l2, false, false);/* releases proc mutex */ 758 mutex_enter(&p->p_smutex); 759 l->l_refcnt++; 760 lwp_drainrefs(l); 761 } 762 p->p_zomblwp = l; 763 } 764 765 /* 766 * If we find a pending signal for the process and we have been 767 * asked to check for signals, then we loose: arrange to have 768 * all other LWPs in the process check for signals. 769 */ 770 if ((l->l_flag & LW_PENDSIG) != 0 && 771 firstsig(&p->p_sigpend.sp_set) != 0) { 772 LIST_FOREACH(l2, &p->p_lwps, l_sibling) { 773 lwp_lock(l2); 774 l2->l_flag |= LW_PENDSIG; 775 lwp_unlock(l2); 776 } 777 } 778 779 lwp_lock(l); 780 l->l_stat = LSZOMB; 781 lwp_unlock(l); 782 p->p_nrlwps--; 783 cv_broadcast(&p->p_lwpcv); 784 if (l->l_lwpctl != NULL) 785 l->l_lwpctl->lc_curcpu = LWPCTL_CPU_EXITED; 786 mutex_exit(&p->p_smutex); 787 788 /* 789 * We can no longer block. At this point, lwp_free() may already 790 * be gunning for us. On a multi-CPU system, we may be off p_lwps. 791 * 792 * Free MD LWP resources. 793 */ 794 #ifndef __NO_CPU_LWP_FREE 795 cpu_lwp_free(l, 0); 796 #endif 797 798 if (current) { 799 pmap_deactivate(l); 800 801 /* 802 * Release the kernel lock, and switch away into 803 * oblivion. 804 */ 805 #ifdef notyet 806 /* XXXSMP hold in lwp_userret() */ 807 KERNEL_UNLOCK_LAST(l); 808 #else 809 KERNEL_UNLOCK_ALL(l, NULL); 810 #endif 811 lwp_exit_switchaway(l); 812 } 813 } 814 815 void 816 lwp_exit_switchaway(struct lwp *l) 817 { 818 struct cpu_info *ci; 819 struct lwp *idlelwp; 820 821 /* Unlocked, but is for statistics only. */ 822 uvmexp.swtch++; 823 824 (void)splsched(); 825 l->l_flag &= ~LW_RUNNING; 826 ci = curcpu(); 827 idlelwp = ci->ci_data.cpu_idlelwp; 828 idlelwp->l_stat = LSONPROC; 829 830 /* 831 * cpu_onproc must be updated with the CPU locked, as 832 * aston() may try to set a AST pending on the LWP (and 833 * it does so with the CPU locked). Otherwise, the LWP 834 * may be destroyed before the AST can be set, leading 835 * to a user-after-free. 836 */ 837 spc_lock(ci); 838 ci->ci_data.cpu_onproc = idlelwp; 839 spc_unlock(ci); 840 cpu_switchto(NULL, idlelwp, false); 841 } 842 843 /* 844 * Free a dead LWP's remaining resources. 845 * 846 * XXXLWP limits. 847 */ 848 void 849 lwp_free(struct lwp *l, bool recycle, bool last) 850 { 851 struct proc *p = l->l_proc; 852 ksiginfoq_t kq; 853 854 /* 855 * If this was not the last LWP in the process, then adjust 856 * counters and unlock. 857 */ 858 if (!last) { 859 /* 860 * Add the LWP's run time to the process' base value. 861 * This needs to co-incide with coming off p_lwps. 862 */ 863 timeradd(&l->l_rtime, &p->p_rtime, &p->p_rtime); 864 p->p_pctcpu += l->l_pctcpu; 865 LIST_REMOVE(l, l_sibling); 866 p->p_nlwps--; 867 p->p_nzlwps--; 868 if ((l->l_prflag & LPR_DETACHED) != 0) 869 p->p_ndlwps--; 870 871 /* 872 * Have any LWPs sleeping in lwp_wait() recheck for 873 * deadlock. 874 */ 875 cv_broadcast(&p->p_lwpcv); 876 mutex_exit(&p->p_smutex); 877 } 878 879 #ifdef MULTIPROCESSOR 880 /* 881 * In the unlikely event that the LWP is still on the CPU, 882 * then spin until it has switched away. We need to release 883 * all locks to avoid deadlock against interrupt handlers on 884 * the target CPU. 885 */ 886 if ((l->l_flag & LW_RUNNING) != 0 || l->l_cpu->ci_curlwp == l) { 887 int count; 888 (void)count; /* XXXgcc */ 889 KERNEL_UNLOCK_ALL(curlwp, &count); 890 while ((l->l_flag & LW_RUNNING) != 0 || 891 l->l_cpu->ci_curlwp == l) 892 SPINLOCK_BACKOFF_HOOK; 893 KERNEL_LOCK(count, curlwp); 894 } 895 #endif 896 897 /* 898 * Destroy the LWP's remaining signal information. 899 */ 900 ksiginfo_queue_init(&kq); 901 sigclear(&l->l_sigpend, NULL, &kq); 902 ksiginfo_queue_drain(&kq); 903 cv_destroy(&l->l_sigcv); 904 mutex_destroy(&l->l_swaplock); 905 906 /* 907 * Free the LWP's turnstile and the LWP structure itself unless the 908 * caller wants to recycle them. Also, free the scheduler specific data. 909 * 910 * We can't return turnstile0 to the pool (it didn't come from it), 911 * so if it comes up just drop it quietly and move on. 912 * 913 * We don't recycle the VM resources at this time. 914 */ 915 KERNEL_LOCK(1, curlwp); /* XXXSMP */ 916 917 if (l->l_lwpctl != NULL) 918 lwp_ctl_free(l); 919 sched_lwp_exit(l); 920 921 if (!recycle && l->l_ts != &turnstile0) 922 pool_cache_put(turnstile_cache, l->l_ts); 923 #ifndef __NO_CPU_LWP_FREE 924 cpu_lwp_free2(l); 925 #endif 926 uvm_lwp_exit(l); 927 KASSERT(SLIST_EMPTY(&l->l_pi_lenders)); 928 KASSERT(l->l_inheritedprio == -1); 929 if (!recycle) 930 pool_put(&lwp_pool, l); 931 KERNEL_UNLOCK_ONE(curlwp); /* XXXSMP */ 932 } 933 934 /* 935 * Pick a LWP to represent the process for those operations which 936 * want information about a "process" that is actually associated 937 * with a LWP. 938 * 939 * If 'locking' is false, no locking or lock checks are performed. 940 * This is intended for use by DDB. 941 * 942 * We don't bother locking the LWP here, since code that uses this 943 * interface is broken by design and an exact match is not required. 944 */ 945 struct lwp * 946 proc_representative_lwp(struct proc *p, int *nrlwps, int locking) 947 { 948 struct lwp *l, *onproc, *running, *sleeping, *stopped, *suspended; 949 struct lwp *signalled; 950 int cnt; 951 952 if (locking) { 953 KASSERT(mutex_owned(&p->p_smutex)); 954 } 955 956 /* Trivial case: only one LWP */ 957 if (p->p_nlwps == 1) { 958 l = LIST_FIRST(&p->p_lwps); 959 if (nrlwps) 960 *nrlwps = (l->l_stat == LSONPROC || l->l_stat == LSRUN); 961 return l; 962 } 963 964 cnt = 0; 965 switch (p->p_stat) { 966 case SSTOP: 967 case SACTIVE: 968 /* Pick the most live LWP */ 969 onproc = running = sleeping = stopped = suspended = NULL; 970 signalled = NULL; 971 LIST_FOREACH(l, &p->p_lwps, l_sibling) { 972 if ((l->l_flag & LW_IDLE) != 0) { 973 continue; 974 } 975 if (l->l_lid == p->p_sigctx.ps_lwp) 976 signalled = l; 977 switch (l->l_stat) { 978 case LSONPROC: 979 onproc = l; 980 cnt++; 981 break; 982 case LSRUN: 983 running = l; 984 cnt++; 985 break; 986 case LSSLEEP: 987 sleeping = l; 988 break; 989 case LSSTOP: 990 stopped = l; 991 break; 992 case LSSUSPENDED: 993 suspended = l; 994 break; 995 } 996 } 997 if (nrlwps) 998 *nrlwps = cnt; 999 if (signalled) 1000 l = signalled; 1001 else if (onproc) 1002 l = onproc; 1003 else if (running) 1004 l = running; 1005 else if (sleeping) 1006 l = sleeping; 1007 else if (stopped) 1008 l = stopped; 1009 else if (suspended) 1010 l = suspended; 1011 else 1012 break; 1013 return l; 1014 #ifdef DIAGNOSTIC 1015 case SIDL: 1016 case SZOMB: 1017 case SDYING: 1018 case SDEAD: 1019 if (locking) 1020 mutex_exit(&p->p_smutex); 1021 /* We have more than one LWP and we're in SIDL? 1022 * How'd that happen? 1023 */ 1024 panic("Too many LWPs in idle/dying process %d (%s) stat = %d", 1025 p->p_pid, p->p_comm, p->p_stat); 1026 break; 1027 default: 1028 if (locking) 1029 mutex_exit(&p->p_smutex); 1030 panic("Process %d (%s) in unknown state %d", 1031 p->p_pid, p->p_comm, p->p_stat); 1032 #endif 1033 } 1034 1035 if (locking) 1036 mutex_exit(&p->p_smutex); 1037 panic("proc_representative_lwp: couldn't find a lwp for process" 1038 " %d (%s)", p->p_pid, p->p_comm); 1039 /* NOTREACHED */ 1040 return NULL; 1041 } 1042 1043 /* 1044 * Look up a live LWP within the speicifed process, and return it locked. 1045 * 1046 * Must be called with p->p_smutex held. 1047 */ 1048 struct lwp * 1049 lwp_find(struct proc *p, int id) 1050 { 1051 struct lwp *l; 1052 1053 KASSERT(mutex_owned(&p->p_smutex)); 1054 1055 LIST_FOREACH(l, &p->p_lwps, l_sibling) { 1056 if (l->l_lid == id) 1057 break; 1058 } 1059 1060 /* 1061 * No need to lock - all of these conditions will 1062 * be visible with the process level mutex held. 1063 */ 1064 if (l != NULL && (l->l_stat == LSIDL || l->l_stat == LSZOMB)) 1065 l = NULL; 1066 1067 return l; 1068 } 1069 1070 /* 1071 * Update an LWP's cached credentials to mirror the process' master copy. 1072 * 1073 * This happens early in the syscall path, on user trap, and on LWP 1074 * creation. A long-running LWP can also voluntarily choose to update 1075 * it's credentials by calling this routine. This may be called from 1076 * LWP_CACHE_CREDS(), which checks l->l_cred != p->p_cred beforehand. 1077 */ 1078 void 1079 lwp_update_creds(struct lwp *l) 1080 { 1081 kauth_cred_t oc; 1082 struct proc *p; 1083 1084 p = l->l_proc; 1085 oc = l->l_cred; 1086 1087 mutex_enter(&p->p_mutex); 1088 kauth_cred_hold(p->p_cred); 1089 l->l_cred = p->p_cred; 1090 mutex_exit(&p->p_mutex); 1091 if (oc != NULL) { 1092 KERNEL_LOCK(1, l); /* XXXSMP */ 1093 kauth_cred_free(oc); 1094 KERNEL_UNLOCK_ONE(l); /* XXXSMP */ 1095 } 1096 } 1097 1098 /* 1099 * Verify that an LWP is locked, and optionally verify that the lock matches 1100 * one we specify. 1101 */ 1102 int 1103 lwp_locked(struct lwp *l, kmutex_t *mtx) 1104 { 1105 kmutex_t *cur = l->l_mutex; 1106 1107 return mutex_owned(cur) && (mtx == cur || mtx == NULL); 1108 } 1109 1110 /* 1111 * Lock an LWP. 1112 */ 1113 void 1114 lwp_lock_retry(struct lwp *l, kmutex_t *old) 1115 { 1116 1117 /* 1118 * XXXgcc ignoring kmutex_t * volatile on i386 1119 * 1120 * gcc version 4.1.2 20061021 prerelease (NetBSD nb1 20061021) 1121 */ 1122 #if 1 1123 while (l->l_mutex != old) { 1124 #else 1125 for (;;) { 1126 #endif 1127 mutex_spin_exit(old); 1128 old = l->l_mutex; 1129 mutex_spin_enter(old); 1130 1131 /* 1132 * mutex_enter() will have posted a read barrier. Re-test 1133 * l->l_mutex. If it has changed, we need to try again. 1134 */ 1135 #if 1 1136 } 1137 #else 1138 } while (__predict_false(l->l_mutex != old)); 1139 #endif 1140 } 1141 1142 /* 1143 * Lend a new mutex to an LWP. The old mutex must be held. 1144 */ 1145 void 1146 lwp_setlock(struct lwp *l, kmutex_t *new) 1147 { 1148 1149 KASSERT(mutex_owned(l->l_mutex)); 1150 1151 membar_producer(); 1152 l->l_mutex = new; 1153 } 1154 1155 /* 1156 * Lend a new mutex to an LWP, and release the old mutex. The old mutex 1157 * must be held. 1158 */ 1159 void 1160 lwp_unlock_to(struct lwp *l, kmutex_t *new) 1161 { 1162 kmutex_t *old; 1163 1164 KASSERT(mutex_owned(l->l_mutex)); 1165 1166 old = l->l_mutex; 1167 membar_producer(); 1168 l->l_mutex = new; 1169 mutex_spin_exit(old); 1170 } 1171 1172 /* 1173 * Acquire a new mutex, and donate it to an LWP. The LWP must already be 1174 * locked. 1175 */ 1176 void 1177 lwp_relock(struct lwp *l, kmutex_t *new) 1178 { 1179 kmutex_t *old; 1180 1181 KASSERT(mutex_owned(l->l_mutex)); 1182 1183 old = l->l_mutex; 1184 if (old != new) { 1185 mutex_spin_enter(new); 1186 l->l_mutex = new; 1187 mutex_spin_exit(old); 1188 } 1189 } 1190 1191 int 1192 lwp_trylock(struct lwp *l) 1193 { 1194 kmutex_t *old; 1195 1196 for (;;) { 1197 if (!mutex_tryenter(old = l->l_mutex)) 1198 return 0; 1199 if (__predict_true(l->l_mutex == old)) 1200 return 1; 1201 mutex_spin_exit(old); 1202 } 1203 } 1204 1205 /* 1206 * Handle exceptions for mi_userret(). Called if a member of LW_USERRET is 1207 * set. 1208 */ 1209 void 1210 lwp_userret(struct lwp *l) 1211 { 1212 struct proc *p; 1213 void (*hook)(void); 1214 int sig; 1215 1216 p = l->l_proc; 1217 1218 #ifndef __HAVE_FAST_SOFTINTS 1219 /* Run pending soft interrupts. */ 1220 if (l->l_cpu->ci_data.cpu_softints != 0) 1221 softint_overlay(); 1222 #endif 1223 1224 /* 1225 * It should be safe to do this read unlocked on a multiprocessor 1226 * system.. 1227 */ 1228 while ((l->l_flag & LW_USERRET) != 0) { 1229 /* 1230 * Process pending signals first, unless the process 1231 * is dumping core or exiting, where we will instead 1232 * enter the L_WSUSPEND case below. 1233 */ 1234 if ((l->l_flag & (LW_PENDSIG | LW_WCORE | LW_WEXIT)) == 1235 LW_PENDSIG) { 1236 KERNEL_LOCK(1, l); /* XXXSMP pool_put() below */ 1237 mutex_enter(&p->p_smutex); 1238 while ((sig = issignal(l)) != 0) 1239 postsig(sig); 1240 mutex_exit(&p->p_smutex); 1241 KERNEL_UNLOCK_LAST(l); /* XXXSMP */ 1242 } 1243 1244 /* 1245 * Core-dump or suspend pending. 1246 * 1247 * In case of core dump, suspend ourselves, so that the 1248 * kernel stack and therefore the userland registers saved 1249 * in the trapframe are around for coredump() to write them 1250 * out. We issue a wakeup on p->p_lwpcv so that sigexit() 1251 * will write the core file out once all other LWPs are 1252 * suspended. 1253 */ 1254 if ((l->l_flag & LW_WSUSPEND) != 0) { 1255 mutex_enter(&p->p_smutex); 1256 p->p_nrlwps--; 1257 cv_broadcast(&p->p_lwpcv); 1258 lwp_lock(l); 1259 l->l_stat = LSSUSPENDED; 1260 mutex_exit(&p->p_smutex); 1261 mi_switch(l); 1262 } 1263 1264 /* Process is exiting. */ 1265 if ((l->l_flag & LW_WEXIT) != 0) { 1266 KERNEL_LOCK(1, l); 1267 lwp_exit(l); 1268 KASSERT(0); 1269 /* NOTREACHED */ 1270 } 1271 1272 /* Call userret hook; used by Linux emulation. */ 1273 if ((l->l_flag & LW_WUSERRET) != 0) { 1274 lwp_lock(l); 1275 l->l_flag &= ~LW_WUSERRET; 1276 lwp_unlock(l); 1277 hook = p->p_userret; 1278 p->p_userret = NULL; 1279 (*hook)(); 1280 } 1281 } 1282 } 1283 1284 /* 1285 * Force an LWP to enter the kernel, to take a trip through lwp_userret(). 1286 */ 1287 void 1288 lwp_need_userret(struct lwp *l) 1289 { 1290 KASSERT(lwp_locked(l, NULL)); 1291 1292 /* 1293 * Since the tests in lwp_userret() are done unlocked, make sure 1294 * that the condition will be seen before forcing the LWP to enter 1295 * kernel mode. 1296 */ 1297 membar_producer(); 1298 cpu_signotify(l); 1299 } 1300 1301 /* 1302 * Add one reference to an LWP. This will prevent the LWP from 1303 * exiting, thus keep the lwp structure and PCB around to inspect. 1304 */ 1305 void 1306 lwp_addref(struct lwp *l) 1307 { 1308 1309 KASSERT(mutex_owned(&l->l_proc->p_smutex)); 1310 KASSERT(l->l_stat != LSZOMB); 1311 KASSERT(l->l_refcnt != 0); 1312 1313 l->l_refcnt++; 1314 } 1315 1316 /* 1317 * Remove one reference to an LWP. If this is the last reference, 1318 * then we must finalize the LWP's death. 1319 */ 1320 void 1321 lwp_delref(struct lwp *l) 1322 { 1323 struct proc *p = l->l_proc; 1324 1325 mutex_enter(&p->p_smutex); 1326 KASSERT(l->l_stat != LSZOMB); 1327 KASSERT(l->l_refcnt > 0); 1328 if (--l->l_refcnt == 0) 1329 cv_broadcast(&p->p_lwpcv); 1330 mutex_exit(&p->p_smutex); 1331 } 1332 1333 /* 1334 * Drain all references to the current LWP. 1335 */ 1336 void 1337 lwp_drainrefs(struct lwp *l) 1338 { 1339 struct proc *p = l->l_proc; 1340 1341 KASSERT(mutex_owned(&p->p_smutex)); 1342 KASSERT(l->l_refcnt != 0); 1343 1344 l->l_refcnt--; 1345 while (l->l_refcnt != 0) 1346 cv_wait(&p->p_lwpcv, &p->p_smutex); 1347 } 1348 1349 /* 1350 * lwp_specific_key_create -- 1351 * Create a key for subsystem lwp-specific data. 1352 */ 1353 int 1354 lwp_specific_key_create(specificdata_key_t *keyp, specificdata_dtor_t dtor) 1355 { 1356 1357 return (specificdata_key_create(lwp_specificdata_domain, keyp, dtor)); 1358 } 1359 1360 /* 1361 * lwp_specific_key_delete -- 1362 * Delete a key for subsystem lwp-specific data. 1363 */ 1364 void 1365 lwp_specific_key_delete(specificdata_key_t key) 1366 { 1367 1368 specificdata_key_delete(lwp_specificdata_domain, key); 1369 } 1370 1371 /* 1372 * lwp_initspecific -- 1373 * Initialize an LWP's specificdata container. 1374 */ 1375 void 1376 lwp_initspecific(struct lwp *l) 1377 { 1378 int error; 1379 1380 error = specificdata_init(lwp_specificdata_domain, &l->l_specdataref); 1381 KASSERT(error == 0); 1382 } 1383 1384 /* 1385 * lwp_finispecific -- 1386 * Finalize an LWP's specificdata container. 1387 */ 1388 void 1389 lwp_finispecific(struct lwp *l) 1390 { 1391 1392 specificdata_fini(lwp_specificdata_domain, &l->l_specdataref); 1393 } 1394 1395 /* 1396 * lwp_getspecific -- 1397 * Return lwp-specific data corresponding to the specified key. 1398 * 1399 * Note: LWP specific data is NOT INTERLOCKED. An LWP should access 1400 * only its OWN SPECIFIC DATA. If it is necessary to access another 1401 * LWP's specifc data, care must be taken to ensure that doing so 1402 * would not cause internal data structure inconsistency (i.e. caller 1403 * can guarantee that the target LWP is not inside an lwp_getspecific() 1404 * or lwp_setspecific() call). 1405 */ 1406 void * 1407 lwp_getspecific(specificdata_key_t key) 1408 { 1409 1410 return (specificdata_getspecific_unlocked(lwp_specificdata_domain, 1411 &curlwp->l_specdataref, key)); 1412 } 1413 1414 void * 1415 _lwp_getspecific_by_lwp(struct lwp *l, specificdata_key_t key) 1416 { 1417 1418 return (specificdata_getspecific_unlocked(lwp_specificdata_domain, 1419 &l->l_specdataref, key)); 1420 } 1421 1422 /* 1423 * lwp_setspecific -- 1424 * Set lwp-specific data corresponding to the specified key. 1425 */ 1426 void 1427 lwp_setspecific(specificdata_key_t key, void *data) 1428 { 1429 1430 specificdata_setspecific(lwp_specificdata_domain, 1431 &curlwp->l_specdataref, key, data); 1432 } 1433 1434 /* 1435 * Allocate a new lwpctl structure for a user LWP. 1436 */ 1437 int 1438 lwp_ctl_alloc(vaddr_t *uaddr) 1439 { 1440 lcproc_t *lp; 1441 u_int bit, i, offset; 1442 struct uvm_object *uao; 1443 int error; 1444 lcpage_t *lcp; 1445 proc_t *p; 1446 lwp_t *l; 1447 1448 l = curlwp; 1449 p = l->l_proc; 1450 1451 if (l->l_lcpage != NULL) { 1452 lcp = l->l_lcpage; 1453 *uaddr = lcp->lcp_uaddr + (vaddr_t)l->l_lwpctl - lcp->lcp_kaddr; 1454 return (EINVAL); 1455 } 1456 1457 /* First time around, allocate header structure for the process. */ 1458 if ((lp = p->p_lwpctl) == NULL) { 1459 lp = kmem_alloc(sizeof(*lp), KM_SLEEP); 1460 mutex_init(&lp->lp_lock, MUTEX_DEFAULT, IPL_NONE); 1461 lp->lp_uao = NULL; 1462 TAILQ_INIT(&lp->lp_pages); 1463 mutex_enter(&p->p_mutex); 1464 if (p->p_lwpctl == NULL) { 1465 p->p_lwpctl = lp; 1466 mutex_exit(&p->p_mutex); 1467 } else { 1468 mutex_exit(&p->p_mutex); 1469 mutex_destroy(&lp->lp_lock); 1470 kmem_free(lp, sizeof(*lp)); 1471 lp = p->p_lwpctl; 1472 } 1473 } 1474 1475 /* 1476 * Set up an anonymous memory region to hold the shared pages. 1477 * Map them into the process' address space. The user vmspace 1478 * gets the first reference on the UAO. 1479 */ 1480 mutex_enter(&lp->lp_lock); 1481 if (lp->lp_uao == NULL) { 1482 lp->lp_uao = uao_create(LWPCTL_UAREA_SZ, 0); 1483 lp->lp_cur = 0; 1484 lp->lp_max = LWPCTL_UAREA_SZ; 1485 lp->lp_uva = p->p_emul->e_vm_default_addr(p, 1486 (vaddr_t)p->p_vmspace->vm_daddr, LWPCTL_UAREA_SZ); 1487 error = uvm_map(&p->p_vmspace->vm_map, &lp->lp_uva, 1488 LWPCTL_UAREA_SZ, lp->lp_uao, 0, 0, UVM_MAPFLAG(UVM_PROT_RW, 1489 UVM_PROT_RW, UVM_INH_NONE, UVM_ADV_NORMAL, 0)); 1490 if (error != 0) { 1491 uao_detach(lp->lp_uao); 1492 lp->lp_uao = NULL; 1493 mutex_exit(&lp->lp_lock); 1494 return error; 1495 } 1496 } 1497 1498 /* Get a free block and allocate for this LWP. */ 1499 TAILQ_FOREACH(lcp, &lp->lp_pages, lcp_chain) { 1500 if (lcp->lcp_nfree != 0) 1501 break; 1502 } 1503 if (lcp == NULL) { 1504 /* Nothing available - try to set up a free page. */ 1505 if (lp->lp_cur == lp->lp_max) { 1506 mutex_exit(&lp->lp_lock); 1507 return ENOMEM; 1508 } 1509 lcp = kmem_alloc(LWPCTL_LCPAGE_SZ, KM_SLEEP); 1510 if (lcp == NULL) { 1511 mutex_exit(&lp->lp_lock); 1512 return ENOMEM; 1513 } 1514 /* 1515 * Wire the next page down in kernel space. Since this 1516 * is a new mapping, we must add a reference. 1517 */ 1518 uao = lp->lp_uao; 1519 (*uao->pgops->pgo_reference)(uao); 1520 error = uvm_map(kernel_map, &lcp->lcp_kaddr, PAGE_SIZE, 1521 uao, lp->lp_cur, PAGE_SIZE, 1522 UVM_MAPFLAG(UVM_PROT_RW, UVM_PROT_RW, 1523 UVM_INH_NONE, UVM_ADV_RANDOM, 0)); 1524 if (error == 0) 1525 error = uvm_map_pageable(kernel_map, lcp->lcp_kaddr, 1526 lcp->lcp_kaddr + PAGE_SIZE, FALSE, 0); 1527 if (error != 0) { 1528 mutex_exit(&lp->lp_lock); 1529 kmem_free(lcp, LWPCTL_LCPAGE_SZ); 1530 (*uao->pgops->pgo_detach)(uao); 1531 return error; 1532 } 1533 /* Prepare the page descriptor and link into the list. */ 1534 lcp->lcp_uaddr = lp->lp_uva + lp->lp_cur; 1535 lp->lp_cur += PAGE_SIZE; 1536 lcp->lcp_nfree = LWPCTL_PER_PAGE; 1537 lcp->lcp_rotor = 0; 1538 memset(lcp->lcp_bitmap, 0xff, LWPCTL_BITMAP_SZ); 1539 TAILQ_INSERT_HEAD(&lp->lp_pages, lcp, lcp_chain); 1540 } 1541 for (i = lcp->lcp_rotor; lcp->lcp_bitmap[i] == 0;) { 1542 if (++i >= LWPCTL_BITMAP_ENTRIES) 1543 i = 0; 1544 } 1545 bit = ffs(lcp->lcp_bitmap[i]) - 1; 1546 lcp->lcp_bitmap[i] ^= (1 << bit); 1547 lcp->lcp_rotor = i; 1548 lcp->lcp_nfree--; 1549 l->l_lcpage = lcp; 1550 offset = (i << 5) + bit; 1551 l->l_lwpctl = (lwpctl_t *)lcp->lcp_kaddr + offset; 1552 *uaddr = lcp->lcp_uaddr + offset * sizeof(lwpctl_t); 1553 mutex_exit(&lp->lp_lock); 1554 1555 l->l_lwpctl->lc_curcpu = (short)curcpu()->ci_data.cpu_index; 1556 1557 return 0; 1558 } 1559 1560 /* 1561 * Free an lwpctl structure back to the per-process list. 1562 */ 1563 void 1564 lwp_ctl_free(lwp_t *l) 1565 { 1566 lcproc_t *lp; 1567 lcpage_t *lcp; 1568 u_int map, offset; 1569 1570 lp = l->l_proc->p_lwpctl; 1571 KASSERT(lp != NULL); 1572 1573 lcp = l->l_lcpage; 1574 offset = (u_int)((lwpctl_t *)l->l_lwpctl - (lwpctl_t *)lcp->lcp_kaddr); 1575 KASSERT(offset < LWPCTL_PER_PAGE); 1576 1577 mutex_enter(&lp->lp_lock); 1578 lcp->lcp_nfree++; 1579 map = offset >> 5; 1580 lcp->lcp_bitmap[map] |= (1 << (offset & 31)); 1581 if (lcp->lcp_bitmap[lcp->lcp_rotor] == 0) 1582 lcp->lcp_rotor = map; 1583 if (TAILQ_FIRST(&lp->lp_pages)->lcp_nfree == 0) { 1584 TAILQ_REMOVE(&lp->lp_pages, lcp, lcp_chain); 1585 TAILQ_INSERT_HEAD(&lp->lp_pages, lcp, lcp_chain); 1586 } 1587 mutex_exit(&lp->lp_lock); 1588 } 1589 1590 /* 1591 * Process is exiting; tear down lwpctl state. This can only be safely 1592 * called by the last LWP in the process. 1593 */ 1594 void 1595 lwp_ctl_exit(void) 1596 { 1597 lcpage_t *lcp, *next; 1598 lcproc_t *lp; 1599 proc_t *p; 1600 lwp_t *l; 1601 1602 l = curlwp; 1603 l->l_lwpctl = NULL; 1604 p = l->l_proc; 1605 lp = p->p_lwpctl; 1606 1607 KASSERT(lp != NULL); 1608 KASSERT(p->p_nlwps == 1); 1609 1610 for (lcp = TAILQ_FIRST(&lp->lp_pages); lcp != NULL; lcp = next) { 1611 next = TAILQ_NEXT(lcp, lcp_chain); 1612 uvm_unmap(kernel_map, lcp->lcp_kaddr, 1613 lcp->lcp_kaddr + PAGE_SIZE); 1614 kmem_free(lcp, LWPCTL_LCPAGE_SZ); 1615 } 1616 1617 if (lp->lp_uao != NULL) { 1618 uvm_unmap(&p->p_vmspace->vm_map, lp->lp_uva, 1619 lp->lp_uva + LWPCTL_UAREA_SZ); 1620 } 1621 1622 mutex_destroy(&lp->lp_lock); 1623 kmem_free(lp, sizeof(*lp)); 1624 p->p_lwpctl = NULL; 1625 } 1626 1627 #if defined(DDB) 1628 void 1629 lwp_whatis(uintptr_t addr, void (*pr)(const char *, ...)) 1630 { 1631 lwp_t *l; 1632 1633 LIST_FOREACH(l, &alllwp, l_list) { 1634 uintptr_t stack = (uintptr_t)KSTACK_LOWEST_ADDR(l); 1635 1636 if (addr < stack || stack + KSTACK_SIZE <= addr) { 1637 continue; 1638 } 1639 (*pr)("%p is %p+%zu, LWP %p's stack\n", 1640 (void *)addr, (void *)stack, 1641 (size_t)(addr - stack), l); 1642 } 1643 } 1644 #endif /* defined(DDB) */ 1645