xref: /netbsd-src/sys/kern/kern_lwp.c (revision 7330f729ccf0bd976a06f95fad452fe774fc7fd1)
1 /*	$NetBSD: kern_lwp.c,v 1.206 2019/11/07 19:45:18 joerg Exp $	*/
2 
3 /*-
4  * Copyright (c) 2001, 2006, 2007, 2008, 2009 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Nathan J. Williams, and Andrew Doran.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29  * POSSIBILITY OF SUCH DAMAGE.
30  */
31 
32 /*
33  * Overview
34  *
35  *	Lightweight processes (LWPs) are the basic unit or thread of
36  *	execution within the kernel.  The core state of an LWP is described
37  *	by "struct lwp", also known as lwp_t.
38  *
39  *	Each LWP is contained within a process (described by "struct proc"),
40  *	Every process contains at least one LWP, but may contain more.  The
41  *	process describes attributes shared among all of its LWPs such as a
42  *	private address space, global execution state (stopped, active,
43  *	zombie, ...), signal disposition and so on.  On a multiprocessor
44  *	machine, multiple LWPs be executing concurrently in the kernel.
45  *
46  * Execution states
47  *
48  *	At any given time, an LWP has overall state that is described by
49  *	lwp::l_stat.  The states are broken into two sets below.  The first
50  *	set is guaranteed to represent the absolute, current state of the
51  *	LWP:
52  *
53  *	LSONPROC
54  *
55  *		On processor: the LWP is executing on a CPU, either in the
56  *		kernel or in user space.
57  *
58  *	LSRUN
59  *
60  *		Runnable: the LWP is parked on a run queue, and may soon be
61  *		chosen to run by an idle processor, or by a processor that
62  *		has been asked to preempt a currently runnning but lower
63  *		priority LWP.
64  *
65  *	LSIDL
66  *
67  *		Idle: the LWP has been created but has not yet executed,
68  *		or it has ceased executing a unit of work and is waiting
69  *		to be started again.
70  *
71  *	LSSUSPENDED:
72  *
73  *		Suspended: the LWP has had its execution suspended by
74  *		another LWP in the same process using the _lwp_suspend()
75  *		system call.  User-level LWPs also enter the suspended
76  *		state when the system is shutting down.
77  *
78  *	The second set represent a "statement of intent" on behalf of the
79  *	LWP.  The LWP may in fact be executing on a processor, may be
80  *	sleeping or idle. It is expected to take the necessary action to
81  *	stop executing or become "running" again within a short timeframe.
82  *	The LP_RUNNING flag in lwp::l_pflag indicates that an LWP is running.
83  *	Importantly, it indicates that its state is tied to a CPU.
84  *
85  *	LSZOMB:
86  *
87  *		Dead or dying: the LWP has released most of its resources
88  *		and is about to switch away into oblivion, or has already
89  *		switched away.  When it switches away, its few remaining
90  *		resources can be collected.
91  *
92  *	LSSLEEP:
93  *
94  *		Sleeping: the LWP has entered itself onto a sleep queue, and
95  *		has switched away or will switch away shortly to allow other
96  *		LWPs to run on the CPU.
97  *
98  *	LSSTOP:
99  *
100  *		Stopped: the LWP has been stopped as a result of a job
101  *		control signal, or as a result of the ptrace() interface.
102  *
103  *		Stopped LWPs may run briefly within the kernel to handle
104  *		signals that they receive, but will not return to user space
105  *		until their process' state is changed away from stopped.
106  *
107  *		Single LWPs within a process can not be set stopped
108  *		selectively: all actions that can stop or continue LWPs
109  *		occur at the process level.
110  *
111  * State transitions
112  *
113  *	Note that the LSSTOP state may only be set when returning to
114  *	user space in userret(), or when sleeping interruptably.  The
115  *	LSSUSPENDED state may only be set in userret().  Before setting
116  *	those states, we try to ensure that the LWPs will release all
117  *	locks that they hold, and at a minimum try to ensure that the
118  *	LWP can be set runnable again by a signal.
119  *
120  *	LWPs may transition states in the following ways:
121  *
122  *	 RUN -------> ONPROC		ONPROC -----> RUN
123  *		    				    > SLEEP
124  *		    				    > STOPPED
125  *						    > SUSPENDED
126  *						    > ZOMB
127  *						    > IDL (special cases)
128  *
129  *	 STOPPED ---> RUN		SUSPENDED --> RUN
130  *	            > SLEEP
131  *
132  *	 SLEEP -----> ONPROC		IDL --------> RUN
133  *		    > RUN			    > SUSPENDED
134  *		    > STOPPED			    > STOPPED
135  *						    > ONPROC (special cases)
136  *
137  *	Some state transitions are only possible with kernel threads (eg
138  *	ONPROC -> IDL) and happen under tightly controlled circumstances
139  *	free of unwanted side effects.
140  *
141  * Migration
142  *
143  *	Migration of threads from one CPU to another could be performed
144  *	internally by the scheduler via sched_takecpu() or sched_catchlwp()
145  *	functions.  The universal lwp_migrate() function should be used for
146  *	any other cases.  Subsystems in the kernel must be aware that CPU
147  *	of LWP may change, while it is not locked.
148  *
149  * Locking
150  *
151  *	The majority of fields in 'struct lwp' are covered by a single,
152  *	general spin lock pointed to by lwp::l_mutex.  The locks covering
153  *	each field are documented in sys/lwp.h.
154  *
155  *	State transitions must be made with the LWP's general lock held,
156  *	and may cause the LWP's lock pointer to change.  Manipulation of
157  *	the general lock is not performed directly, but through calls to
158  *	lwp_lock(), lwp_unlock() and others.  It should be noted that the
159  *	adaptive locks are not allowed to be released while the LWP's lock
160  *	is being held (unlike for other spin-locks).
161  *
162  *	States and their associated locks:
163  *
164  *	LSONPROC, LSZOMB:
165  *
166  *		Always covered by spc_lwplock, which protects running LWPs.
167  *		This is a per-CPU lock and matches lwp::l_cpu.
168  *
169  *	LSIDL, LSRUN:
170  *
171  *		Always covered by spc_mutex, which protects the run queues.
172  *		This is a per-CPU lock and matches lwp::l_cpu.
173  *
174  *	LSSLEEP:
175  *
176  *		Covered by a lock associated with the sleep queue that the
177  *		LWP resides on.  Matches lwp::l_sleepq::sq_mutex.
178  *
179  *	LSSTOP, LSSUSPENDED:
180  *
181  *		If the LWP was previously sleeping (l_wchan != NULL), then
182  *		l_mutex references the sleep queue lock.  If the LWP was
183  *		runnable or on the CPU when halted, or has been removed from
184  *		the sleep queue since halted, then the lock is spc_lwplock.
185  *
186  *	The lock order is as follows:
187  *
188  *		spc::spc_lwplock ->
189  *		    sleeptab::st_mutex ->
190  *			tschain_t::tc_mutex ->
191  *			    spc::spc_mutex
192  *
193  *	Each process has an scheduler state lock (proc::p_lock), and a
194  *	number of counters on LWPs and their states: p_nzlwps, p_nrlwps, and
195  *	so on.  When an LWP is to be entered into or removed from one of the
196  *	following states, p_lock must be held and the process wide counters
197  *	adjusted:
198  *
199  *		LSIDL, LSZOMB, LSSTOP, LSSUSPENDED
200  *
201  *	(But not always for kernel threads.  There are some special cases
202  *	as mentioned above.  See kern_softint.c.)
203  *
204  *	Note that an LWP is considered running or likely to run soon if in
205  *	one of the following states.  This affects the value of p_nrlwps:
206  *
207  *		LSRUN, LSONPROC, LSSLEEP
208  *
209  *	p_lock does not need to be held when transitioning among these
210  *	three states, hence p_lock is rarely taken for state transitions.
211  */
212 
213 #include <sys/cdefs.h>
214 __KERNEL_RCSID(0, "$NetBSD: kern_lwp.c,v 1.206 2019/11/07 19:45:18 joerg Exp $");
215 
216 #include "opt_ddb.h"
217 #include "opt_lockdebug.h"
218 #include "opt_dtrace.h"
219 
220 #define _LWP_API_PRIVATE
221 
222 #include <sys/param.h>
223 #include <sys/systm.h>
224 #include <sys/cpu.h>
225 #include <sys/pool.h>
226 #include <sys/proc.h>
227 #include <sys/syscallargs.h>
228 #include <sys/syscall_stats.h>
229 #include <sys/kauth.h>
230 #include <sys/pserialize.h>
231 #include <sys/sleepq.h>
232 #include <sys/lockdebug.h>
233 #include <sys/kmem.h>
234 #include <sys/pset.h>
235 #include <sys/intr.h>
236 #include <sys/lwpctl.h>
237 #include <sys/atomic.h>
238 #include <sys/filedesc.h>
239 #include <sys/fstrans.h>
240 #include <sys/dtrace_bsd.h>
241 #include <sys/sdt.h>
242 #include <sys/ptrace.h>
243 #include <sys/xcall.h>
244 #include <sys/uidinfo.h>
245 #include <sys/sysctl.h>
246 #include <sys/psref.h>
247 
248 #include <uvm/uvm_extern.h>
249 #include <uvm/uvm_object.h>
250 
251 static pool_cache_t	lwp_cache	__read_mostly;
252 struct lwplist		alllwp		__cacheline_aligned;
253 
254 static void		lwp_dtor(void *, void *);
255 
256 /* DTrace proc provider probes */
257 SDT_PROVIDER_DEFINE(proc);
258 
259 SDT_PROBE_DEFINE1(proc, kernel, , lwp__create, "struct lwp *");
260 SDT_PROBE_DEFINE1(proc, kernel, , lwp__start, "struct lwp *");
261 SDT_PROBE_DEFINE1(proc, kernel, , lwp__exit, "struct lwp *");
262 
263 struct turnstile turnstile0;
264 struct lwp lwp0 __aligned(MIN_LWP_ALIGNMENT) = {
265 #ifdef LWP0_CPU_INFO
266 	.l_cpu = LWP0_CPU_INFO,
267 #endif
268 #ifdef LWP0_MD_INITIALIZER
269 	.l_md = LWP0_MD_INITIALIZER,
270 #endif
271 	.l_proc = &proc0,
272 	.l_lid = 1,
273 	.l_flag = LW_SYSTEM,
274 	.l_stat = LSONPROC,
275 	.l_ts = &turnstile0,
276 	.l_syncobj = &sched_syncobj,
277 	.l_refcnt = 1,
278 	.l_priority = PRI_USER + NPRI_USER - 1,
279 	.l_inheritedprio = -1,
280 	.l_class = SCHED_OTHER,
281 	.l_psid = PS_NONE,
282 	.l_pi_lenders = SLIST_HEAD_INITIALIZER(&lwp0.l_pi_lenders),
283 	.l_name = __UNCONST("swapper"),
284 	.l_fd = &filedesc0,
285 };
286 
287 static int sysctl_kern_maxlwp(SYSCTLFN_PROTO);
288 
289 /*
290  * sysctl helper routine for kern.maxlwp. Ensures that the new
291  * values are not too low or too high.
292  */
293 static int
294 sysctl_kern_maxlwp(SYSCTLFN_ARGS)
295 {
296 	int error, nmaxlwp;
297 	struct sysctlnode node;
298 
299 	nmaxlwp = maxlwp;
300 	node = *rnode;
301 	node.sysctl_data = &nmaxlwp;
302 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
303 	if (error || newp == NULL)
304 		return error;
305 
306 	if (nmaxlwp < 0 || nmaxlwp >= 65536)
307 		return EINVAL;
308 	if (nmaxlwp > cpu_maxlwp())
309 		return EINVAL;
310 	maxlwp = nmaxlwp;
311 
312 	return 0;
313 }
314 
315 static void
316 sysctl_kern_lwp_setup(void)
317 {
318 	struct sysctllog *clog = NULL;
319 
320 	sysctl_createv(&clog, 0, NULL, NULL,
321 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
322 		       CTLTYPE_INT, "maxlwp",
323 		       SYSCTL_DESCR("Maximum number of simultaneous threads"),
324 		       sysctl_kern_maxlwp, 0, NULL, 0,
325 		       CTL_KERN, CTL_CREATE, CTL_EOL);
326 }
327 
328 void
329 lwpinit(void)
330 {
331 
332 	LIST_INIT(&alllwp);
333 	lwpinit_specificdata();
334 	lwp_sys_init();
335 	lwp_cache = pool_cache_init(sizeof(lwp_t), MIN_LWP_ALIGNMENT, 0, 0,
336 	    "lwppl", NULL, IPL_NONE, NULL, lwp_dtor, NULL);
337 
338 	maxlwp = cpu_maxlwp();
339 	sysctl_kern_lwp_setup();
340 }
341 
342 void
343 lwp0_init(void)
344 {
345 	struct lwp *l = &lwp0;
346 
347 	KASSERT((void *)uvm_lwp_getuarea(l) != NULL);
348 	KASSERT(l->l_lid == proc0.p_nlwpid);
349 
350 	LIST_INSERT_HEAD(&alllwp, l, l_list);
351 
352 	callout_init(&l->l_timeout_ch, CALLOUT_MPSAFE);
353 	callout_setfunc(&l->l_timeout_ch, sleepq_timeout, l);
354 	cv_init(&l->l_sigcv, "sigwait");
355 	cv_init(&l->l_waitcv, "vfork");
356 
357 	kauth_cred_hold(proc0.p_cred);
358 	l->l_cred = proc0.p_cred;
359 
360 	kdtrace_thread_ctor(NULL, l);
361 	lwp_initspecific(l);
362 
363 	SYSCALL_TIME_LWP_INIT(l);
364 }
365 
366 static void
367 lwp_dtor(void *arg, void *obj)
368 {
369 	lwp_t *l = obj;
370 	(void)l;
371 
372 	/*
373 	 * Provide a barrier to ensure that all mutex_oncpu() and rw_oncpu()
374 	 * calls will exit before memory of LWP is returned to the pool, where
375 	 * KVA of LWP structure might be freed and re-used for other purposes.
376 	 * Kernel preemption is disabled around mutex_oncpu() and rw_oncpu()
377 	 * callers, therefore cross-call to all CPUs will do the job.  Also,
378 	 * the value of l->l_cpu must be still valid at this point.
379 	 */
380 	KASSERT(l->l_cpu != NULL);
381 	xc_barrier(0);
382 }
383 
384 /*
385  * Set an suspended.
386  *
387  * Must be called with p_lock held, and the LWP locked.  Will unlock the
388  * LWP before return.
389  */
390 int
391 lwp_suspend(struct lwp *curl, struct lwp *t)
392 {
393 	int error;
394 
395 	KASSERT(mutex_owned(t->l_proc->p_lock));
396 	KASSERT(lwp_locked(t, NULL));
397 
398 	KASSERT(curl != t || curl->l_stat == LSONPROC);
399 
400 	/*
401 	 * If the current LWP has been told to exit, we must not suspend anyone
402 	 * else or deadlock could occur.  We won't return to userspace.
403 	 */
404 	if ((curl->l_flag & (LW_WEXIT | LW_WCORE)) != 0) {
405 		lwp_unlock(t);
406 		return (EDEADLK);
407 	}
408 
409 	if ((t->l_flag & LW_DBGSUSPEND) != 0) {
410 		lwp_unlock(t);
411 		return 0;
412 	}
413 
414 	error = 0;
415 
416 	switch (t->l_stat) {
417 	case LSRUN:
418 	case LSONPROC:
419 		t->l_flag |= LW_WSUSPEND;
420 		lwp_need_userret(t);
421 		lwp_unlock(t);
422 		break;
423 
424 	case LSSLEEP:
425 		t->l_flag |= LW_WSUSPEND;
426 
427 		/*
428 		 * Kick the LWP and try to get it to the kernel boundary
429 		 * so that it will release any locks that it holds.
430 		 * setrunnable() will release the lock.
431 		 */
432 		if ((t->l_flag & LW_SINTR) != 0)
433 			setrunnable(t);
434 		else
435 			lwp_unlock(t);
436 		break;
437 
438 	case LSSUSPENDED:
439 		lwp_unlock(t);
440 		break;
441 
442 	case LSSTOP:
443 		t->l_flag |= LW_WSUSPEND;
444 		setrunnable(t);
445 		break;
446 
447 	case LSIDL:
448 	case LSZOMB:
449 		error = EINTR; /* It's what Solaris does..... */
450 		lwp_unlock(t);
451 		break;
452 	}
453 
454 	return (error);
455 }
456 
457 /*
458  * Restart a suspended LWP.
459  *
460  * Must be called with p_lock held, and the LWP locked.  Will unlock the
461  * LWP before return.
462  */
463 void
464 lwp_continue(struct lwp *l)
465 {
466 
467 	KASSERT(mutex_owned(l->l_proc->p_lock));
468 	KASSERT(lwp_locked(l, NULL));
469 
470 	/* If rebooting or not suspended, then just bail out. */
471 	if ((l->l_flag & LW_WREBOOT) != 0) {
472 		lwp_unlock(l);
473 		return;
474 	}
475 
476 	l->l_flag &= ~LW_WSUSPEND;
477 
478 	if (l->l_stat != LSSUSPENDED || (l->l_flag & LW_DBGSUSPEND) != 0) {
479 		lwp_unlock(l);
480 		return;
481 	}
482 
483 	/* setrunnable() will release the lock. */
484 	setrunnable(l);
485 }
486 
487 /*
488  * Restart a stopped LWP.
489  *
490  * Must be called with p_lock held, and the LWP NOT locked.  Will unlock the
491  * LWP before return.
492  */
493 void
494 lwp_unstop(struct lwp *l)
495 {
496 	struct proc *p = l->l_proc;
497 
498 	KASSERT(mutex_owned(proc_lock));
499 	KASSERT(mutex_owned(p->p_lock));
500 
501 	lwp_lock(l);
502 
503 	KASSERT((l->l_flag & LW_DBGSUSPEND) == 0);
504 
505 	/* If not stopped, then just bail out. */
506 	if (l->l_stat != LSSTOP) {
507 		lwp_unlock(l);
508 		return;
509 	}
510 
511 	p->p_stat = SACTIVE;
512 	p->p_sflag &= ~PS_STOPPING;
513 
514 	if (!p->p_waited)
515 		p->p_pptr->p_nstopchild--;
516 
517 	if (l->l_wchan == NULL) {
518 		/* setrunnable() will release the lock. */
519 		setrunnable(l);
520 	} else if (p->p_xsig && (l->l_flag & LW_SINTR) != 0) {
521 		/* setrunnable() so we can receive the signal */
522 		setrunnable(l);
523 	} else {
524 		l->l_stat = LSSLEEP;
525 		p->p_nrlwps++;
526 		lwp_unlock(l);
527 	}
528 }
529 
530 /*
531  * Wait for an LWP within the current process to exit.  If 'lid' is
532  * non-zero, we are waiting for a specific LWP.
533  *
534  * Must be called with p->p_lock held.
535  */
536 int
537 lwp_wait(struct lwp *l, lwpid_t lid, lwpid_t *departed, bool exiting)
538 {
539 	const lwpid_t curlid = l->l_lid;
540 	proc_t *p = l->l_proc;
541 	lwp_t *l2;
542 	int error;
543 
544 	KASSERT(mutex_owned(p->p_lock));
545 
546 	p->p_nlwpwait++;
547 	l->l_waitingfor = lid;
548 
549 	for (;;) {
550 		int nfound;
551 
552 		/*
553 		 * Avoid a race between exit1() and sigexit(): if the
554 		 * process is dumping core, then we need to bail out: call
555 		 * into lwp_userret() where we will be suspended until the
556 		 * deed is done.
557 		 */
558 		if ((p->p_sflag & PS_WCORE) != 0) {
559 			mutex_exit(p->p_lock);
560 			lwp_userret(l);
561 			KASSERT(false);
562 		}
563 
564 		/*
565 		 * First off, drain any detached LWP that is waiting to be
566 		 * reaped.
567 		 */
568 		while ((l2 = p->p_zomblwp) != NULL) {
569 			p->p_zomblwp = NULL;
570 			lwp_free(l2, false, false);/* releases proc mutex */
571 			mutex_enter(p->p_lock);
572 		}
573 
574 		/*
575 		 * Now look for an LWP to collect.  If the whole process is
576 		 * exiting, count detached LWPs as eligible to be collected,
577 		 * but don't drain them here.
578 		 */
579 		nfound = 0;
580 		error = 0;
581 		LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
582 			/*
583 			 * If a specific wait and the target is waiting on
584 			 * us, then avoid deadlock.  This also traps LWPs
585 			 * that try to wait on themselves.
586 			 *
587 			 * Note that this does not handle more complicated
588 			 * cycles, like: t1 -> t2 -> t3 -> t1.  The process
589 			 * can still be killed so it is not a major problem.
590 			 */
591 			if (l2->l_lid == lid && l2->l_waitingfor == curlid) {
592 				error = EDEADLK;
593 				break;
594 			}
595 			if (l2 == l)
596 				continue;
597 			if ((l2->l_prflag & LPR_DETACHED) != 0) {
598 				nfound += exiting;
599 				continue;
600 			}
601 			if (lid != 0) {
602 				if (l2->l_lid != lid)
603 					continue;
604 				/*
605 				 * Mark this LWP as the first waiter, if there
606 				 * is no other.
607 				 */
608 				if (l2->l_waiter == 0)
609 					l2->l_waiter = curlid;
610 			} else if (l2->l_waiter != 0) {
611 				/*
612 				 * It already has a waiter - so don't
613 				 * collect it.  If the waiter doesn't
614 				 * grab it we'll get another chance
615 				 * later.
616 				 */
617 				nfound++;
618 				continue;
619 			}
620 			nfound++;
621 
622 			/* No need to lock the LWP in order to see LSZOMB. */
623 			if (l2->l_stat != LSZOMB)
624 				continue;
625 
626 			/*
627 			 * We're no longer waiting.  Reset the "first waiter"
628 			 * pointer on the target, in case it was us.
629 			 */
630 			l->l_waitingfor = 0;
631 			l2->l_waiter = 0;
632 			p->p_nlwpwait--;
633 			if (departed)
634 				*departed = l2->l_lid;
635 			sched_lwp_collect(l2);
636 
637 			/* lwp_free() releases the proc lock. */
638 			lwp_free(l2, false, false);
639 			mutex_enter(p->p_lock);
640 			return 0;
641 		}
642 
643 		if (error != 0)
644 			break;
645 		if (nfound == 0) {
646 			error = ESRCH;
647 			break;
648 		}
649 
650 		/*
651 		 * Note: since the lock will be dropped, need to restart on
652 		 * wakeup to run all LWPs again, e.g. there may be new LWPs.
653 		 */
654 		if (exiting) {
655 			KASSERT(p->p_nlwps > 1);
656 			cv_wait(&p->p_lwpcv, p->p_lock);
657 			error = EAGAIN;
658 			break;
659 		}
660 
661 		/*
662 		 * If all other LWPs are waiting for exits or suspends
663 		 * and the supply of zombies and potential zombies is
664 		 * exhausted, then we are about to deadlock.
665 		 *
666 		 * If the process is exiting (and this LWP is not the one
667 		 * that is coordinating the exit) then bail out now.
668 		 */
669 		if ((p->p_sflag & PS_WEXIT) != 0 ||
670 		    p->p_nrlwps + p->p_nzlwps - p->p_ndlwps <= p->p_nlwpwait) {
671 			error = EDEADLK;
672 			break;
673 		}
674 
675 		/*
676 		 * Sit around and wait for something to happen.  We'll be
677 		 * awoken if any of the conditions examined change: if an
678 		 * LWP exits, is collected, or is detached.
679 		 */
680 		if ((error = cv_wait_sig(&p->p_lwpcv, p->p_lock)) != 0)
681 			break;
682 	}
683 
684 	/*
685 	 * We didn't find any LWPs to collect, we may have received a
686 	 * signal, or some other condition has caused us to bail out.
687 	 *
688 	 * If waiting on a specific LWP, clear the waiters marker: some
689 	 * other LWP may want it.  Then, kick all the remaining waiters
690 	 * so that they can re-check for zombies and for deadlock.
691 	 */
692 	if (lid != 0) {
693 		LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
694 			if (l2->l_lid == lid) {
695 				if (l2->l_waiter == curlid)
696 					l2->l_waiter = 0;
697 				break;
698 			}
699 		}
700 	}
701 	p->p_nlwpwait--;
702 	l->l_waitingfor = 0;
703 	cv_broadcast(&p->p_lwpcv);
704 
705 	return error;
706 }
707 
708 static lwpid_t
709 lwp_find_free_lid(lwpid_t try_lid, lwp_t * new_lwp, proc_t *p)
710 {
711 	#define LID_SCAN (1u << 31)
712 	lwp_t *scan, *free_before;
713 	lwpid_t nxt_lid;
714 
715 	/*
716 	 * We want the first unused lid greater than or equal to
717 	 * try_lid (modulo 2^31).
718 	 * (If nothing else ld.elf_so doesn't want lwpid with the top bit set.)
719 	 * We must not return 0, and avoiding 'LID_SCAN - 1' makes
720 	 * the outer test easier.
721 	 * This would be much easier if the list were sorted in
722 	 * increasing order.
723 	 * The list is kept sorted in decreasing order.
724 	 * This code is only used after a process has generated 2^31 lwp.
725 	 *
726 	 * Code assumes it can always find an id.
727 	 */
728 
729 	try_lid &= LID_SCAN - 1;
730 	if (try_lid <= 1)
731 		try_lid = 2;
732 
733 	free_before = NULL;
734 	nxt_lid = LID_SCAN - 1;
735 	LIST_FOREACH(scan, &p->p_lwps, l_sibling) {
736 		if (scan->l_lid != nxt_lid) {
737 			/* There are available lid before this entry */
738 			free_before = scan;
739 			if (try_lid > scan->l_lid)
740 				break;
741 		}
742 		if (try_lid == scan->l_lid) {
743 			/* The ideal lid is busy, take a higher one */
744 			if (free_before != NULL) {
745 				try_lid = free_before->l_lid + 1;
746 				break;
747 			}
748 			/* No higher ones, reuse low numbers */
749 			try_lid = 2;
750 		}
751 
752 		nxt_lid = scan->l_lid - 1;
753 		if (LIST_NEXT(scan, l_sibling) == NULL) {
754 		    /* The value we have is lower than any existing lwp */
755 		    LIST_INSERT_AFTER(scan, new_lwp, l_sibling);
756 		    return try_lid;
757 		}
758 	}
759 
760 	LIST_INSERT_BEFORE(free_before, new_lwp, l_sibling);
761 	return try_lid;
762 }
763 
764 /*
765  * Create a new LWP within process 'p2', using LWP 'l1' as a template.
766  * The new LWP is created in state LSIDL and must be set running,
767  * suspended, or stopped by the caller.
768  */
769 int
770 lwp_create(lwp_t *l1, proc_t *p2, vaddr_t uaddr, int flags,
771     void *stack, size_t stacksize, void (*func)(void *), void *arg,
772     lwp_t **rnewlwpp, int sclass, const sigset_t *sigmask,
773     const stack_t *sigstk)
774 {
775 	struct lwp *l2, *isfree;
776 	turnstile_t *ts;
777 	lwpid_t lid;
778 
779 	KASSERT(l1 == curlwp || l1->l_proc == &proc0);
780 
781 	/*
782 	 * Enforce limits, excluding the first lwp and kthreads.
783 	 */
784 	if (p2->p_nlwps != 0 && p2 != &proc0) {
785 		uid_t uid = kauth_cred_getuid(l1->l_cred);
786 		int count = chglwpcnt(uid, 1);
787 		if (__predict_false(count >
788 		    p2->p_rlimit[RLIMIT_NTHR].rlim_cur)) {
789 			if (kauth_authorize_process(l1->l_cred,
790 			    KAUTH_PROCESS_RLIMIT, p2,
791 			    KAUTH_ARG(KAUTH_REQ_PROCESS_RLIMIT_BYPASS),
792 			    &p2->p_rlimit[RLIMIT_NTHR], KAUTH_ARG(RLIMIT_NTHR))
793 			    != 0) {
794 				(void)chglwpcnt(uid, -1);
795 				return EAGAIN;
796 			}
797 		}
798 	}
799 
800 	/*
801 	 * First off, reap any detached LWP waiting to be collected.
802 	 * We can re-use its LWP structure and turnstile.
803 	 */
804 	isfree = NULL;
805 	if (p2->p_zomblwp != NULL) {
806 		mutex_enter(p2->p_lock);
807 		if ((isfree = p2->p_zomblwp) != NULL) {
808 			p2->p_zomblwp = NULL;
809 			lwp_free(isfree, true, false);/* releases proc mutex */
810 		} else
811 			mutex_exit(p2->p_lock);
812 	}
813 	if (isfree == NULL) {
814 		l2 = pool_cache_get(lwp_cache, PR_WAITOK);
815 		memset(l2, 0, sizeof(*l2));
816 		l2->l_ts = pool_cache_get(turnstile_cache, PR_WAITOK);
817 		SLIST_INIT(&l2->l_pi_lenders);
818 	} else {
819 		l2 = isfree;
820 		ts = l2->l_ts;
821 		KASSERT(l2->l_inheritedprio == -1);
822 		KASSERT(SLIST_EMPTY(&l2->l_pi_lenders));
823 		memset(l2, 0, sizeof(*l2));
824 		l2->l_ts = ts;
825 	}
826 
827 	l2->l_stat = LSIDL;
828 	l2->l_proc = p2;
829 	l2->l_refcnt = 1;
830 	l2->l_class = sclass;
831 
832 	/*
833 	 * If vfork(), we want the LWP to run fast and on the same CPU
834 	 * as its parent, so that it can reuse the VM context and cache
835 	 * footprint on the local CPU.
836 	 */
837 	l2->l_kpriority = ((flags & LWP_VFORK) ? true : false);
838 	l2->l_kpribase = PRI_KERNEL;
839 	l2->l_priority = l1->l_priority;
840 	l2->l_inheritedprio = -1;
841 	l2->l_protectprio = -1;
842 	l2->l_auxprio = -1;
843 	l2->l_flag = 0;
844 	l2->l_pflag = LP_MPSAFE;
845 	TAILQ_INIT(&l2->l_ld_locks);
846 	l2->l_psrefs = 0;
847 
848 	/*
849 	 * For vfork, borrow parent's lwpctl context if it exists.
850 	 * This also causes us to return via lwp_userret.
851 	 */
852 	if (flags & LWP_VFORK && l1->l_lwpctl) {
853 		l2->l_lwpctl = l1->l_lwpctl;
854 		l2->l_flag |= LW_LWPCTL;
855 	}
856 
857 	/*
858 	 * If not the first LWP in the process, grab a reference to the
859 	 * descriptor table.
860 	 */
861 	l2->l_fd = p2->p_fd;
862 	if (p2->p_nlwps != 0) {
863 		KASSERT(l1->l_proc == p2);
864 		fd_hold(l2);
865 	} else {
866 		KASSERT(l1->l_proc != p2);
867 	}
868 
869 	if (p2->p_flag & PK_SYSTEM) {
870 		/* Mark it as a system LWP. */
871 		l2->l_flag |= LW_SYSTEM;
872 	}
873 
874 	kpreempt_disable();
875 	l2->l_mutex = l1->l_cpu->ci_schedstate.spc_mutex;
876 	l2->l_cpu = l1->l_cpu;
877 	kpreempt_enable();
878 
879 	kdtrace_thread_ctor(NULL, l2);
880 	lwp_initspecific(l2);
881 	sched_lwp_fork(l1, l2);
882 	lwp_update_creds(l2);
883 	callout_init(&l2->l_timeout_ch, CALLOUT_MPSAFE);
884 	callout_setfunc(&l2->l_timeout_ch, sleepq_timeout, l2);
885 	cv_init(&l2->l_sigcv, "sigwait");
886 	cv_init(&l2->l_waitcv, "vfork");
887 	l2->l_syncobj = &sched_syncobj;
888 	PSREF_DEBUG_INIT_LWP(l2);
889 
890 	if (rnewlwpp != NULL)
891 		*rnewlwpp = l2;
892 
893 	/*
894 	 * PCU state needs to be saved before calling uvm_lwp_fork() so that
895 	 * the MD cpu_lwp_fork() can copy the saved state to the new LWP.
896 	 */
897 	pcu_save_all(l1);
898 
899 	uvm_lwp_setuarea(l2, uaddr);
900 	uvm_lwp_fork(l1, l2, stack, stacksize, func, (arg != NULL) ? arg : l2);
901 
902 	if ((flags & LWP_PIDLID) != 0) {
903 		lid = proc_alloc_pid(p2);
904 		l2->l_pflag |= LP_PIDLID;
905 	} else if (p2->p_nlwps == 0) {
906 		lid = l1->l_lid;
907 	} else {
908 		lid = 0;
909 	}
910 
911 	mutex_enter(p2->p_lock);
912 
913 	if ((flags & LWP_DETACHED) != 0) {
914 		l2->l_prflag = LPR_DETACHED;
915 		p2->p_ndlwps++;
916 	} else
917 		l2->l_prflag = 0;
918 
919 	l2->l_sigstk = *sigstk;
920 	l2->l_sigmask = *sigmask;
921 	TAILQ_INIT(&l2->l_sigpend.sp_info);
922 	sigemptyset(&l2->l_sigpend.sp_set);
923 
924 	if (__predict_true(lid == 0)) {
925 		/*
926 		 * XXX: l_lid are expected to be unique (for a process)
927 		 * if LWP_PIDLID is sometimes set this won't be true.
928 		 * Once 2^31 threads have been allocated we have to
929 		 * scan to ensure we allocate a unique value.
930 		 */
931 		lid = ++p2->p_nlwpid;
932 		if (__predict_false(lid & LID_SCAN)) {
933 			lid = lwp_find_free_lid(lid, l2, p2);
934 			p2->p_nlwpid = lid | LID_SCAN;
935 			/* l2 as been inserted into p_lwps in order */
936 			goto skip_insert;
937 		}
938 		p2->p_nlwpid = lid;
939 	}
940 	LIST_INSERT_HEAD(&p2->p_lwps, l2, l_sibling);
941     skip_insert:
942 	l2->l_lid = lid;
943 	p2->p_nlwps++;
944 	p2->p_nrlwps++;
945 
946 	KASSERT(l2->l_affinity == NULL);
947 
948 	if ((p2->p_flag & PK_SYSTEM) == 0) {
949 		/* Inherit the affinity mask. */
950 		if (l1->l_affinity) {
951 			/*
952 			 * Note that we hold the state lock while inheriting
953 			 * the affinity to avoid race with sched_setaffinity().
954 			 */
955 			lwp_lock(l1);
956 			if (l1->l_affinity) {
957 				kcpuset_use(l1->l_affinity);
958 				l2->l_affinity = l1->l_affinity;
959 			}
960 			lwp_unlock(l1);
961 		}
962 		lwp_lock(l2);
963 		/* Inherit a processor-set */
964 		l2->l_psid = l1->l_psid;
965 		/* Look for a CPU to start */
966 		l2->l_cpu = sched_takecpu(l2);
967 		lwp_unlock_to(l2, l2->l_cpu->ci_schedstate.spc_mutex);
968 	}
969 	mutex_exit(p2->p_lock);
970 
971 	SDT_PROBE(proc, kernel, , lwp__create, l2, 0, 0, 0, 0);
972 
973 	mutex_enter(proc_lock);
974 	LIST_INSERT_HEAD(&alllwp, l2, l_list);
975 	mutex_exit(proc_lock);
976 
977 	SYSCALL_TIME_LWP_INIT(l2);
978 
979 	if (p2->p_emul->e_lwp_fork)
980 		(*p2->p_emul->e_lwp_fork)(l1, l2);
981 
982 	return (0);
983 }
984 
985 /*
986  * Called by MD code when a new LWP begins execution.  Must be called
987  * with the previous LWP locked (so at splsched), or if there is no
988  * previous LWP, at splsched.
989  */
990 void
991 lwp_startup(struct lwp *prev, struct lwp *new_lwp)
992 {
993 	KASSERTMSG(new_lwp == curlwp, "l %p curlwp %p prevlwp %p", new_lwp, curlwp, prev);
994 
995 	SDT_PROBE(proc, kernel, , lwp__start, new_lwp, 0, 0, 0, 0);
996 
997 	KASSERT(kpreempt_disabled());
998 	if (prev != NULL) {
999 		/*
1000 		 * Normalize the count of the spin-mutexes, it was
1001 		 * increased in mi_switch().  Unmark the state of
1002 		 * context switch - it is finished for previous LWP.
1003 		 */
1004 		curcpu()->ci_mtx_count++;
1005 		membar_exit();
1006 		prev->l_ctxswtch = 0;
1007 	}
1008 	KPREEMPT_DISABLE(new_lwp);
1009 	if (__predict_true(new_lwp->l_proc->p_vmspace))
1010 		pmap_activate(new_lwp);
1011 	spl0();
1012 
1013 	/* Note trip through cpu_switchto(). */
1014 	pserialize_switchpoint();
1015 
1016 	LOCKDEBUG_BARRIER(NULL, 0);
1017 	KPREEMPT_ENABLE(new_lwp);
1018 	if ((new_lwp->l_pflag & LP_MPSAFE) == 0) {
1019 		KERNEL_LOCK(1, new_lwp);
1020 	}
1021 }
1022 
1023 /*
1024  * Exit an LWP.
1025  */
1026 void
1027 lwp_exit(struct lwp *l)
1028 {
1029 	struct proc *p = l->l_proc;
1030 	struct lwp *l2;
1031 	bool current;
1032 
1033 	current = (l == curlwp);
1034 
1035 	KASSERT(current || (l->l_stat == LSIDL && l->l_target_cpu == NULL));
1036 	KASSERT(p == curproc);
1037 
1038 	SDT_PROBE(proc, kernel, , lwp__exit, l, 0, 0, 0, 0);
1039 
1040 	/*
1041 	 * Verify that we hold no locks other than the kernel lock.
1042 	 */
1043 	LOCKDEBUG_BARRIER(&kernel_lock, 0);
1044 
1045 	/*
1046 	 * If we are the last live LWP in a process, we need to exit the
1047 	 * entire process.  We do so with an exit status of zero, because
1048 	 * it's a "controlled" exit, and because that's what Solaris does.
1049 	 *
1050 	 * We are not quite a zombie yet, but for accounting purposes we
1051 	 * must increment the count of zombies here.
1052 	 *
1053 	 * Note: the last LWP's specificdata will be deleted here.
1054 	 */
1055 	mutex_enter(p->p_lock);
1056 	if (p->p_nlwps - p->p_nzlwps == 1) {
1057 		KASSERT(current == true);
1058 		KASSERT(p != &proc0);
1059 		/* XXXSMP kernel_lock not held */
1060 		exit1(l, 0, 0);
1061 		/* NOTREACHED */
1062 	}
1063 	p->p_nzlwps++;
1064 	mutex_exit(p->p_lock);
1065 
1066 	if (p->p_emul->e_lwp_exit)
1067 		(*p->p_emul->e_lwp_exit)(l);
1068 
1069 	/* Drop filedesc reference. */
1070 	fd_free();
1071 
1072 	/* Release fstrans private data. */
1073 	fstrans_lwp_dtor(l);
1074 
1075 	/* Delete the specificdata while it's still safe to sleep. */
1076 	lwp_finispecific(l);
1077 
1078 	/*
1079 	 * Release our cached credentials.
1080 	 */
1081 	kauth_cred_free(l->l_cred);
1082 	callout_destroy(&l->l_timeout_ch);
1083 
1084 	/*
1085 	 * If traced, report LWP exit event to the debugger.
1086 	 *
1087 	 * Remove the LWP from the global list.
1088 	 * Free its LID from the PID namespace if needed.
1089 	 */
1090 	mutex_enter(proc_lock);
1091 
1092 	if ((p->p_slflag & (PSL_TRACED|PSL_TRACELWP_EXIT)) ==
1093 	    (PSL_TRACED|PSL_TRACELWP_EXIT)) {
1094 		mutex_enter(p->p_lock);
1095 		if (ISSET(p->p_sflag, PS_WEXIT)) {
1096 			mutex_exit(p->p_lock);
1097 			/*
1098 			 * We are exiting, bail out without informing parent
1099 			 * about a terminating LWP as it would deadlock.
1100 			 */
1101 		} else {
1102 			eventswitch(TRAP_LWP, PTRACE_LWP_EXIT, l->l_lid);
1103 			mutex_enter(proc_lock);
1104 		}
1105 	}
1106 
1107 	LIST_REMOVE(l, l_list);
1108 	if ((l->l_pflag & LP_PIDLID) != 0 && l->l_lid != p->p_pid) {
1109 		proc_free_pid(l->l_lid);
1110 	}
1111 	mutex_exit(proc_lock);
1112 
1113 	/*
1114 	 * Get rid of all references to the LWP that others (e.g. procfs)
1115 	 * may have, and mark the LWP as a zombie.  If the LWP is detached,
1116 	 * mark it waiting for collection in the proc structure.  Note that
1117 	 * before we can do that, we need to free any other dead, deatched
1118 	 * LWP waiting to meet its maker.
1119 	 */
1120 	mutex_enter(p->p_lock);
1121 	lwp_drainrefs(l);
1122 
1123 	if ((l->l_prflag & LPR_DETACHED) != 0) {
1124 		while ((l2 = p->p_zomblwp) != NULL) {
1125 			p->p_zomblwp = NULL;
1126 			lwp_free(l2, false, false);/* releases proc mutex */
1127 			mutex_enter(p->p_lock);
1128 			l->l_refcnt++;
1129 			lwp_drainrefs(l);
1130 		}
1131 		p->p_zomblwp = l;
1132 	}
1133 
1134 	/*
1135 	 * If we find a pending signal for the process and we have been
1136 	 * asked to check for signals, then we lose: arrange to have
1137 	 * all other LWPs in the process check for signals.
1138 	 */
1139 	if ((l->l_flag & LW_PENDSIG) != 0 &&
1140 	    firstsig(&p->p_sigpend.sp_set) != 0) {
1141 		LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
1142 			lwp_lock(l2);
1143 			l2->l_flag |= LW_PENDSIG;
1144 			lwp_unlock(l2);
1145 		}
1146 	}
1147 
1148 	/*
1149 	 * Release any PCU resources before becoming a zombie.
1150 	 */
1151 	pcu_discard_all(l);
1152 
1153 	lwp_lock(l);
1154 	l->l_stat = LSZOMB;
1155 	if (l->l_name != NULL) {
1156 		strcpy(l->l_name, "(zombie)");
1157 	}
1158 	lwp_unlock(l);
1159 	p->p_nrlwps--;
1160 	cv_broadcast(&p->p_lwpcv);
1161 	if (l->l_lwpctl != NULL)
1162 		l->l_lwpctl->lc_curcpu = LWPCTL_CPU_EXITED;
1163 	mutex_exit(p->p_lock);
1164 
1165 	/*
1166 	 * We can no longer block.  At this point, lwp_free() may already
1167 	 * be gunning for us.  On a multi-CPU system, we may be off p_lwps.
1168 	 *
1169 	 * Free MD LWP resources.
1170 	 */
1171 	cpu_lwp_free(l, 0);
1172 
1173 	if (current) {
1174 		pmap_deactivate(l);
1175 
1176 		/*
1177 		 * Release the kernel lock, and switch away into
1178 		 * oblivion.
1179 		 */
1180 #ifdef notyet
1181 		/* XXXSMP hold in lwp_userret() */
1182 		KERNEL_UNLOCK_LAST(l);
1183 #else
1184 		KERNEL_UNLOCK_ALL(l, NULL);
1185 #endif
1186 		lwp_exit_switchaway(l);
1187 	}
1188 }
1189 
1190 /*
1191  * Free a dead LWP's remaining resources.
1192  *
1193  * XXXLWP limits.
1194  */
1195 void
1196 lwp_free(struct lwp *l, bool recycle, bool last)
1197 {
1198 	struct proc *p = l->l_proc;
1199 	struct rusage *ru;
1200 	ksiginfoq_t kq;
1201 
1202 	KASSERT(l != curlwp);
1203 	KASSERT(last || mutex_owned(p->p_lock));
1204 
1205 	/*
1206 	 * We use the process credentials instead of the lwp credentials here
1207 	 * because the lwp credentials maybe cached (just after a setuid call)
1208 	 * and we don't want pay for syncing, since the lwp is going away
1209 	 * anyway
1210 	 */
1211 	if (p != &proc0 && p->p_nlwps != 1)
1212 		(void)chglwpcnt(kauth_cred_getuid(p->p_cred), -1);
1213 	/*
1214 	 * If this was not the last LWP in the process, then adjust
1215 	 * counters and unlock.
1216 	 */
1217 	if (!last) {
1218 		/*
1219 		 * Add the LWP's run time to the process' base value.
1220 		 * This needs to co-incide with coming off p_lwps.
1221 		 */
1222 		bintime_add(&p->p_rtime, &l->l_rtime);
1223 		p->p_pctcpu += l->l_pctcpu;
1224 		ru = &p->p_stats->p_ru;
1225 		ruadd(ru, &l->l_ru);
1226 		ru->ru_nvcsw += (l->l_ncsw - l->l_nivcsw);
1227 		ru->ru_nivcsw += l->l_nivcsw;
1228 		LIST_REMOVE(l, l_sibling);
1229 		p->p_nlwps--;
1230 		p->p_nzlwps--;
1231 		if ((l->l_prflag & LPR_DETACHED) != 0)
1232 			p->p_ndlwps--;
1233 
1234 		/*
1235 		 * Have any LWPs sleeping in lwp_wait() recheck for
1236 		 * deadlock.
1237 		 */
1238 		cv_broadcast(&p->p_lwpcv);
1239 		mutex_exit(p->p_lock);
1240 	}
1241 
1242 #ifdef MULTIPROCESSOR
1243 	/*
1244 	 * In the unlikely event that the LWP is still on the CPU,
1245 	 * then spin until it has switched away.  We need to release
1246 	 * all locks to avoid deadlock against interrupt handlers on
1247 	 * the target CPU.
1248 	 */
1249 	if ((l->l_pflag & LP_RUNNING) != 0 || l->l_cpu->ci_curlwp == l) {
1250 		int count;
1251 		(void)count; /* XXXgcc */
1252 		KERNEL_UNLOCK_ALL(curlwp, &count);
1253 		while ((l->l_pflag & LP_RUNNING) != 0 ||
1254 		    l->l_cpu->ci_curlwp == l)
1255 			SPINLOCK_BACKOFF_HOOK;
1256 		KERNEL_LOCK(count, curlwp);
1257 	}
1258 #endif
1259 
1260 	/*
1261 	 * Destroy the LWP's remaining signal information.
1262 	 */
1263 	ksiginfo_queue_init(&kq);
1264 	sigclear(&l->l_sigpend, NULL, &kq);
1265 	ksiginfo_queue_drain(&kq);
1266 	cv_destroy(&l->l_sigcv);
1267 	cv_destroy(&l->l_waitcv);
1268 
1269 	/*
1270 	 * Free lwpctl structure and affinity.
1271 	 */
1272 	if (l->l_lwpctl) {
1273 		lwp_ctl_free(l);
1274 	}
1275 	if (l->l_affinity) {
1276 		kcpuset_unuse(l->l_affinity, NULL);
1277 		l->l_affinity = NULL;
1278 	}
1279 
1280 	/*
1281 	 * Free the LWP's turnstile and the LWP structure itself unless the
1282 	 * caller wants to recycle them.  Also, free the scheduler specific
1283 	 * data.
1284 	 *
1285 	 * We can't return turnstile0 to the pool (it didn't come from it),
1286 	 * so if it comes up just drop it quietly and move on.
1287 	 *
1288 	 * We don't recycle the VM resources at this time.
1289 	 */
1290 
1291 	if (!recycle && l->l_ts != &turnstile0)
1292 		pool_cache_put(turnstile_cache, l->l_ts);
1293 	if (l->l_name != NULL)
1294 		kmem_free(l->l_name, MAXCOMLEN);
1295 
1296 	cpu_lwp_free2(l);
1297 	uvm_lwp_exit(l);
1298 
1299 	KASSERT(SLIST_EMPTY(&l->l_pi_lenders));
1300 	KASSERT(l->l_inheritedprio == -1);
1301 	KASSERT(l->l_blcnt == 0);
1302 	kdtrace_thread_dtor(NULL, l);
1303 	if (!recycle)
1304 		pool_cache_put(lwp_cache, l);
1305 }
1306 
1307 /*
1308  * Migrate the LWP to the another CPU.  Unlocks the LWP.
1309  */
1310 void
1311 lwp_migrate(lwp_t *l, struct cpu_info *tci)
1312 {
1313 	struct schedstate_percpu *tspc;
1314 	int lstat = l->l_stat;
1315 
1316 	KASSERT(lwp_locked(l, NULL));
1317 	KASSERT(tci != NULL);
1318 
1319 	/* If LWP is still on the CPU, it must be handled like LSONPROC */
1320 	if ((l->l_pflag & LP_RUNNING) != 0) {
1321 		lstat = LSONPROC;
1322 	}
1323 
1324 	/*
1325 	 * The destination CPU could be changed while previous migration
1326 	 * was not finished.
1327 	 */
1328 	if (l->l_target_cpu != NULL) {
1329 		l->l_target_cpu = tci;
1330 		lwp_unlock(l);
1331 		return;
1332 	}
1333 
1334 	/* Nothing to do if trying to migrate to the same CPU */
1335 	if (l->l_cpu == tci) {
1336 		lwp_unlock(l);
1337 		return;
1338 	}
1339 
1340 	KASSERT(l->l_target_cpu == NULL);
1341 	tspc = &tci->ci_schedstate;
1342 	switch (lstat) {
1343 	case LSRUN:
1344 		l->l_target_cpu = tci;
1345 		break;
1346 	case LSIDL:
1347 		l->l_cpu = tci;
1348 		lwp_unlock_to(l, tspc->spc_mutex);
1349 		return;
1350 	case LSSLEEP:
1351 		l->l_cpu = tci;
1352 		break;
1353 	case LSSTOP:
1354 	case LSSUSPENDED:
1355 		l->l_cpu = tci;
1356 		if (l->l_wchan == NULL) {
1357 			lwp_unlock_to(l, tspc->spc_lwplock);
1358 			return;
1359 		}
1360 		break;
1361 	case LSONPROC:
1362 		l->l_target_cpu = tci;
1363 		spc_lock(l->l_cpu);
1364 		cpu_need_resched(l->l_cpu, RESCHED_KPREEMPT);
1365 		spc_unlock(l->l_cpu);
1366 		break;
1367 	}
1368 	lwp_unlock(l);
1369 }
1370 
1371 /*
1372  * Find the LWP in the process.  Arguments may be zero, in such case,
1373  * the calling process and first LWP in the list will be used.
1374  * On success - returns proc locked.
1375  */
1376 struct lwp *
1377 lwp_find2(pid_t pid, lwpid_t lid)
1378 {
1379 	proc_t *p;
1380 	lwp_t *l;
1381 
1382 	/* Find the process. */
1383 	if (pid != 0) {
1384 		mutex_enter(proc_lock);
1385 		p = proc_find(pid);
1386 		if (p == NULL) {
1387 			mutex_exit(proc_lock);
1388 			return NULL;
1389 		}
1390 		mutex_enter(p->p_lock);
1391 		mutex_exit(proc_lock);
1392 	} else {
1393 		p = curlwp->l_proc;
1394 		mutex_enter(p->p_lock);
1395 	}
1396 	/* Find the thread. */
1397 	if (lid != 0) {
1398 		l = lwp_find(p, lid);
1399 	} else {
1400 		l = LIST_FIRST(&p->p_lwps);
1401 	}
1402 	if (l == NULL) {
1403 		mutex_exit(p->p_lock);
1404 	}
1405 	return l;
1406 }
1407 
1408 /*
1409  * Look up a live LWP within the specified process.
1410  *
1411  * Must be called with p->p_lock held.
1412  */
1413 struct lwp *
1414 lwp_find(struct proc *p, lwpid_t id)
1415 {
1416 	struct lwp *l;
1417 
1418 	KASSERT(mutex_owned(p->p_lock));
1419 
1420 	LIST_FOREACH(l, &p->p_lwps, l_sibling) {
1421 		if (l->l_lid == id)
1422 			break;
1423 	}
1424 
1425 	/*
1426 	 * No need to lock - all of these conditions will
1427 	 * be visible with the process level mutex held.
1428 	 */
1429 	if (l != NULL && (l->l_stat == LSIDL || l->l_stat == LSZOMB))
1430 		l = NULL;
1431 
1432 	return l;
1433 }
1434 
1435 /*
1436  * Update an LWP's cached credentials to mirror the process' master copy.
1437  *
1438  * This happens early in the syscall path, on user trap, and on LWP
1439  * creation.  A long-running LWP can also voluntarily choose to update
1440  * its credentials by calling this routine.  This may be called from
1441  * LWP_CACHE_CREDS(), which checks l->l_cred != p->p_cred beforehand.
1442  */
1443 void
1444 lwp_update_creds(struct lwp *l)
1445 {
1446 	kauth_cred_t oc;
1447 	struct proc *p;
1448 
1449 	p = l->l_proc;
1450 	oc = l->l_cred;
1451 
1452 	mutex_enter(p->p_lock);
1453 	kauth_cred_hold(p->p_cred);
1454 	l->l_cred = p->p_cred;
1455 	l->l_prflag &= ~LPR_CRMOD;
1456 	mutex_exit(p->p_lock);
1457 	if (oc != NULL)
1458 		kauth_cred_free(oc);
1459 }
1460 
1461 /*
1462  * Verify that an LWP is locked, and optionally verify that the lock matches
1463  * one we specify.
1464  */
1465 int
1466 lwp_locked(struct lwp *l, kmutex_t *mtx)
1467 {
1468 	kmutex_t *cur = l->l_mutex;
1469 
1470 	return mutex_owned(cur) && (mtx == cur || mtx == NULL);
1471 }
1472 
1473 /*
1474  * Lend a new mutex to an LWP.  The old mutex must be held.
1475  */
1476 void
1477 lwp_setlock(struct lwp *l, kmutex_t *mtx)
1478 {
1479 
1480 	KASSERT(mutex_owned(l->l_mutex));
1481 
1482 	membar_exit();
1483 	l->l_mutex = mtx;
1484 }
1485 
1486 /*
1487  * Lend a new mutex to an LWP, and release the old mutex.  The old mutex
1488  * must be held.
1489  */
1490 void
1491 lwp_unlock_to(struct lwp *l, kmutex_t *mtx)
1492 {
1493 	kmutex_t *old;
1494 
1495 	KASSERT(lwp_locked(l, NULL));
1496 
1497 	old = l->l_mutex;
1498 	membar_exit();
1499 	l->l_mutex = mtx;
1500 	mutex_spin_exit(old);
1501 }
1502 
1503 int
1504 lwp_trylock(struct lwp *l)
1505 {
1506 	kmutex_t *old;
1507 
1508 	for (;;) {
1509 		if (!mutex_tryenter(old = l->l_mutex))
1510 			return 0;
1511 		if (__predict_true(l->l_mutex == old))
1512 			return 1;
1513 		mutex_spin_exit(old);
1514 	}
1515 }
1516 
1517 void
1518 lwp_unsleep(lwp_t *l, bool cleanup)
1519 {
1520 
1521 	KASSERT(mutex_owned(l->l_mutex));
1522 	(*l->l_syncobj->sobj_unsleep)(l, cleanup);
1523 }
1524 
1525 /*
1526  * Handle exceptions for mi_userret().  Called if a member of LW_USERRET is
1527  * set.
1528  */
1529 void
1530 lwp_userret(struct lwp *l)
1531 {
1532 	struct proc *p;
1533 	int sig;
1534 
1535 	KASSERT(l == curlwp);
1536 	KASSERT(l->l_stat == LSONPROC);
1537 	p = l->l_proc;
1538 
1539 #ifndef __HAVE_FAST_SOFTINTS
1540 	/* Run pending soft interrupts. */
1541 	if (l->l_cpu->ci_data.cpu_softints != 0)
1542 		softint_overlay();
1543 #endif
1544 
1545 	/*
1546 	 * It is safe to do this read unlocked on a MP system..
1547 	 */
1548 	while ((l->l_flag & LW_USERRET) != 0) {
1549 		/*
1550 		 * Process pending signals first, unless the process
1551 		 * is dumping core or exiting, where we will instead
1552 		 * enter the LW_WSUSPEND case below.
1553 		 */
1554 		if ((l->l_flag & (LW_PENDSIG | LW_WCORE | LW_WEXIT)) ==
1555 		    LW_PENDSIG) {
1556 			mutex_enter(p->p_lock);
1557 			while ((sig = issignal(l)) != 0)
1558 				postsig(sig);
1559 			mutex_exit(p->p_lock);
1560 		}
1561 
1562 		/*
1563 		 * Core-dump or suspend pending.
1564 		 *
1565 		 * In case of core dump, suspend ourselves, so that the kernel
1566 		 * stack and therefore the userland registers saved in the
1567 		 * trapframe are around for coredump() to write them out.
1568 		 * We also need to save any PCU resources that we have so that
1569 		 * they accessible for coredump().  We issue a wakeup on
1570 		 * p->p_lwpcv so that sigexit() will write the core file out
1571 		 * once all other LWPs are suspended.
1572 		 */
1573 		if ((l->l_flag & LW_WSUSPEND) != 0) {
1574 			pcu_save_all(l);
1575 			mutex_enter(p->p_lock);
1576 			p->p_nrlwps--;
1577 			cv_broadcast(&p->p_lwpcv);
1578 			lwp_lock(l);
1579 			l->l_stat = LSSUSPENDED;
1580 			lwp_unlock(l);
1581 			mutex_exit(p->p_lock);
1582 			lwp_lock(l);
1583 			mi_switch(l);
1584 		}
1585 
1586 		/* Process is exiting. */
1587 		if ((l->l_flag & LW_WEXIT) != 0) {
1588 			lwp_exit(l);
1589 			KASSERT(0);
1590 			/* NOTREACHED */
1591 		}
1592 
1593 		/* update lwpctl processor (for vfork child_return) */
1594 		if (l->l_flag & LW_LWPCTL) {
1595 			lwp_lock(l);
1596 			KASSERT(kpreempt_disabled());
1597 			l->l_lwpctl->lc_curcpu = (int)cpu_index(l->l_cpu);
1598 			l->l_lwpctl->lc_pctr++;
1599 			l->l_flag &= ~LW_LWPCTL;
1600 			lwp_unlock(l);
1601 		}
1602 	}
1603 }
1604 
1605 /*
1606  * Force an LWP to enter the kernel, to take a trip through lwp_userret().
1607  */
1608 void
1609 lwp_need_userret(struct lwp *l)
1610 {
1611 	KASSERT(lwp_locked(l, NULL));
1612 
1613 	/*
1614 	 * Since the tests in lwp_userret() are done unlocked, make sure
1615 	 * that the condition will be seen before forcing the LWP to enter
1616 	 * kernel mode.
1617 	 */
1618 	membar_producer();
1619 	cpu_signotify(l);
1620 }
1621 
1622 /*
1623  * Add one reference to an LWP.  This will prevent the LWP from
1624  * exiting, thus keep the lwp structure and PCB around to inspect.
1625  */
1626 void
1627 lwp_addref(struct lwp *l)
1628 {
1629 
1630 	KASSERT(mutex_owned(l->l_proc->p_lock));
1631 	KASSERT(l->l_stat != LSZOMB);
1632 	KASSERT(l->l_refcnt != 0);
1633 
1634 	l->l_refcnt++;
1635 }
1636 
1637 /*
1638  * Remove one reference to an LWP.  If this is the last reference,
1639  * then we must finalize the LWP's death.
1640  */
1641 void
1642 lwp_delref(struct lwp *l)
1643 {
1644 	struct proc *p = l->l_proc;
1645 
1646 	mutex_enter(p->p_lock);
1647 	lwp_delref2(l);
1648 	mutex_exit(p->p_lock);
1649 }
1650 
1651 /*
1652  * Remove one reference to an LWP.  If this is the last reference,
1653  * then we must finalize the LWP's death.  The proc mutex is held
1654  * on entry.
1655  */
1656 void
1657 lwp_delref2(struct lwp *l)
1658 {
1659 	struct proc *p = l->l_proc;
1660 
1661 	KASSERT(mutex_owned(p->p_lock));
1662 	KASSERT(l->l_stat != LSZOMB);
1663 	KASSERT(l->l_refcnt > 0);
1664 	if (--l->l_refcnt == 0)
1665 		cv_broadcast(&p->p_lwpcv);
1666 }
1667 
1668 /*
1669  * Drain all references to the current LWP.
1670  */
1671 void
1672 lwp_drainrefs(struct lwp *l)
1673 {
1674 	struct proc *p = l->l_proc;
1675 
1676 	KASSERT(mutex_owned(p->p_lock));
1677 	KASSERT(l->l_refcnt != 0);
1678 
1679 	l->l_refcnt--;
1680 	while (l->l_refcnt != 0)
1681 		cv_wait(&p->p_lwpcv, p->p_lock);
1682 }
1683 
1684 /*
1685  * Return true if the specified LWP is 'alive'.  Only p->p_lock need
1686  * be held.
1687  */
1688 bool
1689 lwp_alive(lwp_t *l)
1690 {
1691 
1692 	KASSERT(mutex_owned(l->l_proc->p_lock));
1693 
1694 	switch (l->l_stat) {
1695 	case LSSLEEP:
1696 	case LSRUN:
1697 	case LSONPROC:
1698 	case LSSTOP:
1699 	case LSSUSPENDED:
1700 		return true;
1701 	default:
1702 		return false;
1703 	}
1704 }
1705 
1706 /*
1707  * Return first live LWP in the process.
1708  */
1709 lwp_t *
1710 lwp_find_first(proc_t *p)
1711 {
1712 	lwp_t *l;
1713 
1714 	KASSERT(mutex_owned(p->p_lock));
1715 
1716 	LIST_FOREACH(l, &p->p_lwps, l_sibling) {
1717 		if (lwp_alive(l)) {
1718 			return l;
1719 		}
1720 	}
1721 
1722 	return NULL;
1723 }
1724 
1725 /*
1726  * Allocate a new lwpctl structure for a user LWP.
1727  */
1728 int
1729 lwp_ctl_alloc(vaddr_t *uaddr)
1730 {
1731 	lcproc_t *lp;
1732 	u_int bit, i, offset;
1733 	struct uvm_object *uao;
1734 	int error;
1735 	lcpage_t *lcp;
1736 	proc_t *p;
1737 	lwp_t *l;
1738 
1739 	l = curlwp;
1740 	p = l->l_proc;
1741 
1742 	/* don't allow a vforked process to create lwp ctls */
1743 	if (p->p_lflag & PL_PPWAIT)
1744 		return EBUSY;
1745 
1746 	if (l->l_lcpage != NULL) {
1747 		lcp = l->l_lcpage;
1748 		*uaddr = lcp->lcp_uaddr + (vaddr_t)l->l_lwpctl - lcp->lcp_kaddr;
1749 		return 0;
1750 	}
1751 
1752 	/* First time around, allocate header structure for the process. */
1753 	if ((lp = p->p_lwpctl) == NULL) {
1754 		lp = kmem_alloc(sizeof(*lp), KM_SLEEP);
1755 		mutex_init(&lp->lp_lock, MUTEX_DEFAULT, IPL_NONE);
1756 		lp->lp_uao = NULL;
1757 		TAILQ_INIT(&lp->lp_pages);
1758 		mutex_enter(p->p_lock);
1759 		if (p->p_lwpctl == NULL) {
1760 			p->p_lwpctl = lp;
1761 			mutex_exit(p->p_lock);
1762 		} else {
1763 			mutex_exit(p->p_lock);
1764 			mutex_destroy(&lp->lp_lock);
1765 			kmem_free(lp, sizeof(*lp));
1766 			lp = p->p_lwpctl;
1767 		}
1768 	}
1769 
1770  	/*
1771  	 * Set up an anonymous memory region to hold the shared pages.
1772  	 * Map them into the process' address space.  The user vmspace
1773  	 * gets the first reference on the UAO.
1774  	 */
1775 	mutex_enter(&lp->lp_lock);
1776 	if (lp->lp_uao == NULL) {
1777 		lp->lp_uao = uao_create(LWPCTL_UAREA_SZ, 0);
1778 		lp->lp_cur = 0;
1779 		lp->lp_max = LWPCTL_UAREA_SZ;
1780 		lp->lp_uva = p->p_emul->e_vm_default_addr(p,
1781 		     (vaddr_t)p->p_vmspace->vm_daddr, LWPCTL_UAREA_SZ,
1782 		     p->p_vmspace->vm_map.flags & VM_MAP_TOPDOWN);
1783 		error = uvm_map(&p->p_vmspace->vm_map, &lp->lp_uva,
1784 		    LWPCTL_UAREA_SZ, lp->lp_uao, 0, 0, UVM_MAPFLAG(UVM_PROT_RW,
1785 		    UVM_PROT_RW, UVM_INH_NONE, UVM_ADV_NORMAL, 0));
1786 		if (error != 0) {
1787 			uao_detach(lp->lp_uao);
1788 			lp->lp_uao = NULL;
1789 			mutex_exit(&lp->lp_lock);
1790 			return error;
1791 		}
1792 	}
1793 
1794 	/* Get a free block and allocate for this LWP. */
1795 	TAILQ_FOREACH(lcp, &lp->lp_pages, lcp_chain) {
1796 		if (lcp->lcp_nfree != 0)
1797 			break;
1798 	}
1799 	if (lcp == NULL) {
1800 		/* Nothing available - try to set up a free page. */
1801 		if (lp->lp_cur == lp->lp_max) {
1802 			mutex_exit(&lp->lp_lock);
1803 			return ENOMEM;
1804 		}
1805 		lcp = kmem_alloc(LWPCTL_LCPAGE_SZ, KM_SLEEP);
1806 
1807 		/*
1808 		 * Wire the next page down in kernel space.  Since this
1809 		 * is a new mapping, we must add a reference.
1810 		 */
1811 		uao = lp->lp_uao;
1812 		(*uao->pgops->pgo_reference)(uao);
1813 		lcp->lcp_kaddr = vm_map_min(kernel_map);
1814 		error = uvm_map(kernel_map, &lcp->lcp_kaddr, PAGE_SIZE,
1815 		    uao, lp->lp_cur, PAGE_SIZE,
1816 		    UVM_MAPFLAG(UVM_PROT_RW, UVM_PROT_RW,
1817 		    UVM_INH_NONE, UVM_ADV_RANDOM, 0));
1818 		if (error != 0) {
1819 			mutex_exit(&lp->lp_lock);
1820 			kmem_free(lcp, LWPCTL_LCPAGE_SZ);
1821 			(*uao->pgops->pgo_detach)(uao);
1822 			return error;
1823 		}
1824 		error = uvm_map_pageable(kernel_map, lcp->lcp_kaddr,
1825 		    lcp->lcp_kaddr + PAGE_SIZE, FALSE, 0);
1826 		if (error != 0) {
1827 			mutex_exit(&lp->lp_lock);
1828 			uvm_unmap(kernel_map, lcp->lcp_kaddr,
1829 			    lcp->lcp_kaddr + PAGE_SIZE);
1830 			kmem_free(lcp, LWPCTL_LCPAGE_SZ);
1831 			return error;
1832 		}
1833 		/* Prepare the page descriptor and link into the list. */
1834 		lcp->lcp_uaddr = lp->lp_uva + lp->lp_cur;
1835 		lp->lp_cur += PAGE_SIZE;
1836 		lcp->lcp_nfree = LWPCTL_PER_PAGE;
1837 		lcp->lcp_rotor = 0;
1838 		memset(lcp->lcp_bitmap, 0xff, LWPCTL_BITMAP_SZ);
1839 		TAILQ_INSERT_HEAD(&lp->lp_pages, lcp, lcp_chain);
1840 	}
1841 	for (i = lcp->lcp_rotor; lcp->lcp_bitmap[i] == 0;) {
1842 		if (++i >= LWPCTL_BITMAP_ENTRIES)
1843 			i = 0;
1844 	}
1845 	bit = ffs(lcp->lcp_bitmap[i]) - 1;
1846 	lcp->lcp_bitmap[i] ^= (1U << bit);
1847 	lcp->lcp_rotor = i;
1848 	lcp->lcp_nfree--;
1849 	l->l_lcpage = lcp;
1850 	offset = (i << 5) + bit;
1851 	l->l_lwpctl = (lwpctl_t *)lcp->lcp_kaddr + offset;
1852 	*uaddr = lcp->lcp_uaddr + offset * sizeof(lwpctl_t);
1853 	mutex_exit(&lp->lp_lock);
1854 
1855 	KPREEMPT_DISABLE(l);
1856 	l->l_lwpctl->lc_curcpu = (int)cpu_index(curcpu());
1857 	KPREEMPT_ENABLE(l);
1858 
1859 	return 0;
1860 }
1861 
1862 /*
1863  * Free an lwpctl structure back to the per-process list.
1864  */
1865 void
1866 lwp_ctl_free(lwp_t *l)
1867 {
1868 	struct proc *p = l->l_proc;
1869 	lcproc_t *lp;
1870 	lcpage_t *lcp;
1871 	u_int map, offset;
1872 
1873 	/* don't free a lwp context we borrowed for vfork */
1874 	if (p->p_lflag & PL_PPWAIT) {
1875 		l->l_lwpctl = NULL;
1876 		return;
1877 	}
1878 
1879 	lp = p->p_lwpctl;
1880 	KASSERT(lp != NULL);
1881 
1882 	lcp = l->l_lcpage;
1883 	offset = (u_int)((lwpctl_t *)l->l_lwpctl - (lwpctl_t *)lcp->lcp_kaddr);
1884 	KASSERT(offset < LWPCTL_PER_PAGE);
1885 
1886 	mutex_enter(&lp->lp_lock);
1887 	lcp->lcp_nfree++;
1888 	map = offset >> 5;
1889 	lcp->lcp_bitmap[map] |= (1U << (offset & 31));
1890 	if (lcp->lcp_bitmap[lcp->lcp_rotor] == 0)
1891 		lcp->lcp_rotor = map;
1892 	if (TAILQ_FIRST(&lp->lp_pages)->lcp_nfree == 0) {
1893 		TAILQ_REMOVE(&lp->lp_pages, lcp, lcp_chain);
1894 		TAILQ_INSERT_HEAD(&lp->lp_pages, lcp, lcp_chain);
1895 	}
1896 	mutex_exit(&lp->lp_lock);
1897 }
1898 
1899 /*
1900  * Process is exiting; tear down lwpctl state.  This can only be safely
1901  * called by the last LWP in the process.
1902  */
1903 void
1904 lwp_ctl_exit(void)
1905 {
1906 	lcpage_t *lcp, *next;
1907 	lcproc_t *lp;
1908 	proc_t *p;
1909 	lwp_t *l;
1910 
1911 	l = curlwp;
1912 	l->l_lwpctl = NULL;
1913 	l->l_lcpage = NULL;
1914 	p = l->l_proc;
1915 	lp = p->p_lwpctl;
1916 
1917 	KASSERT(lp != NULL);
1918 	KASSERT(p->p_nlwps == 1);
1919 
1920 	for (lcp = TAILQ_FIRST(&lp->lp_pages); lcp != NULL; lcp = next) {
1921 		next = TAILQ_NEXT(lcp, lcp_chain);
1922 		uvm_unmap(kernel_map, lcp->lcp_kaddr,
1923 		    lcp->lcp_kaddr + PAGE_SIZE);
1924 		kmem_free(lcp, LWPCTL_LCPAGE_SZ);
1925 	}
1926 
1927 	if (lp->lp_uao != NULL) {
1928 		uvm_unmap(&p->p_vmspace->vm_map, lp->lp_uva,
1929 		    lp->lp_uva + LWPCTL_UAREA_SZ);
1930 	}
1931 
1932 	mutex_destroy(&lp->lp_lock);
1933 	kmem_free(lp, sizeof(*lp));
1934 	p->p_lwpctl = NULL;
1935 }
1936 
1937 /*
1938  * Return the current LWP's "preemption counter".  Used to detect
1939  * preemption across operations that can tolerate preemption without
1940  * crashing, but which may generate incorrect results if preempted.
1941  */
1942 uint64_t
1943 lwp_pctr(void)
1944 {
1945 
1946 	return curlwp->l_ncsw;
1947 }
1948 
1949 /*
1950  * Set an LWP's private data pointer.
1951  */
1952 int
1953 lwp_setprivate(struct lwp *l, void *ptr)
1954 {
1955 	int error = 0;
1956 
1957 	l->l_private = ptr;
1958 #ifdef __HAVE_CPU_LWP_SETPRIVATE
1959 	error = cpu_lwp_setprivate(l, ptr);
1960 #endif
1961 	return error;
1962 }
1963 
1964 #if defined(DDB)
1965 #include <machine/pcb.h>
1966 
1967 void
1968 lwp_whatis(uintptr_t addr, void (*pr)(const char *, ...))
1969 {
1970 	lwp_t *l;
1971 
1972 	LIST_FOREACH(l, &alllwp, l_list) {
1973 		uintptr_t stack = (uintptr_t)KSTACK_LOWEST_ADDR(l);
1974 
1975 		if (addr < stack || stack + KSTACK_SIZE <= addr) {
1976 			continue;
1977 		}
1978 		(*pr)("%p is %p+%zu, LWP %p's stack\n",
1979 		    (void *)addr, (void *)stack,
1980 		    (size_t)(addr - stack), l);
1981 	}
1982 }
1983 #endif /* defined(DDB) */
1984