xref: /netbsd-src/sys/kern/kern_lwp.c (revision 82ad575716605df31379cf04a2f3efbc97b8a6f5)
1 /*	$NetBSD: kern_lwp.c,v 1.173 2012/09/27 20:43:15 rmind Exp $	*/
2 
3 /*-
4  * Copyright (c) 2001, 2006, 2007, 2008, 2009 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Nathan J. Williams, and Andrew Doran.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29  * POSSIBILITY OF SUCH DAMAGE.
30  */
31 
32 /*
33  * Overview
34  *
35  *	Lightweight processes (LWPs) are the basic unit or thread of
36  *	execution within the kernel.  The core state of an LWP is described
37  *	by "struct lwp", also known as lwp_t.
38  *
39  *	Each LWP is contained within a process (described by "struct proc"),
40  *	Every process contains at least one LWP, but may contain more.  The
41  *	process describes attributes shared among all of its LWPs such as a
42  *	private address space, global execution state (stopped, active,
43  *	zombie, ...), signal disposition and so on.  On a multiprocessor
44  *	machine, multiple LWPs be executing concurrently in the kernel.
45  *
46  * Execution states
47  *
48  *	At any given time, an LWP has overall state that is described by
49  *	lwp::l_stat.  The states are broken into two sets below.  The first
50  *	set is guaranteed to represent the absolute, current state of the
51  *	LWP:
52  *
53  *	LSONPROC
54  *
55  *		On processor: the LWP is executing on a CPU, either in the
56  *		kernel or in user space.
57  *
58  *	LSRUN
59  *
60  *		Runnable: the LWP is parked on a run queue, and may soon be
61  *		chosen to run by an idle processor, or by a processor that
62  *		has been asked to preempt a currently runnning but lower
63  *		priority LWP.
64  *
65  *	LSIDL
66  *
67  *		Idle: the LWP has been created but has not yet executed,
68  *		or it has ceased executing a unit of work and is waiting
69  *		to be started again.
70  *
71  *	LSSUSPENDED:
72  *
73  *		Suspended: the LWP has had its execution suspended by
74  *		another LWP in the same process using the _lwp_suspend()
75  *		system call.  User-level LWPs also enter the suspended
76  *		state when the system is shutting down.
77  *
78  *	The second set represent a "statement of intent" on behalf of the
79  *	LWP.  The LWP may in fact be executing on a processor, may be
80  *	sleeping or idle. It is expected to take the necessary action to
81  *	stop executing or become "running" again within a short timeframe.
82  *	The LP_RUNNING flag in lwp::l_pflag indicates that an LWP is running.
83  *	Importantly, it indicates that its state is tied to a CPU.
84  *
85  *	LSZOMB:
86  *
87  *		Dead or dying: the LWP has released most of its resources
88  *		and is about to switch away into oblivion, or has already
89  *		switched away.  When it switches away, its few remaining
90  *		resources can be collected.
91  *
92  *	LSSLEEP:
93  *
94  *		Sleeping: the LWP has entered itself onto a sleep queue, and
95  *		has switched away or will switch away shortly to allow other
96  *		LWPs to run on the CPU.
97  *
98  *	LSSTOP:
99  *
100  *		Stopped: the LWP has been stopped as a result of a job
101  *		control signal, or as a result of the ptrace() interface.
102  *
103  *		Stopped LWPs may run briefly within the kernel to handle
104  *		signals that they receive, but will not return to user space
105  *		until their process' state is changed away from stopped.
106  *
107  *		Single LWPs within a process can not be set stopped
108  *		selectively: all actions that can stop or continue LWPs
109  *		occur at the process level.
110  *
111  * State transitions
112  *
113  *	Note that the LSSTOP state may only be set when returning to
114  *	user space in userret(), or when sleeping interruptably.  The
115  *	LSSUSPENDED state may only be set in userret().  Before setting
116  *	those states, we try to ensure that the LWPs will release all
117  *	locks that they hold, and at a minimum try to ensure that the
118  *	LWP can be set runnable again by a signal.
119  *
120  *	LWPs may transition states in the following ways:
121  *
122  *	 RUN -------> ONPROC		ONPROC -----> RUN
123  *		    				    > SLEEP
124  *		    				    > STOPPED
125  *						    > SUSPENDED
126  *						    > ZOMB
127  *						    > IDL (special cases)
128  *
129  *	 STOPPED ---> RUN		SUSPENDED --> RUN
130  *	            > SLEEP
131  *
132  *	 SLEEP -----> ONPROC		IDL --------> RUN
133  *		    > RUN			    > SUSPENDED
134  *		    > STOPPED			    > STOPPED
135  *						    > ONPROC (special cases)
136  *
137  *	Some state transitions are only possible with kernel threads (eg
138  *	ONPROC -> IDL) and happen under tightly controlled circumstances
139  *	free of unwanted side effects.
140  *
141  * Migration
142  *
143  *	Migration of threads from one CPU to another could be performed
144  *	internally by the scheduler via sched_takecpu() or sched_catchlwp()
145  *	functions.  The universal lwp_migrate() function should be used for
146  *	any other cases.  Subsystems in the kernel must be aware that CPU
147  *	of LWP may change, while it is not locked.
148  *
149  * Locking
150  *
151  *	The majority of fields in 'struct lwp' are covered by a single,
152  *	general spin lock pointed to by lwp::l_mutex.  The locks covering
153  *	each field are documented in sys/lwp.h.
154  *
155  *	State transitions must be made with the LWP's general lock held,
156  *	and may cause the LWP's lock pointer to change.  Manipulation of
157  *	the general lock is not performed directly, but through calls to
158  *	lwp_lock(), lwp_unlock() and others.  It should be noted that the
159  *	adaptive locks are not allowed to be released while the LWP's lock
160  *	is being held (unlike for other spin-locks).
161  *
162  *	States and their associated locks:
163  *
164  *	LSONPROC, LSZOMB:
165  *
166  *		Always covered by spc_lwplock, which protects running LWPs.
167  *		This is a per-CPU lock and matches lwp::l_cpu.
168  *
169  *	LSIDL, LSRUN:
170  *
171  *		Always covered by spc_mutex, which protects the run queues.
172  *		This is a per-CPU lock and matches lwp::l_cpu.
173  *
174  *	LSSLEEP:
175  *
176  *		Covered by a lock associated with the sleep queue that the
177  *		LWP resides on.  Matches lwp::l_sleepq::sq_mutex.
178  *
179  *	LSSTOP, LSSUSPENDED:
180  *
181  *		If the LWP was previously sleeping (l_wchan != NULL), then
182  *		l_mutex references the sleep queue lock.  If the LWP was
183  *		runnable or on the CPU when halted, or has been removed from
184  *		the sleep queue since halted, then the lock is spc_lwplock.
185  *
186  *	The lock order is as follows:
187  *
188  *		spc::spc_lwplock ->
189  *		    sleeptab::st_mutex ->
190  *			tschain_t::tc_mutex ->
191  *			    spc::spc_mutex
192  *
193  *	Each process has an scheduler state lock (proc::p_lock), and a
194  *	number of counters on LWPs and their states: p_nzlwps, p_nrlwps, and
195  *	so on.  When an LWP is to be entered into or removed from one of the
196  *	following states, p_lock must be held and the process wide counters
197  *	adjusted:
198  *
199  *		LSIDL, LSZOMB, LSSTOP, LSSUSPENDED
200  *
201  *	(But not always for kernel threads.  There are some special cases
202  *	as mentioned above.  See kern_softint.c.)
203  *
204  *	Note that an LWP is considered running or likely to run soon if in
205  *	one of the following states.  This affects the value of p_nrlwps:
206  *
207  *		LSRUN, LSONPROC, LSSLEEP
208  *
209  *	p_lock does not need to be held when transitioning among these
210  *	three states, hence p_lock is rarely taken for state transitions.
211  */
212 
213 #include <sys/cdefs.h>
214 __KERNEL_RCSID(0, "$NetBSD: kern_lwp.c,v 1.173 2012/09/27 20:43:15 rmind Exp $");
215 
216 #include "opt_ddb.h"
217 #include "opt_lockdebug.h"
218 #include "opt_dtrace.h"
219 
220 #define _LWP_API_PRIVATE
221 
222 #include <sys/param.h>
223 #include <sys/systm.h>
224 #include <sys/cpu.h>
225 #include <sys/pool.h>
226 #include <sys/proc.h>
227 #include <sys/syscallargs.h>
228 #include <sys/syscall_stats.h>
229 #include <sys/kauth.h>
230 #include <sys/pserialize.h>
231 #include <sys/sleepq.h>
232 #include <sys/lockdebug.h>
233 #include <sys/kmem.h>
234 #include <sys/pset.h>
235 #include <sys/intr.h>
236 #include <sys/lwpctl.h>
237 #include <sys/atomic.h>
238 #include <sys/filedesc.h>
239 #include <sys/dtrace_bsd.h>
240 #include <sys/sdt.h>
241 #include <sys/xcall.h>
242 #include <sys/uidinfo.h>
243 #include <sys/sysctl.h>
244 
245 #include <uvm/uvm_extern.h>
246 #include <uvm/uvm_object.h>
247 
248 static pool_cache_t	lwp_cache	__read_mostly;
249 struct lwplist		alllwp		__cacheline_aligned;
250 
251 static void		lwp_dtor(void *, void *);
252 
253 /* DTrace proc provider probes */
254 SDT_PROBE_DEFINE(proc,,,lwp_create,
255 	"struct lwp *", NULL,
256 	NULL, NULL, NULL, NULL,
257 	NULL, NULL, NULL, NULL);
258 SDT_PROBE_DEFINE(proc,,,lwp_start,
259 	"struct lwp *", NULL,
260 	NULL, NULL, NULL, NULL,
261 	NULL, NULL, NULL, NULL);
262 SDT_PROBE_DEFINE(proc,,,lwp_exit,
263 	"struct lwp *", NULL,
264 	NULL, NULL, NULL, NULL,
265 	NULL, NULL, NULL, NULL);
266 
267 struct turnstile turnstile0;
268 struct lwp lwp0 __aligned(MIN_LWP_ALIGNMENT) = {
269 #ifdef LWP0_CPU_INFO
270 	.l_cpu = LWP0_CPU_INFO,
271 #endif
272 #ifdef LWP0_MD_INITIALIZER
273 	.l_md = LWP0_MD_INITIALIZER,
274 #endif
275 	.l_proc = &proc0,
276 	.l_lid = 1,
277 	.l_flag = LW_SYSTEM,
278 	.l_stat = LSONPROC,
279 	.l_ts = &turnstile0,
280 	.l_syncobj = &sched_syncobj,
281 	.l_refcnt = 1,
282 	.l_priority = PRI_USER + NPRI_USER - 1,
283 	.l_inheritedprio = -1,
284 	.l_class = SCHED_OTHER,
285 	.l_psid = PS_NONE,
286 	.l_pi_lenders = SLIST_HEAD_INITIALIZER(&lwp0.l_pi_lenders),
287 	.l_name = __UNCONST("swapper"),
288 	.l_fd = &filedesc0,
289 };
290 
291 static int sysctl_kern_maxlwp(SYSCTLFN_PROTO);
292 
293 /*
294  * sysctl helper routine for kern.maxlwp. Ensures that the new
295  * values are not too low or too high.
296  */
297 static int
298 sysctl_kern_maxlwp(SYSCTLFN_ARGS)
299 {
300 	int error, nmaxlwp;
301 	struct sysctlnode node;
302 
303 	nmaxlwp = maxlwp;
304 	node = *rnode;
305 	node.sysctl_data = &nmaxlwp;
306 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
307 	if (error || newp == NULL)
308 		return error;
309 
310 	if (nmaxlwp < 0 || nmaxlwp >= 65536)
311 		return EINVAL;
312 	if (nmaxlwp > cpu_maxlwp())
313 		return EINVAL;
314 	maxlwp = nmaxlwp;
315 
316 	return 0;
317 }
318 
319 static void
320 sysctl_kern_lwp_setup(void)
321 {
322 	struct sysctllog *clog = NULL;
323 
324 	sysctl_createv(&clog, 0, NULL, NULL,
325 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
326 		       CTLTYPE_INT, "maxlwp",
327 		       SYSCTL_DESCR("Maximum number of simultaneous threads"),
328 		       sysctl_kern_maxlwp, 0, NULL, 0,
329 		       CTL_KERN, CTL_CREATE, CTL_EOL);
330 }
331 
332 void
333 lwpinit(void)
334 {
335 
336 	LIST_INIT(&alllwp);
337 	lwpinit_specificdata();
338 	lwp_sys_init();
339 	lwp_cache = pool_cache_init(sizeof(lwp_t), MIN_LWP_ALIGNMENT, 0, 0,
340 	    "lwppl", NULL, IPL_NONE, NULL, lwp_dtor, NULL);
341 
342 	maxlwp = cpu_maxlwp();
343 	sysctl_kern_lwp_setup();
344 }
345 
346 void
347 lwp0_init(void)
348 {
349 	struct lwp *l = &lwp0;
350 
351 	KASSERT((void *)uvm_lwp_getuarea(l) != NULL);
352 	KASSERT(l->l_lid == proc0.p_nlwpid);
353 
354 	LIST_INSERT_HEAD(&alllwp, l, l_list);
355 
356 	callout_init(&l->l_timeout_ch, CALLOUT_MPSAFE);
357 	callout_setfunc(&l->l_timeout_ch, sleepq_timeout, l);
358 	cv_init(&l->l_sigcv, "sigwait");
359 	cv_init(&l->l_waitcv, "vfork");
360 
361 	kauth_cred_hold(proc0.p_cred);
362 	l->l_cred = proc0.p_cred;
363 
364 	kdtrace_thread_ctor(NULL, l);
365 	lwp_initspecific(l);
366 
367 	SYSCALL_TIME_LWP_INIT(l);
368 }
369 
370 static void
371 lwp_dtor(void *arg, void *obj)
372 {
373 	lwp_t *l = obj;
374 	uint64_t where;
375 	(void)l;
376 
377 	/*
378 	 * Provide a barrier to ensure that all mutex_oncpu() and rw_oncpu()
379 	 * calls will exit before memory of LWP is returned to the pool, where
380 	 * KVA of LWP structure might be freed and re-used for other purposes.
381 	 * Kernel preemption is disabled around mutex_oncpu() and rw_oncpu()
382 	 * callers, therefore cross-call to all CPUs will do the job.  Also,
383 	 * the value of l->l_cpu must be still valid at this point.
384 	 */
385 	KASSERT(l->l_cpu != NULL);
386 	where = xc_broadcast(0, (xcfunc_t)nullop, NULL, NULL);
387 	xc_wait(where);
388 }
389 
390 /*
391  * Set an suspended.
392  *
393  * Must be called with p_lock held, and the LWP locked.  Will unlock the
394  * LWP before return.
395  */
396 int
397 lwp_suspend(struct lwp *curl, struct lwp *t)
398 {
399 	int error;
400 
401 	KASSERT(mutex_owned(t->l_proc->p_lock));
402 	KASSERT(lwp_locked(t, NULL));
403 
404 	KASSERT(curl != t || curl->l_stat == LSONPROC);
405 
406 	/*
407 	 * If the current LWP has been told to exit, we must not suspend anyone
408 	 * else or deadlock could occur.  We won't return to userspace.
409 	 */
410 	if ((curl->l_flag & (LW_WEXIT | LW_WCORE)) != 0) {
411 		lwp_unlock(t);
412 		return (EDEADLK);
413 	}
414 
415 	error = 0;
416 
417 	switch (t->l_stat) {
418 	case LSRUN:
419 	case LSONPROC:
420 		t->l_flag |= LW_WSUSPEND;
421 		lwp_need_userret(t);
422 		lwp_unlock(t);
423 		break;
424 
425 	case LSSLEEP:
426 		t->l_flag |= LW_WSUSPEND;
427 
428 		/*
429 		 * Kick the LWP and try to get it to the kernel boundary
430 		 * so that it will release any locks that it holds.
431 		 * setrunnable() will release the lock.
432 		 */
433 		if ((t->l_flag & LW_SINTR) != 0)
434 			setrunnable(t);
435 		else
436 			lwp_unlock(t);
437 		break;
438 
439 	case LSSUSPENDED:
440 		lwp_unlock(t);
441 		break;
442 
443 	case LSSTOP:
444 		t->l_flag |= LW_WSUSPEND;
445 		setrunnable(t);
446 		break;
447 
448 	case LSIDL:
449 	case LSZOMB:
450 		error = EINTR; /* It's what Solaris does..... */
451 		lwp_unlock(t);
452 		break;
453 	}
454 
455 	return (error);
456 }
457 
458 /*
459  * Restart a suspended LWP.
460  *
461  * Must be called with p_lock held, and the LWP locked.  Will unlock the
462  * LWP before return.
463  */
464 void
465 lwp_continue(struct lwp *l)
466 {
467 
468 	KASSERT(mutex_owned(l->l_proc->p_lock));
469 	KASSERT(lwp_locked(l, NULL));
470 
471 	/* If rebooting or not suspended, then just bail out. */
472 	if ((l->l_flag & LW_WREBOOT) != 0) {
473 		lwp_unlock(l);
474 		return;
475 	}
476 
477 	l->l_flag &= ~LW_WSUSPEND;
478 
479 	if (l->l_stat != LSSUSPENDED) {
480 		lwp_unlock(l);
481 		return;
482 	}
483 
484 	/* setrunnable() will release the lock. */
485 	setrunnable(l);
486 }
487 
488 /*
489  * Restart a stopped LWP.
490  *
491  * Must be called with p_lock held, and the LWP NOT locked.  Will unlock the
492  * LWP before return.
493  */
494 void
495 lwp_unstop(struct lwp *l)
496 {
497 	struct proc *p = l->l_proc;
498 
499 	KASSERT(mutex_owned(proc_lock));
500 	KASSERT(mutex_owned(p->p_lock));
501 
502 	lwp_lock(l);
503 
504 	/* If not stopped, then just bail out. */
505 	if (l->l_stat != LSSTOP) {
506 		lwp_unlock(l);
507 		return;
508 	}
509 
510 	p->p_stat = SACTIVE;
511 	p->p_sflag &= ~PS_STOPPING;
512 
513 	if (!p->p_waited)
514 		p->p_pptr->p_nstopchild--;
515 
516 	if (l->l_wchan == NULL) {
517 		/* setrunnable() will release the lock. */
518 		setrunnable(l);
519 	} else if (p->p_xstat && (l->l_flag & LW_SINTR) != 0) {
520 		/* setrunnable() so we can receive the signal */
521 		setrunnable(l);
522 	} else {
523 		l->l_stat = LSSLEEP;
524 		p->p_nrlwps++;
525 		lwp_unlock(l);
526 	}
527 }
528 
529 /*
530  * Wait for an LWP within the current process to exit.  If 'lid' is
531  * non-zero, we are waiting for a specific LWP.
532  *
533  * Must be called with p->p_lock held.
534  */
535 int
536 lwp_wait(struct lwp *l, lwpid_t lid, lwpid_t *departed, bool exiting)
537 {
538 	const lwpid_t curlid = l->l_lid;
539 	proc_t *p = l->l_proc;
540 	lwp_t *l2;
541 	int error;
542 
543 	KASSERT(mutex_owned(p->p_lock));
544 
545 	p->p_nlwpwait++;
546 	l->l_waitingfor = lid;
547 
548 	for (;;) {
549 		int nfound;
550 
551 		/*
552 		 * Avoid a race between exit1() and sigexit(): if the
553 		 * process is dumping core, then we need to bail out: call
554 		 * into lwp_userret() where we will be suspended until the
555 		 * deed is done.
556 		 */
557 		if ((p->p_sflag & PS_WCORE) != 0) {
558 			mutex_exit(p->p_lock);
559 			lwp_userret(l);
560 			KASSERT(false);
561 		}
562 
563 		/*
564 		 * First off, drain any detached LWP that is waiting to be
565 		 * reaped.
566 		 */
567 		while ((l2 = p->p_zomblwp) != NULL) {
568 			p->p_zomblwp = NULL;
569 			lwp_free(l2, false, false);/* releases proc mutex */
570 			mutex_enter(p->p_lock);
571 		}
572 
573 		/*
574 		 * Now look for an LWP to collect.  If the whole process is
575 		 * exiting, count detached LWPs as eligible to be collected,
576 		 * but don't drain them here.
577 		 */
578 		nfound = 0;
579 		error = 0;
580 		LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
581 			/*
582 			 * If a specific wait and the target is waiting on
583 			 * us, then avoid deadlock.  This also traps LWPs
584 			 * that try to wait on themselves.
585 			 *
586 			 * Note that this does not handle more complicated
587 			 * cycles, like: t1 -> t2 -> t3 -> t1.  The process
588 			 * can still be killed so it is not a major problem.
589 			 */
590 			if (l2->l_lid == lid && l2->l_waitingfor == curlid) {
591 				error = EDEADLK;
592 				break;
593 			}
594 			if (l2 == l)
595 				continue;
596 			if ((l2->l_prflag & LPR_DETACHED) != 0) {
597 				nfound += exiting;
598 				continue;
599 			}
600 			if (lid != 0) {
601 				if (l2->l_lid != lid)
602 					continue;
603 				/*
604 				 * Mark this LWP as the first waiter, if there
605 				 * is no other.
606 				 */
607 				if (l2->l_waiter == 0)
608 					l2->l_waiter = curlid;
609 			} else if (l2->l_waiter != 0) {
610 				/*
611 				 * It already has a waiter - so don't
612 				 * collect it.  If the waiter doesn't
613 				 * grab it we'll get another chance
614 				 * later.
615 				 */
616 				nfound++;
617 				continue;
618 			}
619 			nfound++;
620 
621 			/* No need to lock the LWP in order to see LSZOMB. */
622 			if (l2->l_stat != LSZOMB)
623 				continue;
624 
625 			/*
626 			 * We're no longer waiting.  Reset the "first waiter"
627 			 * pointer on the target, in case it was us.
628 			 */
629 			l->l_waitingfor = 0;
630 			l2->l_waiter = 0;
631 			p->p_nlwpwait--;
632 			if (departed)
633 				*departed = l2->l_lid;
634 			sched_lwp_collect(l2);
635 
636 			/* lwp_free() releases the proc lock. */
637 			lwp_free(l2, false, false);
638 			mutex_enter(p->p_lock);
639 			return 0;
640 		}
641 
642 		if (error != 0)
643 			break;
644 		if (nfound == 0) {
645 			error = ESRCH;
646 			break;
647 		}
648 
649 		/*
650 		 * Note: since the lock will be dropped, need to restart on
651 		 * wakeup to run all LWPs again, e.g. there may be new LWPs.
652 		 */
653 		if (exiting) {
654 			KASSERT(p->p_nlwps > 1);
655 			cv_wait(&p->p_lwpcv, p->p_lock);
656 			error = EAGAIN;
657 			break;
658 		}
659 
660 		/*
661 		 * If all other LWPs are waiting for exits or suspends
662 		 * and the supply of zombies and potential zombies is
663 		 * exhausted, then we are about to deadlock.
664 		 *
665 		 * If the process is exiting (and this LWP is not the one
666 		 * that is coordinating the exit) then bail out now.
667 		 */
668 		if ((p->p_sflag & PS_WEXIT) != 0 ||
669 		    p->p_nrlwps + p->p_nzlwps - p->p_ndlwps <= p->p_nlwpwait) {
670 			error = EDEADLK;
671 			break;
672 		}
673 
674 		/*
675 		 * Sit around and wait for something to happen.  We'll be
676 		 * awoken if any of the conditions examined change: if an
677 		 * LWP exits, is collected, or is detached.
678 		 */
679 		if ((error = cv_wait_sig(&p->p_lwpcv, p->p_lock)) != 0)
680 			break;
681 	}
682 
683 	/*
684 	 * We didn't find any LWPs to collect, we may have received a
685 	 * signal, or some other condition has caused us to bail out.
686 	 *
687 	 * If waiting on a specific LWP, clear the waiters marker: some
688 	 * other LWP may want it.  Then, kick all the remaining waiters
689 	 * so that they can re-check for zombies and for deadlock.
690 	 */
691 	if (lid != 0) {
692 		LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
693 			if (l2->l_lid == lid) {
694 				if (l2->l_waiter == curlid)
695 					l2->l_waiter = 0;
696 				break;
697 			}
698 		}
699 	}
700 	p->p_nlwpwait--;
701 	l->l_waitingfor = 0;
702 	cv_broadcast(&p->p_lwpcv);
703 
704 	return error;
705 }
706 
707 /*
708  * Create a new LWP within process 'p2', using LWP 'l1' as a template.
709  * The new LWP is created in state LSIDL and must be set running,
710  * suspended, or stopped by the caller.
711  */
712 int
713 lwp_create(lwp_t *l1, proc_t *p2, vaddr_t uaddr, int flags,
714 	   void *stack, size_t stacksize, void (*func)(void *), void *arg,
715 	   lwp_t **rnewlwpp, int sclass)
716 {
717 	struct lwp *l2, *isfree;
718 	turnstile_t *ts;
719 	lwpid_t lid;
720 
721 	KASSERT(l1 == curlwp || l1->l_proc == &proc0);
722 
723 	/*
724 	 * Enforce limits, excluding the first lwp and kthreads.
725 	 */
726 	if (p2->p_nlwps != 0 && p2 != &proc0) {
727 		uid_t uid = kauth_cred_getuid(l1->l_cred);
728 		int count = chglwpcnt(uid, 1);
729 		if (__predict_false(count >
730 		    p2->p_rlimit[RLIMIT_NTHR].rlim_cur)) {
731 			if (kauth_authorize_process(l1->l_cred,
732 			    KAUTH_PROCESS_RLIMIT, p2,
733 			    KAUTH_ARG(KAUTH_REQ_PROCESS_RLIMIT_BYPASS),
734 			    &p2->p_rlimit[RLIMIT_NTHR], KAUTH_ARG(RLIMIT_NTHR))
735 			    != 0) {
736 				(void)chglwpcnt(uid, -1);
737 				return EAGAIN;
738 			}
739 		}
740 	}
741 
742 	/*
743 	 * First off, reap any detached LWP waiting to be collected.
744 	 * We can re-use its LWP structure and turnstile.
745 	 */
746 	isfree = NULL;
747 	if (p2->p_zomblwp != NULL) {
748 		mutex_enter(p2->p_lock);
749 		if ((isfree = p2->p_zomblwp) != NULL) {
750 			p2->p_zomblwp = NULL;
751 			lwp_free(isfree, true, false);/* releases proc mutex */
752 		} else
753 			mutex_exit(p2->p_lock);
754 	}
755 	if (isfree == NULL) {
756 		l2 = pool_cache_get(lwp_cache, PR_WAITOK);
757 		memset(l2, 0, sizeof(*l2));
758 		l2->l_ts = pool_cache_get(turnstile_cache, PR_WAITOK);
759 		SLIST_INIT(&l2->l_pi_lenders);
760 	} else {
761 		l2 = isfree;
762 		ts = l2->l_ts;
763 		KASSERT(l2->l_inheritedprio == -1);
764 		KASSERT(SLIST_EMPTY(&l2->l_pi_lenders));
765 		memset(l2, 0, sizeof(*l2));
766 		l2->l_ts = ts;
767 	}
768 
769 	l2->l_stat = LSIDL;
770 	l2->l_proc = p2;
771 	l2->l_refcnt = 1;
772 	l2->l_class = sclass;
773 
774 	/*
775 	 * If vfork(), we want the LWP to run fast and on the same CPU
776 	 * as its parent, so that it can reuse the VM context and cache
777 	 * footprint on the local CPU.
778 	 */
779 	l2->l_kpriority = ((flags & LWP_VFORK) ? true : false);
780 	l2->l_kpribase = PRI_KERNEL;
781 	l2->l_priority = l1->l_priority;
782 	l2->l_inheritedprio = -1;
783 	l2->l_flag = 0;
784 	l2->l_pflag = LP_MPSAFE;
785 	TAILQ_INIT(&l2->l_ld_locks);
786 
787 	/*
788 	 * For vfork, borrow parent's lwpctl context if it exists.
789 	 * This also causes us to return via lwp_userret.
790 	 */
791 	if (flags & LWP_VFORK && l1->l_lwpctl) {
792 		l2->l_lwpctl = l1->l_lwpctl;
793 		l2->l_flag |= LW_LWPCTL;
794 	}
795 
796 	/*
797 	 * If not the first LWP in the process, grab a reference to the
798 	 * descriptor table.
799 	 */
800 	l2->l_fd = p2->p_fd;
801 	if (p2->p_nlwps != 0) {
802 		KASSERT(l1->l_proc == p2);
803 		fd_hold(l2);
804 	} else {
805 		KASSERT(l1->l_proc != p2);
806 	}
807 
808 	if (p2->p_flag & PK_SYSTEM) {
809 		/* Mark it as a system LWP. */
810 		l2->l_flag |= LW_SYSTEM;
811 	}
812 
813 	kpreempt_disable();
814 	l2->l_mutex = l1->l_cpu->ci_schedstate.spc_mutex;
815 	l2->l_cpu = l1->l_cpu;
816 	kpreempt_enable();
817 
818 	kdtrace_thread_ctor(NULL, l2);
819 	lwp_initspecific(l2);
820 	sched_lwp_fork(l1, l2);
821 	lwp_update_creds(l2);
822 	callout_init(&l2->l_timeout_ch, CALLOUT_MPSAFE);
823 	callout_setfunc(&l2->l_timeout_ch, sleepq_timeout, l2);
824 	cv_init(&l2->l_sigcv, "sigwait");
825 	cv_init(&l2->l_waitcv, "vfork");
826 	l2->l_syncobj = &sched_syncobj;
827 
828 	if (rnewlwpp != NULL)
829 		*rnewlwpp = l2;
830 
831 	/*
832 	 * PCU state needs to be saved before calling uvm_lwp_fork() so that
833 	 * the MD cpu_lwp_fork() can copy the saved state to the new LWP.
834 	 */
835 	pcu_save_all(l1);
836 
837 	uvm_lwp_setuarea(l2, uaddr);
838 	uvm_lwp_fork(l1, l2, stack, stacksize, func,
839 	    (arg != NULL) ? arg : l2);
840 
841 	if ((flags & LWP_PIDLID) != 0) {
842 		lid = proc_alloc_pid(p2);
843 		l2->l_pflag |= LP_PIDLID;
844 	} else {
845 		lid = 0;
846 	}
847 
848 	mutex_enter(p2->p_lock);
849 
850 	if ((flags & LWP_DETACHED) != 0) {
851 		l2->l_prflag = LPR_DETACHED;
852 		p2->p_ndlwps++;
853 	} else
854 		l2->l_prflag = 0;
855 
856 	l2->l_sigstk = l1->l_sigstk;
857 	l2->l_sigmask = l1->l_sigmask;
858 	CIRCLEQ_INIT(&l2->l_sigpend.sp_info);
859 	sigemptyset(&l2->l_sigpend.sp_set);
860 
861 	if (lid == 0) {
862 		p2->p_nlwpid++;
863 		if (p2->p_nlwpid == 0)
864 			p2->p_nlwpid++;
865 		lid = p2->p_nlwpid;
866 	}
867 	l2->l_lid = lid;
868 	LIST_INSERT_HEAD(&p2->p_lwps, l2, l_sibling);
869 	p2->p_nlwps++;
870 	p2->p_nrlwps++;
871 
872 	KASSERT(l2->l_affinity == NULL);
873 
874 	if ((p2->p_flag & PK_SYSTEM) == 0) {
875 		/* Inherit the affinity mask. */
876 		if (l1->l_affinity) {
877 			/*
878 			 * Note that we hold the state lock while inheriting
879 			 * the affinity to avoid race with sched_setaffinity().
880 			 */
881 			lwp_lock(l1);
882 			if (l1->l_affinity) {
883 				kcpuset_use(l1->l_affinity);
884 				l2->l_affinity = l1->l_affinity;
885 			}
886 			lwp_unlock(l1);
887 		}
888 		lwp_lock(l2);
889 		/* Inherit a processor-set */
890 		l2->l_psid = l1->l_psid;
891 		/* Look for a CPU to start */
892 		l2->l_cpu = sched_takecpu(l2);
893 		lwp_unlock_to(l2, l2->l_cpu->ci_schedstate.spc_mutex);
894 	}
895 	mutex_exit(p2->p_lock);
896 
897 	SDT_PROBE(proc,,,lwp_create, l2, 0,0,0,0);
898 
899 	mutex_enter(proc_lock);
900 	LIST_INSERT_HEAD(&alllwp, l2, l_list);
901 	mutex_exit(proc_lock);
902 
903 	SYSCALL_TIME_LWP_INIT(l2);
904 
905 	if (p2->p_emul->e_lwp_fork)
906 		(*p2->p_emul->e_lwp_fork)(l1, l2);
907 
908 	return (0);
909 }
910 
911 /*
912  * Called by MD code when a new LWP begins execution.  Must be called
913  * with the previous LWP locked (so at splsched), or if there is no
914  * previous LWP, at splsched.
915  */
916 void
917 lwp_startup(struct lwp *prev, struct lwp *new)
918 {
919 	KASSERTMSG(new == curlwp, "l %p curlwp %p prevlwp %p", new, curlwp, prev);
920 
921 	SDT_PROBE(proc,,,lwp_start, new, 0,0,0,0);
922 
923 	KASSERT(kpreempt_disabled());
924 	if (prev != NULL) {
925 		/*
926 		 * Normalize the count of the spin-mutexes, it was
927 		 * increased in mi_switch().  Unmark the state of
928 		 * context switch - it is finished for previous LWP.
929 		 */
930 		curcpu()->ci_mtx_count++;
931 		membar_exit();
932 		prev->l_ctxswtch = 0;
933 	}
934 	KPREEMPT_DISABLE(new);
935 	spl0();
936 	if (__predict_true(new->l_proc->p_vmspace))
937 		pmap_activate(new);
938 
939 	/* Note trip through cpu_switchto(). */
940 	pserialize_switchpoint();
941 
942 	LOCKDEBUG_BARRIER(NULL, 0);
943 	KPREEMPT_ENABLE(new);
944 	if ((new->l_pflag & LP_MPSAFE) == 0) {
945 		KERNEL_LOCK(1, new);
946 	}
947 }
948 
949 /*
950  * Exit an LWP.
951  */
952 void
953 lwp_exit(struct lwp *l)
954 {
955 	struct proc *p = l->l_proc;
956 	struct lwp *l2;
957 	bool current;
958 
959 	current = (l == curlwp);
960 
961 	KASSERT(current || (l->l_stat == LSIDL && l->l_target_cpu == NULL));
962 	KASSERT(p == curproc);
963 
964 	SDT_PROBE(proc,,,lwp_exit, l, 0,0,0,0);
965 
966 	/*
967 	 * Verify that we hold no locks other than the kernel lock.
968 	 */
969 	LOCKDEBUG_BARRIER(&kernel_lock, 0);
970 
971 	/*
972 	 * If we are the last live LWP in a process, we need to exit the
973 	 * entire process.  We do so with an exit status of zero, because
974 	 * it's a "controlled" exit, and because that's what Solaris does.
975 	 *
976 	 * We are not quite a zombie yet, but for accounting purposes we
977 	 * must increment the count of zombies here.
978 	 *
979 	 * Note: the last LWP's specificdata will be deleted here.
980 	 */
981 	mutex_enter(p->p_lock);
982 	if (p->p_nlwps - p->p_nzlwps == 1) {
983 		KASSERT(current == true);
984 		KASSERT(p != &proc0);
985 		/* XXXSMP kernel_lock not held */
986 		exit1(l, 0);
987 		/* NOTREACHED */
988 	}
989 	p->p_nzlwps++;
990 	mutex_exit(p->p_lock);
991 
992 	if (p->p_emul->e_lwp_exit)
993 		(*p->p_emul->e_lwp_exit)(l);
994 
995 	/* Drop filedesc reference. */
996 	fd_free();
997 
998 	/* Delete the specificdata while it's still safe to sleep. */
999 	lwp_finispecific(l);
1000 
1001 	/*
1002 	 * Release our cached credentials.
1003 	 */
1004 	kauth_cred_free(l->l_cred);
1005 	callout_destroy(&l->l_timeout_ch);
1006 
1007 	/*
1008 	 * Remove the LWP from the global list.
1009 	 * Free its LID from the PID namespace if needed.
1010 	 */
1011 	mutex_enter(proc_lock);
1012 	LIST_REMOVE(l, l_list);
1013 	if ((l->l_pflag & LP_PIDLID) != 0 && l->l_lid != p->p_pid) {
1014 		proc_free_pid(l->l_lid);
1015 	}
1016 	mutex_exit(proc_lock);
1017 
1018 	/*
1019 	 * Get rid of all references to the LWP that others (e.g. procfs)
1020 	 * may have, and mark the LWP as a zombie.  If the LWP is detached,
1021 	 * mark it waiting for collection in the proc structure.  Note that
1022 	 * before we can do that, we need to free any other dead, deatched
1023 	 * LWP waiting to meet its maker.
1024 	 */
1025 	mutex_enter(p->p_lock);
1026 	lwp_drainrefs(l);
1027 
1028 	if ((l->l_prflag & LPR_DETACHED) != 0) {
1029 		while ((l2 = p->p_zomblwp) != NULL) {
1030 			p->p_zomblwp = NULL;
1031 			lwp_free(l2, false, false);/* releases proc mutex */
1032 			mutex_enter(p->p_lock);
1033 			l->l_refcnt++;
1034 			lwp_drainrefs(l);
1035 		}
1036 		p->p_zomblwp = l;
1037 	}
1038 
1039 	/*
1040 	 * If we find a pending signal for the process and we have been
1041 	 * asked to check for signals, then we lose: arrange to have
1042 	 * all other LWPs in the process check for signals.
1043 	 */
1044 	if ((l->l_flag & LW_PENDSIG) != 0 &&
1045 	    firstsig(&p->p_sigpend.sp_set) != 0) {
1046 		LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
1047 			lwp_lock(l2);
1048 			l2->l_flag |= LW_PENDSIG;
1049 			lwp_unlock(l2);
1050 		}
1051 	}
1052 
1053 	/*
1054 	 * Release any PCU resources before becoming a zombie.
1055 	 */
1056 	pcu_discard_all(l);
1057 
1058 	lwp_lock(l);
1059 	l->l_stat = LSZOMB;
1060 	if (l->l_name != NULL) {
1061 		strcpy(l->l_name, "(zombie)");
1062 	}
1063 	lwp_unlock(l);
1064 	p->p_nrlwps--;
1065 	cv_broadcast(&p->p_lwpcv);
1066 	if (l->l_lwpctl != NULL)
1067 		l->l_lwpctl->lc_curcpu = LWPCTL_CPU_EXITED;
1068 	mutex_exit(p->p_lock);
1069 
1070 	/*
1071 	 * We can no longer block.  At this point, lwp_free() may already
1072 	 * be gunning for us.  On a multi-CPU system, we may be off p_lwps.
1073 	 *
1074 	 * Free MD LWP resources.
1075 	 */
1076 	cpu_lwp_free(l, 0);
1077 
1078 	if (current) {
1079 		pmap_deactivate(l);
1080 
1081 		/*
1082 		 * Release the kernel lock, and switch away into
1083 		 * oblivion.
1084 		 */
1085 #ifdef notyet
1086 		/* XXXSMP hold in lwp_userret() */
1087 		KERNEL_UNLOCK_LAST(l);
1088 #else
1089 		KERNEL_UNLOCK_ALL(l, NULL);
1090 #endif
1091 		lwp_exit_switchaway(l);
1092 	}
1093 }
1094 
1095 /*
1096  * Free a dead LWP's remaining resources.
1097  *
1098  * XXXLWP limits.
1099  */
1100 void
1101 lwp_free(struct lwp *l, bool recycle, bool last)
1102 {
1103 	struct proc *p = l->l_proc;
1104 	struct rusage *ru;
1105 	ksiginfoq_t kq;
1106 
1107 	KASSERT(l != curlwp);
1108 	KASSERT(last || mutex_owned(p->p_lock));
1109 
1110 	if (p != &proc0 && p->p_nlwps != 1)
1111 		(void)chglwpcnt(kauth_cred_getuid(l->l_cred), -1);
1112 	/*
1113 	 * If this was not the last LWP in the process, then adjust
1114 	 * counters and unlock.
1115 	 */
1116 	if (!last) {
1117 		/*
1118 		 * Add the LWP's run time to the process' base value.
1119 		 * This needs to co-incide with coming off p_lwps.
1120 		 */
1121 		bintime_add(&p->p_rtime, &l->l_rtime);
1122 		p->p_pctcpu += l->l_pctcpu;
1123 		ru = &p->p_stats->p_ru;
1124 		ruadd(ru, &l->l_ru);
1125 		ru->ru_nvcsw += (l->l_ncsw - l->l_nivcsw);
1126 		ru->ru_nivcsw += l->l_nivcsw;
1127 		LIST_REMOVE(l, l_sibling);
1128 		p->p_nlwps--;
1129 		p->p_nzlwps--;
1130 		if ((l->l_prflag & LPR_DETACHED) != 0)
1131 			p->p_ndlwps--;
1132 
1133 		/*
1134 		 * Have any LWPs sleeping in lwp_wait() recheck for
1135 		 * deadlock.
1136 		 */
1137 		cv_broadcast(&p->p_lwpcv);
1138 		mutex_exit(p->p_lock);
1139 	}
1140 
1141 #ifdef MULTIPROCESSOR
1142 	/*
1143 	 * In the unlikely event that the LWP is still on the CPU,
1144 	 * then spin until it has switched away.  We need to release
1145 	 * all locks to avoid deadlock against interrupt handlers on
1146 	 * the target CPU.
1147 	 */
1148 	if ((l->l_pflag & LP_RUNNING) != 0 || l->l_cpu->ci_curlwp == l) {
1149 		int count;
1150 		(void)count; /* XXXgcc */
1151 		KERNEL_UNLOCK_ALL(curlwp, &count);
1152 		while ((l->l_pflag & LP_RUNNING) != 0 ||
1153 		    l->l_cpu->ci_curlwp == l)
1154 			SPINLOCK_BACKOFF_HOOK;
1155 		KERNEL_LOCK(count, curlwp);
1156 	}
1157 #endif
1158 
1159 	/*
1160 	 * Destroy the LWP's remaining signal information.
1161 	 */
1162 	ksiginfo_queue_init(&kq);
1163 	sigclear(&l->l_sigpend, NULL, &kq);
1164 	ksiginfo_queue_drain(&kq);
1165 	cv_destroy(&l->l_sigcv);
1166 	cv_destroy(&l->l_waitcv);
1167 
1168 	/*
1169 	 * Free lwpctl structure and affinity.
1170 	 */
1171 	if (l->l_lwpctl) {
1172 		lwp_ctl_free(l);
1173 	}
1174 	if (l->l_affinity) {
1175 		kcpuset_unuse(l->l_affinity, NULL);
1176 		l->l_affinity = NULL;
1177 	}
1178 
1179 	/*
1180 	 * Free the LWP's turnstile and the LWP structure itself unless the
1181 	 * caller wants to recycle them.  Also, free the scheduler specific
1182 	 * data.
1183 	 *
1184 	 * We can't return turnstile0 to the pool (it didn't come from it),
1185 	 * so if it comes up just drop it quietly and move on.
1186 	 *
1187 	 * We don't recycle the VM resources at this time.
1188 	 */
1189 
1190 	if (!recycle && l->l_ts != &turnstile0)
1191 		pool_cache_put(turnstile_cache, l->l_ts);
1192 	if (l->l_name != NULL)
1193 		kmem_free(l->l_name, MAXCOMLEN);
1194 
1195 	cpu_lwp_free2(l);
1196 	uvm_lwp_exit(l);
1197 
1198 	KASSERT(SLIST_EMPTY(&l->l_pi_lenders));
1199 	KASSERT(l->l_inheritedprio == -1);
1200 	KASSERT(l->l_blcnt == 0);
1201 	kdtrace_thread_dtor(NULL, l);
1202 	if (!recycle)
1203 		pool_cache_put(lwp_cache, l);
1204 }
1205 
1206 /*
1207  * Migrate the LWP to the another CPU.  Unlocks the LWP.
1208  */
1209 void
1210 lwp_migrate(lwp_t *l, struct cpu_info *tci)
1211 {
1212 	struct schedstate_percpu *tspc;
1213 	int lstat = l->l_stat;
1214 
1215 	KASSERT(lwp_locked(l, NULL));
1216 	KASSERT(tci != NULL);
1217 
1218 	/* If LWP is still on the CPU, it must be handled like LSONPROC */
1219 	if ((l->l_pflag & LP_RUNNING) != 0) {
1220 		lstat = LSONPROC;
1221 	}
1222 
1223 	/*
1224 	 * The destination CPU could be changed while previous migration
1225 	 * was not finished.
1226 	 */
1227 	if (l->l_target_cpu != NULL) {
1228 		l->l_target_cpu = tci;
1229 		lwp_unlock(l);
1230 		return;
1231 	}
1232 
1233 	/* Nothing to do if trying to migrate to the same CPU */
1234 	if (l->l_cpu == tci) {
1235 		lwp_unlock(l);
1236 		return;
1237 	}
1238 
1239 	KASSERT(l->l_target_cpu == NULL);
1240 	tspc = &tci->ci_schedstate;
1241 	switch (lstat) {
1242 	case LSRUN:
1243 		l->l_target_cpu = tci;
1244 		break;
1245 	case LSIDL:
1246 		l->l_cpu = tci;
1247 		lwp_unlock_to(l, tspc->spc_mutex);
1248 		return;
1249 	case LSSLEEP:
1250 		l->l_cpu = tci;
1251 		break;
1252 	case LSSTOP:
1253 	case LSSUSPENDED:
1254 		l->l_cpu = tci;
1255 		if (l->l_wchan == NULL) {
1256 			lwp_unlock_to(l, tspc->spc_lwplock);
1257 			return;
1258 		}
1259 		break;
1260 	case LSONPROC:
1261 		l->l_target_cpu = tci;
1262 		spc_lock(l->l_cpu);
1263 		cpu_need_resched(l->l_cpu, RESCHED_KPREEMPT);
1264 		spc_unlock(l->l_cpu);
1265 		break;
1266 	}
1267 	lwp_unlock(l);
1268 }
1269 
1270 /*
1271  * Find the LWP in the process.  Arguments may be zero, in such case,
1272  * the calling process and first LWP in the list will be used.
1273  * On success - returns proc locked.
1274  */
1275 struct lwp *
1276 lwp_find2(pid_t pid, lwpid_t lid)
1277 {
1278 	proc_t *p;
1279 	lwp_t *l;
1280 
1281 	/* Find the process. */
1282 	if (pid != 0) {
1283 		mutex_enter(proc_lock);
1284 		p = proc_find(pid);
1285 		if (p == NULL) {
1286 			mutex_exit(proc_lock);
1287 			return NULL;
1288 		}
1289 		mutex_enter(p->p_lock);
1290 		mutex_exit(proc_lock);
1291 	} else {
1292 		p = curlwp->l_proc;
1293 		mutex_enter(p->p_lock);
1294 	}
1295 	/* Find the thread. */
1296 	if (lid != 0) {
1297 		l = lwp_find(p, lid);
1298 	} else {
1299 		l = LIST_FIRST(&p->p_lwps);
1300 	}
1301 	if (l == NULL) {
1302 		mutex_exit(p->p_lock);
1303 	}
1304 	return l;
1305 }
1306 
1307 /*
1308  * Look up a live LWP within the specified process.
1309  *
1310  * Must be called with p->p_lock held.
1311  */
1312 struct lwp *
1313 lwp_find(struct proc *p, lwpid_t id)
1314 {
1315 	struct lwp *l;
1316 
1317 	KASSERT(mutex_owned(p->p_lock));
1318 
1319 	LIST_FOREACH(l, &p->p_lwps, l_sibling) {
1320 		if (l->l_lid == id)
1321 			break;
1322 	}
1323 
1324 	/*
1325 	 * No need to lock - all of these conditions will
1326 	 * be visible with the process level mutex held.
1327 	 */
1328 	if (l != NULL && (l->l_stat == LSIDL || l->l_stat == LSZOMB))
1329 		l = NULL;
1330 
1331 	return l;
1332 }
1333 
1334 /*
1335  * Update an LWP's cached credentials to mirror the process' master copy.
1336  *
1337  * This happens early in the syscall path, on user trap, and on LWP
1338  * creation.  A long-running LWP can also voluntarily choose to update
1339  * it's credentials by calling this routine.  This may be called from
1340  * LWP_CACHE_CREDS(), which checks l->l_cred != p->p_cred beforehand.
1341  */
1342 void
1343 lwp_update_creds(struct lwp *l)
1344 {
1345 	kauth_cred_t oc;
1346 	struct proc *p;
1347 
1348 	p = l->l_proc;
1349 	oc = l->l_cred;
1350 
1351 	mutex_enter(p->p_lock);
1352 	kauth_cred_hold(p->p_cred);
1353 	l->l_cred = p->p_cred;
1354 	l->l_prflag &= ~LPR_CRMOD;
1355 	mutex_exit(p->p_lock);
1356 	if (oc != NULL)
1357 		kauth_cred_free(oc);
1358 }
1359 
1360 /*
1361  * Verify that an LWP is locked, and optionally verify that the lock matches
1362  * one we specify.
1363  */
1364 int
1365 lwp_locked(struct lwp *l, kmutex_t *mtx)
1366 {
1367 	kmutex_t *cur = l->l_mutex;
1368 
1369 	return mutex_owned(cur) && (mtx == cur || mtx == NULL);
1370 }
1371 
1372 /*
1373  * Lend a new mutex to an LWP.  The old mutex must be held.
1374  */
1375 void
1376 lwp_setlock(struct lwp *l, kmutex_t *new)
1377 {
1378 
1379 	KASSERT(mutex_owned(l->l_mutex));
1380 
1381 	membar_exit();
1382 	l->l_mutex = new;
1383 }
1384 
1385 /*
1386  * Lend a new mutex to an LWP, and release the old mutex.  The old mutex
1387  * must be held.
1388  */
1389 void
1390 lwp_unlock_to(struct lwp *l, kmutex_t *new)
1391 {
1392 	kmutex_t *old;
1393 
1394 	KASSERT(lwp_locked(l, NULL));
1395 
1396 	old = l->l_mutex;
1397 	membar_exit();
1398 	l->l_mutex = new;
1399 	mutex_spin_exit(old);
1400 }
1401 
1402 int
1403 lwp_trylock(struct lwp *l)
1404 {
1405 	kmutex_t *old;
1406 
1407 	for (;;) {
1408 		if (!mutex_tryenter(old = l->l_mutex))
1409 			return 0;
1410 		if (__predict_true(l->l_mutex == old))
1411 			return 1;
1412 		mutex_spin_exit(old);
1413 	}
1414 }
1415 
1416 void
1417 lwp_unsleep(lwp_t *l, bool cleanup)
1418 {
1419 
1420 	KASSERT(mutex_owned(l->l_mutex));
1421 	(*l->l_syncobj->sobj_unsleep)(l, cleanup);
1422 }
1423 
1424 /*
1425  * Handle exceptions for mi_userret().  Called if a member of LW_USERRET is
1426  * set.
1427  */
1428 void
1429 lwp_userret(struct lwp *l)
1430 {
1431 	struct proc *p;
1432 	int sig;
1433 
1434 	KASSERT(l == curlwp);
1435 	KASSERT(l->l_stat == LSONPROC);
1436 	p = l->l_proc;
1437 
1438 #ifndef __HAVE_FAST_SOFTINTS
1439 	/* Run pending soft interrupts. */
1440 	if (l->l_cpu->ci_data.cpu_softints != 0)
1441 		softint_overlay();
1442 #endif
1443 
1444 	/*
1445 	 * It is safe to do this read unlocked on a MP system..
1446 	 */
1447 	while ((l->l_flag & LW_USERRET) != 0) {
1448 		/*
1449 		 * Process pending signals first, unless the process
1450 		 * is dumping core or exiting, where we will instead
1451 		 * enter the LW_WSUSPEND case below.
1452 		 */
1453 		if ((l->l_flag & (LW_PENDSIG | LW_WCORE | LW_WEXIT)) ==
1454 		    LW_PENDSIG) {
1455 			mutex_enter(p->p_lock);
1456 			while ((sig = issignal(l)) != 0)
1457 				postsig(sig);
1458 			mutex_exit(p->p_lock);
1459 		}
1460 
1461 		/*
1462 		 * Core-dump or suspend pending.
1463 		 *
1464 		 * In case of core dump, suspend ourselves, so that the kernel
1465 		 * stack and therefore the userland registers saved in the
1466 		 * trapframe are around for coredump() to write them out.
1467 		 * We also need to save any PCU resources that we have so that
1468 		 * they accessible for coredump().  We issue a wakeup on
1469 		 * p->p_lwpcv so that sigexit() will write the core file out
1470 		 * once all other LWPs are suspended.
1471 		 */
1472 		if ((l->l_flag & LW_WSUSPEND) != 0) {
1473 			pcu_save_all(l);
1474 			mutex_enter(p->p_lock);
1475 			p->p_nrlwps--;
1476 			cv_broadcast(&p->p_lwpcv);
1477 			lwp_lock(l);
1478 			l->l_stat = LSSUSPENDED;
1479 			lwp_unlock(l);
1480 			mutex_exit(p->p_lock);
1481 			lwp_lock(l);
1482 			mi_switch(l);
1483 		}
1484 
1485 		/* Process is exiting. */
1486 		if ((l->l_flag & LW_WEXIT) != 0) {
1487 			lwp_exit(l);
1488 			KASSERT(0);
1489 			/* NOTREACHED */
1490 		}
1491 
1492 		/* update lwpctl processor (for vfork child_return) */
1493 		if (l->l_flag & LW_LWPCTL) {
1494 			lwp_lock(l);
1495 			KASSERT(kpreempt_disabled());
1496 			l->l_lwpctl->lc_curcpu = (int)cpu_index(l->l_cpu);
1497 			l->l_lwpctl->lc_pctr++;
1498 			l->l_flag &= ~LW_LWPCTL;
1499 			lwp_unlock(l);
1500 		}
1501 	}
1502 }
1503 
1504 /*
1505  * Force an LWP to enter the kernel, to take a trip through lwp_userret().
1506  */
1507 void
1508 lwp_need_userret(struct lwp *l)
1509 {
1510 	KASSERT(lwp_locked(l, NULL));
1511 
1512 	/*
1513 	 * Since the tests in lwp_userret() are done unlocked, make sure
1514 	 * that the condition will be seen before forcing the LWP to enter
1515 	 * kernel mode.
1516 	 */
1517 	membar_producer();
1518 	cpu_signotify(l);
1519 }
1520 
1521 /*
1522  * Add one reference to an LWP.  This will prevent the LWP from
1523  * exiting, thus keep the lwp structure and PCB around to inspect.
1524  */
1525 void
1526 lwp_addref(struct lwp *l)
1527 {
1528 
1529 	KASSERT(mutex_owned(l->l_proc->p_lock));
1530 	KASSERT(l->l_stat != LSZOMB);
1531 	KASSERT(l->l_refcnt != 0);
1532 
1533 	l->l_refcnt++;
1534 }
1535 
1536 /*
1537  * Remove one reference to an LWP.  If this is the last reference,
1538  * then we must finalize the LWP's death.
1539  */
1540 void
1541 lwp_delref(struct lwp *l)
1542 {
1543 	struct proc *p = l->l_proc;
1544 
1545 	mutex_enter(p->p_lock);
1546 	lwp_delref2(l);
1547 	mutex_exit(p->p_lock);
1548 }
1549 
1550 /*
1551  * Remove one reference to an LWP.  If this is the last reference,
1552  * then we must finalize the LWP's death.  The proc mutex is held
1553  * on entry.
1554  */
1555 void
1556 lwp_delref2(struct lwp *l)
1557 {
1558 	struct proc *p = l->l_proc;
1559 
1560 	KASSERT(mutex_owned(p->p_lock));
1561 	KASSERT(l->l_stat != LSZOMB);
1562 	KASSERT(l->l_refcnt > 0);
1563 	if (--l->l_refcnt == 0)
1564 		cv_broadcast(&p->p_lwpcv);
1565 }
1566 
1567 /*
1568  * Drain all references to the current LWP.
1569  */
1570 void
1571 lwp_drainrefs(struct lwp *l)
1572 {
1573 	struct proc *p = l->l_proc;
1574 
1575 	KASSERT(mutex_owned(p->p_lock));
1576 	KASSERT(l->l_refcnt != 0);
1577 
1578 	l->l_refcnt--;
1579 	while (l->l_refcnt != 0)
1580 		cv_wait(&p->p_lwpcv, p->p_lock);
1581 }
1582 
1583 /*
1584  * Return true if the specified LWP is 'alive'.  Only p->p_lock need
1585  * be held.
1586  */
1587 bool
1588 lwp_alive(lwp_t *l)
1589 {
1590 
1591 	KASSERT(mutex_owned(l->l_proc->p_lock));
1592 
1593 	switch (l->l_stat) {
1594 	case LSSLEEP:
1595 	case LSRUN:
1596 	case LSONPROC:
1597 	case LSSTOP:
1598 	case LSSUSPENDED:
1599 		return true;
1600 	default:
1601 		return false;
1602 	}
1603 }
1604 
1605 /*
1606  * Return first live LWP in the process.
1607  */
1608 lwp_t *
1609 lwp_find_first(proc_t *p)
1610 {
1611 	lwp_t *l;
1612 
1613 	KASSERT(mutex_owned(p->p_lock));
1614 
1615 	LIST_FOREACH(l, &p->p_lwps, l_sibling) {
1616 		if (lwp_alive(l)) {
1617 			return l;
1618 		}
1619 	}
1620 
1621 	return NULL;
1622 }
1623 
1624 /*
1625  * Allocate a new lwpctl structure for a user LWP.
1626  */
1627 int
1628 lwp_ctl_alloc(vaddr_t *uaddr)
1629 {
1630 	lcproc_t *lp;
1631 	u_int bit, i, offset;
1632 	struct uvm_object *uao;
1633 	int error;
1634 	lcpage_t *lcp;
1635 	proc_t *p;
1636 	lwp_t *l;
1637 
1638 	l = curlwp;
1639 	p = l->l_proc;
1640 
1641 	/* don't allow a vforked process to create lwp ctls */
1642 	if (p->p_lflag & PL_PPWAIT)
1643 		return EBUSY;
1644 
1645 	if (l->l_lcpage != NULL) {
1646 		lcp = l->l_lcpage;
1647 		*uaddr = lcp->lcp_uaddr + (vaddr_t)l->l_lwpctl - lcp->lcp_kaddr;
1648 		return 0;
1649 	}
1650 
1651 	/* First time around, allocate header structure for the process. */
1652 	if ((lp = p->p_lwpctl) == NULL) {
1653 		lp = kmem_alloc(sizeof(*lp), KM_SLEEP);
1654 		mutex_init(&lp->lp_lock, MUTEX_DEFAULT, IPL_NONE);
1655 		lp->lp_uao = NULL;
1656 		TAILQ_INIT(&lp->lp_pages);
1657 		mutex_enter(p->p_lock);
1658 		if (p->p_lwpctl == NULL) {
1659 			p->p_lwpctl = lp;
1660 			mutex_exit(p->p_lock);
1661 		} else {
1662 			mutex_exit(p->p_lock);
1663 			mutex_destroy(&lp->lp_lock);
1664 			kmem_free(lp, sizeof(*lp));
1665 			lp = p->p_lwpctl;
1666 		}
1667 	}
1668 
1669  	/*
1670  	 * Set up an anonymous memory region to hold the shared pages.
1671  	 * Map them into the process' address space.  The user vmspace
1672  	 * gets the first reference on the UAO.
1673  	 */
1674 	mutex_enter(&lp->lp_lock);
1675 	if (lp->lp_uao == NULL) {
1676 		lp->lp_uao = uao_create(LWPCTL_UAREA_SZ, 0);
1677 		lp->lp_cur = 0;
1678 		lp->lp_max = LWPCTL_UAREA_SZ;
1679 		lp->lp_uva = p->p_emul->e_vm_default_addr(p,
1680 		     (vaddr_t)p->p_vmspace->vm_daddr, LWPCTL_UAREA_SZ);
1681 		error = uvm_map(&p->p_vmspace->vm_map, &lp->lp_uva,
1682 		    LWPCTL_UAREA_SZ, lp->lp_uao, 0, 0, UVM_MAPFLAG(UVM_PROT_RW,
1683 		    UVM_PROT_RW, UVM_INH_NONE, UVM_ADV_NORMAL, 0));
1684 		if (error != 0) {
1685 			uao_detach(lp->lp_uao);
1686 			lp->lp_uao = NULL;
1687 			mutex_exit(&lp->lp_lock);
1688 			return error;
1689 		}
1690 	}
1691 
1692 	/* Get a free block and allocate for this LWP. */
1693 	TAILQ_FOREACH(lcp, &lp->lp_pages, lcp_chain) {
1694 		if (lcp->lcp_nfree != 0)
1695 			break;
1696 	}
1697 	if (lcp == NULL) {
1698 		/* Nothing available - try to set up a free page. */
1699 		if (lp->lp_cur == lp->lp_max) {
1700 			mutex_exit(&lp->lp_lock);
1701 			return ENOMEM;
1702 		}
1703 		lcp = kmem_alloc(LWPCTL_LCPAGE_SZ, KM_SLEEP);
1704 		if (lcp == NULL) {
1705 			mutex_exit(&lp->lp_lock);
1706 			return ENOMEM;
1707 		}
1708 		/*
1709 		 * Wire the next page down in kernel space.  Since this
1710 		 * is a new mapping, we must add a reference.
1711 		 */
1712 		uao = lp->lp_uao;
1713 		(*uao->pgops->pgo_reference)(uao);
1714 		lcp->lcp_kaddr = vm_map_min(kernel_map);
1715 		error = uvm_map(kernel_map, &lcp->lcp_kaddr, PAGE_SIZE,
1716 		    uao, lp->lp_cur, PAGE_SIZE,
1717 		    UVM_MAPFLAG(UVM_PROT_RW, UVM_PROT_RW,
1718 		    UVM_INH_NONE, UVM_ADV_RANDOM, 0));
1719 		if (error != 0) {
1720 			mutex_exit(&lp->lp_lock);
1721 			kmem_free(lcp, LWPCTL_LCPAGE_SZ);
1722 			(*uao->pgops->pgo_detach)(uao);
1723 			return error;
1724 		}
1725 		error = uvm_map_pageable(kernel_map, lcp->lcp_kaddr,
1726 		    lcp->lcp_kaddr + PAGE_SIZE, FALSE, 0);
1727 		if (error != 0) {
1728 			mutex_exit(&lp->lp_lock);
1729 			uvm_unmap(kernel_map, lcp->lcp_kaddr,
1730 			    lcp->lcp_kaddr + PAGE_SIZE);
1731 			kmem_free(lcp, LWPCTL_LCPAGE_SZ);
1732 			return error;
1733 		}
1734 		/* Prepare the page descriptor and link into the list. */
1735 		lcp->lcp_uaddr = lp->lp_uva + lp->lp_cur;
1736 		lp->lp_cur += PAGE_SIZE;
1737 		lcp->lcp_nfree = LWPCTL_PER_PAGE;
1738 		lcp->lcp_rotor = 0;
1739 		memset(lcp->lcp_bitmap, 0xff, LWPCTL_BITMAP_SZ);
1740 		TAILQ_INSERT_HEAD(&lp->lp_pages, lcp, lcp_chain);
1741 	}
1742 	for (i = lcp->lcp_rotor; lcp->lcp_bitmap[i] == 0;) {
1743 		if (++i >= LWPCTL_BITMAP_ENTRIES)
1744 			i = 0;
1745 	}
1746 	bit = ffs(lcp->lcp_bitmap[i]) - 1;
1747 	lcp->lcp_bitmap[i] ^= (1 << bit);
1748 	lcp->lcp_rotor = i;
1749 	lcp->lcp_nfree--;
1750 	l->l_lcpage = lcp;
1751 	offset = (i << 5) + bit;
1752 	l->l_lwpctl = (lwpctl_t *)lcp->lcp_kaddr + offset;
1753 	*uaddr = lcp->lcp_uaddr + offset * sizeof(lwpctl_t);
1754 	mutex_exit(&lp->lp_lock);
1755 
1756 	KPREEMPT_DISABLE(l);
1757 	l->l_lwpctl->lc_curcpu = (int)curcpu()->ci_data.cpu_index;
1758 	KPREEMPT_ENABLE(l);
1759 
1760 	return 0;
1761 }
1762 
1763 /*
1764  * Free an lwpctl structure back to the per-process list.
1765  */
1766 void
1767 lwp_ctl_free(lwp_t *l)
1768 {
1769 	struct proc *p = l->l_proc;
1770 	lcproc_t *lp;
1771 	lcpage_t *lcp;
1772 	u_int map, offset;
1773 
1774 	/* don't free a lwp context we borrowed for vfork */
1775 	if (p->p_lflag & PL_PPWAIT) {
1776 		l->l_lwpctl = NULL;
1777 		return;
1778 	}
1779 
1780 	lp = p->p_lwpctl;
1781 	KASSERT(lp != NULL);
1782 
1783 	lcp = l->l_lcpage;
1784 	offset = (u_int)((lwpctl_t *)l->l_lwpctl - (lwpctl_t *)lcp->lcp_kaddr);
1785 	KASSERT(offset < LWPCTL_PER_PAGE);
1786 
1787 	mutex_enter(&lp->lp_lock);
1788 	lcp->lcp_nfree++;
1789 	map = offset >> 5;
1790 	lcp->lcp_bitmap[map] |= (1 << (offset & 31));
1791 	if (lcp->lcp_bitmap[lcp->lcp_rotor] == 0)
1792 		lcp->lcp_rotor = map;
1793 	if (TAILQ_FIRST(&lp->lp_pages)->lcp_nfree == 0) {
1794 		TAILQ_REMOVE(&lp->lp_pages, lcp, lcp_chain);
1795 		TAILQ_INSERT_HEAD(&lp->lp_pages, lcp, lcp_chain);
1796 	}
1797 	mutex_exit(&lp->lp_lock);
1798 }
1799 
1800 /*
1801  * Process is exiting; tear down lwpctl state.  This can only be safely
1802  * called by the last LWP in the process.
1803  */
1804 void
1805 lwp_ctl_exit(void)
1806 {
1807 	lcpage_t *lcp, *next;
1808 	lcproc_t *lp;
1809 	proc_t *p;
1810 	lwp_t *l;
1811 
1812 	l = curlwp;
1813 	l->l_lwpctl = NULL;
1814 	l->l_lcpage = NULL;
1815 	p = l->l_proc;
1816 	lp = p->p_lwpctl;
1817 
1818 	KASSERT(lp != NULL);
1819 	KASSERT(p->p_nlwps == 1);
1820 
1821 	for (lcp = TAILQ_FIRST(&lp->lp_pages); lcp != NULL; lcp = next) {
1822 		next = TAILQ_NEXT(lcp, lcp_chain);
1823 		uvm_unmap(kernel_map, lcp->lcp_kaddr,
1824 		    lcp->lcp_kaddr + PAGE_SIZE);
1825 		kmem_free(lcp, LWPCTL_LCPAGE_SZ);
1826 	}
1827 
1828 	if (lp->lp_uao != NULL) {
1829 		uvm_unmap(&p->p_vmspace->vm_map, lp->lp_uva,
1830 		    lp->lp_uva + LWPCTL_UAREA_SZ);
1831 	}
1832 
1833 	mutex_destroy(&lp->lp_lock);
1834 	kmem_free(lp, sizeof(*lp));
1835 	p->p_lwpctl = NULL;
1836 }
1837 
1838 /*
1839  * Return the current LWP's "preemption counter".  Used to detect
1840  * preemption across operations that can tolerate preemption without
1841  * crashing, but which may generate incorrect results if preempted.
1842  */
1843 uint64_t
1844 lwp_pctr(void)
1845 {
1846 
1847 	return curlwp->l_ncsw;
1848 }
1849 
1850 /*
1851  * Set an LWP's private data pointer.
1852  */
1853 int
1854 lwp_setprivate(struct lwp *l, void *ptr)
1855 {
1856 	int error = 0;
1857 
1858 	l->l_private = ptr;
1859 #ifdef __HAVE_CPU_LWP_SETPRIVATE
1860 	error = cpu_lwp_setprivate(l, ptr);
1861 #endif
1862 	return error;
1863 }
1864 
1865 #if defined(DDB)
1866 #include <machine/pcb.h>
1867 
1868 void
1869 lwp_whatis(uintptr_t addr, void (*pr)(const char *, ...))
1870 {
1871 	lwp_t *l;
1872 
1873 	LIST_FOREACH(l, &alllwp, l_list) {
1874 		uintptr_t stack = (uintptr_t)KSTACK_LOWEST_ADDR(l);
1875 
1876 		if (addr < stack || stack + KSTACK_SIZE <= addr) {
1877 			continue;
1878 		}
1879 		(*pr)("%p is %p+%zu, LWP %p's stack\n",
1880 		    (void *)addr, (void *)stack,
1881 		    (size_t)(addr - stack), l);
1882 	}
1883 }
1884 #endif /* defined(DDB) */
1885