xref: /netbsd-src/sys/kern/kern_lwp.c (revision 7fa608457b817eca6e0977b37f758ae064f3c99c)
1 /*	$NetBSD: kern_lwp.c,v 1.77 2007/11/11 23:22:23 matt Exp $	*/
2 
3 /*-
4  * Copyright (c) 2001, 2006, 2007 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Nathan J. Williams, and Andrew Doran.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. All advertising materials mentioning features or use of this software
19  *    must display the following acknowledgement:
20  *        This product includes software developed by the NetBSD
21  *        Foundation, Inc. and its contributors.
22  * 4. Neither the name of The NetBSD Foundation nor the names of its
23  *    contributors may be used to endorse or promote products derived
24  *    from this software without specific prior written permission.
25  *
26  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36  * POSSIBILITY OF SUCH DAMAGE.
37  */
38 
39 /*
40  * Overview
41  *
42  *	Lightweight processes (LWPs) are the basic unit or thread of
43  *	execution within the kernel.  The core state of an LWP is described
44  *	by "struct lwp", also known as lwp_t.
45  *
46  *	Each LWP is contained within a process (described by "struct proc"),
47  *	Every process contains at least one LWP, but may contain more.  The
48  *	process describes attributes shared among all of its LWPs such as a
49  *	private address space, global execution state (stopped, active,
50  *	zombie, ...), signal disposition and so on.  On a multiprocessor
51  *	machine, multiple LWPs be executing concurrently in the kernel.
52  *
53  * Execution states
54  *
55  *	At any given time, an LWP has overall state that is described by
56  *	lwp::l_stat.  The states are broken into two sets below.  The first
57  *	set is guaranteed to represent the absolute, current state of the
58  *	LWP:
59  *
60  * 	LSONPROC
61  *
62  * 		On processor: the LWP is executing on a CPU, either in the
63  * 		kernel or in user space.
64  *
65  * 	LSRUN
66  *
67  * 		Runnable: the LWP is parked on a run queue, and may soon be
68  * 		chosen to run by a idle processor, or by a processor that
69  * 		has been asked to preempt a currently runnning but lower
70  * 		priority LWP.  If the LWP is not swapped in (L_INMEM == 0)
71  *		then the LWP is not on a run queue, but may be soon.
72  *
73  * 	LSIDL
74  *
75  * 		Idle: the LWP has been created but has not yet executed,
76  *		or it has ceased executing a unit of work and is waiting
77  *		to be started again.
78  *
79  * 	LSSUSPENDED:
80  *
81  * 		Suspended: the LWP has had its execution suspended by
82  *		another LWP in the same process using the _lwp_suspend()
83  *		system call.  User-level LWPs also enter the suspended
84  *		state when the system is shutting down.
85  *
86  *	The second set represent a "statement of intent" on behalf of the
87  *	LWP.  The LWP may in fact be executing on a processor, may be
88  *	sleeping or idle. It is expected to take the necessary action to
89  *	stop executing or become "running" again within	a short timeframe.
90  *	The LW_RUNNING flag in lwp::l_flag indicates that an LWP is running.
91  *	Importantly, in indicates that its state is tied to a CPU.
92  *
93  * 	LSZOMB:
94  *
95  * 		Dead or dying: the LWP has released most of its resources
96  *		and is a) about to switch away into oblivion b) has already
97  *		switched away.  When it switches away, its few remaining
98  *		resources can be collected.
99  *
100  * 	LSSLEEP:
101  *
102  * 		Sleeping: the LWP has entered itself onto a sleep queue, and
103  * 		has switched away or will switch away shortly to allow other
104  *		LWPs to run on the CPU.
105  *
106  * 	LSSTOP:
107  *
108  * 		Stopped: the LWP has been stopped as a result of a job
109  * 		control signal, or as a result of the ptrace() interface.
110  *
111  * 		Stopped LWPs may run briefly within the kernel to handle
112  * 		signals that they receive, but will not return to user space
113  * 		until their process' state is changed away from stopped.
114  *
115  * 		Single LWPs within a process can not be set stopped
116  * 		selectively: all actions that can stop or continue LWPs
117  * 		occur at the process level.
118  *
119  * State transitions
120  *
121  *	Note that the LSSTOP state may only be set when returning to
122  *	user space in userret(), or when sleeping interruptably.  The
123  *	LSSUSPENDED state may only be set in userret().  Before setting
124  *	those states, we try to ensure that the LWPs will release all
125  *	locks that they hold, and at a minimum try to ensure that the
126  *	LWP can be set runnable again by a signal.
127  *
128  *	LWPs may transition states in the following ways:
129  *
130  *	 RUN -------> ONPROC		ONPROC -----> RUN
131  *	            > STOPPED			    > SLEEP
132  *	            > SUSPENDED			    > STOPPED
133  *						    > SUSPENDED
134  *						    > ZOMB
135  *
136  *	 STOPPED ---> RUN		SUSPENDED --> RUN
137  *	            > SLEEP			    > SLEEP
138  *
139  *	 SLEEP -----> ONPROC		IDL --------> RUN
140  *		    > RUN		            > SUSPENDED
141  *		    > STOPPED                       > STOPPED
142  *		    > SUSPENDED
143  *
144  *	Other state transitions are possible with kernel threads (eg
145  *	ONPROC -> IDL), but only happen under tightly controlled
146  *	circumstances the side effects are understood.
147  *
148  * Locking
149  *
150  *	The majority of fields in 'struct lwp' are covered by a single,
151  *	general spin lock pointed to by lwp::l_mutex.  The locks covering
152  *	each field are documented in sys/lwp.h.
153  *
154  *	State transitions must be made with the LWP's general lock held,
155  * 	and may cause the LWP's lock pointer to change. Manipulation of
156  *	the general lock is not performed directly, but through calls to
157  *	lwp_lock(), lwp_relock() and similar.
158  *
159  *	States and their associated locks:
160  *
161  *	LSONPROC, LSZOMB:
162  *
163  *		Always covered by spc_lwplock, which protects running LWPs.
164  *		This is a per-CPU lock.
165  *
166  *	LSIDL, LSRUN:
167  *
168  *		Always covered by spc_mutex, which protects the run queues.
169  *		This may be a per-CPU lock, depending on the scheduler.
170  *
171  *	LSSLEEP:
172  *
173  *		Covered by a lock associated with the sleep queue that the
174  *		LWP resides on, indirectly referenced by l_sleepq->sq_mutex.
175  *
176  *	LSSTOP, LSSUSPENDED:
177  *
178  *		If the LWP was previously sleeping (l_wchan != NULL), then
179  *		l_mutex references the sleep queue lock.  If the LWP was
180  *		runnable or on the CPU when halted, or has been removed from
181  *		the sleep queue since halted, then the lock is spc_lwplock.
182  *
183  *	The lock order is as follows:
184  *
185  *		spc::spc_lwplock ->
186  *		    sleepq_t::sq_mutex ->
187  *			tschain_t::tc_mutex ->
188  *			    spc::spc_mutex
189  *
190  *	Each process has an scheduler state lock (proc::p_smutex), and a
191  *	number of counters on LWPs and their states: p_nzlwps, p_nrlwps, and
192  *	so on.  When an LWP is to be entered into or removed from one of the
193  *	following states, p_mutex must be held and the process wide counters
194  *	adjusted:
195  *
196  *		LSIDL, LSZOMB, LSSTOP, LSSUSPENDED
197  *
198  *	Note that an LWP is considered running or likely to run soon if in
199  *	one of the following states.  This affects the value of p_nrlwps:
200  *
201  *		LSRUN, LSONPROC, LSSLEEP
202  *
203  *	p_smutex does not need to be held when transitioning among these
204  *	three states.
205  */
206 
207 #include <sys/cdefs.h>
208 __KERNEL_RCSID(0, "$NetBSD: kern_lwp.c,v 1.77 2007/11/11 23:22:23 matt Exp $");
209 
210 #include "opt_multiprocessor.h"
211 #include "opt_lockdebug.h"
212 
213 #define _LWP_API_PRIVATE
214 
215 #include <sys/param.h>
216 #include <sys/systm.h>
217 #include <sys/cpu.h>
218 #include <sys/pool.h>
219 #include <sys/proc.h>
220 #include <sys/syscallargs.h>
221 #include <sys/syscall_stats.h>
222 #include <sys/kauth.h>
223 #include <sys/sleepq.h>
224 #include <sys/lockdebug.h>
225 #include <sys/kmem.h>
226 #include <sys/intr.h>
227 
228 #include <uvm/uvm_extern.h>
229 
230 struct lwplist	alllwp = LIST_HEAD_INITIALIZER(alllwp);
231 
232 POOL_INIT(lwp_pool, sizeof(struct lwp), MIN_LWP_ALIGNMENT, 0, 0, "lwppl",
233     &pool_allocator_nointr, IPL_NONE);
234 POOL_INIT(lwp_uc_pool, sizeof(ucontext_t), 0, 0, 0, "lwpucpl",
235     &pool_allocator_nointr, IPL_NONE);
236 
237 static specificdata_domain_t lwp_specificdata_domain;
238 
239 #define LWP_DEBUG
240 
241 #ifdef LWP_DEBUG
242 int lwp_debug = 0;
243 #define DPRINTF(x) if (lwp_debug) printf x
244 #else
245 #define DPRINTF(x)
246 #endif
247 
248 void
249 lwpinit(void)
250 {
251 
252 	lwp_specificdata_domain = specificdata_domain_create();
253 	KASSERT(lwp_specificdata_domain != NULL);
254 	lwp_sys_init();
255 }
256 
257 /*
258  * Set an suspended.
259  *
260  * Must be called with p_smutex held, and the LWP locked.  Will unlock the
261  * LWP before return.
262  */
263 int
264 lwp_suspend(struct lwp *curl, struct lwp *t)
265 {
266 	int error;
267 
268 	KASSERT(mutex_owned(&t->l_proc->p_smutex));
269 	KASSERT(lwp_locked(t, NULL));
270 
271 	KASSERT(curl != t || curl->l_stat == LSONPROC);
272 
273 	/*
274 	 * If the current LWP has been told to exit, we must not suspend anyone
275 	 * else or deadlock could occur.  We won't return to userspace.
276 	 */
277 	if ((curl->l_stat & (LW_WEXIT | LW_WCORE)) != 0) {
278 		lwp_unlock(t);
279 		return (EDEADLK);
280 	}
281 
282 	error = 0;
283 
284 	switch (t->l_stat) {
285 	case LSRUN:
286 	case LSONPROC:
287 		t->l_flag |= LW_WSUSPEND;
288 		lwp_need_userret(t);
289 		lwp_unlock(t);
290 		break;
291 
292 	case LSSLEEP:
293 		t->l_flag |= LW_WSUSPEND;
294 
295 		/*
296 		 * Kick the LWP and try to get it to the kernel boundary
297 		 * so that it will release any locks that it holds.
298 		 * setrunnable() will release the lock.
299 		 */
300 		if ((t->l_flag & LW_SINTR) != 0)
301 			setrunnable(t);
302 		else
303 			lwp_unlock(t);
304 		break;
305 
306 	case LSSUSPENDED:
307 		lwp_unlock(t);
308 		break;
309 
310 	case LSSTOP:
311 		t->l_flag |= LW_WSUSPEND;
312 		setrunnable(t);
313 		break;
314 
315 	case LSIDL:
316 	case LSZOMB:
317 		error = EINTR; /* It's what Solaris does..... */
318 		lwp_unlock(t);
319 		break;
320 	}
321 
322 	return (error);
323 }
324 
325 /*
326  * Restart a suspended LWP.
327  *
328  * Must be called with p_smutex held, and the LWP locked.  Will unlock the
329  * LWP before return.
330  */
331 void
332 lwp_continue(struct lwp *l)
333 {
334 
335 	KASSERT(mutex_owned(&l->l_proc->p_smutex));
336 	KASSERT(lwp_locked(l, NULL));
337 
338 	DPRINTF(("lwp_continue of %d.%d (%s), state %d, wchan %p\n",
339 	    l->l_proc->p_pid, l->l_lid, l->l_proc->p_comm, l->l_stat,
340 	    l->l_wchan));
341 
342 	/* If rebooting or not suspended, then just bail out. */
343 	if ((l->l_flag & LW_WREBOOT) != 0) {
344 		lwp_unlock(l);
345 		return;
346 	}
347 
348 	l->l_flag &= ~LW_WSUSPEND;
349 
350 	if (l->l_stat != LSSUSPENDED) {
351 		lwp_unlock(l);
352 		return;
353 	}
354 
355 	/* setrunnable() will release the lock. */
356 	setrunnable(l);
357 }
358 
359 /*
360  * Wait for an LWP within the current process to exit.  If 'lid' is
361  * non-zero, we are waiting for a specific LWP.
362  *
363  * Must be called with p->p_smutex held.
364  */
365 int
366 lwp_wait1(struct lwp *l, lwpid_t lid, lwpid_t *departed, int flags)
367 {
368 	struct proc *p = l->l_proc;
369 	struct lwp *l2;
370 	int nfound, error;
371 	lwpid_t curlid;
372 	bool exiting;
373 
374 	DPRINTF(("lwp_wait1: %d.%d waiting for %d.\n",
375 	    p->p_pid, l->l_lid, lid));
376 
377 	KASSERT(mutex_owned(&p->p_smutex));
378 
379 	p->p_nlwpwait++;
380 	l->l_waitingfor = lid;
381 	curlid = l->l_lid;
382 	exiting = ((flags & LWPWAIT_EXITCONTROL) != 0);
383 
384 	for (;;) {
385 		/*
386 		 * Avoid a race between exit1() and sigexit(): if the
387 		 * process is dumping core, then we need to bail out: call
388 		 * into lwp_userret() where we will be suspended until the
389 		 * deed is done.
390 		 */
391 		if ((p->p_sflag & PS_WCORE) != 0) {
392 			mutex_exit(&p->p_smutex);
393 			lwp_userret(l);
394 #ifdef DIAGNOSTIC
395 			panic("lwp_wait1");
396 #endif
397 			/* NOTREACHED */
398 		}
399 
400 		/*
401 		 * First off, drain any detached LWP that is waiting to be
402 		 * reaped.
403 		 */
404 		while ((l2 = p->p_zomblwp) != NULL) {
405 			p->p_zomblwp = NULL;
406 			lwp_free(l2, false, false);/* releases proc mutex */
407 			mutex_enter(&p->p_smutex);
408 		}
409 
410 		/*
411 		 * Now look for an LWP to collect.  If the whole process is
412 		 * exiting, count detached LWPs as eligible to be collected,
413 		 * but don't drain them here.
414 		 */
415 		nfound = 0;
416 		error = 0;
417 		LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
418 			/*
419 			 * If a specific wait and the target is waiting on
420 			 * us, then avoid deadlock.  This also traps LWPs
421 			 * that try to wait on themselves.
422 			 *
423 			 * Note that this does not handle more complicated
424 			 * cycles, like: t1 -> t2 -> t3 -> t1.  The process
425 			 * can still be killed so it is not a major problem.
426 			 */
427 			if (l2->l_lid == lid && l2->l_waitingfor == curlid) {
428 				error = EDEADLK;
429 				break;
430 			}
431 			if (l2 == l)
432 				continue;
433 			if ((l2->l_prflag & LPR_DETACHED) != 0) {
434 				nfound += exiting;
435 				continue;
436 			}
437 			if (lid != 0) {
438 				if (l2->l_lid != lid)
439 					continue;
440 				/*
441 				 * Mark this LWP as the first waiter, if there
442 				 * is no other.
443 				 */
444 				if (l2->l_waiter == 0)
445 					l2->l_waiter = curlid;
446 			} else if (l2->l_waiter != 0) {
447 				/*
448 				 * It already has a waiter - so don't
449 				 * collect it.  If the waiter doesn't
450 				 * grab it we'll get another chance
451 				 * later.
452 				 */
453 				nfound++;
454 				continue;
455 			}
456 			nfound++;
457 
458 			/* No need to lock the LWP in order to see LSZOMB. */
459 			if (l2->l_stat != LSZOMB)
460 				continue;
461 
462 			/*
463 			 * We're no longer waiting.  Reset the "first waiter"
464 			 * pointer on the target, in case it was us.
465 			 */
466 			l->l_waitingfor = 0;
467 			l2->l_waiter = 0;
468 			p->p_nlwpwait--;
469 			if (departed)
470 				*departed = l2->l_lid;
471 			sched_lwp_collect(l2);
472 
473 			/* lwp_free() releases the proc lock. */
474 			lwp_free(l2, false, false);
475 			mutex_enter(&p->p_smutex);
476 			return 0;
477 		}
478 
479 		if (error != 0)
480 			break;
481 		if (nfound == 0) {
482 			error = ESRCH;
483 			break;
484 		}
485 
486 		/*
487 		 * The kernel is careful to ensure that it can not deadlock
488 		 * when exiting - just keep waiting.
489 		 */
490 		if (exiting) {
491 			KASSERT(p->p_nlwps > 1);
492 			cv_wait(&p->p_lwpcv, &p->p_smutex);
493 			continue;
494 		}
495 
496 		/*
497 		 * If all other LWPs are waiting for exits or suspends
498 		 * and the supply of zombies and potential zombies is
499 		 * exhausted, then we are about to deadlock.
500 		 *
501 		 * If the process is exiting (and this LWP is not the one
502 		 * that is coordinating the exit) then bail out now.
503 		 */
504 		if ((p->p_sflag & PS_WEXIT) != 0 ||
505 		    p->p_nrlwps + p->p_nzlwps - p->p_ndlwps <= p->p_nlwpwait) {
506 			error = EDEADLK;
507 			break;
508 		}
509 
510 		/*
511 		 * Sit around and wait for something to happen.  We'll be
512 		 * awoken if any of the conditions examined change: if an
513 		 * LWP exits, is collected, or is detached.
514 		 */
515 		if ((error = cv_wait_sig(&p->p_lwpcv, &p->p_smutex)) != 0)
516 			break;
517 	}
518 
519 	/*
520 	 * We didn't find any LWPs to collect, we may have received a
521 	 * signal, or some other condition has caused us to bail out.
522 	 *
523 	 * If waiting on a specific LWP, clear the waiters marker: some
524 	 * other LWP may want it.  Then, kick all the remaining waiters
525 	 * so that they can re-check for zombies and for deadlock.
526 	 */
527 	if (lid != 0) {
528 		LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
529 			if (l2->l_lid == lid) {
530 				if (l2->l_waiter == curlid)
531 					l2->l_waiter = 0;
532 				break;
533 			}
534 		}
535 	}
536 	p->p_nlwpwait--;
537 	l->l_waitingfor = 0;
538 	cv_broadcast(&p->p_lwpcv);
539 
540 	return error;
541 }
542 
543 /*
544  * Create a new LWP within process 'p2', using LWP 'l1' as a template.
545  * The new LWP is created in state LSIDL and must be set running,
546  * suspended, or stopped by the caller.
547  */
548 int
549 lwp_create(lwp_t *l1, proc_t *p2, vaddr_t uaddr, bool inmem, int flags,
550 	   void *stack, size_t stacksize, void (*func)(void *), void *arg,
551 	   lwp_t **rnewlwpp, int sclass)
552 {
553 	struct lwp *l2, *isfree;
554 	turnstile_t *ts;
555 
556 	/*
557 	 * First off, reap any detached LWP waiting to be collected.
558 	 * We can re-use its LWP structure and turnstile.
559 	 */
560 	isfree = NULL;
561 	if (p2->p_zomblwp != NULL) {
562 		mutex_enter(&p2->p_smutex);
563 		if ((isfree = p2->p_zomblwp) != NULL) {
564 			p2->p_zomblwp = NULL;
565 			lwp_free(isfree, true, false);/* releases proc mutex */
566 		} else
567 			mutex_exit(&p2->p_smutex);
568 	}
569 	if (isfree == NULL) {
570 		l2 = pool_get(&lwp_pool, PR_WAITOK);
571 		memset(l2, 0, sizeof(*l2));
572 		l2->l_ts = pool_cache_get(turnstile_cache, PR_WAITOK);
573 		SLIST_INIT(&l2->l_pi_lenders);
574 	} else {
575 		l2 = isfree;
576 		ts = l2->l_ts;
577 		KASSERT(l2->l_inheritedprio == -1);
578 		KASSERT(SLIST_EMPTY(&l2->l_pi_lenders));
579 		memset(l2, 0, sizeof(*l2));
580 		l2->l_ts = ts;
581 	}
582 
583 	l2->l_stat = LSIDL;
584 	l2->l_proc = p2;
585 	l2->l_refcnt = 1;
586 	l2->l_class = sclass;
587 	l2->l_kpriority = l1->l_kpriority;
588 	l2->l_priority = l1->l_priority;
589 	l2->l_inheritedprio = -1;
590 	l2->l_mutex = l1->l_cpu->ci_schedstate.spc_mutex;
591 	l2->l_cpu = l1->l_cpu;
592 	l2->l_flag = inmem ? LW_INMEM : 0;
593 
594 	if (p2->p_flag & PK_SYSTEM) {
595 		/*
596 		 * Mark it as a system process and not a candidate for
597 		 * swapping.
598 		 */
599 		l2->l_flag |= LW_SYSTEM;
600 	} else {
601 		/* Look for a CPU to start */
602 		l2->l_cpu = sched_takecpu(l2);
603 		l2->l_mutex = l2->l_cpu->ci_schedstate.spc_mutex;
604 	}
605 
606 	lwp_initspecific(l2);
607 	sched_lwp_fork(l1, l2);
608 	lwp_update_creds(l2);
609 	callout_init(&l2->l_timeout_ch, CALLOUT_MPSAFE);
610 	callout_setfunc(&l2->l_timeout_ch, sleepq_timeout, l2);
611 	mutex_init(&l2->l_swaplock, MUTEX_DEFAULT, IPL_NONE);
612 	cv_init(&l2->l_sigcv, "sigwait");
613 	l2->l_syncobj = &sched_syncobj;
614 
615 	if (rnewlwpp != NULL)
616 		*rnewlwpp = l2;
617 
618 	l2->l_addr = UAREA_TO_USER(uaddr);
619 	uvm_lwp_fork(l1, l2, stack, stacksize, func,
620 	    (arg != NULL) ? arg : l2);
621 
622 	mutex_enter(&p2->p_smutex);
623 
624 	if ((flags & LWP_DETACHED) != 0) {
625 		l2->l_prflag = LPR_DETACHED;
626 		p2->p_ndlwps++;
627 	} else
628 		l2->l_prflag = 0;
629 
630 	l2->l_sigmask = l1->l_sigmask;
631 	CIRCLEQ_INIT(&l2->l_sigpend.sp_info);
632 	sigemptyset(&l2->l_sigpend.sp_set);
633 
634 	p2->p_nlwpid++;
635 	if (p2->p_nlwpid == 0)
636 		p2->p_nlwpid++;
637 	l2->l_lid = p2->p_nlwpid;
638 	LIST_INSERT_HEAD(&p2->p_lwps, l2, l_sibling);
639 	p2->p_nlwps++;
640 
641 	mutex_exit(&p2->p_smutex);
642 
643 	mutex_enter(&proclist_lock);
644 	mutex_enter(&proclist_mutex);
645 	LIST_INSERT_HEAD(&alllwp, l2, l_list);
646 	mutex_exit(&proclist_mutex);
647 	mutex_exit(&proclist_lock);
648 
649 	SYSCALL_TIME_LWP_INIT(l2);
650 
651 	if (p2->p_emul->e_lwp_fork)
652 		(*p2->p_emul->e_lwp_fork)(l1, l2);
653 
654 	return (0);
655 }
656 
657 /*
658  * Called by MD code when a new LWP begins execution.  Must be called
659  * with the previous LWP locked (so at splsched), or if there is no
660  * previous LWP, at splsched.
661  */
662 void
663 lwp_startup(struct lwp *prev, struct lwp *new)
664 {
665 
666 	if (prev != NULL) {
667 		lwp_unlock(prev);
668 	}
669 	spl0();
670 	pmap_activate(new);
671 	LOCKDEBUG_BARRIER(NULL, 0);
672 	if ((new->l_pflag & LP_MPSAFE) == 0) {
673 		KERNEL_LOCK(1, new);
674 	}
675 }
676 
677 /*
678  * Exit an LWP.
679  */
680 void
681 lwp_exit(struct lwp *l)
682 {
683 	struct proc *p = l->l_proc;
684 	struct lwp *l2;
685 	bool current;
686 
687 	current = (l == curlwp);
688 
689 	DPRINTF(("lwp_exit: %d.%d exiting.\n", p->p_pid, l->l_lid));
690 	DPRINTF((" nlwps: %d nzlwps: %d\n", p->p_nlwps, p->p_nzlwps));
691 	KASSERT(current || l->l_stat == LSIDL);
692 
693 	/*
694 	 * Verify that we hold no locks other than the kernel lock.
695 	 */
696 #ifdef MULTIPROCESSOR
697 	LOCKDEBUG_BARRIER(&kernel_lock, 0);
698 #else
699 	LOCKDEBUG_BARRIER(NULL, 0);
700 #endif
701 
702 	/*
703 	 * If we are the last live LWP in a process, we need to exit the
704 	 * entire process.  We do so with an exit status of zero, because
705 	 * it's a "controlled" exit, and because that's what Solaris does.
706 	 *
707 	 * We are not quite a zombie yet, but for accounting purposes we
708 	 * must increment the count of zombies here.
709 	 *
710 	 * Note: the last LWP's specificdata will be deleted here.
711 	 */
712 	mutex_enter(&p->p_smutex);
713 	if (p->p_nlwps - p->p_nzlwps == 1) {
714 		KASSERT(current == true);
715 		DPRINTF(("lwp_exit: %d.%d calling exit1()\n",
716 		    p->p_pid, l->l_lid));
717 		exit1(l, 0);
718 		/* NOTREACHED */
719 	}
720 	p->p_nzlwps++;
721 	mutex_exit(&p->p_smutex);
722 
723 	if (p->p_emul->e_lwp_exit)
724 		(*p->p_emul->e_lwp_exit)(l);
725 
726 	/* Delete the specificdata while it's still safe to sleep. */
727 	specificdata_fini(lwp_specificdata_domain, &l->l_specdataref);
728 
729 	/*
730 	 * Release our cached credentials.
731 	 */
732 	kauth_cred_free(l->l_cred);
733 	callout_destroy(&l->l_timeout_ch);
734 
735 	/*
736 	 * While we can still block, mark the LWP as unswappable to
737 	 * prevent conflicts with the with the swapper.
738 	 */
739 	if (current)
740 		uvm_lwp_hold(l);
741 
742 	/*
743 	 * Remove the LWP from the global list.
744 	 */
745 	mutex_enter(&proclist_lock);
746 	mutex_enter(&proclist_mutex);
747 	LIST_REMOVE(l, l_list);
748 	mutex_exit(&proclist_mutex);
749 	mutex_exit(&proclist_lock);
750 
751 	/*
752 	 * Get rid of all references to the LWP that others (e.g. procfs)
753 	 * may have, and mark the LWP as a zombie.  If the LWP is detached,
754 	 * mark it waiting for collection in the proc structure.  Note that
755 	 * before we can do that, we need to free any other dead, deatched
756 	 * LWP waiting to meet its maker.
757 	 *
758 	 * XXXSMP disable preemption.
759 	 */
760 	mutex_enter(&p->p_smutex);
761 	lwp_drainrefs(l);
762 
763 	if ((l->l_prflag & LPR_DETACHED) != 0) {
764 		while ((l2 = p->p_zomblwp) != NULL) {
765 			p->p_zomblwp = NULL;
766 			lwp_free(l2, false, false);/* releases proc mutex */
767 			mutex_enter(&p->p_smutex);
768 			l->l_refcnt++;
769 			lwp_drainrefs(l);
770 		}
771 		p->p_zomblwp = l;
772 	}
773 
774 	/*
775 	 * If we find a pending signal for the process and we have been
776 	 * asked to check for signals, then we loose: arrange to have
777 	 * all other LWPs in the process check for signals.
778 	 */
779 	if ((l->l_flag & LW_PENDSIG) != 0 &&
780 	    firstsig(&p->p_sigpend.sp_set) != 0) {
781 		LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
782 			lwp_lock(l2);
783 			l2->l_flag |= LW_PENDSIG;
784 			lwp_unlock(l2);
785 		}
786 	}
787 
788 	lwp_lock(l);
789 	l->l_stat = LSZOMB;
790 	lwp_unlock(l);
791 	p->p_nrlwps--;
792 	cv_broadcast(&p->p_lwpcv);
793 	mutex_exit(&p->p_smutex);
794 
795 	/*
796 	 * We can no longer block.  At this point, lwp_free() may already
797 	 * be gunning for us.  On a multi-CPU system, we may be off p_lwps.
798 	 *
799 	 * Free MD LWP resources.
800 	 */
801 #ifndef __NO_CPU_LWP_FREE
802 	cpu_lwp_free(l, 0);
803 #endif
804 
805 	if (current) {
806 		pmap_deactivate(l);
807 
808 		/*
809 		 * Release the kernel lock, and switch away into
810 		 * oblivion.
811 		 */
812 #ifdef notyet
813 		/* XXXSMP hold in lwp_userret() */
814 		KERNEL_UNLOCK_LAST(l);
815 #else
816 		KERNEL_UNLOCK_ALL(l, NULL);
817 #endif
818 		lwp_exit_switchaway(l);
819 	}
820 }
821 
822 void
823 lwp_exit_switchaway(struct lwp *l)
824 {
825 	struct cpu_info *ci;
826 	struct lwp *idlelwp;
827 
828 	/* Unlocked, but is for statistics only. */
829 	uvmexp.swtch++;
830 
831 	(void)splsched();
832 	l->l_flag &= ~LW_RUNNING;
833 	ci = curcpu();
834 	idlelwp = ci->ci_data.cpu_idlelwp;
835 	idlelwp->l_stat = LSONPROC;
836 
837 	/*
838 	 * cpu_onproc must be updated with the CPU locked, as
839 	 * aston() may try to set a AST pending on the LWP (and
840 	 * it does so with the CPU locked).  Otherwise, the LWP
841 	 * may be destroyed before the AST can be set, leading
842 	 * to a user-after-free.
843 	 */
844 	spc_lock(ci);
845 	ci->ci_data.cpu_onproc = idlelwp;
846 	spc_unlock(ci);
847 	cpu_switchto(NULL, idlelwp, false);
848 }
849 
850 /*
851  * Free a dead LWP's remaining resources.
852  *
853  * XXXLWP limits.
854  */
855 void
856 lwp_free(struct lwp *l, bool recycle, bool last)
857 {
858 	struct proc *p = l->l_proc;
859 	ksiginfoq_t kq;
860 
861 	/*
862 	 * If this was not the last LWP in the process, then adjust
863 	 * counters and unlock.
864 	 */
865 	if (!last) {
866 		/*
867 		 * Add the LWP's run time to the process' base value.
868 		 * This needs to co-incide with coming off p_lwps.
869 		 */
870 		timeradd(&l->l_rtime, &p->p_rtime, &p->p_rtime);
871 		p->p_pctcpu += l->l_pctcpu;
872 		LIST_REMOVE(l, l_sibling);
873 		p->p_nlwps--;
874 		p->p_nzlwps--;
875 		if ((l->l_prflag & LPR_DETACHED) != 0)
876 			p->p_ndlwps--;
877 
878 		/*
879 		 * Have any LWPs sleeping in lwp_wait() recheck for
880 		 * deadlock.
881 		 */
882 		cv_broadcast(&p->p_lwpcv);
883 		mutex_exit(&p->p_smutex);
884 	}
885 
886 #ifdef MULTIPROCESSOR
887 	/*
888 	 * In the unlikely event that the LWP is still on the CPU,
889 	 * then spin until it has switched away.  We need to release
890 	 * all locks to avoid deadlock against interrupt handlers on
891 	 * the target CPU.
892 	 */
893 	if ((l->l_flag & LW_RUNNING) != 0 || l->l_cpu->ci_curlwp == l) {
894 		int count;
895 		(void)count; /* XXXgcc */
896 		KERNEL_UNLOCK_ALL(curlwp, &count);
897 		while ((l->l_flag & LW_RUNNING) != 0 ||
898 		    l->l_cpu->ci_curlwp == l)
899 			SPINLOCK_BACKOFF_HOOK;
900 		KERNEL_LOCK(count, curlwp);
901 	}
902 #endif
903 
904 	/*
905 	 * Destroy the LWP's remaining signal information.
906 	 */
907 	ksiginfo_queue_init(&kq);
908 	sigclear(&l->l_sigpend, NULL, &kq);
909 	ksiginfo_queue_drain(&kq);
910 	cv_destroy(&l->l_sigcv);
911 	mutex_destroy(&l->l_swaplock);
912 
913 	/*
914 	 * Free the LWP's turnstile and the LWP structure itself unless the
915 	 * caller wants to recycle them.  Also, free the scheduler specific data.
916 	 *
917 	 * We can't return turnstile0 to the pool (it didn't come from it),
918 	 * so if it comes up just drop it quietly and move on.
919 	 *
920 	 * We don't recycle the VM resources at this time.
921 	 */
922 	KERNEL_LOCK(1, curlwp);		/* XXXSMP */
923 
924 	sched_lwp_exit(l);
925 
926 	if (!recycle && l->l_ts != &turnstile0)
927 		pool_cache_put(turnstile_cache, l->l_ts);
928 #ifndef __NO_CPU_LWP_FREE
929 	cpu_lwp_free2(l);
930 #endif
931 	uvm_lwp_exit(l);
932 	KASSERT(SLIST_EMPTY(&l->l_pi_lenders));
933 	KASSERT(l->l_inheritedprio == -1);
934 	if (!recycle)
935 		pool_put(&lwp_pool, l);
936 	KERNEL_UNLOCK_ONE(curlwp);	/* XXXSMP */
937 }
938 
939 /*
940  * Pick a LWP to represent the process for those operations which
941  * want information about a "process" that is actually associated
942  * with a LWP.
943  *
944  * If 'locking' is false, no locking or lock checks are performed.
945  * This is intended for use by DDB.
946  *
947  * We don't bother locking the LWP here, since code that uses this
948  * interface is broken by design and an exact match is not required.
949  */
950 struct lwp *
951 proc_representative_lwp(struct proc *p, int *nrlwps, int locking)
952 {
953 	struct lwp *l, *onproc, *running, *sleeping, *stopped, *suspended;
954 	struct lwp *signalled;
955 	int cnt;
956 
957 	if (locking) {
958 		KASSERT(mutex_owned(&p->p_smutex));
959 	}
960 
961 	/* Trivial case: only one LWP */
962 	if (p->p_nlwps == 1) {
963 		l = LIST_FIRST(&p->p_lwps);
964 		if (nrlwps)
965 			*nrlwps = (l->l_stat == LSONPROC || l->l_stat == LSRUN);
966 		return l;
967 	}
968 
969 	cnt = 0;
970 	switch (p->p_stat) {
971 	case SSTOP:
972 	case SACTIVE:
973 		/* Pick the most live LWP */
974 		onproc = running = sleeping = stopped = suspended = NULL;
975 		signalled = NULL;
976 		LIST_FOREACH(l, &p->p_lwps, l_sibling) {
977 			if ((l->l_flag & LW_IDLE) != 0) {
978 				continue;
979 			}
980 			if (l->l_lid == p->p_sigctx.ps_lwp)
981 				signalled = l;
982 			switch (l->l_stat) {
983 			case LSONPROC:
984 				onproc = l;
985 				cnt++;
986 				break;
987 			case LSRUN:
988 				running = l;
989 				cnt++;
990 				break;
991 			case LSSLEEP:
992 				sleeping = l;
993 				break;
994 			case LSSTOP:
995 				stopped = l;
996 				break;
997 			case LSSUSPENDED:
998 				suspended = l;
999 				break;
1000 			}
1001 		}
1002 		if (nrlwps)
1003 			*nrlwps = cnt;
1004 		if (signalled)
1005 			l = signalled;
1006 		else if (onproc)
1007 			l = onproc;
1008 		else if (running)
1009 			l = running;
1010 		else if (sleeping)
1011 			l = sleeping;
1012 		else if (stopped)
1013 			l = stopped;
1014 		else if (suspended)
1015 			l = suspended;
1016 		else
1017 			break;
1018 		return l;
1019 #ifdef DIAGNOSTIC
1020 	case SIDL:
1021 	case SZOMB:
1022 	case SDYING:
1023 	case SDEAD:
1024 		if (locking)
1025 			mutex_exit(&p->p_smutex);
1026 		/* We have more than one LWP and we're in SIDL?
1027 		 * How'd that happen?
1028 		 */
1029 		panic("Too many LWPs in idle/dying process %d (%s) stat = %d",
1030 		    p->p_pid, p->p_comm, p->p_stat);
1031 		break;
1032 	default:
1033 		if (locking)
1034 			mutex_exit(&p->p_smutex);
1035 		panic("Process %d (%s) in unknown state %d",
1036 		    p->p_pid, p->p_comm, p->p_stat);
1037 #endif
1038 	}
1039 
1040 	if (locking)
1041 		mutex_exit(&p->p_smutex);
1042 	panic("proc_representative_lwp: couldn't find a lwp for process"
1043 		" %d (%s)", p->p_pid, p->p_comm);
1044 	/* NOTREACHED */
1045 	return NULL;
1046 }
1047 
1048 /*
1049  * Look up a live LWP within the speicifed process, and return it locked.
1050  *
1051  * Must be called with p->p_smutex held.
1052  */
1053 struct lwp *
1054 lwp_find(struct proc *p, int id)
1055 {
1056 	struct lwp *l;
1057 
1058 	KASSERT(mutex_owned(&p->p_smutex));
1059 
1060 	LIST_FOREACH(l, &p->p_lwps, l_sibling) {
1061 		if (l->l_lid == id)
1062 			break;
1063 	}
1064 
1065 	/*
1066 	 * No need to lock - all of these conditions will
1067 	 * be visible with the process level mutex held.
1068 	 */
1069 	if (l != NULL && (l->l_stat == LSIDL || l->l_stat == LSZOMB))
1070 		l = NULL;
1071 
1072 	return l;
1073 }
1074 
1075 /*
1076  * Update an LWP's cached credentials to mirror the process' master copy.
1077  *
1078  * This happens early in the syscall path, on user trap, and on LWP
1079  * creation.  A long-running LWP can also voluntarily choose to update
1080  * it's credentials by calling this routine.  This may be called from
1081  * LWP_CACHE_CREDS(), which checks l->l_cred != p->p_cred beforehand.
1082  */
1083 void
1084 lwp_update_creds(struct lwp *l)
1085 {
1086 	kauth_cred_t oc;
1087 	struct proc *p;
1088 
1089 	p = l->l_proc;
1090 	oc = l->l_cred;
1091 
1092 	mutex_enter(&p->p_mutex);
1093 	kauth_cred_hold(p->p_cred);
1094 	l->l_cred = p->p_cred;
1095 	mutex_exit(&p->p_mutex);
1096 	if (oc != NULL) {
1097 		KERNEL_LOCK(1, l);	/* XXXSMP */
1098 		kauth_cred_free(oc);
1099 		KERNEL_UNLOCK_ONE(l);	/* XXXSMP */
1100 	}
1101 }
1102 
1103 /*
1104  * Verify that an LWP is locked, and optionally verify that the lock matches
1105  * one we specify.
1106  */
1107 int
1108 lwp_locked(struct lwp *l, kmutex_t *mtx)
1109 {
1110 	kmutex_t *cur = l->l_mutex;
1111 
1112 	return mutex_owned(cur) && (mtx == cur || mtx == NULL);
1113 }
1114 
1115 /*
1116  * Lock an LWP.
1117  */
1118 void
1119 lwp_lock_retry(struct lwp *l, kmutex_t *old)
1120 {
1121 
1122 	/*
1123 	 * XXXgcc ignoring kmutex_t * volatile on i386
1124 	 *
1125 	 * gcc version 4.1.2 20061021 prerelease (NetBSD nb1 20061021)
1126 	 */
1127 #if 1
1128 	while (l->l_mutex != old) {
1129 #else
1130 	for (;;) {
1131 #endif
1132 		mutex_spin_exit(old);
1133 		old = l->l_mutex;
1134 		mutex_spin_enter(old);
1135 
1136 		/*
1137 		 * mutex_enter() will have posted a read barrier.  Re-test
1138 		 * l->l_mutex.  If it has changed, we need to try again.
1139 		 */
1140 #if 1
1141 	}
1142 #else
1143 	} while (__predict_false(l->l_mutex != old));
1144 #endif
1145 }
1146 
1147 /*
1148  * Lend a new mutex to an LWP.  The old mutex must be held.
1149  */
1150 void
1151 lwp_setlock(struct lwp *l, kmutex_t *new)
1152 {
1153 
1154 	KASSERT(mutex_owned(l->l_mutex));
1155 
1156 	mb_write();
1157 	l->l_mutex = new;
1158 }
1159 
1160 /*
1161  * Lend a new mutex to an LWP, and release the old mutex.  The old mutex
1162  * must be held.
1163  */
1164 void
1165 lwp_unlock_to(struct lwp *l, kmutex_t *new)
1166 {
1167 	kmutex_t *old;
1168 
1169 	KASSERT(mutex_owned(l->l_mutex));
1170 
1171 	old = l->l_mutex;
1172 	mb_write();
1173 	l->l_mutex = new;
1174 	mutex_spin_exit(old);
1175 }
1176 
1177 /*
1178  * Acquire a new mutex, and donate it to an LWP.  The LWP must already be
1179  * locked.
1180  */
1181 void
1182 lwp_relock(struct lwp *l, kmutex_t *new)
1183 {
1184 	kmutex_t *old;
1185 
1186 	KASSERT(mutex_owned(l->l_mutex));
1187 
1188 	old = l->l_mutex;
1189 	if (old != new) {
1190 		mutex_spin_enter(new);
1191 		l->l_mutex = new;
1192 		mutex_spin_exit(old);
1193 	}
1194 }
1195 
1196 int
1197 lwp_trylock(struct lwp *l)
1198 {
1199 	kmutex_t *old;
1200 
1201 	for (;;) {
1202 		if (!mutex_tryenter(old = l->l_mutex))
1203 			return 0;
1204 		if (__predict_true(l->l_mutex == old))
1205 			return 1;
1206 		mutex_spin_exit(old);
1207 	}
1208 }
1209 
1210 /*
1211  * Handle exceptions for mi_userret().  Called if a member of LW_USERRET is
1212  * set.
1213  */
1214 void
1215 lwp_userret(struct lwp *l)
1216 {
1217 	struct proc *p;
1218 	void (*hook)(void);
1219 	int sig;
1220 
1221 	p = l->l_proc;
1222 
1223 #ifndef __HAVE_FAST_SOFTINTS
1224 	/* Run pending soft interrupts. */
1225 	if (l->l_cpu->ci_data.cpu_softints != 0)
1226 		softint_overlay();
1227 #endif
1228 
1229 	/*
1230 	 * It should be safe to do this read unlocked on a multiprocessor
1231 	 * system..
1232 	 */
1233 	while ((l->l_flag & LW_USERRET) != 0) {
1234 		/*
1235 		 * Process pending signals first, unless the process
1236 		 * is dumping core or exiting, where we will instead
1237 		 * enter the L_WSUSPEND case below.
1238 		 */
1239 		if ((l->l_flag & (LW_PENDSIG | LW_WCORE | LW_WEXIT)) ==
1240 		    LW_PENDSIG) {
1241 			KERNEL_LOCK(1, l);	/* XXXSMP pool_put() below */
1242 			mutex_enter(&p->p_smutex);
1243 			while ((sig = issignal(l)) != 0)
1244 				postsig(sig);
1245 			mutex_exit(&p->p_smutex);
1246 			KERNEL_UNLOCK_LAST(l);	/* XXXSMP */
1247 		}
1248 
1249 		/*
1250 		 * Core-dump or suspend pending.
1251 		 *
1252 		 * In case of core dump, suspend ourselves, so that the
1253 		 * kernel stack and therefore the userland registers saved
1254 		 * in the trapframe are around for coredump() to write them
1255 		 * out.  We issue a wakeup on p->p_lwpcv so that sigexit()
1256 		 * will write the core file out once all other LWPs are
1257 		 * suspended.
1258 		 */
1259 		if ((l->l_flag & LW_WSUSPEND) != 0) {
1260 			mutex_enter(&p->p_smutex);
1261 			p->p_nrlwps--;
1262 			cv_broadcast(&p->p_lwpcv);
1263 			lwp_lock(l);
1264 			l->l_stat = LSSUSPENDED;
1265 			mutex_exit(&p->p_smutex);
1266 			mi_switch(l);
1267 		}
1268 
1269 		/* Process is exiting. */
1270 		if ((l->l_flag & LW_WEXIT) != 0) {
1271 			KERNEL_LOCK(1, l);
1272 			lwp_exit(l);
1273 			KASSERT(0);
1274 			/* NOTREACHED */
1275 		}
1276 
1277 		/* Call userret hook; used by Linux emulation. */
1278 		if ((l->l_flag & LW_WUSERRET) != 0) {
1279 			lwp_lock(l);
1280 			l->l_flag &= ~LW_WUSERRET;
1281 			lwp_unlock(l);
1282 			hook = p->p_userret;
1283 			p->p_userret = NULL;
1284 			(*hook)();
1285 		}
1286 	}
1287 }
1288 
1289 /*
1290  * Force an LWP to enter the kernel, to take a trip through lwp_userret().
1291  */
1292 void
1293 lwp_need_userret(struct lwp *l)
1294 {
1295 	KASSERT(lwp_locked(l, NULL));
1296 
1297 	/*
1298 	 * Since the tests in lwp_userret() are done unlocked, make sure
1299 	 * that the condition will be seen before forcing the LWP to enter
1300 	 * kernel mode.
1301 	 */
1302 	mb_write();
1303 	cpu_signotify(l);
1304 }
1305 
1306 /*
1307  * Add one reference to an LWP.  This will prevent the LWP from
1308  * exiting, thus keep the lwp structure and PCB around to inspect.
1309  */
1310 void
1311 lwp_addref(struct lwp *l)
1312 {
1313 
1314 	KASSERT(mutex_owned(&l->l_proc->p_smutex));
1315 	KASSERT(l->l_stat != LSZOMB);
1316 	KASSERT(l->l_refcnt != 0);
1317 
1318 	l->l_refcnt++;
1319 }
1320 
1321 /*
1322  * Remove one reference to an LWP.  If this is the last reference,
1323  * then we must finalize the LWP's death.
1324  */
1325 void
1326 lwp_delref(struct lwp *l)
1327 {
1328 	struct proc *p = l->l_proc;
1329 
1330 	mutex_enter(&p->p_smutex);
1331 	KASSERT(l->l_stat != LSZOMB);
1332 	KASSERT(l->l_refcnt > 0);
1333 	if (--l->l_refcnt == 0)
1334 		cv_broadcast(&p->p_lwpcv);
1335 	mutex_exit(&p->p_smutex);
1336 }
1337 
1338 /*
1339  * Drain all references to the current LWP.
1340  */
1341 void
1342 lwp_drainrefs(struct lwp *l)
1343 {
1344 	struct proc *p = l->l_proc;
1345 
1346 	KASSERT(mutex_owned(&p->p_smutex));
1347 	KASSERT(l->l_refcnt != 0);
1348 
1349 	l->l_refcnt--;
1350 	while (l->l_refcnt != 0)
1351 		cv_wait(&p->p_lwpcv, &p->p_smutex);
1352 }
1353 
1354 /*
1355  * lwp_specific_key_create --
1356  *	Create a key for subsystem lwp-specific data.
1357  */
1358 int
1359 lwp_specific_key_create(specificdata_key_t *keyp, specificdata_dtor_t dtor)
1360 {
1361 
1362 	return (specificdata_key_create(lwp_specificdata_domain, keyp, dtor));
1363 }
1364 
1365 /*
1366  * lwp_specific_key_delete --
1367  *	Delete a key for subsystem lwp-specific data.
1368  */
1369 void
1370 lwp_specific_key_delete(specificdata_key_t key)
1371 {
1372 
1373 	specificdata_key_delete(lwp_specificdata_domain, key);
1374 }
1375 
1376 /*
1377  * lwp_initspecific --
1378  *	Initialize an LWP's specificdata container.
1379  */
1380 void
1381 lwp_initspecific(struct lwp *l)
1382 {
1383 	int error;
1384 
1385 	error = specificdata_init(lwp_specificdata_domain, &l->l_specdataref);
1386 	KASSERT(error == 0);
1387 }
1388 
1389 /*
1390  * lwp_finispecific --
1391  *	Finalize an LWP's specificdata container.
1392  */
1393 void
1394 lwp_finispecific(struct lwp *l)
1395 {
1396 
1397 	specificdata_fini(lwp_specificdata_domain, &l->l_specdataref);
1398 }
1399 
1400 /*
1401  * lwp_getspecific --
1402  *	Return lwp-specific data corresponding to the specified key.
1403  *
1404  *	Note: LWP specific data is NOT INTERLOCKED.  An LWP should access
1405  *	only its OWN SPECIFIC DATA.  If it is necessary to access another
1406  *	LWP's specifc data, care must be taken to ensure that doing so
1407  *	would not cause internal data structure inconsistency (i.e. caller
1408  *	can guarantee that the target LWP is not inside an lwp_getspecific()
1409  *	or lwp_setspecific() call).
1410  */
1411 void *
1412 lwp_getspecific(specificdata_key_t key)
1413 {
1414 
1415 	return (specificdata_getspecific_unlocked(lwp_specificdata_domain,
1416 						  &curlwp->l_specdataref, key));
1417 }
1418 
1419 void *
1420 _lwp_getspecific_by_lwp(struct lwp *l, specificdata_key_t key)
1421 {
1422 
1423 	return (specificdata_getspecific_unlocked(lwp_specificdata_domain,
1424 						  &l->l_specdataref, key));
1425 }
1426 
1427 /*
1428  * lwp_setspecific --
1429  *	Set lwp-specific data corresponding to the specified key.
1430  */
1431 void
1432 lwp_setspecific(specificdata_key_t key, void *data)
1433 {
1434 
1435 	specificdata_setspecific(lwp_specificdata_domain,
1436 				 &curlwp->l_specdataref, key, data);
1437 }
1438