1 /* $NetBSD: kern_lwp.c,v 1.251 2022/07/01 01:06:04 riastradh Exp $ */ 2 3 /*- 4 * Copyright (c) 2001, 2006, 2007, 2008, 2009, 2019, 2020 5 * The NetBSD Foundation, Inc. 6 * All rights reserved. 7 * 8 * This code is derived from software contributed to The NetBSD Foundation 9 * by Nathan J. Williams, and Andrew Doran. 10 * 11 * Redistribution and use in source and binary forms, with or without 12 * modification, are permitted provided that the following conditions 13 * are met: 14 * 1. Redistributions of source code must retain the above copyright 15 * notice, this list of conditions and the following disclaimer. 16 * 2. Redistributions in binary form must reproduce the above copyright 17 * notice, this list of conditions and the following disclaimer in the 18 * documentation and/or other materials provided with the distribution. 19 * 20 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS 21 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 22 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 23 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 24 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 25 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 26 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 27 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 28 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 29 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 30 * POSSIBILITY OF SUCH DAMAGE. 31 */ 32 33 /* 34 * Overview 35 * 36 * Lightweight processes (LWPs) are the basic unit or thread of 37 * execution within the kernel. The core state of an LWP is described 38 * by "struct lwp", also known as lwp_t. 39 * 40 * Each LWP is contained within a process (described by "struct proc"), 41 * Every process contains at least one LWP, but may contain more. The 42 * process describes attributes shared among all of its LWPs such as a 43 * private address space, global execution state (stopped, active, 44 * zombie, ...), signal disposition and so on. On a multiprocessor 45 * machine, multiple LWPs be executing concurrently in the kernel. 46 * 47 * Execution states 48 * 49 * At any given time, an LWP has overall state that is described by 50 * lwp::l_stat. The states are broken into two sets below. The first 51 * set is guaranteed to represent the absolute, current state of the 52 * LWP: 53 * 54 * LSONPROC 55 * 56 * On processor: the LWP is executing on a CPU, either in the 57 * kernel or in user space. 58 * 59 * LSRUN 60 * 61 * Runnable: the LWP is parked on a run queue, and may soon be 62 * chosen to run by an idle processor, or by a processor that 63 * has been asked to preempt a currently runnning but lower 64 * priority LWP. 65 * 66 * LSIDL 67 * 68 * Idle: the LWP has been created but has not yet executed, or 69 * it has ceased executing a unit of work and is waiting to be 70 * started again. This state exists so that the LWP can occupy 71 * a slot in the process & PID table, but without having to 72 * worry about being touched; lookups of the LWP by ID will 73 * fail while in this state. The LWP will become visible for 74 * lookup once its state transitions further. Some special 75 * kernel threads also (ab)use this state to indicate that they 76 * are idle (soft interrupts and idle LWPs). 77 * 78 * LSSUSPENDED: 79 * 80 * Suspended: the LWP has had its execution suspended by 81 * another LWP in the same process using the _lwp_suspend() 82 * system call. User-level LWPs also enter the suspended 83 * state when the system is shutting down. 84 * 85 * The second set represent a "statement of intent" on behalf of the 86 * LWP. The LWP may in fact be executing on a processor, may be 87 * sleeping or idle. It is expected to take the necessary action to 88 * stop executing or become "running" again within a short timeframe. 89 * The LP_RUNNING flag in lwp::l_pflag indicates that an LWP is running. 90 * Importantly, it indicates that its state is tied to a CPU. 91 * 92 * LSZOMB: 93 * 94 * Dead or dying: the LWP has released most of its resources 95 * and is about to switch away into oblivion, or has already 96 * switched away. When it switches away, its few remaining 97 * resources can be collected. 98 * 99 * LSSLEEP: 100 * 101 * Sleeping: the LWP has entered itself onto a sleep queue, and 102 * has switched away or will switch away shortly to allow other 103 * LWPs to run on the CPU. 104 * 105 * LSSTOP: 106 * 107 * Stopped: the LWP has been stopped as a result of a job 108 * control signal, or as a result of the ptrace() interface. 109 * 110 * Stopped LWPs may run briefly within the kernel to handle 111 * signals that they receive, but will not return to user space 112 * until their process' state is changed away from stopped. 113 * 114 * Single LWPs within a process can not be set stopped 115 * selectively: all actions that can stop or continue LWPs 116 * occur at the process level. 117 * 118 * State transitions 119 * 120 * Note that the LSSTOP state may only be set when returning to 121 * user space in userret(), or when sleeping interruptably. The 122 * LSSUSPENDED state may only be set in userret(). Before setting 123 * those states, we try to ensure that the LWPs will release all 124 * locks that they hold, and at a minimum try to ensure that the 125 * LWP can be set runnable again by a signal. 126 * 127 * LWPs may transition states in the following ways: 128 * 129 * RUN -------> ONPROC ONPROC -----> RUN 130 * > SLEEP 131 * > STOPPED 132 * > SUSPENDED 133 * > ZOMB 134 * > IDL (special cases) 135 * 136 * STOPPED ---> RUN SUSPENDED --> RUN 137 * > SLEEP 138 * 139 * SLEEP -----> ONPROC IDL --------> RUN 140 * > RUN > SUSPENDED 141 * > STOPPED > STOPPED 142 * > ONPROC (special cases) 143 * 144 * Some state transitions are only possible with kernel threads (eg 145 * ONPROC -> IDL) and happen under tightly controlled circumstances 146 * free of unwanted side effects. 147 * 148 * Migration 149 * 150 * Migration of threads from one CPU to another could be performed 151 * internally by the scheduler via sched_takecpu() or sched_catchlwp() 152 * functions. The universal lwp_migrate() function should be used for 153 * any other cases. Subsystems in the kernel must be aware that CPU 154 * of LWP may change, while it is not locked. 155 * 156 * Locking 157 * 158 * The majority of fields in 'struct lwp' are covered by a single, 159 * general spin lock pointed to by lwp::l_mutex. The locks covering 160 * each field are documented in sys/lwp.h. 161 * 162 * State transitions must be made with the LWP's general lock held, 163 * and may cause the LWP's lock pointer to change. Manipulation of 164 * the general lock is not performed directly, but through calls to 165 * lwp_lock(), lwp_unlock() and others. It should be noted that the 166 * adaptive locks are not allowed to be released while the LWP's lock 167 * is being held (unlike for other spin-locks). 168 * 169 * States and their associated locks: 170 * 171 * LSIDL, LSONPROC, LSZOMB, LSSUPENDED: 172 * 173 * Always covered by spc_lwplock, which protects LWPs not 174 * associated with any other sync object. This is a per-CPU 175 * lock and matches lwp::l_cpu. 176 * 177 * LSRUN: 178 * 179 * Always covered by spc_mutex, which protects the run queues. 180 * This is a per-CPU lock and matches lwp::l_cpu. 181 * 182 * LSSLEEP: 183 * 184 * Covered by a lock associated with the sleep queue (sometimes 185 * a turnstile sleep queue) that the LWP resides on. This can 186 * be spc_lwplock for SOBJ_SLEEPQ_NULL (an "untracked" sleep). 187 * 188 * LSSTOP: 189 * 190 * If the LWP was previously sleeping (l_wchan != NULL), then 191 * l_mutex references the sleep queue lock. If the LWP was 192 * runnable or on the CPU when halted, or has been removed from 193 * the sleep queue since halted, then the lock is spc_lwplock. 194 * 195 * The lock order is as follows: 196 * 197 * sleepq -> turnstile -> spc_lwplock -> spc_mutex 198 * 199 * Each process has a scheduler state lock (proc::p_lock), and a 200 * number of counters on LWPs and their states: p_nzlwps, p_nrlwps, and 201 * so on. When an LWP is to be entered into or removed from one of the 202 * following states, p_lock must be held and the process wide counters 203 * adjusted: 204 * 205 * LSIDL, LSZOMB, LSSTOP, LSSUSPENDED 206 * 207 * (But not always for kernel threads. There are some special cases 208 * as mentioned above: soft interrupts, and the idle loops.) 209 * 210 * Note that an LWP is considered running or likely to run soon if in 211 * one of the following states. This affects the value of p_nrlwps: 212 * 213 * LSRUN, LSONPROC, LSSLEEP 214 * 215 * p_lock does not need to be held when transitioning among these 216 * three states, hence p_lock is rarely taken for state transitions. 217 */ 218 219 #include <sys/cdefs.h> 220 __KERNEL_RCSID(0, "$NetBSD: kern_lwp.c,v 1.251 2022/07/01 01:06:04 riastradh Exp $"); 221 222 #include "opt_ddb.h" 223 #include "opt_lockdebug.h" 224 #include "opt_dtrace.h" 225 226 #define _LWP_API_PRIVATE 227 228 #include <sys/param.h> 229 #include <sys/systm.h> 230 #include <sys/cpu.h> 231 #include <sys/pool.h> 232 #include <sys/proc.h> 233 #include <sys/syscallargs.h> 234 #include <sys/syscall_stats.h> 235 #include <sys/kauth.h> 236 #include <sys/sleepq.h> 237 #include <sys/lockdebug.h> 238 #include <sys/kmem.h> 239 #include <sys/pset.h> 240 #include <sys/intr.h> 241 #include <sys/lwpctl.h> 242 #include <sys/atomic.h> 243 #include <sys/filedesc.h> 244 #include <sys/fstrans.h> 245 #include <sys/dtrace_bsd.h> 246 #include <sys/sdt.h> 247 #include <sys/ptrace.h> 248 #include <sys/xcall.h> 249 #include <sys/uidinfo.h> 250 #include <sys/sysctl.h> 251 #include <sys/psref.h> 252 #include <sys/msan.h> 253 #include <sys/kcov.h> 254 #include <sys/cprng.h> 255 #include <sys/futex.h> 256 257 #include <uvm/uvm_extern.h> 258 #include <uvm/uvm_object.h> 259 260 static pool_cache_t lwp_cache __read_mostly; 261 struct lwplist alllwp __cacheline_aligned; 262 263 static int lwp_ctor(void *, void *, int); 264 static void lwp_dtor(void *, void *); 265 266 /* DTrace proc provider probes */ 267 SDT_PROVIDER_DEFINE(proc); 268 269 SDT_PROBE_DEFINE1(proc, kernel, , lwp__create, "struct lwp *"); 270 SDT_PROBE_DEFINE1(proc, kernel, , lwp__start, "struct lwp *"); 271 SDT_PROBE_DEFINE1(proc, kernel, , lwp__exit, "struct lwp *"); 272 273 struct turnstile turnstile0 __cacheline_aligned; 274 struct lwp lwp0 __aligned(MIN_LWP_ALIGNMENT) = { 275 #ifdef LWP0_CPU_INFO 276 .l_cpu = LWP0_CPU_INFO, 277 #endif 278 #ifdef LWP0_MD_INITIALIZER 279 .l_md = LWP0_MD_INITIALIZER, 280 #endif 281 .l_proc = &proc0, 282 .l_lid = 0, /* we own proc0's slot in the pid table */ 283 .l_flag = LW_SYSTEM, 284 .l_stat = LSONPROC, 285 .l_ts = &turnstile0, 286 .l_syncobj = &sched_syncobj, 287 .l_refcnt = 0, 288 .l_priority = PRI_USER + NPRI_USER - 1, 289 .l_inheritedprio = -1, 290 .l_class = SCHED_OTHER, 291 .l_psid = PS_NONE, 292 .l_pi_lenders = SLIST_HEAD_INITIALIZER(&lwp0.l_pi_lenders), 293 .l_name = __UNCONST("swapper"), 294 .l_fd = &filedesc0, 295 }; 296 297 static int 298 lwp_maxlwp(void) 299 { 300 /* Assume 1 LWP per 1MiB. */ 301 uint64_t lwps_per = ctob(physmem) / (1024 * 1024); 302 303 return MAX(MIN(MAXMAXLWP, lwps_per), MAXLWP); 304 } 305 306 static int sysctl_kern_maxlwp(SYSCTLFN_PROTO); 307 308 /* 309 * sysctl helper routine for kern.maxlwp. Ensures that the new 310 * values are not too low or too high. 311 */ 312 static int 313 sysctl_kern_maxlwp(SYSCTLFN_ARGS) 314 { 315 int error, nmaxlwp; 316 struct sysctlnode node; 317 318 nmaxlwp = maxlwp; 319 node = *rnode; 320 node.sysctl_data = &nmaxlwp; 321 error = sysctl_lookup(SYSCTLFN_CALL(&node)); 322 if (error || newp == NULL) 323 return error; 324 325 if (nmaxlwp < 0 || nmaxlwp >= MAXMAXLWP) 326 return EINVAL; 327 if (nmaxlwp > lwp_maxlwp()) 328 return EINVAL; 329 maxlwp = nmaxlwp; 330 331 return 0; 332 } 333 334 static void 335 sysctl_kern_lwp_setup(void) 336 { 337 sysctl_createv(NULL, 0, NULL, NULL, 338 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, 339 CTLTYPE_INT, "maxlwp", 340 SYSCTL_DESCR("Maximum number of simultaneous threads"), 341 sysctl_kern_maxlwp, 0, NULL, 0, 342 CTL_KERN, CTL_CREATE, CTL_EOL); 343 } 344 345 void 346 lwpinit(void) 347 { 348 349 LIST_INIT(&alllwp); 350 lwpinit_specificdata(); 351 /* 352 * Provide a barrier to ensure that all mutex_oncpu() and rw_oncpu() 353 * calls will exit before memory of LWPs is returned to the pool, where 354 * KVA of LWP structure might be freed and re-used for other purposes. 355 * Kernel preemption is disabled around mutex_oncpu() and rw_oncpu() 356 * callers, therefore a regular passive serialization barrier will 357 * do the job. 358 */ 359 lwp_cache = pool_cache_init(sizeof(lwp_t), MIN_LWP_ALIGNMENT, 0, 360 PR_PSERIALIZE, "lwppl", NULL, IPL_NONE, lwp_ctor, lwp_dtor, NULL); 361 362 maxlwp = lwp_maxlwp(); 363 sysctl_kern_lwp_setup(); 364 } 365 366 void 367 lwp0_init(void) 368 { 369 struct lwp *l = &lwp0; 370 371 KASSERT((void *)uvm_lwp_getuarea(l) != NULL); 372 373 LIST_INSERT_HEAD(&alllwp, l, l_list); 374 375 callout_init(&l->l_timeout_ch, CALLOUT_MPSAFE); 376 callout_setfunc(&l->l_timeout_ch, sleepq_timeout, l); 377 cv_init(&l->l_sigcv, "sigwait"); 378 cv_init(&l->l_waitcv, "vfork"); 379 380 kauth_cred_hold(proc0.p_cred); 381 l->l_cred = proc0.p_cred; 382 383 kdtrace_thread_ctor(NULL, l); 384 lwp_initspecific(l); 385 386 SYSCALL_TIME_LWP_INIT(l); 387 } 388 389 /* 390 * Initialize the non-zeroed portion of an lwp_t. 391 */ 392 static int 393 lwp_ctor(void *arg, void *obj, int flags) 394 { 395 lwp_t *l = obj; 396 397 l->l_stat = LSIDL; 398 l->l_cpu = curcpu(); 399 l->l_mutex = l->l_cpu->ci_schedstate.spc_lwplock; 400 l->l_ts = pool_get(&turnstile_pool, flags); 401 402 if (l->l_ts == NULL) { 403 return ENOMEM; 404 } else { 405 turnstile_ctor(l->l_ts); 406 return 0; 407 } 408 } 409 410 static void 411 lwp_dtor(void *arg, void *obj) 412 { 413 lwp_t *l = obj; 414 415 /* 416 * The value of l->l_cpu must still be valid at this point. 417 */ 418 KASSERT(l->l_cpu != NULL); 419 420 /* 421 * We can't return turnstile0 to the pool (it didn't come from it), 422 * so if it comes up just drop it quietly and move on. 423 */ 424 if (l->l_ts != &turnstile0) 425 pool_put(&turnstile_pool, l->l_ts); 426 } 427 428 /* 429 * Set an LWP suspended. 430 * 431 * Must be called with p_lock held, and the LWP locked. Will unlock the 432 * LWP before return. 433 */ 434 int 435 lwp_suspend(struct lwp *curl, struct lwp *t) 436 { 437 int error; 438 439 KASSERT(mutex_owned(t->l_proc->p_lock)); 440 KASSERT(lwp_locked(t, NULL)); 441 442 KASSERT(curl != t || curl->l_stat == LSONPROC); 443 444 /* 445 * If the current LWP has been told to exit, we must not suspend anyone 446 * else or deadlock could occur. We won't return to userspace. 447 */ 448 if ((curl->l_flag & (LW_WEXIT | LW_WCORE)) != 0) { 449 lwp_unlock(t); 450 return (EDEADLK); 451 } 452 453 if ((t->l_flag & LW_DBGSUSPEND) != 0) { 454 lwp_unlock(t); 455 return 0; 456 } 457 458 error = 0; 459 460 switch (t->l_stat) { 461 case LSRUN: 462 case LSONPROC: 463 t->l_flag |= LW_WSUSPEND; 464 lwp_need_userret(t); 465 lwp_unlock(t); 466 break; 467 468 case LSSLEEP: 469 t->l_flag |= LW_WSUSPEND; 470 471 /* 472 * Kick the LWP and try to get it to the kernel boundary 473 * so that it will release any locks that it holds. 474 * setrunnable() will release the lock. 475 */ 476 if ((t->l_flag & LW_SINTR) != 0) 477 setrunnable(t); 478 else 479 lwp_unlock(t); 480 break; 481 482 case LSSUSPENDED: 483 lwp_unlock(t); 484 break; 485 486 case LSSTOP: 487 t->l_flag |= LW_WSUSPEND; 488 setrunnable(t); 489 break; 490 491 case LSIDL: 492 case LSZOMB: 493 error = EINTR; /* It's what Solaris does..... */ 494 lwp_unlock(t); 495 break; 496 } 497 498 return (error); 499 } 500 501 /* 502 * Restart a suspended LWP. 503 * 504 * Must be called with p_lock held, and the LWP locked. Will unlock the 505 * LWP before return. 506 */ 507 void 508 lwp_continue(struct lwp *l) 509 { 510 511 KASSERT(mutex_owned(l->l_proc->p_lock)); 512 KASSERT(lwp_locked(l, NULL)); 513 514 /* If rebooting or not suspended, then just bail out. */ 515 if ((l->l_flag & LW_WREBOOT) != 0) { 516 lwp_unlock(l); 517 return; 518 } 519 520 l->l_flag &= ~LW_WSUSPEND; 521 522 if (l->l_stat != LSSUSPENDED || (l->l_flag & LW_DBGSUSPEND) != 0) { 523 lwp_unlock(l); 524 return; 525 } 526 527 /* setrunnable() will release the lock. */ 528 setrunnable(l); 529 } 530 531 /* 532 * Restart a stopped LWP. 533 * 534 * Must be called with p_lock held, and the LWP NOT locked. Will unlock the 535 * LWP before return. 536 */ 537 void 538 lwp_unstop(struct lwp *l) 539 { 540 struct proc *p = l->l_proc; 541 542 KASSERT(mutex_owned(&proc_lock)); 543 KASSERT(mutex_owned(p->p_lock)); 544 545 lwp_lock(l); 546 547 KASSERT((l->l_flag & LW_DBGSUSPEND) == 0); 548 549 /* If not stopped, then just bail out. */ 550 if (l->l_stat != LSSTOP) { 551 lwp_unlock(l); 552 return; 553 } 554 555 p->p_stat = SACTIVE; 556 p->p_sflag &= ~PS_STOPPING; 557 558 if (!p->p_waited) 559 p->p_pptr->p_nstopchild--; 560 561 if (l->l_wchan == NULL) { 562 /* setrunnable() will release the lock. */ 563 setrunnable(l); 564 } else if (p->p_xsig && (l->l_flag & LW_SINTR) != 0) { 565 /* setrunnable() so we can receive the signal */ 566 setrunnable(l); 567 } else { 568 l->l_stat = LSSLEEP; 569 p->p_nrlwps++; 570 lwp_unlock(l); 571 } 572 } 573 574 /* 575 * Wait for an LWP within the current process to exit. If 'lid' is 576 * non-zero, we are waiting for a specific LWP. 577 * 578 * Must be called with p->p_lock held. 579 */ 580 int 581 lwp_wait(struct lwp *l, lwpid_t lid, lwpid_t *departed, bool exiting) 582 { 583 const lwpid_t curlid = l->l_lid; 584 proc_t *p = l->l_proc; 585 lwp_t *l2, *next; 586 int error; 587 588 KASSERT(mutex_owned(p->p_lock)); 589 590 p->p_nlwpwait++; 591 l->l_waitingfor = lid; 592 593 for (;;) { 594 int nfound; 595 596 /* 597 * Avoid a race between exit1() and sigexit(): if the 598 * process is dumping core, then we need to bail out: call 599 * into lwp_userret() where we will be suspended until the 600 * deed is done. 601 */ 602 if ((p->p_sflag & PS_WCORE) != 0) { 603 mutex_exit(p->p_lock); 604 lwp_userret(l); 605 KASSERT(false); 606 } 607 608 /* 609 * First off, drain any detached LWP that is waiting to be 610 * reaped. 611 */ 612 while ((l2 = p->p_zomblwp) != NULL) { 613 p->p_zomblwp = NULL; 614 lwp_free(l2, false, false);/* releases proc mutex */ 615 mutex_enter(p->p_lock); 616 } 617 618 /* 619 * Now look for an LWP to collect. If the whole process is 620 * exiting, count detached LWPs as eligible to be collected, 621 * but don't drain them here. 622 */ 623 nfound = 0; 624 error = 0; 625 626 /* 627 * If given a specific LID, go via pid_table and make sure 628 * it's not detached. 629 */ 630 if (lid != 0) { 631 l2 = proc_find_lwp(p, lid); 632 if (l2 == NULL) { 633 error = ESRCH; 634 break; 635 } 636 KASSERT(l2->l_lid == lid); 637 if ((l2->l_prflag & LPR_DETACHED) != 0) { 638 error = EINVAL; 639 break; 640 } 641 } else { 642 l2 = LIST_FIRST(&p->p_lwps); 643 } 644 for (; l2 != NULL; l2 = next) { 645 next = (lid != 0 ? NULL : LIST_NEXT(l2, l_sibling)); 646 647 /* 648 * If a specific wait and the target is waiting on 649 * us, then avoid deadlock. This also traps LWPs 650 * that try to wait on themselves. 651 * 652 * Note that this does not handle more complicated 653 * cycles, like: t1 -> t2 -> t3 -> t1. The process 654 * can still be killed so it is not a major problem. 655 */ 656 if (l2->l_lid == lid && l2->l_waitingfor == curlid) { 657 error = EDEADLK; 658 break; 659 } 660 if (l2 == l) 661 continue; 662 if ((l2->l_prflag & LPR_DETACHED) != 0) { 663 nfound += exiting; 664 continue; 665 } 666 if (lid != 0) { 667 /* 668 * Mark this LWP as the first waiter, if there 669 * is no other. 670 */ 671 if (l2->l_waiter == 0) 672 l2->l_waiter = curlid; 673 } else if (l2->l_waiter != 0) { 674 /* 675 * It already has a waiter - so don't 676 * collect it. If the waiter doesn't 677 * grab it we'll get another chance 678 * later. 679 */ 680 nfound++; 681 continue; 682 } 683 nfound++; 684 685 /* No need to lock the LWP in order to see LSZOMB. */ 686 if (l2->l_stat != LSZOMB) 687 continue; 688 689 /* 690 * We're no longer waiting. Reset the "first waiter" 691 * pointer on the target, in case it was us. 692 */ 693 l->l_waitingfor = 0; 694 l2->l_waiter = 0; 695 p->p_nlwpwait--; 696 if (departed) 697 *departed = l2->l_lid; 698 sched_lwp_collect(l2); 699 700 /* lwp_free() releases the proc lock. */ 701 lwp_free(l2, false, false); 702 mutex_enter(p->p_lock); 703 return 0; 704 } 705 706 if (error != 0) 707 break; 708 if (nfound == 0) { 709 error = ESRCH; 710 break; 711 } 712 713 /* 714 * Note: since the lock will be dropped, need to restart on 715 * wakeup to run all LWPs again, e.g. there may be new LWPs. 716 */ 717 if (exiting) { 718 KASSERT(p->p_nlwps > 1); 719 error = cv_timedwait(&p->p_lwpcv, p->p_lock, 1); 720 break; 721 } 722 723 /* 724 * Break out if all LWPs are in _lwp_wait(). There are 725 * other ways to hang the process with _lwp_wait(), but the 726 * sleep is interruptable so little point checking for them. 727 */ 728 if (p->p_nlwpwait == p->p_nlwps) { 729 error = EDEADLK; 730 break; 731 } 732 733 /* 734 * Sit around and wait for something to happen. We'll be 735 * awoken if any of the conditions examined change: if an 736 * LWP exits, is collected, or is detached. 737 */ 738 if ((error = cv_wait_sig(&p->p_lwpcv, p->p_lock)) != 0) 739 break; 740 } 741 742 /* 743 * We didn't find any LWPs to collect, we may have received a 744 * signal, or some other condition has caused us to bail out. 745 * 746 * If waiting on a specific LWP, clear the waiters marker: some 747 * other LWP may want it. Then, kick all the remaining waiters 748 * so that they can re-check for zombies and for deadlock. 749 */ 750 if (lid != 0) { 751 l2 = proc_find_lwp(p, lid); 752 KASSERT(l2 == NULL || l2->l_lid == lid); 753 754 if (l2 != NULL && l2->l_waiter == curlid) 755 l2->l_waiter = 0; 756 } 757 p->p_nlwpwait--; 758 l->l_waitingfor = 0; 759 cv_broadcast(&p->p_lwpcv); 760 761 return error; 762 } 763 764 /* 765 * Create a new LWP within process 'p2', using LWP 'l1' as a template. 766 * The new LWP is created in state LSIDL and must be set running, 767 * suspended, or stopped by the caller. 768 */ 769 int 770 lwp_create(lwp_t *l1, proc_t *p2, vaddr_t uaddr, int flags, 771 void *stack, size_t stacksize, void (*func)(void *), void *arg, 772 lwp_t **rnewlwpp, int sclass, const sigset_t *sigmask, 773 const stack_t *sigstk) 774 { 775 struct lwp *l2; 776 777 KASSERT(l1 == curlwp || l1->l_proc == &proc0); 778 779 /* 780 * Enforce limits, excluding the first lwp and kthreads. We must 781 * use the process credentials here when adjusting the limit, as 782 * they are what's tied to the accounting entity. However for 783 * authorizing the action, we'll use the LWP's credentials. 784 */ 785 mutex_enter(p2->p_lock); 786 if (p2->p_nlwps != 0 && p2 != &proc0) { 787 uid_t uid = kauth_cred_getuid(p2->p_cred); 788 int count = chglwpcnt(uid, 1); 789 if (__predict_false(count > 790 p2->p_rlimit[RLIMIT_NTHR].rlim_cur)) { 791 if (kauth_authorize_process(l1->l_cred, 792 KAUTH_PROCESS_RLIMIT, p2, 793 KAUTH_ARG(KAUTH_REQ_PROCESS_RLIMIT_BYPASS), 794 &p2->p_rlimit[RLIMIT_NTHR], KAUTH_ARG(RLIMIT_NTHR)) 795 != 0) { 796 (void)chglwpcnt(uid, -1); 797 mutex_exit(p2->p_lock); 798 return EAGAIN; 799 } 800 } 801 } 802 803 /* 804 * First off, reap any detached LWP waiting to be collected. 805 * We can re-use its LWP structure and turnstile. 806 */ 807 if ((l2 = p2->p_zomblwp) != NULL) { 808 p2->p_zomblwp = NULL; 809 lwp_free(l2, true, false); 810 /* p2 now unlocked by lwp_free() */ 811 KASSERT(l2->l_ts != NULL); 812 KASSERT(l2->l_inheritedprio == -1); 813 KASSERT(SLIST_EMPTY(&l2->l_pi_lenders)); 814 memset(&l2->l_startzero, 0, sizeof(*l2) - 815 offsetof(lwp_t, l_startzero)); 816 } else { 817 mutex_exit(p2->p_lock); 818 l2 = pool_cache_get(lwp_cache, PR_WAITOK); 819 memset(&l2->l_startzero, 0, sizeof(*l2) - 820 offsetof(lwp_t, l_startzero)); 821 SLIST_INIT(&l2->l_pi_lenders); 822 } 823 824 /* 825 * Because of lockless lookup via pid_table, the LWP can be locked 826 * and inspected briefly even after it's freed, so a few fields are 827 * kept stable. 828 */ 829 KASSERT(l2->l_stat == LSIDL); 830 KASSERT(l2->l_cpu != NULL); 831 KASSERT(l2->l_ts != NULL); 832 KASSERT(l2->l_mutex == l2->l_cpu->ci_schedstate.spc_lwplock); 833 834 l2->l_proc = p2; 835 l2->l_refcnt = 0; 836 l2->l_class = sclass; 837 838 /* 839 * Allocate a process ID for this LWP. We need to do this now 840 * while we can still unwind if it fails. Because we're marked 841 * as LSIDL, no lookups by the ID will succeed. 842 * 843 * N.B. this will always succeed for the first LWP in a process, 844 * because proc_alloc_lwpid() will usurp the slot. Also note 845 * that l2->l_proc MUST be valid so that lookups of the proc 846 * will succeed, even if the LWP itself is not visible. 847 */ 848 if (__predict_false(proc_alloc_lwpid(p2, l2) == -1)) { 849 pool_cache_put(lwp_cache, l2); 850 return EAGAIN; 851 } 852 853 /* 854 * If vfork(), we want the LWP to run fast and on the same CPU 855 * as its parent, so that it can reuse the VM context and cache 856 * footprint on the local CPU. 857 */ 858 l2->l_kpriority = ((flags & LWP_VFORK) ? true : false); 859 l2->l_kpribase = PRI_KERNEL; 860 l2->l_priority = l1->l_priority; 861 l2->l_inheritedprio = -1; 862 l2->l_protectprio = -1; 863 l2->l_auxprio = -1; 864 l2->l_flag = 0; 865 l2->l_pflag = LP_MPSAFE; 866 TAILQ_INIT(&l2->l_ld_locks); 867 l2->l_psrefs = 0; 868 kmsan_lwp_alloc(l2); 869 870 /* 871 * For vfork, borrow parent's lwpctl context if it exists. 872 * This also causes us to return via lwp_userret. 873 */ 874 if (flags & LWP_VFORK && l1->l_lwpctl) { 875 l2->l_lwpctl = l1->l_lwpctl; 876 l2->l_flag |= LW_LWPCTL; 877 } 878 879 /* 880 * If not the first LWP in the process, grab a reference to the 881 * descriptor table. 882 */ 883 l2->l_fd = p2->p_fd; 884 if (p2->p_nlwps != 0) { 885 KASSERT(l1->l_proc == p2); 886 fd_hold(l2); 887 } else { 888 KASSERT(l1->l_proc != p2); 889 } 890 891 if (p2->p_flag & PK_SYSTEM) { 892 /* Mark it as a system LWP. */ 893 l2->l_flag |= LW_SYSTEM; 894 } 895 896 kdtrace_thread_ctor(NULL, l2); 897 lwp_initspecific(l2); 898 sched_lwp_fork(l1, l2); 899 lwp_update_creds(l2); 900 callout_init(&l2->l_timeout_ch, CALLOUT_MPSAFE); 901 callout_setfunc(&l2->l_timeout_ch, sleepq_timeout, l2); 902 cv_init(&l2->l_sigcv, "sigwait"); 903 cv_init(&l2->l_waitcv, "vfork"); 904 l2->l_syncobj = &sched_syncobj; 905 PSREF_DEBUG_INIT_LWP(l2); 906 907 if (rnewlwpp != NULL) 908 *rnewlwpp = l2; 909 910 /* 911 * PCU state needs to be saved before calling uvm_lwp_fork() so that 912 * the MD cpu_lwp_fork() can copy the saved state to the new LWP. 913 */ 914 pcu_save_all(l1); 915 #if PCU_UNIT_COUNT > 0 916 l2->l_pcu_valid = l1->l_pcu_valid; 917 #endif 918 919 uvm_lwp_setuarea(l2, uaddr); 920 uvm_lwp_fork(l1, l2, stack, stacksize, func, (arg != NULL) ? arg : l2); 921 922 mutex_enter(p2->p_lock); 923 if ((flags & LWP_DETACHED) != 0) { 924 l2->l_prflag = LPR_DETACHED; 925 p2->p_ndlwps++; 926 } else 927 l2->l_prflag = 0; 928 929 if (l1->l_proc == p2) { 930 /* 931 * These flags are set while p_lock is held. Copy with 932 * p_lock held too, so the LWP doesn't sneak into the 933 * process without them being set. 934 */ 935 l2->l_flag |= (l1->l_flag & (LW_WEXIT | LW_WREBOOT | LW_WCORE)); 936 } else { 937 /* fork(): pending core/exit doesn't apply to child. */ 938 l2->l_flag |= (l1->l_flag & LW_WREBOOT); 939 } 940 941 l2->l_sigstk = *sigstk; 942 l2->l_sigmask = *sigmask; 943 TAILQ_INIT(&l2->l_sigpend.sp_info); 944 sigemptyset(&l2->l_sigpend.sp_set); 945 LIST_INSERT_HEAD(&p2->p_lwps, l2, l_sibling); 946 p2->p_nlwps++; 947 p2->p_nrlwps++; 948 949 KASSERT(l2->l_affinity == NULL); 950 951 /* Inherit the affinity mask. */ 952 if (l1->l_affinity) { 953 /* 954 * Note that we hold the state lock while inheriting 955 * the affinity to avoid race with sched_setaffinity(). 956 */ 957 lwp_lock(l1); 958 if (l1->l_affinity) { 959 kcpuset_use(l1->l_affinity); 960 l2->l_affinity = l1->l_affinity; 961 } 962 lwp_unlock(l1); 963 } 964 965 /* This marks the end of the "must be atomic" section. */ 966 mutex_exit(p2->p_lock); 967 968 SDT_PROBE(proc, kernel, , lwp__create, l2, 0, 0, 0, 0); 969 970 mutex_enter(&proc_lock); 971 LIST_INSERT_HEAD(&alllwp, l2, l_list); 972 /* Inherit a processor-set */ 973 l2->l_psid = l1->l_psid; 974 mutex_exit(&proc_lock); 975 976 SYSCALL_TIME_LWP_INIT(l2); 977 978 if (p2->p_emul->e_lwp_fork) 979 (*p2->p_emul->e_lwp_fork)(l1, l2); 980 981 return (0); 982 } 983 984 /* 985 * Set a new LWP running. If the process is stopping, then the LWP is 986 * created stopped. 987 */ 988 void 989 lwp_start(lwp_t *l, int flags) 990 { 991 proc_t *p = l->l_proc; 992 993 mutex_enter(p->p_lock); 994 lwp_lock(l); 995 KASSERT(l->l_stat == LSIDL); 996 if ((flags & LWP_SUSPENDED) != 0) { 997 /* It'll suspend itself in lwp_userret(). */ 998 l->l_flag |= LW_WSUSPEND; 999 } 1000 if (p->p_stat == SSTOP || (p->p_sflag & PS_STOPPING) != 0) { 1001 KASSERT(l->l_wchan == NULL); 1002 l->l_stat = LSSTOP; 1003 p->p_nrlwps--; 1004 lwp_unlock(l); 1005 } else { 1006 setrunnable(l); 1007 /* LWP now unlocked */ 1008 } 1009 mutex_exit(p->p_lock); 1010 } 1011 1012 /* 1013 * Called by MD code when a new LWP begins execution. Must be called 1014 * with the previous LWP locked (so at splsched), or if there is no 1015 * previous LWP, at splsched. 1016 */ 1017 void 1018 lwp_startup(struct lwp *prev, struct lwp *new_lwp) 1019 { 1020 kmutex_t *lock; 1021 1022 KASSERTMSG(new_lwp == curlwp, "l %p curlwp %p prevlwp %p", new_lwp, curlwp, prev); 1023 KASSERT(kpreempt_disabled()); 1024 KASSERT(prev != NULL); 1025 KASSERT((prev->l_pflag & LP_RUNNING) != 0); 1026 KASSERT(curcpu()->ci_mtx_count == -2); 1027 1028 /* 1029 * Immediately mark the previous LWP as no longer running and 1030 * unlock (to keep lock wait times short as possible). If a 1031 * zombie, don't touch after clearing LP_RUNNING as it could be 1032 * reaped by another CPU. Use atomic_store_release to ensure 1033 * this -- matches atomic_load_acquire in lwp_free. 1034 */ 1035 lock = prev->l_mutex; 1036 if (__predict_false(prev->l_stat == LSZOMB)) { 1037 atomic_store_release(&prev->l_pflag, 1038 prev->l_pflag & ~LP_RUNNING); 1039 } else { 1040 prev->l_pflag &= ~LP_RUNNING; 1041 } 1042 mutex_spin_exit(lock); 1043 1044 /* Correct spin mutex count after mi_switch(). */ 1045 curcpu()->ci_mtx_count = 0; 1046 1047 /* Install new VM context. */ 1048 if (__predict_true(new_lwp->l_proc->p_vmspace)) { 1049 pmap_activate(new_lwp); 1050 } 1051 1052 /* We remain at IPL_SCHED from mi_switch() - reset it. */ 1053 spl0(); 1054 1055 LOCKDEBUG_BARRIER(NULL, 0); 1056 SDT_PROBE(proc, kernel, , lwp__start, new_lwp, 0, 0, 0, 0); 1057 1058 /* For kthreads, acquire kernel lock if not MPSAFE. */ 1059 if (__predict_false((new_lwp->l_pflag & LP_MPSAFE) == 0)) { 1060 KERNEL_LOCK(1, new_lwp); 1061 } 1062 } 1063 1064 /* 1065 * Exit an LWP. 1066 * 1067 * *** WARNING *** This can be called with (l != curlwp) in error paths. 1068 */ 1069 void 1070 lwp_exit(struct lwp *l) 1071 { 1072 struct proc *p = l->l_proc; 1073 struct lwp *l2; 1074 bool current; 1075 1076 current = (l == curlwp); 1077 1078 KASSERT(current || (l->l_stat == LSIDL && l->l_target_cpu == NULL)); 1079 KASSERT(p == curproc); 1080 1081 SDT_PROBE(proc, kernel, , lwp__exit, l, 0, 0, 0, 0); 1082 1083 /* Verify that we hold no locks; for DIAGNOSTIC check kernel_lock. */ 1084 LOCKDEBUG_BARRIER(NULL, 0); 1085 KASSERTMSG(curcpu()->ci_biglock_count == 0, "kernel_lock leaked"); 1086 1087 /* 1088 * If we are the last live LWP in a process, we need to exit the 1089 * entire process. We do so with an exit status of zero, because 1090 * it's a "controlled" exit, and because that's what Solaris does. 1091 * 1092 * We are not quite a zombie yet, but for accounting purposes we 1093 * must increment the count of zombies here. 1094 * 1095 * Note: the last LWP's specificdata will be deleted here. 1096 */ 1097 mutex_enter(p->p_lock); 1098 if (p->p_nlwps - p->p_nzlwps == 1) { 1099 KASSERT(current == true); 1100 KASSERT(p != &proc0); 1101 exit1(l, 0, 0); 1102 /* NOTREACHED */ 1103 } 1104 p->p_nzlwps++; 1105 1106 /* 1107 * Perform any required thread cleanup. Do this early so 1108 * anyone wanting to look us up with lwp_getref_lwpid() will 1109 * fail to find us before we become a zombie. 1110 * 1111 * N.B. this will unlock p->p_lock on our behalf. 1112 */ 1113 lwp_thread_cleanup(l); 1114 1115 if (p->p_emul->e_lwp_exit) 1116 (*p->p_emul->e_lwp_exit)(l); 1117 1118 /* Drop filedesc reference. */ 1119 fd_free(); 1120 1121 /* Release fstrans private data. */ 1122 fstrans_lwp_dtor(l); 1123 1124 /* Delete the specificdata while it's still safe to sleep. */ 1125 lwp_finispecific(l); 1126 1127 /* 1128 * Release our cached credentials. 1129 */ 1130 kauth_cred_free(l->l_cred); 1131 callout_destroy(&l->l_timeout_ch); 1132 1133 /* 1134 * If traced, report LWP exit event to the debugger. 1135 * 1136 * Remove the LWP from the global list. 1137 * Free its LID from the PID namespace if needed. 1138 */ 1139 mutex_enter(&proc_lock); 1140 1141 if ((p->p_slflag & (PSL_TRACED|PSL_TRACELWP_EXIT)) == 1142 (PSL_TRACED|PSL_TRACELWP_EXIT)) { 1143 mutex_enter(p->p_lock); 1144 if (ISSET(p->p_sflag, PS_WEXIT)) { 1145 mutex_exit(p->p_lock); 1146 /* 1147 * We are exiting, bail out without informing parent 1148 * about a terminating LWP as it would deadlock. 1149 */ 1150 } else { 1151 eventswitch(TRAP_LWP, PTRACE_LWP_EXIT, l->l_lid); 1152 mutex_enter(&proc_lock); 1153 } 1154 } 1155 1156 LIST_REMOVE(l, l_list); 1157 mutex_exit(&proc_lock); 1158 1159 /* 1160 * Get rid of all references to the LWP that others (e.g. procfs) 1161 * may have, and mark the LWP as a zombie. If the LWP is detached, 1162 * mark it waiting for collection in the proc structure. Note that 1163 * before we can do that, we need to free any other dead, deatched 1164 * LWP waiting to meet its maker. 1165 * 1166 * All conditions need to be observed upon under the same hold of 1167 * p_lock, because if the lock is dropped any of them can change. 1168 */ 1169 mutex_enter(p->p_lock); 1170 for (;;) { 1171 if (lwp_drainrefs(l)) 1172 continue; 1173 if ((l->l_prflag & LPR_DETACHED) != 0) { 1174 if ((l2 = p->p_zomblwp) != NULL) { 1175 p->p_zomblwp = NULL; 1176 lwp_free(l2, false, false); 1177 /* proc now unlocked */ 1178 mutex_enter(p->p_lock); 1179 continue; 1180 } 1181 p->p_zomblwp = l; 1182 } 1183 break; 1184 } 1185 1186 /* 1187 * If we find a pending signal for the process and we have been 1188 * asked to check for signals, then we lose: arrange to have 1189 * all other LWPs in the process check for signals. 1190 */ 1191 if ((l->l_flag & LW_PENDSIG) != 0 && 1192 firstsig(&p->p_sigpend.sp_set) != 0) { 1193 LIST_FOREACH(l2, &p->p_lwps, l_sibling) { 1194 lwp_lock(l2); 1195 signotify(l2); 1196 lwp_unlock(l2); 1197 } 1198 } 1199 1200 /* 1201 * Release any PCU resources before becoming a zombie. 1202 */ 1203 pcu_discard_all(l); 1204 1205 lwp_lock(l); 1206 l->l_stat = LSZOMB; 1207 if (l->l_name != NULL) { 1208 strcpy(l->l_name, "(zombie)"); 1209 } 1210 lwp_unlock(l); 1211 p->p_nrlwps--; 1212 cv_broadcast(&p->p_lwpcv); 1213 if (l->l_lwpctl != NULL) 1214 l->l_lwpctl->lc_curcpu = LWPCTL_CPU_EXITED; 1215 mutex_exit(p->p_lock); 1216 1217 /* 1218 * We can no longer block. At this point, lwp_free() may already 1219 * be gunning for us. On a multi-CPU system, we may be off p_lwps. 1220 * 1221 * Free MD LWP resources. 1222 */ 1223 cpu_lwp_free(l, 0); 1224 1225 if (current) { 1226 /* Switch away into oblivion. */ 1227 lwp_lock(l); 1228 spc_lock(l->l_cpu); 1229 mi_switch(l); 1230 panic("lwp_exit"); 1231 } 1232 } 1233 1234 /* 1235 * Free a dead LWP's remaining resources. 1236 * 1237 * XXXLWP limits. 1238 */ 1239 void 1240 lwp_free(struct lwp *l, bool recycle, bool last) 1241 { 1242 struct proc *p = l->l_proc; 1243 struct rusage *ru; 1244 ksiginfoq_t kq; 1245 1246 KASSERT(l != curlwp); 1247 KASSERT(last || mutex_owned(p->p_lock)); 1248 1249 /* 1250 * We use the process credentials instead of the lwp credentials here 1251 * because the lwp credentials maybe cached (just after a setuid call) 1252 * and we don't want pay for syncing, since the lwp is going away 1253 * anyway 1254 */ 1255 if (p != &proc0 && p->p_nlwps != 1) 1256 (void)chglwpcnt(kauth_cred_getuid(p->p_cred), -1); 1257 1258 /* 1259 * In the unlikely event that the LWP is still on the CPU, 1260 * then spin until it has switched away. 1261 * 1262 * atomic_load_acquire matches atomic_store_release in 1263 * lwp_startup and mi_switch. 1264 */ 1265 while (__predict_false((atomic_load_acquire(&l->l_pflag) & LP_RUNNING) 1266 != 0)) { 1267 SPINLOCK_BACKOFF_HOOK; 1268 } 1269 1270 /* 1271 * Now that the LWP's known off the CPU, reset its state back to 1272 * LSIDL, which defeats anything that might have gotten a hold on 1273 * the LWP via pid_table before the ID was freed. It's important 1274 * to do this with both the LWP locked and p_lock held. 1275 * 1276 * Also reset the CPU and lock pointer back to curcpu(), since the 1277 * LWP will in all likelyhood be cached with the current CPU in 1278 * lwp_cache when we free it and later allocated from there again 1279 * (avoid incidental lock contention). 1280 */ 1281 lwp_lock(l); 1282 l->l_stat = LSIDL; 1283 l->l_cpu = curcpu(); 1284 lwp_unlock_to(l, l->l_cpu->ci_schedstate.spc_lwplock); 1285 1286 /* 1287 * If this was not the last LWP in the process, then adjust counters 1288 * and unlock. This is done differently for the last LWP in exit1(). 1289 */ 1290 if (!last) { 1291 /* 1292 * Add the LWP's run time to the process' base value. 1293 * This needs to co-incide with coming off p_lwps. 1294 */ 1295 bintime_add(&p->p_rtime, &l->l_rtime); 1296 p->p_pctcpu += l->l_pctcpu; 1297 ru = &p->p_stats->p_ru; 1298 ruadd(ru, &l->l_ru); 1299 ru->ru_nvcsw += (l->l_ncsw - l->l_nivcsw); 1300 ru->ru_nivcsw += l->l_nivcsw; 1301 LIST_REMOVE(l, l_sibling); 1302 p->p_nlwps--; 1303 p->p_nzlwps--; 1304 if ((l->l_prflag & LPR_DETACHED) != 0) 1305 p->p_ndlwps--; 1306 1307 /* 1308 * Have any LWPs sleeping in lwp_wait() recheck for 1309 * deadlock. 1310 */ 1311 cv_broadcast(&p->p_lwpcv); 1312 mutex_exit(p->p_lock); 1313 1314 /* Free the LWP ID. */ 1315 mutex_enter(&proc_lock); 1316 proc_free_lwpid(p, l->l_lid); 1317 mutex_exit(&proc_lock); 1318 } 1319 1320 /* 1321 * Destroy the LWP's remaining signal information. 1322 */ 1323 ksiginfo_queue_init(&kq); 1324 sigclear(&l->l_sigpend, NULL, &kq); 1325 ksiginfo_queue_drain(&kq); 1326 cv_destroy(&l->l_sigcv); 1327 cv_destroy(&l->l_waitcv); 1328 1329 /* 1330 * Free lwpctl structure and affinity. 1331 */ 1332 if (l->l_lwpctl) { 1333 lwp_ctl_free(l); 1334 } 1335 if (l->l_affinity) { 1336 kcpuset_unuse(l->l_affinity, NULL); 1337 l->l_affinity = NULL; 1338 } 1339 1340 /* 1341 * Free remaining data structures and the LWP itself unless the 1342 * caller wants to recycle. 1343 */ 1344 if (l->l_name != NULL) 1345 kmem_free(l->l_name, MAXCOMLEN); 1346 1347 kmsan_lwp_free(l); 1348 kcov_lwp_free(l); 1349 cpu_lwp_free2(l); 1350 uvm_lwp_exit(l); 1351 1352 KASSERT(SLIST_EMPTY(&l->l_pi_lenders)); 1353 KASSERT(l->l_inheritedprio == -1); 1354 KASSERT(l->l_blcnt == 0); 1355 kdtrace_thread_dtor(NULL, l); 1356 if (!recycle) 1357 pool_cache_put(lwp_cache, l); 1358 } 1359 1360 /* 1361 * Migrate the LWP to the another CPU. Unlocks the LWP. 1362 */ 1363 void 1364 lwp_migrate(lwp_t *l, struct cpu_info *tci) 1365 { 1366 struct schedstate_percpu *tspc; 1367 int lstat = l->l_stat; 1368 1369 KASSERT(lwp_locked(l, NULL)); 1370 KASSERT(tci != NULL); 1371 1372 /* If LWP is still on the CPU, it must be handled like LSONPROC */ 1373 if ((l->l_pflag & LP_RUNNING) != 0) { 1374 lstat = LSONPROC; 1375 } 1376 1377 /* 1378 * The destination CPU could be changed while previous migration 1379 * was not finished. 1380 */ 1381 if (l->l_target_cpu != NULL) { 1382 l->l_target_cpu = tci; 1383 lwp_unlock(l); 1384 return; 1385 } 1386 1387 /* Nothing to do if trying to migrate to the same CPU */ 1388 if (l->l_cpu == tci) { 1389 lwp_unlock(l); 1390 return; 1391 } 1392 1393 KASSERT(l->l_target_cpu == NULL); 1394 tspc = &tci->ci_schedstate; 1395 switch (lstat) { 1396 case LSRUN: 1397 l->l_target_cpu = tci; 1398 break; 1399 case LSSLEEP: 1400 l->l_cpu = tci; 1401 break; 1402 case LSIDL: 1403 case LSSTOP: 1404 case LSSUSPENDED: 1405 l->l_cpu = tci; 1406 if (l->l_wchan == NULL) { 1407 lwp_unlock_to(l, tspc->spc_lwplock); 1408 return; 1409 } 1410 break; 1411 case LSONPROC: 1412 l->l_target_cpu = tci; 1413 spc_lock(l->l_cpu); 1414 sched_resched_cpu(l->l_cpu, PRI_USER_RT, true); 1415 /* spc now unlocked */ 1416 break; 1417 } 1418 lwp_unlock(l); 1419 } 1420 1421 #define lwp_find_exclude(l) \ 1422 ((l)->l_stat == LSIDL || (l)->l_stat == LSZOMB) 1423 1424 /* 1425 * Find the LWP in the process. Arguments may be zero, in such case, 1426 * the calling process and first LWP in the list will be used. 1427 * On success - returns proc locked. 1428 * 1429 * => pid == 0 -> look in curproc. 1430 * => pid == -1 -> match any proc. 1431 * => otherwise look up the proc. 1432 * 1433 * => lid == 0 -> first LWP in the proc 1434 * => otherwise specific LWP 1435 */ 1436 struct lwp * 1437 lwp_find2(pid_t pid, lwpid_t lid) 1438 { 1439 proc_t *p; 1440 lwp_t *l; 1441 1442 /* First LWP of specified proc. */ 1443 if (lid == 0) { 1444 switch (pid) { 1445 case -1: 1446 /* No lookup keys. */ 1447 return NULL; 1448 case 0: 1449 p = curproc; 1450 mutex_enter(p->p_lock); 1451 break; 1452 default: 1453 mutex_enter(&proc_lock); 1454 p = proc_find(pid); 1455 if (__predict_false(p == NULL)) { 1456 mutex_exit(&proc_lock); 1457 return NULL; 1458 } 1459 mutex_enter(p->p_lock); 1460 mutex_exit(&proc_lock); 1461 break; 1462 } 1463 LIST_FOREACH(l, &p->p_lwps, l_sibling) { 1464 if (__predict_true(!lwp_find_exclude(l))) 1465 break; 1466 } 1467 goto out; 1468 } 1469 1470 l = proc_find_lwp_acquire_proc(lid, &p); 1471 if (l == NULL) 1472 return NULL; 1473 KASSERT(p != NULL); 1474 KASSERT(mutex_owned(p->p_lock)); 1475 1476 if (__predict_false(lwp_find_exclude(l))) { 1477 l = NULL; 1478 goto out; 1479 } 1480 1481 /* Apply proc filter, if applicable. */ 1482 switch (pid) { 1483 case -1: 1484 /* Match anything. */ 1485 break; 1486 case 0: 1487 if (p != curproc) 1488 l = NULL; 1489 break; 1490 default: 1491 if (p->p_pid != pid) 1492 l = NULL; 1493 break; 1494 } 1495 1496 out: 1497 if (__predict_false(l == NULL)) { 1498 mutex_exit(p->p_lock); 1499 } 1500 return l; 1501 } 1502 1503 /* 1504 * Look up a live LWP within the specified process. 1505 * 1506 * Must be called with p->p_lock held (as it looks at the radix tree, 1507 * and also wants to exclude idle and zombie LWPs). 1508 */ 1509 struct lwp * 1510 lwp_find(struct proc *p, lwpid_t id) 1511 { 1512 struct lwp *l; 1513 1514 KASSERT(mutex_owned(p->p_lock)); 1515 1516 l = proc_find_lwp(p, id); 1517 KASSERT(l == NULL || l->l_lid == id); 1518 1519 /* 1520 * No need to lock - all of these conditions will 1521 * be visible with the process level mutex held. 1522 */ 1523 if (__predict_false(l != NULL && lwp_find_exclude(l))) 1524 l = NULL; 1525 1526 return l; 1527 } 1528 1529 /* 1530 * Update an LWP's cached credentials to mirror the process' master copy. 1531 * 1532 * This happens early in the syscall path, on user trap, and on LWP 1533 * creation. A long-running LWP can also voluntarily choose to update 1534 * its credentials by calling this routine. This may be called from 1535 * LWP_CACHE_CREDS(), which checks l->l_prflag & LPR_CRMOD beforehand. 1536 */ 1537 void 1538 lwp_update_creds(struct lwp *l) 1539 { 1540 kauth_cred_t oc; 1541 struct proc *p; 1542 1543 p = l->l_proc; 1544 oc = l->l_cred; 1545 1546 mutex_enter(p->p_lock); 1547 kauth_cred_hold(p->p_cred); 1548 l->l_cred = p->p_cred; 1549 l->l_prflag &= ~LPR_CRMOD; 1550 mutex_exit(p->p_lock); 1551 if (oc != NULL) 1552 kauth_cred_free(oc); 1553 } 1554 1555 /* 1556 * Verify that an LWP is locked, and optionally verify that the lock matches 1557 * one we specify. 1558 */ 1559 int 1560 lwp_locked(struct lwp *l, kmutex_t *mtx) 1561 { 1562 kmutex_t *cur = l->l_mutex; 1563 1564 return mutex_owned(cur) && (mtx == cur || mtx == NULL); 1565 } 1566 1567 /* 1568 * Lend a new mutex to an LWP. The old mutex must be held. 1569 */ 1570 kmutex_t * 1571 lwp_setlock(struct lwp *l, kmutex_t *mtx) 1572 { 1573 kmutex_t *oldmtx = l->l_mutex; 1574 1575 KASSERT(mutex_owned(oldmtx)); 1576 1577 atomic_store_release(&l->l_mutex, mtx); 1578 return oldmtx; 1579 } 1580 1581 /* 1582 * Lend a new mutex to an LWP, and release the old mutex. The old mutex 1583 * must be held. 1584 */ 1585 void 1586 lwp_unlock_to(struct lwp *l, kmutex_t *mtx) 1587 { 1588 kmutex_t *old; 1589 1590 KASSERT(lwp_locked(l, NULL)); 1591 1592 old = l->l_mutex; 1593 atomic_store_release(&l->l_mutex, mtx); 1594 mutex_spin_exit(old); 1595 } 1596 1597 int 1598 lwp_trylock(struct lwp *l) 1599 { 1600 kmutex_t *old; 1601 1602 for (;;) { 1603 if (!mutex_tryenter(old = atomic_load_consume(&l->l_mutex))) 1604 return 0; 1605 if (__predict_true(atomic_load_relaxed(&l->l_mutex) == old)) 1606 return 1; 1607 mutex_spin_exit(old); 1608 } 1609 } 1610 1611 void 1612 lwp_unsleep(lwp_t *l, bool unlock) 1613 { 1614 1615 KASSERT(mutex_owned(l->l_mutex)); 1616 (*l->l_syncobj->sobj_unsleep)(l, unlock); 1617 } 1618 1619 /* 1620 * Handle exceptions for mi_userret(). Called if a member of LW_USERRET is 1621 * set. 1622 */ 1623 void 1624 lwp_userret(struct lwp *l) 1625 { 1626 struct proc *p; 1627 int sig; 1628 1629 KASSERT(l == curlwp); 1630 KASSERT(l->l_stat == LSONPROC); 1631 p = l->l_proc; 1632 1633 /* 1634 * It is safe to do this read unlocked on a MP system.. 1635 */ 1636 while ((l->l_flag & LW_USERRET) != 0) { 1637 /* 1638 * Process pending signals first, unless the process 1639 * is dumping core or exiting, where we will instead 1640 * enter the LW_WSUSPEND case below. 1641 */ 1642 if ((l->l_flag & (LW_PENDSIG | LW_WCORE | LW_WEXIT)) == 1643 LW_PENDSIG) { 1644 mutex_enter(p->p_lock); 1645 while ((sig = issignal(l)) != 0) 1646 postsig(sig); 1647 mutex_exit(p->p_lock); 1648 } 1649 1650 /* 1651 * Core-dump or suspend pending. 1652 * 1653 * In case of core dump, suspend ourselves, so that the kernel 1654 * stack and therefore the userland registers saved in the 1655 * trapframe are around for coredump() to write them out. 1656 * We also need to save any PCU resources that we have so that 1657 * they accessible for coredump(). We issue a wakeup on 1658 * p->p_lwpcv so that sigexit() will write the core file out 1659 * once all other LWPs are suspended. 1660 */ 1661 if ((l->l_flag & LW_WSUSPEND) != 0) { 1662 pcu_save_all(l); 1663 mutex_enter(p->p_lock); 1664 p->p_nrlwps--; 1665 cv_broadcast(&p->p_lwpcv); 1666 lwp_lock(l); 1667 l->l_stat = LSSUSPENDED; 1668 lwp_unlock(l); 1669 mutex_exit(p->p_lock); 1670 lwp_lock(l); 1671 spc_lock(l->l_cpu); 1672 mi_switch(l); 1673 } 1674 1675 /* Process is exiting. */ 1676 if ((l->l_flag & LW_WEXIT) != 0) { 1677 lwp_exit(l); 1678 KASSERT(0); 1679 /* NOTREACHED */ 1680 } 1681 1682 /* update lwpctl processor (for vfork child_return) */ 1683 if (l->l_flag & LW_LWPCTL) { 1684 lwp_lock(l); 1685 KASSERT(kpreempt_disabled()); 1686 l->l_lwpctl->lc_curcpu = (int)cpu_index(l->l_cpu); 1687 l->l_lwpctl->lc_pctr++; 1688 l->l_flag &= ~LW_LWPCTL; 1689 lwp_unlock(l); 1690 } 1691 } 1692 } 1693 1694 /* 1695 * Force an LWP to enter the kernel, to take a trip through lwp_userret(). 1696 */ 1697 void 1698 lwp_need_userret(struct lwp *l) 1699 { 1700 1701 KASSERT(!cpu_intr_p()); 1702 KASSERT(lwp_locked(l, NULL)); 1703 1704 /* 1705 * If the LWP is in any state other than LSONPROC, we know that it 1706 * is executing in-kernel and will hit userret() on the way out. 1707 * 1708 * If the LWP is curlwp, then we know we'll be back out to userspace 1709 * soon (can't be called from a hardware interrupt here). 1710 * 1711 * Otherwise, we can't be sure what the LWP is doing, so first make 1712 * sure the update to l_flag will be globally visible, and then 1713 * force the LWP to take a trip through trap() where it will do 1714 * userret(). 1715 */ 1716 if (l->l_stat == LSONPROC && l != curlwp) { 1717 membar_producer(); 1718 cpu_signotify(l); 1719 } 1720 } 1721 1722 /* 1723 * Add one reference to an LWP. This will prevent the LWP from 1724 * exiting, thus keep the lwp structure and PCB around to inspect. 1725 */ 1726 void 1727 lwp_addref(struct lwp *l) 1728 { 1729 KASSERT(mutex_owned(l->l_proc->p_lock)); 1730 KASSERT(l->l_stat != LSZOMB); 1731 l->l_refcnt++; 1732 } 1733 1734 /* 1735 * Remove one reference to an LWP. If this is the last reference, 1736 * then we must finalize the LWP's death. 1737 */ 1738 void 1739 lwp_delref(struct lwp *l) 1740 { 1741 struct proc *p = l->l_proc; 1742 1743 mutex_enter(p->p_lock); 1744 lwp_delref2(l); 1745 mutex_exit(p->p_lock); 1746 } 1747 1748 /* 1749 * Remove one reference to an LWP. If this is the last reference, 1750 * then we must finalize the LWP's death. The proc mutex is held 1751 * on entry. 1752 */ 1753 void 1754 lwp_delref2(struct lwp *l) 1755 { 1756 struct proc *p = l->l_proc; 1757 1758 KASSERT(mutex_owned(p->p_lock)); 1759 KASSERT(l->l_stat != LSZOMB); 1760 KASSERT(l->l_refcnt > 0); 1761 1762 if (--l->l_refcnt == 0) 1763 cv_broadcast(&p->p_lwpcv); 1764 } 1765 1766 /* 1767 * Drain all references to the current LWP. Returns true if 1768 * we blocked. 1769 */ 1770 bool 1771 lwp_drainrefs(struct lwp *l) 1772 { 1773 struct proc *p = l->l_proc; 1774 bool rv = false; 1775 1776 KASSERT(mutex_owned(p->p_lock)); 1777 1778 l->l_prflag |= LPR_DRAINING; 1779 1780 while (l->l_refcnt > 0) { 1781 rv = true; 1782 cv_wait(&p->p_lwpcv, p->p_lock); 1783 } 1784 return rv; 1785 } 1786 1787 /* 1788 * Return true if the specified LWP is 'alive'. Only p->p_lock need 1789 * be held. 1790 */ 1791 bool 1792 lwp_alive(lwp_t *l) 1793 { 1794 1795 KASSERT(mutex_owned(l->l_proc->p_lock)); 1796 1797 switch (l->l_stat) { 1798 case LSSLEEP: 1799 case LSRUN: 1800 case LSONPROC: 1801 case LSSTOP: 1802 case LSSUSPENDED: 1803 return true; 1804 default: 1805 return false; 1806 } 1807 } 1808 1809 /* 1810 * Return first live LWP in the process. 1811 */ 1812 lwp_t * 1813 lwp_find_first(proc_t *p) 1814 { 1815 lwp_t *l; 1816 1817 KASSERT(mutex_owned(p->p_lock)); 1818 1819 LIST_FOREACH(l, &p->p_lwps, l_sibling) { 1820 if (lwp_alive(l)) { 1821 return l; 1822 } 1823 } 1824 1825 return NULL; 1826 } 1827 1828 /* 1829 * Allocate a new lwpctl structure for a user LWP. 1830 */ 1831 int 1832 lwp_ctl_alloc(vaddr_t *uaddr) 1833 { 1834 lcproc_t *lp; 1835 u_int bit, i, offset; 1836 struct uvm_object *uao; 1837 int error; 1838 lcpage_t *lcp; 1839 proc_t *p; 1840 lwp_t *l; 1841 1842 l = curlwp; 1843 p = l->l_proc; 1844 1845 /* don't allow a vforked process to create lwp ctls */ 1846 if (p->p_lflag & PL_PPWAIT) 1847 return EBUSY; 1848 1849 if (l->l_lcpage != NULL) { 1850 lcp = l->l_lcpage; 1851 *uaddr = lcp->lcp_uaddr + (vaddr_t)l->l_lwpctl - lcp->lcp_kaddr; 1852 return 0; 1853 } 1854 1855 /* First time around, allocate header structure for the process. */ 1856 if ((lp = p->p_lwpctl) == NULL) { 1857 lp = kmem_alloc(sizeof(*lp), KM_SLEEP); 1858 mutex_init(&lp->lp_lock, MUTEX_DEFAULT, IPL_NONE); 1859 lp->lp_uao = NULL; 1860 TAILQ_INIT(&lp->lp_pages); 1861 mutex_enter(p->p_lock); 1862 if (p->p_lwpctl == NULL) { 1863 p->p_lwpctl = lp; 1864 mutex_exit(p->p_lock); 1865 } else { 1866 mutex_exit(p->p_lock); 1867 mutex_destroy(&lp->lp_lock); 1868 kmem_free(lp, sizeof(*lp)); 1869 lp = p->p_lwpctl; 1870 } 1871 } 1872 1873 /* 1874 * Set up an anonymous memory region to hold the shared pages. 1875 * Map them into the process' address space. The user vmspace 1876 * gets the first reference on the UAO. 1877 */ 1878 mutex_enter(&lp->lp_lock); 1879 if (lp->lp_uao == NULL) { 1880 lp->lp_uao = uao_create(LWPCTL_UAREA_SZ, 0); 1881 lp->lp_cur = 0; 1882 lp->lp_max = LWPCTL_UAREA_SZ; 1883 lp->lp_uva = p->p_emul->e_vm_default_addr(p, 1884 (vaddr_t)p->p_vmspace->vm_daddr, LWPCTL_UAREA_SZ, 1885 p->p_vmspace->vm_map.flags & VM_MAP_TOPDOWN); 1886 error = uvm_map(&p->p_vmspace->vm_map, &lp->lp_uva, 1887 LWPCTL_UAREA_SZ, lp->lp_uao, 0, 0, UVM_MAPFLAG(UVM_PROT_RW, 1888 UVM_PROT_RW, UVM_INH_NONE, UVM_ADV_NORMAL, 0)); 1889 if (error != 0) { 1890 uao_detach(lp->lp_uao); 1891 lp->lp_uao = NULL; 1892 mutex_exit(&lp->lp_lock); 1893 return error; 1894 } 1895 } 1896 1897 /* Get a free block and allocate for this LWP. */ 1898 TAILQ_FOREACH(lcp, &lp->lp_pages, lcp_chain) { 1899 if (lcp->lcp_nfree != 0) 1900 break; 1901 } 1902 if (lcp == NULL) { 1903 /* Nothing available - try to set up a free page. */ 1904 if (lp->lp_cur == lp->lp_max) { 1905 mutex_exit(&lp->lp_lock); 1906 return ENOMEM; 1907 } 1908 lcp = kmem_alloc(LWPCTL_LCPAGE_SZ, KM_SLEEP); 1909 1910 /* 1911 * Wire the next page down in kernel space. Since this 1912 * is a new mapping, we must add a reference. 1913 */ 1914 uao = lp->lp_uao; 1915 (*uao->pgops->pgo_reference)(uao); 1916 lcp->lcp_kaddr = vm_map_min(kernel_map); 1917 error = uvm_map(kernel_map, &lcp->lcp_kaddr, PAGE_SIZE, 1918 uao, lp->lp_cur, PAGE_SIZE, 1919 UVM_MAPFLAG(UVM_PROT_RW, UVM_PROT_RW, 1920 UVM_INH_NONE, UVM_ADV_RANDOM, 0)); 1921 if (error != 0) { 1922 mutex_exit(&lp->lp_lock); 1923 kmem_free(lcp, LWPCTL_LCPAGE_SZ); 1924 (*uao->pgops->pgo_detach)(uao); 1925 return error; 1926 } 1927 error = uvm_map_pageable(kernel_map, lcp->lcp_kaddr, 1928 lcp->lcp_kaddr + PAGE_SIZE, FALSE, 0); 1929 if (error != 0) { 1930 mutex_exit(&lp->lp_lock); 1931 uvm_unmap(kernel_map, lcp->lcp_kaddr, 1932 lcp->lcp_kaddr + PAGE_SIZE); 1933 kmem_free(lcp, LWPCTL_LCPAGE_SZ); 1934 return error; 1935 } 1936 /* Prepare the page descriptor and link into the list. */ 1937 lcp->lcp_uaddr = lp->lp_uva + lp->lp_cur; 1938 lp->lp_cur += PAGE_SIZE; 1939 lcp->lcp_nfree = LWPCTL_PER_PAGE; 1940 lcp->lcp_rotor = 0; 1941 memset(lcp->lcp_bitmap, 0xff, LWPCTL_BITMAP_SZ); 1942 TAILQ_INSERT_HEAD(&lp->lp_pages, lcp, lcp_chain); 1943 } 1944 for (i = lcp->lcp_rotor; lcp->lcp_bitmap[i] == 0;) { 1945 if (++i >= LWPCTL_BITMAP_ENTRIES) 1946 i = 0; 1947 } 1948 bit = ffs(lcp->lcp_bitmap[i]) - 1; 1949 lcp->lcp_bitmap[i] ^= (1U << bit); 1950 lcp->lcp_rotor = i; 1951 lcp->lcp_nfree--; 1952 l->l_lcpage = lcp; 1953 offset = (i << 5) + bit; 1954 l->l_lwpctl = (lwpctl_t *)lcp->lcp_kaddr + offset; 1955 *uaddr = lcp->lcp_uaddr + offset * sizeof(lwpctl_t); 1956 mutex_exit(&lp->lp_lock); 1957 1958 KPREEMPT_DISABLE(l); 1959 l->l_lwpctl->lc_curcpu = (int)cpu_index(curcpu()); 1960 KPREEMPT_ENABLE(l); 1961 1962 return 0; 1963 } 1964 1965 /* 1966 * Free an lwpctl structure back to the per-process list. 1967 */ 1968 void 1969 lwp_ctl_free(lwp_t *l) 1970 { 1971 struct proc *p = l->l_proc; 1972 lcproc_t *lp; 1973 lcpage_t *lcp; 1974 u_int map, offset; 1975 1976 /* don't free a lwp context we borrowed for vfork */ 1977 if (p->p_lflag & PL_PPWAIT) { 1978 l->l_lwpctl = NULL; 1979 return; 1980 } 1981 1982 lp = p->p_lwpctl; 1983 KASSERT(lp != NULL); 1984 1985 lcp = l->l_lcpage; 1986 offset = (u_int)((lwpctl_t *)l->l_lwpctl - (lwpctl_t *)lcp->lcp_kaddr); 1987 KASSERT(offset < LWPCTL_PER_PAGE); 1988 1989 mutex_enter(&lp->lp_lock); 1990 lcp->lcp_nfree++; 1991 map = offset >> 5; 1992 lcp->lcp_bitmap[map] |= (1U << (offset & 31)); 1993 if (lcp->lcp_bitmap[lcp->lcp_rotor] == 0) 1994 lcp->lcp_rotor = map; 1995 if (TAILQ_FIRST(&lp->lp_pages)->lcp_nfree == 0) { 1996 TAILQ_REMOVE(&lp->lp_pages, lcp, lcp_chain); 1997 TAILQ_INSERT_HEAD(&lp->lp_pages, lcp, lcp_chain); 1998 } 1999 mutex_exit(&lp->lp_lock); 2000 } 2001 2002 /* 2003 * Process is exiting; tear down lwpctl state. This can only be safely 2004 * called by the last LWP in the process. 2005 */ 2006 void 2007 lwp_ctl_exit(void) 2008 { 2009 lcpage_t *lcp, *next; 2010 lcproc_t *lp; 2011 proc_t *p; 2012 lwp_t *l; 2013 2014 l = curlwp; 2015 l->l_lwpctl = NULL; 2016 l->l_lcpage = NULL; 2017 p = l->l_proc; 2018 lp = p->p_lwpctl; 2019 2020 KASSERT(lp != NULL); 2021 KASSERT(p->p_nlwps == 1); 2022 2023 for (lcp = TAILQ_FIRST(&lp->lp_pages); lcp != NULL; lcp = next) { 2024 next = TAILQ_NEXT(lcp, lcp_chain); 2025 uvm_unmap(kernel_map, lcp->lcp_kaddr, 2026 lcp->lcp_kaddr + PAGE_SIZE); 2027 kmem_free(lcp, LWPCTL_LCPAGE_SZ); 2028 } 2029 2030 if (lp->lp_uao != NULL) { 2031 uvm_unmap(&p->p_vmspace->vm_map, lp->lp_uva, 2032 lp->lp_uva + LWPCTL_UAREA_SZ); 2033 } 2034 2035 mutex_destroy(&lp->lp_lock); 2036 kmem_free(lp, sizeof(*lp)); 2037 p->p_lwpctl = NULL; 2038 } 2039 2040 /* 2041 * Return the current LWP's "preemption counter". Used to detect 2042 * preemption across operations that can tolerate preemption without 2043 * crashing, but which may generate incorrect results if preempted. 2044 */ 2045 uint64_t 2046 lwp_pctr(void) 2047 { 2048 2049 return curlwp->l_ncsw; 2050 } 2051 2052 /* 2053 * Set an LWP's private data pointer. 2054 */ 2055 int 2056 lwp_setprivate(struct lwp *l, void *ptr) 2057 { 2058 int error = 0; 2059 2060 l->l_private = ptr; 2061 #ifdef __HAVE_CPU_LWP_SETPRIVATE 2062 error = cpu_lwp_setprivate(l, ptr); 2063 #endif 2064 return error; 2065 } 2066 2067 /* 2068 * Perform any thread-related cleanup on LWP exit. 2069 * N.B. l->l_proc->p_lock must be HELD on entry but will 2070 * be released before returning! 2071 */ 2072 void 2073 lwp_thread_cleanup(struct lwp *l) 2074 { 2075 2076 KASSERT(mutex_owned(l->l_proc->p_lock)); 2077 mutex_exit(l->l_proc->p_lock); 2078 2079 /* 2080 * If the LWP has robust futexes, release them all 2081 * now. 2082 */ 2083 if (__predict_false(l->l_robust_head != 0)) { 2084 futex_release_all_lwp(l); 2085 } 2086 } 2087 2088 #if defined(DDB) 2089 #include <machine/pcb.h> 2090 2091 void 2092 lwp_whatis(uintptr_t addr, void (*pr)(const char *, ...)) 2093 { 2094 lwp_t *l; 2095 2096 LIST_FOREACH(l, &alllwp, l_list) { 2097 uintptr_t stack = (uintptr_t)KSTACK_LOWEST_ADDR(l); 2098 2099 if (addr < stack || stack + KSTACK_SIZE <= addr) { 2100 continue; 2101 } 2102 (*pr)("%p is %p+%zu, LWP %p's stack\n", 2103 (void *)addr, (void *)stack, 2104 (size_t)(addr - stack), l); 2105 } 2106 } 2107 #endif /* defined(DDB) */ 2108