1 /* $NetBSD: kern_lwp.c,v 1.173 2012/09/27 20:43:15 rmind Exp $ */ 2 3 /*- 4 * Copyright (c) 2001, 2006, 2007, 2008, 2009 The NetBSD Foundation, Inc. 5 * All rights reserved. 6 * 7 * This code is derived from software contributed to The NetBSD Foundation 8 * by Nathan J. Williams, and Andrew Doran. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS 20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 29 * POSSIBILITY OF SUCH DAMAGE. 30 */ 31 32 /* 33 * Overview 34 * 35 * Lightweight processes (LWPs) are the basic unit or thread of 36 * execution within the kernel. The core state of an LWP is described 37 * by "struct lwp", also known as lwp_t. 38 * 39 * Each LWP is contained within a process (described by "struct proc"), 40 * Every process contains at least one LWP, but may contain more. The 41 * process describes attributes shared among all of its LWPs such as a 42 * private address space, global execution state (stopped, active, 43 * zombie, ...), signal disposition and so on. On a multiprocessor 44 * machine, multiple LWPs be executing concurrently in the kernel. 45 * 46 * Execution states 47 * 48 * At any given time, an LWP has overall state that is described by 49 * lwp::l_stat. The states are broken into two sets below. The first 50 * set is guaranteed to represent the absolute, current state of the 51 * LWP: 52 * 53 * LSONPROC 54 * 55 * On processor: the LWP is executing on a CPU, either in the 56 * kernel or in user space. 57 * 58 * LSRUN 59 * 60 * Runnable: the LWP is parked on a run queue, and may soon be 61 * chosen to run by an idle processor, or by a processor that 62 * has been asked to preempt a currently runnning but lower 63 * priority LWP. 64 * 65 * LSIDL 66 * 67 * Idle: the LWP has been created but has not yet executed, 68 * or it has ceased executing a unit of work and is waiting 69 * to be started again. 70 * 71 * LSSUSPENDED: 72 * 73 * Suspended: the LWP has had its execution suspended by 74 * another LWP in the same process using the _lwp_suspend() 75 * system call. User-level LWPs also enter the suspended 76 * state when the system is shutting down. 77 * 78 * The second set represent a "statement of intent" on behalf of the 79 * LWP. The LWP may in fact be executing on a processor, may be 80 * sleeping or idle. It is expected to take the necessary action to 81 * stop executing or become "running" again within a short timeframe. 82 * The LP_RUNNING flag in lwp::l_pflag indicates that an LWP is running. 83 * Importantly, it indicates that its state is tied to a CPU. 84 * 85 * LSZOMB: 86 * 87 * Dead or dying: the LWP has released most of its resources 88 * and is about to switch away into oblivion, or has already 89 * switched away. When it switches away, its few remaining 90 * resources can be collected. 91 * 92 * LSSLEEP: 93 * 94 * Sleeping: the LWP has entered itself onto a sleep queue, and 95 * has switched away or will switch away shortly to allow other 96 * LWPs to run on the CPU. 97 * 98 * LSSTOP: 99 * 100 * Stopped: the LWP has been stopped as a result of a job 101 * control signal, or as a result of the ptrace() interface. 102 * 103 * Stopped LWPs may run briefly within the kernel to handle 104 * signals that they receive, but will not return to user space 105 * until their process' state is changed away from stopped. 106 * 107 * Single LWPs within a process can not be set stopped 108 * selectively: all actions that can stop or continue LWPs 109 * occur at the process level. 110 * 111 * State transitions 112 * 113 * Note that the LSSTOP state may only be set when returning to 114 * user space in userret(), or when sleeping interruptably. The 115 * LSSUSPENDED state may only be set in userret(). Before setting 116 * those states, we try to ensure that the LWPs will release all 117 * locks that they hold, and at a minimum try to ensure that the 118 * LWP can be set runnable again by a signal. 119 * 120 * LWPs may transition states in the following ways: 121 * 122 * RUN -------> ONPROC ONPROC -----> RUN 123 * > SLEEP 124 * > STOPPED 125 * > SUSPENDED 126 * > ZOMB 127 * > IDL (special cases) 128 * 129 * STOPPED ---> RUN SUSPENDED --> RUN 130 * > SLEEP 131 * 132 * SLEEP -----> ONPROC IDL --------> RUN 133 * > RUN > SUSPENDED 134 * > STOPPED > STOPPED 135 * > ONPROC (special cases) 136 * 137 * Some state transitions are only possible with kernel threads (eg 138 * ONPROC -> IDL) and happen under tightly controlled circumstances 139 * free of unwanted side effects. 140 * 141 * Migration 142 * 143 * Migration of threads from one CPU to another could be performed 144 * internally by the scheduler via sched_takecpu() or sched_catchlwp() 145 * functions. The universal lwp_migrate() function should be used for 146 * any other cases. Subsystems in the kernel must be aware that CPU 147 * of LWP may change, while it is not locked. 148 * 149 * Locking 150 * 151 * The majority of fields in 'struct lwp' are covered by a single, 152 * general spin lock pointed to by lwp::l_mutex. The locks covering 153 * each field are documented in sys/lwp.h. 154 * 155 * State transitions must be made with the LWP's general lock held, 156 * and may cause the LWP's lock pointer to change. Manipulation of 157 * the general lock is not performed directly, but through calls to 158 * lwp_lock(), lwp_unlock() and others. It should be noted that the 159 * adaptive locks are not allowed to be released while the LWP's lock 160 * is being held (unlike for other spin-locks). 161 * 162 * States and their associated locks: 163 * 164 * LSONPROC, LSZOMB: 165 * 166 * Always covered by spc_lwplock, which protects running LWPs. 167 * This is a per-CPU lock and matches lwp::l_cpu. 168 * 169 * LSIDL, LSRUN: 170 * 171 * Always covered by spc_mutex, which protects the run queues. 172 * This is a per-CPU lock and matches lwp::l_cpu. 173 * 174 * LSSLEEP: 175 * 176 * Covered by a lock associated with the sleep queue that the 177 * LWP resides on. Matches lwp::l_sleepq::sq_mutex. 178 * 179 * LSSTOP, LSSUSPENDED: 180 * 181 * If the LWP was previously sleeping (l_wchan != NULL), then 182 * l_mutex references the sleep queue lock. If the LWP was 183 * runnable or on the CPU when halted, or has been removed from 184 * the sleep queue since halted, then the lock is spc_lwplock. 185 * 186 * The lock order is as follows: 187 * 188 * spc::spc_lwplock -> 189 * sleeptab::st_mutex -> 190 * tschain_t::tc_mutex -> 191 * spc::spc_mutex 192 * 193 * Each process has an scheduler state lock (proc::p_lock), and a 194 * number of counters on LWPs and their states: p_nzlwps, p_nrlwps, and 195 * so on. When an LWP is to be entered into or removed from one of the 196 * following states, p_lock must be held and the process wide counters 197 * adjusted: 198 * 199 * LSIDL, LSZOMB, LSSTOP, LSSUSPENDED 200 * 201 * (But not always for kernel threads. There are some special cases 202 * as mentioned above. See kern_softint.c.) 203 * 204 * Note that an LWP is considered running or likely to run soon if in 205 * one of the following states. This affects the value of p_nrlwps: 206 * 207 * LSRUN, LSONPROC, LSSLEEP 208 * 209 * p_lock does not need to be held when transitioning among these 210 * three states, hence p_lock is rarely taken for state transitions. 211 */ 212 213 #include <sys/cdefs.h> 214 __KERNEL_RCSID(0, "$NetBSD: kern_lwp.c,v 1.173 2012/09/27 20:43:15 rmind Exp $"); 215 216 #include "opt_ddb.h" 217 #include "opt_lockdebug.h" 218 #include "opt_dtrace.h" 219 220 #define _LWP_API_PRIVATE 221 222 #include <sys/param.h> 223 #include <sys/systm.h> 224 #include <sys/cpu.h> 225 #include <sys/pool.h> 226 #include <sys/proc.h> 227 #include <sys/syscallargs.h> 228 #include <sys/syscall_stats.h> 229 #include <sys/kauth.h> 230 #include <sys/pserialize.h> 231 #include <sys/sleepq.h> 232 #include <sys/lockdebug.h> 233 #include <sys/kmem.h> 234 #include <sys/pset.h> 235 #include <sys/intr.h> 236 #include <sys/lwpctl.h> 237 #include <sys/atomic.h> 238 #include <sys/filedesc.h> 239 #include <sys/dtrace_bsd.h> 240 #include <sys/sdt.h> 241 #include <sys/xcall.h> 242 #include <sys/uidinfo.h> 243 #include <sys/sysctl.h> 244 245 #include <uvm/uvm_extern.h> 246 #include <uvm/uvm_object.h> 247 248 static pool_cache_t lwp_cache __read_mostly; 249 struct lwplist alllwp __cacheline_aligned; 250 251 static void lwp_dtor(void *, void *); 252 253 /* DTrace proc provider probes */ 254 SDT_PROBE_DEFINE(proc,,,lwp_create, 255 "struct lwp *", NULL, 256 NULL, NULL, NULL, NULL, 257 NULL, NULL, NULL, NULL); 258 SDT_PROBE_DEFINE(proc,,,lwp_start, 259 "struct lwp *", NULL, 260 NULL, NULL, NULL, NULL, 261 NULL, NULL, NULL, NULL); 262 SDT_PROBE_DEFINE(proc,,,lwp_exit, 263 "struct lwp *", NULL, 264 NULL, NULL, NULL, NULL, 265 NULL, NULL, NULL, NULL); 266 267 struct turnstile turnstile0; 268 struct lwp lwp0 __aligned(MIN_LWP_ALIGNMENT) = { 269 #ifdef LWP0_CPU_INFO 270 .l_cpu = LWP0_CPU_INFO, 271 #endif 272 #ifdef LWP0_MD_INITIALIZER 273 .l_md = LWP0_MD_INITIALIZER, 274 #endif 275 .l_proc = &proc0, 276 .l_lid = 1, 277 .l_flag = LW_SYSTEM, 278 .l_stat = LSONPROC, 279 .l_ts = &turnstile0, 280 .l_syncobj = &sched_syncobj, 281 .l_refcnt = 1, 282 .l_priority = PRI_USER + NPRI_USER - 1, 283 .l_inheritedprio = -1, 284 .l_class = SCHED_OTHER, 285 .l_psid = PS_NONE, 286 .l_pi_lenders = SLIST_HEAD_INITIALIZER(&lwp0.l_pi_lenders), 287 .l_name = __UNCONST("swapper"), 288 .l_fd = &filedesc0, 289 }; 290 291 static int sysctl_kern_maxlwp(SYSCTLFN_PROTO); 292 293 /* 294 * sysctl helper routine for kern.maxlwp. Ensures that the new 295 * values are not too low or too high. 296 */ 297 static int 298 sysctl_kern_maxlwp(SYSCTLFN_ARGS) 299 { 300 int error, nmaxlwp; 301 struct sysctlnode node; 302 303 nmaxlwp = maxlwp; 304 node = *rnode; 305 node.sysctl_data = &nmaxlwp; 306 error = sysctl_lookup(SYSCTLFN_CALL(&node)); 307 if (error || newp == NULL) 308 return error; 309 310 if (nmaxlwp < 0 || nmaxlwp >= 65536) 311 return EINVAL; 312 if (nmaxlwp > cpu_maxlwp()) 313 return EINVAL; 314 maxlwp = nmaxlwp; 315 316 return 0; 317 } 318 319 static void 320 sysctl_kern_lwp_setup(void) 321 { 322 struct sysctllog *clog = NULL; 323 324 sysctl_createv(&clog, 0, NULL, NULL, 325 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, 326 CTLTYPE_INT, "maxlwp", 327 SYSCTL_DESCR("Maximum number of simultaneous threads"), 328 sysctl_kern_maxlwp, 0, NULL, 0, 329 CTL_KERN, CTL_CREATE, CTL_EOL); 330 } 331 332 void 333 lwpinit(void) 334 { 335 336 LIST_INIT(&alllwp); 337 lwpinit_specificdata(); 338 lwp_sys_init(); 339 lwp_cache = pool_cache_init(sizeof(lwp_t), MIN_LWP_ALIGNMENT, 0, 0, 340 "lwppl", NULL, IPL_NONE, NULL, lwp_dtor, NULL); 341 342 maxlwp = cpu_maxlwp(); 343 sysctl_kern_lwp_setup(); 344 } 345 346 void 347 lwp0_init(void) 348 { 349 struct lwp *l = &lwp0; 350 351 KASSERT((void *)uvm_lwp_getuarea(l) != NULL); 352 KASSERT(l->l_lid == proc0.p_nlwpid); 353 354 LIST_INSERT_HEAD(&alllwp, l, l_list); 355 356 callout_init(&l->l_timeout_ch, CALLOUT_MPSAFE); 357 callout_setfunc(&l->l_timeout_ch, sleepq_timeout, l); 358 cv_init(&l->l_sigcv, "sigwait"); 359 cv_init(&l->l_waitcv, "vfork"); 360 361 kauth_cred_hold(proc0.p_cred); 362 l->l_cred = proc0.p_cred; 363 364 kdtrace_thread_ctor(NULL, l); 365 lwp_initspecific(l); 366 367 SYSCALL_TIME_LWP_INIT(l); 368 } 369 370 static void 371 lwp_dtor(void *arg, void *obj) 372 { 373 lwp_t *l = obj; 374 uint64_t where; 375 (void)l; 376 377 /* 378 * Provide a barrier to ensure that all mutex_oncpu() and rw_oncpu() 379 * calls will exit before memory of LWP is returned to the pool, where 380 * KVA of LWP structure might be freed and re-used for other purposes. 381 * Kernel preemption is disabled around mutex_oncpu() and rw_oncpu() 382 * callers, therefore cross-call to all CPUs will do the job. Also, 383 * the value of l->l_cpu must be still valid at this point. 384 */ 385 KASSERT(l->l_cpu != NULL); 386 where = xc_broadcast(0, (xcfunc_t)nullop, NULL, NULL); 387 xc_wait(where); 388 } 389 390 /* 391 * Set an suspended. 392 * 393 * Must be called with p_lock held, and the LWP locked. Will unlock the 394 * LWP before return. 395 */ 396 int 397 lwp_suspend(struct lwp *curl, struct lwp *t) 398 { 399 int error; 400 401 KASSERT(mutex_owned(t->l_proc->p_lock)); 402 KASSERT(lwp_locked(t, NULL)); 403 404 KASSERT(curl != t || curl->l_stat == LSONPROC); 405 406 /* 407 * If the current LWP has been told to exit, we must not suspend anyone 408 * else or deadlock could occur. We won't return to userspace. 409 */ 410 if ((curl->l_flag & (LW_WEXIT | LW_WCORE)) != 0) { 411 lwp_unlock(t); 412 return (EDEADLK); 413 } 414 415 error = 0; 416 417 switch (t->l_stat) { 418 case LSRUN: 419 case LSONPROC: 420 t->l_flag |= LW_WSUSPEND; 421 lwp_need_userret(t); 422 lwp_unlock(t); 423 break; 424 425 case LSSLEEP: 426 t->l_flag |= LW_WSUSPEND; 427 428 /* 429 * Kick the LWP and try to get it to the kernel boundary 430 * so that it will release any locks that it holds. 431 * setrunnable() will release the lock. 432 */ 433 if ((t->l_flag & LW_SINTR) != 0) 434 setrunnable(t); 435 else 436 lwp_unlock(t); 437 break; 438 439 case LSSUSPENDED: 440 lwp_unlock(t); 441 break; 442 443 case LSSTOP: 444 t->l_flag |= LW_WSUSPEND; 445 setrunnable(t); 446 break; 447 448 case LSIDL: 449 case LSZOMB: 450 error = EINTR; /* It's what Solaris does..... */ 451 lwp_unlock(t); 452 break; 453 } 454 455 return (error); 456 } 457 458 /* 459 * Restart a suspended LWP. 460 * 461 * Must be called with p_lock held, and the LWP locked. Will unlock the 462 * LWP before return. 463 */ 464 void 465 lwp_continue(struct lwp *l) 466 { 467 468 KASSERT(mutex_owned(l->l_proc->p_lock)); 469 KASSERT(lwp_locked(l, NULL)); 470 471 /* If rebooting or not suspended, then just bail out. */ 472 if ((l->l_flag & LW_WREBOOT) != 0) { 473 lwp_unlock(l); 474 return; 475 } 476 477 l->l_flag &= ~LW_WSUSPEND; 478 479 if (l->l_stat != LSSUSPENDED) { 480 lwp_unlock(l); 481 return; 482 } 483 484 /* setrunnable() will release the lock. */ 485 setrunnable(l); 486 } 487 488 /* 489 * Restart a stopped LWP. 490 * 491 * Must be called with p_lock held, and the LWP NOT locked. Will unlock the 492 * LWP before return. 493 */ 494 void 495 lwp_unstop(struct lwp *l) 496 { 497 struct proc *p = l->l_proc; 498 499 KASSERT(mutex_owned(proc_lock)); 500 KASSERT(mutex_owned(p->p_lock)); 501 502 lwp_lock(l); 503 504 /* If not stopped, then just bail out. */ 505 if (l->l_stat != LSSTOP) { 506 lwp_unlock(l); 507 return; 508 } 509 510 p->p_stat = SACTIVE; 511 p->p_sflag &= ~PS_STOPPING; 512 513 if (!p->p_waited) 514 p->p_pptr->p_nstopchild--; 515 516 if (l->l_wchan == NULL) { 517 /* setrunnable() will release the lock. */ 518 setrunnable(l); 519 } else if (p->p_xstat && (l->l_flag & LW_SINTR) != 0) { 520 /* setrunnable() so we can receive the signal */ 521 setrunnable(l); 522 } else { 523 l->l_stat = LSSLEEP; 524 p->p_nrlwps++; 525 lwp_unlock(l); 526 } 527 } 528 529 /* 530 * Wait for an LWP within the current process to exit. If 'lid' is 531 * non-zero, we are waiting for a specific LWP. 532 * 533 * Must be called with p->p_lock held. 534 */ 535 int 536 lwp_wait(struct lwp *l, lwpid_t lid, lwpid_t *departed, bool exiting) 537 { 538 const lwpid_t curlid = l->l_lid; 539 proc_t *p = l->l_proc; 540 lwp_t *l2; 541 int error; 542 543 KASSERT(mutex_owned(p->p_lock)); 544 545 p->p_nlwpwait++; 546 l->l_waitingfor = lid; 547 548 for (;;) { 549 int nfound; 550 551 /* 552 * Avoid a race between exit1() and sigexit(): if the 553 * process is dumping core, then we need to bail out: call 554 * into lwp_userret() where we will be suspended until the 555 * deed is done. 556 */ 557 if ((p->p_sflag & PS_WCORE) != 0) { 558 mutex_exit(p->p_lock); 559 lwp_userret(l); 560 KASSERT(false); 561 } 562 563 /* 564 * First off, drain any detached LWP that is waiting to be 565 * reaped. 566 */ 567 while ((l2 = p->p_zomblwp) != NULL) { 568 p->p_zomblwp = NULL; 569 lwp_free(l2, false, false);/* releases proc mutex */ 570 mutex_enter(p->p_lock); 571 } 572 573 /* 574 * Now look for an LWP to collect. If the whole process is 575 * exiting, count detached LWPs as eligible to be collected, 576 * but don't drain them here. 577 */ 578 nfound = 0; 579 error = 0; 580 LIST_FOREACH(l2, &p->p_lwps, l_sibling) { 581 /* 582 * If a specific wait and the target is waiting on 583 * us, then avoid deadlock. This also traps LWPs 584 * that try to wait on themselves. 585 * 586 * Note that this does not handle more complicated 587 * cycles, like: t1 -> t2 -> t3 -> t1. The process 588 * can still be killed so it is not a major problem. 589 */ 590 if (l2->l_lid == lid && l2->l_waitingfor == curlid) { 591 error = EDEADLK; 592 break; 593 } 594 if (l2 == l) 595 continue; 596 if ((l2->l_prflag & LPR_DETACHED) != 0) { 597 nfound += exiting; 598 continue; 599 } 600 if (lid != 0) { 601 if (l2->l_lid != lid) 602 continue; 603 /* 604 * Mark this LWP as the first waiter, if there 605 * is no other. 606 */ 607 if (l2->l_waiter == 0) 608 l2->l_waiter = curlid; 609 } else if (l2->l_waiter != 0) { 610 /* 611 * It already has a waiter - so don't 612 * collect it. If the waiter doesn't 613 * grab it we'll get another chance 614 * later. 615 */ 616 nfound++; 617 continue; 618 } 619 nfound++; 620 621 /* No need to lock the LWP in order to see LSZOMB. */ 622 if (l2->l_stat != LSZOMB) 623 continue; 624 625 /* 626 * We're no longer waiting. Reset the "first waiter" 627 * pointer on the target, in case it was us. 628 */ 629 l->l_waitingfor = 0; 630 l2->l_waiter = 0; 631 p->p_nlwpwait--; 632 if (departed) 633 *departed = l2->l_lid; 634 sched_lwp_collect(l2); 635 636 /* lwp_free() releases the proc lock. */ 637 lwp_free(l2, false, false); 638 mutex_enter(p->p_lock); 639 return 0; 640 } 641 642 if (error != 0) 643 break; 644 if (nfound == 0) { 645 error = ESRCH; 646 break; 647 } 648 649 /* 650 * Note: since the lock will be dropped, need to restart on 651 * wakeup to run all LWPs again, e.g. there may be new LWPs. 652 */ 653 if (exiting) { 654 KASSERT(p->p_nlwps > 1); 655 cv_wait(&p->p_lwpcv, p->p_lock); 656 error = EAGAIN; 657 break; 658 } 659 660 /* 661 * If all other LWPs are waiting for exits or suspends 662 * and the supply of zombies and potential zombies is 663 * exhausted, then we are about to deadlock. 664 * 665 * If the process is exiting (and this LWP is not the one 666 * that is coordinating the exit) then bail out now. 667 */ 668 if ((p->p_sflag & PS_WEXIT) != 0 || 669 p->p_nrlwps + p->p_nzlwps - p->p_ndlwps <= p->p_nlwpwait) { 670 error = EDEADLK; 671 break; 672 } 673 674 /* 675 * Sit around and wait for something to happen. We'll be 676 * awoken if any of the conditions examined change: if an 677 * LWP exits, is collected, or is detached. 678 */ 679 if ((error = cv_wait_sig(&p->p_lwpcv, p->p_lock)) != 0) 680 break; 681 } 682 683 /* 684 * We didn't find any LWPs to collect, we may have received a 685 * signal, or some other condition has caused us to bail out. 686 * 687 * If waiting on a specific LWP, clear the waiters marker: some 688 * other LWP may want it. Then, kick all the remaining waiters 689 * so that they can re-check for zombies and for deadlock. 690 */ 691 if (lid != 0) { 692 LIST_FOREACH(l2, &p->p_lwps, l_sibling) { 693 if (l2->l_lid == lid) { 694 if (l2->l_waiter == curlid) 695 l2->l_waiter = 0; 696 break; 697 } 698 } 699 } 700 p->p_nlwpwait--; 701 l->l_waitingfor = 0; 702 cv_broadcast(&p->p_lwpcv); 703 704 return error; 705 } 706 707 /* 708 * Create a new LWP within process 'p2', using LWP 'l1' as a template. 709 * The new LWP is created in state LSIDL and must be set running, 710 * suspended, or stopped by the caller. 711 */ 712 int 713 lwp_create(lwp_t *l1, proc_t *p2, vaddr_t uaddr, int flags, 714 void *stack, size_t stacksize, void (*func)(void *), void *arg, 715 lwp_t **rnewlwpp, int sclass) 716 { 717 struct lwp *l2, *isfree; 718 turnstile_t *ts; 719 lwpid_t lid; 720 721 KASSERT(l1 == curlwp || l1->l_proc == &proc0); 722 723 /* 724 * Enforce limits, excluding the first lwp and kthreads. 725 */ 726 if (p2->p_nlwps != 0 && p2 != &proc0) { 727 uid_t uid = kauth_cred_getuid(l1->l_cred); 728 int count = chglwpcnt(uid, 1); 729 if (__predict_false(count > 730 p2->p_rlimit[RLIMIT_NTHR].rlim_cur)) { 731 if (kauth_authorize_process(l1->l_cred, 732 KAUTH_PROCESS_RLIMIT, p2, 733 KAUTH_ARG(KAUTH_REQ_PROCESS_RLIMIT_BYPASS), 734 &p2->p_rlimit[RLIMIT_NTHR], KAUTH_ARG(RLIMIT_NTHR)) 735 != 0) { 736 (void)chglwpcnt(uid, -1); 737 return EAGAIN; 738 } 739 } 740 } 741 742 /* 743 * First off, reap any detached LWP waiting to be collected. 744 * We can re-use its LWP structure and turnstile. 745 */ 746 isfree = NULL; 747 if (p2->p_zomblwp != NULL) { 748 mutex_enter(p2->p_lock); 749 if ((isfree = p2->p_zomblwp) != NULL) { 750 p2->p_zomblwp = NULL; 751 lwp_free(isfree, true, false);/* releases proc mutex */ 752 } else 753 mutex_exit(p2->p_lock); 754 } 755 if (isfree == NULL) { 756 l2 = pool_cache_get(lwp_cache, PR_WAITOK); 757 memset(l2, 0, sizeof(*l2)); 758 l2->l_ts = pool_cache_get(turnstile_cache, PR_WAITOK); 759 SLIST_INIT(&l2->l_pi_lenders); 760 } else { 761 l2 = isfree; 762 ts = l2->l_ts; 763 KASSERT(l2->l_inheritedprio == -1); 764 KASSERT(SLIST_EMPTY(&l2->l_pi_lenders)); 765 memset(l2, 0, sizeof(*l2)); 766 l2->l_ts = ts; 767 } 768 769 l2->l_stat = LSIDL; 770 l2->l_proc = p2; 771 l2->l_refcnt = 1; 772 l2->l_class = sclass; 773 774 /* 775 * If vfork(), we want the LWP to run fast and on the same CPU 776 * as its parent, so that it can reuse the VM context and cache 777 * footprint on the local CPU. 778 */ 779 l2->l_kpriority = ((flags & LWP_VFORK) ? true : false); 780 l2->l_kpribase = PRI_KERNEL; 781 l2->l_priority = l1->l_priority; 782 l2->l_inheritedprio = -1; 783 l2->l_flag = 0; 784 l2->l_pflag = LP_MPSAFE; 785 TAILQ_INIT(&l2->l_ld_locks); 786 787 /* 788 * For vfork, borrow parent's lwpctl context if it exists. 789 * This also causes us to return via lwp_userret. 790 */ 791 if (flags & LWP_VFORK && l1->l_lwpctl) { 792 l2->l_lwpctl = l1->l_lwpctl; 793 l2->l_flag |= LW_LWPCTL; 794 } 795 796 /* 797 * If not the first LWP in the process, grab a reference to the 798 * descriptor table. 799 */ 800 l2->l_fd = p2->p_fd; 801 if (p2->p_nlwps != 0) { 802 KASSERT(l1->l_proc == p2); 803 fd_hold(l2); 804 } else { 805 KASSERT(l1->l_proc != p2); 806 } 807 808 if (p2->p_flag & PK_SYSTEM) { 809 /* Mark it as a system LWP. */ 810 l2->l_flag |= LW_SYSTEM; 811 } 812 813 kpreempt_disable(); 814 l2->l_mutex = l1->l_cpu->ci_schedstate.spc_mutex; 815 l2->l_cpu = l1->l_cpu; 816 kpreempt_enable(); 817 818 kdtrace_thread_ctor(NULL, l2); 819 lwp_initspecific(l2); 820 sched_lwp_fork(l1, l2); 821 lwp_update_creds(l2); 822 callout_init(&l2->l_timeout_ch, CALLOUT_MPSAFE); 823 callout_setfunc(&l2->l_timeout_ch, sleepq_timeout, l2); 824 cv_init(&l2->l_sigcv, "sigwait"); 825 cv_init(&l2->l_waitcv, "vfork"); 826 l2->l_syncobj = &sched_syncobj; 827 828 if (rnewlwpp != NULL) 829 *rnewlwpp = l2; 830 831 /* 832 * PCU state needs to be saved before calling uvm_lwp_fork() so that 833 * the MD cpu_lwp_fork() can copy the saved state to the new LWP. 834 */ 835 pcu_save_all(l1); 836 837 uvm_lwp_setuarea(l2, uaddr); 838 uvm_lwp_fork(l1, l2, stack, stacksize, func, 839 (arg != NULL) ? arg : l2); 840 841 if ((flags & LWP_PIDLID) != 0) { 842 lid = proc_alloc_pid(p2); 843 l2->l_pflag |= LP_PIDLID; 844 } else { 845 lid = 0; 846 } 847 848 mutex_enter(p2->p_lock); 849 850 if ((flags & LWP_DETACHED) != 0) { 851 l2->l_prflag = LPR_DETACHED; 852 p2->p_ndlwps++; 853 } else 854 l2->l_prflag = 0; 855 856 l2->l_sigstk = l1->l_sigstk; 857 l2->l_sigmask = l1->l_sigmask; 858 CIRCLEQ_INIT(&l2->l_sigpend.sp_info); 859 sigemptyset(&l2->l_sigpend.sp_set); 860 861 if (lid == 0) { 862 p2->p_nlwpid++; 863 if (p2->p_nlwpid == 0) 864 p2->p_nlwpid++; 865 lid = p2->p_nlwpid; 866 } 867 l2->l_lid = lid; 868 LIST_INSERT_HEAD(&p2->p_lwps, l2, l_sibling); 869 p2->p_nlwps++; 870 p2->p_nrlwps++; 871 872 KASSERT(l2->l_affinity == NULL); 873 874 if ((p2->p_flag & PK_SYSTEM) == 0) { 875 /* Inherit the affinity mask. */ 876 if (l1->l_affinity) { 877 /* 878 * Note that we hold the state lock while inheriting 879 * the affinity to avoid race with sched_setaffinity(). 880 */ 881 lwp_lock(l1); 882 if (l1->l_affinity) { 883 kcpuset_use(l1->l_affinity); 884 l2->l_affinity = l1->l_affinity; 885 } 886 lwp_unlock(l1); 887 } 888 lwp_lock(l2); 889 /* Inherit a processor-set */ 890 l2->l_psid = l1->l_psid; 891 /* Look for a CPU to start */ 892 l2->l_cpu = sched_takecpu(l2); 893 lwp_unlock_to(l2, l2->l_cpu->ci_schedstate.spc_mutex); 894 } 895 mutex_exit(p2->p_lock); 896 897 SDT_PROBE(proc,,,lwp_create, l2, 0,0,0,0); 898 899 mutex_enter(proc_lock); 900 LIST_INSERT_HEAD(&alllwp, l2, l_list); 901 mutex_exit(proc_lock); 902 903 SYSCALL_TIME_LWP_INIT(l2); 904 905 if (p2->p_emul->e_lwp_fork) 906 (*p2->p_emul->e_lwp_fork)(l1, l2); 907 908 return (0); 909 } 910 911 /* 912 * Called by MD code when a new LWP begins execution. Must be called 913 * with the previous LWP locked (so at splsched), or if there is no 914 * previous LWP, at splsched. 915 */ 916 void 917 lwp_startup(struct lwp *prev, struct lwp *new) 918 { 919 KASSERTMSG(new == curlwp, "l %p curlwp %p prevlwp %p", new, curlwp, prev); 920 921 SDT_PROBE(proc,,,lwp_start, new, 0,0,0,0); 922 923 KASSERT(kpreempt_disabled()); 924 if (prev != NULL) { 925 /* 926 * Normalize the count of the spin-mutexes, it was 927 * increased in mi_switch(). Unmark the state of 928 * context switch - it is finished for previous LWP. 929 */ 930 curcpu()->ci_mtx_count++; 931 membar_exit(); 932 prev->l_ctxswtch = 0; 933 } 934 KPREEMPT_DISABLE(new); 935 spl0(); 936 if (__predict_true(new->l_proc->p_vmspace)) 937 pmap_activate(new); 938 939 /* Note trip through cpu_switchto(). */ 940 pserialize_switchpoint(); 941 942 LOCKDEBUG_BARRIER(NULL, 0); 943 KPREEMPT_ENABLE(new); 944 if ((new->l_pflag & LP_MPSAFE) == 0) { 945 KERNEL_LOCK(1, new); 946 } 947 } 948 949 /* 950 * Exit an LWP. 951 */ 952 void 953 lwp_exit(struct lwp *l) 954 { 955 struct proc *p = l->l_proc; 956 struct lwp *l2; 957 bool current; 958 959 current = (l == curlwp); 960 961 KASSERT(current || (l->l_stat == LSIDL && l->l_target_cpu == NULL)); 962 KASSERT(p == curproc); 963 964 SDT_PROBE(proc,,,lwp_exit, l, 0,0,0,0); 965 966 /* 967 * Verify that we hold no locks other than the kernel lock. 968 */ 969 LOCKDEBUG_BARRIER(&kernel_lock, 0); 970 971 /* 972 * If we are the last live LWP in a process, we need to exit the 973 * entire process. We do so with an exit status of zero, because 974 * it's a "controlled" exit, and because that's what Solaris does. 975 * 976 * We are not quite a zombie yet, but for accounting purposes we 977 * must increment the count of zombies here. 978 * 979 * Note: the last LWP's specificdata will be deleted here. 980 */ 981 mutex_enter(p->p_lock); 982 if (p->p_nlwps - p->p_nzlwps == 1) { 983 KASSERT(current == true); 984 KASSERT(p != &proc0); 985 /* XXXSMP kernel_lock not held */ 986 exit1(l, 0); 987 /* NOTREACHED */ 988 } 989 p->p_nzlwps++; 990 mutex_exit(p->p_lock); 991 992 if (p->p_emul->e_lwp_exit) 993 (*p->p_emul->e_lwp_exit)(l); 994 995 /* Drop filedesc reference. */ 996 fd_free(); 997 998 /* Delete the specificdata while it's still safe to sleep. */ 999 lwp_finispecific(l); 1000 1001 /* 1002 * Release our cached credentials. 1003 */ 1004 kauth_cred_free(l->l_cred); 1005 callout_destroy(&l->l_timeout_ch); 1006 1007 /* 1008 * Remove the LWP from the global list. 1009 * Free its LID from the PID namespace if needed. 1010 */ 1011 mutex_enter(proc_lock); 1012 LIST_REMOVE(l, l_list); 1013 if ((l->l_pflag & LP_PIDLID) != 0 && l->l_lid != p->p_pid) { 1014 proc_free_pid(l->l_lid); 1015 } 1016 mutex_exit(proc_lock); 1017 1018 /* 1019 * Get rid of all references to the LWP that others (e.g. procfs) 1020 * may have, and mark the LWP as a zombie. If the LWP is detached, 1021 * mark it waiting for collection in the proc structure. Note that 1022 * before we can do that, we need to free any other dead, deatched 1023 * LWP waiting to meet its maker. 1024 */ 1025 mutex_enter(p->p_lock); 1026 lwp_drainrefs(l); 1027 1028 if ((l->l_prflag & LPR_DETACHED) != 0) { 1029 while ((l2 = p->p_zomblwp) != NULL) { 1030 p->p_zomblwp = NULL; 1031 lwp_free(l2, false, false);/* releases proc mutex */ 1032 mutex_enter(p->p_lock); 1033 l->l_refcnt++; 1034 lwp_drainrefs(l); 1035 } 1036 p->p_zomblwp = l; 1037 } 1038 1039 /* 1040 * If we find a pending signal for the process and we have been 1041 * asked to check for signals, then we lose: arrange to have 1042 * all other LWPs in the process check for signals. 1043 */ 1044 if ((l->l_flag & LW_PENDSIG) != 0 && 1045 firstsig(&p->p_sigpend.sp_set) != 0) { 1046 LIST_FOREACH(l2, &p->p_lwps, l_sibling) { 1047 lwp_lock(l2); 1048 l2->l_flag |= LW_PENDSIG; 1049 lwp_unlock(l2); 1050 } 1051 } 1052 1053 /* 1054 * Release any PCU resources before becoming a zombie. 1055 */ 1056 pcu_discard_all(l); 1057 1058 lwp_lock(l); 1059 l->l_stat = LSZOMB; 1060 if (l->l_name != NULL) { 1061 strcpy(l->l_name, "(zombie)"); 1062 } 1063 lwp_unlock(l); 1064 p->p_nrlwps--; 1065 cv_broadcast(&p->p_lwpcv); 1066 if (l->l_lwpctl != NULL) 1067 l->l_lwpctl->lc_curcpu = LWPCTL_CPU_EXITED; 1068 mutex_exit(p->p_lock); 1069 1070 /* 1071 * We can no longer block. At this point, lwp_free() may already 1072 * be gunning for us. On a multi-CPU system, we may be off p_lwps. 1073 * 1074 * Free MD LWP resources. 1075 */ 1076 cpu_lwp_free(l, 0); 1077 1078 if (current) { 1079 pmap_deactivate(l); 1080 1081 /* 1082 * Release the kernel lock, and switch away into 1083 * oblivion. 1084 */ 1085 #ifdef notyet 1086 /* XXXSMP hold in lwp_userret() */ 1087 KERNEL_UNLOCK_LAST(l); 1088 #else 1089 KERNEL_UNLOCK_ALL(l, NULL); 1090 #endif 1091 lwp_exit_switchaway(l); 1092 } 1093 } 1094 1095 /* 1096 * Free a dead LWP's remaining resources. 1097 * 1098 * XXXLWP limits. 1099 */ 1100 void 1101 lwp_free(struct lwp *l, bool recycle, bool last) 1102 { 1103 struct proc *p = l->l_proc; 1104 struct rusage *ru; 1105 ksiginfoq_t kq; 1106 1107 KASSERT(l != curlwp); 1108 KASSERT(last || mutex_owned(p->p_lock)); 1109 1110 if (p != &proc0 && p->p_nlwps != 1) 1111 (void)chglwpcnt(kauth_cred_getuid(l->l_cred), -1); 1112 /* 1113 * If this was not the last LWP in the process, then adjust 1114 * counters and unlock. 1115 */ 1116 if (!last) { 1117 /* 1118 * Add the LWP's run time to the process' base value. 1119 * This needs to co-incide with coming off p_lwps. 1120 */ 1121 bintime_add(&p->p_rtime, &l->l_rtime); 1122 p->p_pctcpu += l->l_pctcpu; 1123 ru = &p->p_stats->p_ru; 1124 ruadd(ru, &l->l_ru); 1125 ru->ru_nvcsw += (l->l_ncsw - l->l_nivcsw); 1126 ru->ru_nivcsw += l->l_nivcsw; 1127 LIST_REMOVE(l, l_sibling); 1128 p->p_nlwps--; 1129 p->p_nzlwps--; 1130 if ((l->l_prflag & LPR_DETACHED) != 0) 1131 p->p_ndlwps--; 1132 1133 /* 1134 * Have any LWPs sleeping in lwp_wait() recheck for 1135 * deadlock. 1136 */ 1137 cv_broadcast(&p->p_lwpcv); 1138 mutex_exit(p->p_lock); 1139 } 1140 1141 #ifdef MULTIPROCESSOR 1142 /* 1143 * In the unlikely event that the LWP is still on the CPU, 1144 * then spin until it has switched away. We need to release 1145 * all locks to avoid deadlock against interrupt handlers on 1146 * the target CPU. 1147 */ 1148 if ((l->l_pflag & LP_RUNNING) != 0 || l->l_cpu->ci_curlwp == l) { 1149 int count; 1150 (void)count; /* XXXgcc */ 1151 KERNEL_UNLOCK_ALL(curlwp, &count); 1152 while ((l->l_pflag & LP_RUNNING) != 0 || 1153 l->l_cpu->ci_curlwp == l) 1154 SPINLOCK_BACKOFF_HOOK; 1155 KERNEL_LOCK(count, curlwp); 1156 } 1157 #endif 1158 1159 /* 1160 * Destroy the LWP's remaining signal information. 1161 */ 1162 ksiginfo_queue_init(&kq); 1163 sigclear(&l->l_sigpend, NULL, &kq); 1164 ksiginfo_queue_drain(&kq); 1165 cv_destroy(&l->l_sigcv); 1166 cv_destroy(&l->l_waitcv); 1167 1168 /* 1169 * Free lwpctl structure and affinity. 1170 */ 1171 if (l->l_lwpctl) { 1172 lwp_ctl_free(l); 1173 } 1174 if (l->l_affinity) { 1175 kcpuset_unuse(l->l_affinity, NULL); 1176 l->l_affinity = NULL; 1177 } 1178 1179 /* 1180 * Free the LWP's turnstile and the LWP structure itself unless the 1181 * caller wants to recycle them. Also, free the scheduler specific 1182 * data. 1183 * 1184 * We can't return turnstile0 to the pool (it didn't come from it), 1185 * so if it comes up just drop it quietly and move on. 1186 * 1187 * We don't recycle the VM resources at this time. 1188 */ 1189 1190 if (!recycle && l->l_ts != &turnstile0) 1191 pool_cache_put(turnstile_cache, l->l_ts); 1192 if (l->l_name != NULL) 1193 kmem_free(l->l_name, MAXCOMLEN); 1194 1195 cpu_lwp_free2(l); 1196 uvm_lwp_exit(l); 1197 1198 KASSERT(SLIST_EMPTY(&l->l_pi_lenders)); 1199 KASSERT(l->l_inheritedprio == -1); 1200 KASSERT(l->l_blcnt == 0); 1201 kdtrace_thread_dtor(NULL, l); 1202 if (!recycle) 1203 pool_cache_put(lwp_cache, l); 1204 } 1205 1206 /* 1207 * Migrate the LWP to the another CPU. Unlocks the LWP. 1208 */ 1209 void 1210 lwp_migrate(lwp_t *l, struct cpu_info *tci) 1211 { 1212 struct schedstate_percpu *tspc; 1213 int lstat = l->l_stat; 1214 1215 KASSERT(lwp_locked(l, NULL)); 1216 KASSERT(tci != NULL); 1217 1218 /* If LWP is still on the CPU, it must be handled like LSONPROC */ 1219 if ((l->l_pflag & LP_RUNNING) != 0) { 1220 lstat = LSONPROC; 1221 } 1222 1223 /* 1224 * The destination CPU could be changed while previous migration 1225 * was not finished. 1226 */ 1227 if (l->l_target_cpu != NULL) { 1228 l->l_target_cpu = tci; 1229 lwp_unlock(l); 1230 return; 1231 } 1232 1233 /* Nothing to do if trying to migrate to the same CPU */ 1234 if (l->l_cpu == tci) { 1235 lwp_unlock(l); 1236 return; 1237 } 1238 1239 KASSERT(l->l_target_cpu == NULL); 1240 tspc = &tci->ci_schedstate; 1241 switch (lstat) { 1242 case LSRUN: 1243 l->l_target_cpu = tci; 1244 break; 1245 case LSIDL: 1246 l->l_cpu = tci; 1247 lwp_unlock_to(l, tspc->spc_mutex); 1248 return; 1249 case LSSLEEP: 1250 l->l_cpu = tci; 1251 break; 1252 case LSSTOP: 1253 case LSSUSPENDED: 1254 l->l_cpu = tci; 1255 if (l->l_wchan == NULL) { 1256 lwp_unlock_to(l, tspc->spc_lwplock); 1257 return; 1258 } 1259 break; 1260 case LSONPROC: 1261 l->l_target_cpu = tci; 1262 spc_lock(l->l_cpu); 1263 cpu_need_resched(l->l_cpu, RESCHED_KPREEMPT); 1264 spc_unlock(l->l_cpu); 1265 break; 1266 } 1267 lwp_unlock(l); 1268 } 1269 1270 /* 1271 * Find the LWP in the process. Arguments may be zero, in such case, 1272 * the calling process and first LWP in the list will be used. 1273 * On success - returns proc locked. 1274 */ 1275 struct lwp * 1276 lwp_find2(pid_t pid, lwpid_t lid) 1277 { 1278 proc_t *p; 1279 lwp_t *l; 1280 1281 /* Find the process. */ 1282 if (pid != 0) { 1283 mutex_enter(proc_lock); 1284 p = proc_find(pid); 1285 if (p == NULL) { 1286 mutex_exit(proc_lock); 1287 return NULL; 1288 } 1289 mutex_enter(p->p_lock); 1290 mutex_exit(proc_lock); 1291 } else { 1292 p = curlwp->l_proc; 1293 mutex_enter(p->p_lock); 1294 } 1295 /* Find the thread. */ 1296 if (lid != 0) { 1297 l = lwp_find(p, lid); 1298 } else { 1299 l = LIST_FIRST(&p->p_lwps); 1300 } 1301 if (l == NULL) { 1302 mutex_exit(p->p_lock); 1303 } 1304 return l; 1305 } 1306 1307 /* 1308 * Look up a live LWP within the specified process. 1309 * 1310 * Must be called with p->p_lock held. 1311 */ 1312 struct lwp * 1313 lwp_find(struct proc *p, lwpid_t id) 1314 { 1315 struct lwp *l; 1316 1317 KASSERT(mutex_owned(p->p_lock)); 1318 1319 LIST_FOREACH(l, &p->p_lwps, l_sibling) { 1320 if (l->l_lid == id) 1321 break; 1322 } 1323 1324 /* 1325 * No need to lock - all of these conditions will 1326 * be visible with the process level mutex held. 1327 */ 1328 if (l != NULL && (l->l_stat == LSIDL || l->l_stat == LSZOMB)) 1329 l = NULL; 1330 1331 return l; 1332 } 1333 1334 /* 1335 * Update an LWP's cached credentials to mirror the process' master copy. 1336 * 1337 * This happens early in the syscall path, on user trap, and on LWP 1338 * creation. A long-running LWP can also voluntarily choose to update 1339 * it's credentials by calling this routine. This may be called from 1340 * LWP_CACHE_CREDS(), which checks l->l_cred != p->p_cred beforehand. 1341 */ 1342 void 1343 lwp_update_creds(struct lwp *l) 1344 { 1345 kauth_cred_t oc; 1346 struct proc *p; 1347 1348 p = l->l_proc; 1349 oc = l->l_cred; 1350 1351 mutex_enter(p->p_lock); 1352 kauth_cred_hold(p->p_cred); 1353 l->l_cred = p->p_cred; 1354 l->l_prflag &= ~LPR_CRMOD; 1355 mutex_exit(p->p_lock); 1356 if (oc != NULL) 1357 kauth_cred_free(oc); 1358 } 1359 1360 /* 1361 * Verify that an LWP is locked, and optionally verify that the lock matches 1362 * one we specify. 1363 */ 1364 int 1365 lwp_locked(struct lwp *l, kmutex_t *mtx) 1366 { 1367 kmutex_t *cur = l->l_mutex; 1368 1369 return mutex_owned(cur) && (mtx == cur || mtx == NULL); 1370 } 1371 1372 /* 1373 * Lend a new mutex to an LWP. The old mutex must be held. 1374 */ 1375 void 1376 lwp_setlock(struct lwp *l, kmutex_t *new) 1377 { 1378 1379 KASSERT(mutex_owned(l->l_mutex)); 1380 1381 membar_exit(); 1382 l->l_mutex = new; 1383 } 1384 1385 /* 1386 * Lend a new mutex to an LWP, and release the old mutex. The old mutex 1387 * must be held. 1388 */ 1389 void 1390 lwp_unlock_to(struct lwp *l, kmutex_t *new) 1391 { 1392 kmutex_t *old; 1393 1394 KASSERT(lwp_locked(l, NULL)); 1395 1396 old = l->l_mutex; 1397 membar_exit(); 1398 l->l_mutex = new; 1399 mutex_spin_exit(old); 1400 } 1401 1402 int 1403 lwp_trylock(struct lwp *l) 1404 { 1405 kmutex_t *old; 1406 1407 for (;;) { 1408 if (!mutex_tryenter(old = l->l_mutex)) 1409 return 0; 1410 if (__predict_true(l->l_mutex == old)) 1411 return 1; 1412 mutex_spin_exit(old); 1413 } 1414 } 1415 1416 void 1417 lwp_unsleep(lwp_t *l, bool cleanup) 1418 { 1419 1420 KASSERT(mutex_owned(l->l_mutex)); 1421 (*l->l_syncobj->sobj_unsleep)(l, cleanup); 1422 } 1423 1424 /* 1425 * Handle exceptions for mi_userret(). Called if a member of LW_USERRET is 1426 * set. 1427 */ 1428 void 1429 lwp_userret(struct lwp *l) 1430 { 1431 struct proc *p; 1432 int sig; 1433 1434 KASSERT(l == curlwp); 1435 KASSERT(l->l_stat == LSONPROC); 1436 p = l->l_proc; 1437 1438 #ifndef __HAVE_FAST_SOFTINTS 1439 /* Run pending soft interrupts. */ 1440 if (l->l_cpu->ci_data.cpu_softints != 0) 1441 softint_overlay(); 1442 #endif 1443 1444 /* 1445 * It is safe to do this read unlocked on a MP system.. 1446 */ 1447 while ((l->l_flag & LW_USERRET) != 0) { 1448 /* 1449 * Process pending signals first, unless the process 1450 * is dumping core or exiting, where we will instead 1451 * enter the LW_WSUSPEND case below. 1452 */ 1453 if ((l->l_flag & (LW_PENDSIG | LW_WCORE | LW_WEXIT)) == 1454 LW_PENDSIG) { 1455 mutex_enter(p->p_lock); 1456 while ((sig = issignal(l)) != 0) 1457 postsig(sig); 1458 mutex_exit(p->p_lock); 1459 } 1460 1461 /* 1462 * Core-dump or suspend pending. 1463 * 1464 * In case of core dump, suspend ourselves, so that the kernel 1465 * stack and therefore the userland registers saved in the 1466 * trapframe are around for coredump() to write them out. 1467 * We also need to save any PCU resources that we have so that 1468 * they accessible for coredump(). We issue a wakeup on 1469 * p->p_lwpcv so that sigexit() will write the core file out 1470 * once all other LWPs are suspended. 1471 */ 1472 if ((l->l_flag & LW_WSUSPEND) != 0) { 1473 pcu_save_all(l); 1474 mutex_enter(p->p_lock); 1475 p->p_nrlwps--; 1476 cv_broadcast(&p->p_lwpcv); 1477 lwp_lock(l); 1478 l->l_stat = LSSUSPENDED; 1479 lwp_unlock(l); 1480 mutex_exit(p->p_lock); 1481 lwp_lock(l); 1482 mi_switch(l); 1483 } 1484 1485 /* Process is exiting. */ 1486 if ((l->l_flag & LW_WEXIT) != 0) { 1487 lwp_exit(l); 1488 KASSERT(0); 1489 /* NOTREACHED */ 1490 } 1491 1492 /* update lwpctl processor (for vfork child_return) */ 1493 if (l->l_flag & LW_LWPCTL) { 1494 lwp_lock(l); 1495 KASSERT(kpreempt_disabled()); 1496 l->l_lwpctl->lc_curcpu = (int)cpu_index(l->l_cpu); 1497 l->l_lwpctl->lc_pctr++; 1498 l->l_flag &= ~LW_LWPCTL; 1499 lwp_unlock(l); 1500 } 1501 } 1502 } 1503 1504 /* 1505 * Force an LWP to enter the kernel, to take a trip through lwp_userret(). 1506 */ 1507 void 1508 lwp_need_userret(struct lwp *l) 1509 { 1510 KASSERT(lwp_locked(l, NULL)); 1511 1512 /* 1513 * Since the tests in lwp_userret() are done unlocked, make sure 1514 * that the condition will be seen before forcing the LWP to enter 1515 * kernel mode. 1516 */ 1517 membar_producer(); 1518 cpu_signotify(l); 1519 } 1520 1521 /* 1522 * Add one reference to an LWP. This will prevent the LWP from 1523 * exiting, thus keep the lwp structure and PCB around to inspect. 1524 */ 1525 void 1526 lwp_addref(struct lwp *l) 1527 { 1528 1529 KASSERT(mutex_owned(l->l_proc->p_lock)); 1530 KASSERT(l->l_stat != LSZOMB); 1531 KASSERT(l->l_refcnt != 0); 1532 1533 l->l_refcnt++; 1534 } 1535 1536 /* 1537 * Remove one reference to an LWP. If this is the last reference, 1538 * then we must finalize the LWP's death. 1539 */ 1540 void 1541 lwp_delref(struct lwp *l) 1542 { 1543 struct proc *p = l->l_proc; 1544 1545 mutex_enter(p->p_lock); 1546 lwp_delref2(l); 1547 mutex_exit(p->p_lock); 1548 } 1549 1550 /* 1551 * Remove one reference to an LWP. If this is the last reference, 1552 * then we must finalize the LWP's death. The proc mutex is held 1553 * on entry. 1554 */ 1555 void 1556 lwp_delref2(struct lwp *l) 1557 { 1558 struct proc *p = l->l_proc; 1559 1560 KASSERT(mutex_owned(p->p_lock)); 1561 KASSERT(l->l_stat != LSZOMB); 1562 KASSERT(l->l_refcnt > 0); 1563 if (--l->l_refcnt == 0) 1564 cv_broadcast(&p->p_lwpcv); 1565 } 1566 1567 /* 1568 * Drain all references to the current LWP. 1569 */ 1570 void 1571 lwp_drainrefs(struct lwp *l) 1572 { 1573 struct proc *p = l->l_proc; 1574 1575 KASSERT(mutex_owned(p->p_lock)); 1576 KASSERT(l->l_refcnt != 0); 1577 1578 l->l_refcnt--; 1579 while (l->l_refcnt != 0) 1580 cv_wait(&p->p_lwpcv, p->p_lock); 1581 } 1582 1583 /* 1584 * Return true if the specified LWP is 'alive'. Only p->p_lock need 1585 * be held. 1586 */ 1587 bool 1588 lwp_alive(lwp_t *l) 1589 { 1590 1591 KASSERT(mutex_owned(l->l_proc->p_lock)); 1592 1593 switch (l->l_stat) { 1594 case LSSLEEP: 1595 case LSRUN: 1596 case LSONPROC: 1597 case LSSTOP: 1598 case LSSUSPENDED: 1599 return true; 1600 default: 1601 return false; 1602 } 1603 } 1604 1605 /* 1606 * Return first live LWP in the process. 1607 */ 1608 lwp_t * 1609 lwp_find_first(proc_t *p) 1610 { 1611 lwp_t *l; 1612 1613 KASSERT(mutex_owned(p->p_lock)); 1614 1615 LIST_FOREACH(l, &p->p_lwps, l_sibling) { 1616 if (lwp_alive(l)) { 1617 return l; 1618 } 1619 } 1620 1621 return NULL; 1622 } 1623 1624 /* 1625 * Allocate a new lwpctl structure for a user LWP. 1626 */ 1627 int 1628 lwp_ctl_alloc(vaddr_t *uaddr) 1629 { 1630 lcproc_t *lp; 1631 u_int bit, i, offset; 1632 struct uvm_object *uao; 1633 int error; 1634 lcpage_t *lcp; 1635 proc_t *p; 1636 lwp_t *l; 1637 1638 l = curlwp; 1639 p = l->l_proc; 1640 1641 /* don't allow a vforked process to create lwp ctls */ 1642 if (p->p_lflag & PL_PPWAIT) 1643 return EBUSY; 1644 1645 if (l->l_lcpage != NULL) { 1646 lcp = l->l_lcpage; 1647 *uaddr = lcp->lcp_uaddr + (vaddr_t)l->l_lwpctl - lcp->lcp_kaddr; 1648 return 0; 1649 } 1650 1651 /* First time around, allocate header structure for the process. */ 1652 if ((lp = p->p_lwpctl) == NULL) { 1653 lp = kmem_alloc(sizeof(*lp), KM_SLEEP); 1654 mutex_init(&lp->lp_lock, MUTEX_DEFAULT, IPL_NONE); 1655 lp->lp_uao = NULL; 1656 TAILQ_INIT(&lp->lp_pages); 1657 mutex_enter(p->p_lock); 1658 if (p->p_lwpctl == NULL) { 1659 p->p_lwpctl = lp; 1660 mutex_exit(p->p_lock); 1661 } else { 1662 mutex_exit(p->p_lock); 1663 mutex_destroy(&lp->lp_lock); 1664 kmem_free(lp, sizeof(*lp)); 1665 lp = p->p_lwpctl; 1666 } 1667 } 1668 1669 /* 1670 * Set up an anonymous memory region to hold the shared pages. 1671 * Map them into the process' address space. The user vmspace 1672 * gets the first reference on the UAO. 1673 */ 1674 mutex_enter(&lp->lp_lock); 1675 if (lp->lp_uao == NULL) { 1676 lp->lp_uao = uao_create(LWPCTL_UAREA_SZ, 0); 1677 lp->lp_cur = 0; 1678 lp->lp_max = LWPCTL_UAREA_SZ; 1679 lp->lp_uva = p->p_emul->e_vm_default_addr(p, 1680 (vaddr_t)p->p_vmspace->vm_daddr, LWPCTL_UAREA_SZ); 1681 error = uvm_map(&p->p_vmspace->vm_map, &lp->lp_uva, 1682 LWPCTL_UAREA_SZ, lp->lp_uao, 0, 0, UVM_MAPFLAG(UVM_PROT_RW, 1683 UVM_PROT_RW, UVM_INH_NONE, UVM_ADV_NORMAL, 0)); 1684 if (error != 0) { 1685 uao_detach(lp->lp_uao); 1686 lp->lp_uao = NULL; 1687 mutex_exit(&lp->lp_lock); 1688 return error; 1689 } 1690 } 1691 1692 /* Get a free block and allocate for this LWP. */ 1693 TAILQ_FOREACH(lcp, &lp->lp_pages, lcp_chain) { 1694 if (lcp->lcp_nfree != 0) 1695 break; 1696 } 1697 if (lcp == NULL) { 1698 /* Nothing available - try to set up a free page. */ 1699 if (lp->lp_cur == lp->lp_max) { 1700 mutex_exit(&lp->lp_lock); 1701 return ENOMEM; 1702 } 1703 lcp = kmem_alloc(LWPCTL_LCPAGE_SZ, KM_SLEEP); 1704 if (lcp == NULL) { 1705 mutex_exit(&lp->lp_lock); 1706 return ENOMEM; 1707 } 1708 /* 1709 * Wire the next page down in kernel space. Since this 1710 * is a new mapping, we must add a reference. 1711 */ 1712 uao = lp->lp_uao; 1713 (*uao->pgops->pgo_reference)(uao); 1714 lcp->lcp_kaddr = vm_map_min(kernel_map); 1715 error = uvm_map(kernel_map, &lcp->lcp_kaddr, PAGE_SIZE, 1716 uao, lp->lp_cur, PAGE_SIZE, 1717 UVM_MAPFLAG(UVM_PROT_RW, UVM_PROT_RW, 1718 UVM_INH_NONE, UVM_ADV_RANDOM, 0)); 1719 if (error != 0) { 1720 mutex_exit(&lp->lp_lock); 1721 kmem_free(lcp, LWPCTL_LCPAGE_SZ); 1722 (*uao->pgops->pgo_detach)(uao); 1723 return error; 1724 } 1725 error = uvm_map_pageable(kernel_map, lcp->lcp_kaddr, 1726 lcp->lcp_kaddr + PAGE_SIZE, FALSE, 0); 1727 if (error != 0) { 1728 mutex_exit(&lp->lp_lock); 1729 uvm_unmap(kernel_map, lcp->lcp_kaddr, 1730 lcp->lcp_kaddr + PAGE_SIZE); 1731 kmem_free(lcp, LWPCTL_LCPAGE_SZ); 1732 return error; 1733 } 1734 /* Prepare the page descriptor and link into the list. */ 1735 lcp->lcp_uaddr = lp->lp_uva + lp->lp_cur; 1736 lp->lp_cur += PAGE_SIZE; 1737 lcp->lcp_nfree = LWPCTL_PER_PAGE; 1738 lcp->lcp_rotor = 0; 1739 memset(lcp->lcp_bitmap, 0xff, LWPCTL_BITMAP_SZ); 1740 TAILQ_INSERT_HEAD(&lp->lp_pages, lcp, lcp_chain); 1741 } 1742 for (i = lcp->lcp_rotor; lcp->lcp_bitmap[i] == 0;) { 1743 if (++i >= LWPCTL_BITMAP_ENTRIES) 1744 i = 0; 1745 } 1746 bit = ffs(lcp->lcp_bitmap[i]) - 1; 1747 lcp->lcp_bitmap[i] ^= (1 << bit); 1748 lcp->lcp_rotor = i; 1749 lcp->lcp_nfree--; 1750 l->l_lcpage = lcp; 1751 offset = (i << 5) + bit; 1752 l->l_lwpctl = (lwpctl_t *)lcp->lcp_kaddr + offset; 1753 *uaddr = lcp->lcp_uaddr + offset * sizeof(lwpctl_t); 1754 mutex_exit(&lp->lp_lock); 1755 1756 KPREEMPT_DISABLE(l); 1757 l->l_lwpctl->lc_curcpu = (int)curcpu()->ci_data.cpu_index; 1758 KPREEMPT_ENABLE(l); 1759 1760 return 0; 1761 } 1762 1763 /* 1764 * Free an lwpctl structure back to the per-process list. 1765 */ 1766 void 1767 lwp_ctl_free(lwp_t *l) 1768 { 1769 struct proc *p = l->l_proc; 1770 lcproc_t *lp; 1771 lcpage_t *lcp; 1772 u_int map, offset; 1773 1774 /* don't free a lwp context we borrowed for vfork */ 1775 if (p->p_lflag & PL_PPWAIT) { 1776 l->l_lwpctl = NULL; 1777 return; 1778 } 1779 1780 lp = p->p_lwpctl; 1781 KASSERT(lp != NULL); 1782 1783 lcp = l->l_lcpage; 1784 offset = (u_int)((lwpctl_t *)l->l_lwpctl - (lwpctl_t *)lcp->lcp_kaddr); 1785 KASSERT(offset < LWPCTL_PER_PAGE); 1786 1787 mutex_enter(&lp->lp_lock); 1788 lcp->lcp_nfree++; 1789 map = offset >> 5; 1790 lcp->lcp_bitmap[map] |= (1 << (offset & 31)); 1791 if (lcp->lcp_bitmap[lcp->lcp_rotor] == 0) 1792 lcp->lcp_rotor = map; 1793 if (TAILQ_FIRST(&lp->lp_pages)->lcp_nfree == 0) { 1794 TAILQ_REMOVE(&lp->lp_pages, lcp, lcp_chain); 1795 TAILQ_INSERT_HEAD(&lp->lp_pages, lcp, lcp_chain); 1796 } 1797 mutex_exit(&lp->lp_lock); 1798 } 1799 1800 /* 1801 * Process is exiting; tear down lwpctl state. This can only be safely 1802 * called by the last LWP in the process. 1803 */ 1804 void 1805 lwp_ctl_exit(void) 1806 { 1807 lcpage_t *lcp, *next; 1808 lcproc_t *lp; 1809 proc_t *p; 1810 lwp_t *l; 1811 1812 l = curlwp; 1813 l->l_lwpctl = NULL; 1814 l->l_lcpage = NULL; 1815 p = l->l_proc; 1816 lp = p->p_lwpctl; 1817 1818 KASSERT(lp != NULL); 1819 KASSERT(p->p_nlwps == 1); 1820 1821 for (lcp = TAILQ_FIRST(&lp->lp_pages); lcp != NULL; lcp = next) { 1822 next = TAILQ_NEXT(lcp, lcp_chain); 1823 uvm_unmap(kernel_map, lcp->lcp_kaddr, 1824 lcp->lcp_kaddr + PAGE_SIZE); 1825 kmem_free(lcp, LWPCTL_LCPAGE_SZ); 1826 } 1827 1828 if (lp->lp_uao != NULL) { 1829 uvm_unmap(&p->p_vmspace->vm_map, lp->lp_uva, 1830 lp->lp_uva + LWPCTL_UAREA_SZ); 1831 } 1832 1833 mutex_destroy(&lp->lp_lock); 1834 kmem_free(lp, sizeof(*lp)); 1835 p->p_lwpctl = NULL; 1836 } 1837 1838 /* 1839 * Return the current LWP's "preemption counter". Used to detect 1840 * preemption across operations that can tolerate preemption without 1841 * crashing, but which may generate incorrect results if preempted. 1842 */ 1843 uint64_t 1844 lwp_pctr(void) 1845 { 1846 1847 return curlwp->l_ncsw; 1848 } 1849 1850 /* 1851 * Set an LWP's private data pointer. 1852 */ 1853 int 1854 lwp_setprivate(struct lwp *l, void *ptr) 1855 { 1856 int error = 0; 1857 1858 l->l_private = ptr; 1859 #ifdef __HAVE_CPU_LWP_SETPRIVATE 1860 error = cpu_lwp_setprivate(l, ptr); 1861 #endif 1862 return error; 1863 } 1864 1865 #if defined(DDB) 1866 #include <machine/pcb.h> 1867 1868 void 1869 lwp_whatis(uintptr_t addr, void (*pr)(const char *, ...)) 1870 { 1871 lwp_t *l; 1872 1873 LIST_FOREACH(l, &alllwp, l_list) { 1874 uintptr_t stack = (uintptr_t)KSTACK_LOWEST_ADDR(l); 1875 1876 if (addr < stack || stack + KSTACK_SIZE <= addr) { 1877 continue; 1878 } 1879 (*pr)("%p is %p+%zu, LWP %p's stack\n", 1880 (void *)addr, (void *)stack, 1881 (size_t)(addr - stack), l); 1882 } 1883 } 1884 #endif /* defined(DDB) */ 1885