xref: /netbsd-src/sys/kern/kern_lwp.c (revision 6cf6fe02a981b55727c49c3d37b0d8191a98c0ee)
1 /*	$NetBSD: kern_lwp.c,v 1.178 2014/09/05 05:57:21 matt Exp $	*/
2 
3 /*-
4  * Copyright (c) 2001, 2006, 2007, 2008, 2009 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Nathan J. Williams, and Andrew Doran.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29  * POSSIBILITY OF SUCH DAMAGE.
30  */
31 
32 /*
33  * Overview
34  *
35  *	Lightweight processes (LWPs) are the basic unit or thread of
36  *	execution within the kernel.  The core state of an LWP is described
37  *	by "struct lwp", also known as lwp_t.
38  *
39  *	Each LWP is contained within a process (described by "struct proc"),
40  *	Every process contains at least one LWP, but may contain more.  The
41  *	process describes attributes shared among all of its LWPs such as a
42  *	private address space, global execution state (stopped, active,
43  *	zombie, ...), signal disposition and so on.  On a multiprocessor
44  *	machine, multiple LWPs be executing concurrently in the kernel.
45  *
46  * Execution states
47  *
48  *	At any given time, an LWP has overall state that is described by
49  *	lwp::l_stat.  The states are broken into two sets below.  The first
50  *	set is guaranteed to represent the absolute, current state of the
51  *	LWP:
52  *
53  *	LSONPROC
54  *
55  *		On processor: the LWP is executing on a CPU, either in the
56  *		kernel or in user space.
57  *
58  *	LSRUN
59  *
60  *		Runnable: the LWP is parked on a run queue, and may soon be
61  *		chosen to run by an idle processor, or by a processor that
62  *		has been asked to preempt a currently runnning but lower
63  *		priority LWP.
64  *
65  *	LSIDL
66  *
67  *		Idle: the LWP has been created but has not yet executed,
68  *		or it has ceased executing a unit of work and is waiting
69  *		to be started again.
70  *
71  *	LSSUSPENDED:
72  *
73  *		Suspended: the LWP has had its execution suspended by
74  *		another LWP in the same process using the _lwp_suspend()
75  *		system call.  User-level LWPs also enter the suspended
76  *		state when the system is shutting down.
77  *
78  *	The second set represent a "statement of intent" on behalf of the
79  *	LWP.  The LWP may in fact be executing on a processor, may be
80  *	sleeping or idle. It is expected to take the necessary action to
81  *	stop executing or become "running" again within a short timeframe.
82  *	The LP_RUNNING flag in lwp::l_pflag indicates that an LWP is running.
83  *	Importantly, it indicates that its state is tied to a CPU.
84  *
85  *	LSZOMB:
86  *
87  *		Dead or dying: the LWP has released most of its resources
88  *		and is about to switch away into oblivion, or has already
89  *		switched away.  When it switches away, its few remaining
90  *		resources can be collected.
91  *
92  *	LSSLEEP:
93  *
94  *		Sleeping: the LWP has entered itself onto a sleep queue, and
95  *		has switched away or will switch away shortly to allow other
96  *		LWPs to run on the CPU.
97  *
98  *	LSSTOP:
99  *
100  *		Stopped: the LWP has been stopped as a result of a job
101  *		control signal, or as a result of the ptrace() interface.
102  *
103  *		Stopped LWPs may run briefly within the kernel to handle
104  *		signals that they receive, but will not return to user space
105  *		until their process' state is changed away from stopped.
106  *
107  *		Single LWPs within a process can not be set stopped
108  *		selectively: all actions that can stop or continue LWPs
109  *		occur at the process level.
110  *
111  * State transitions
112  *
113  *	Note that the LSSTOP state may only be set when returning to
114  *	user space in userret(), or when sleeping interruptably.  The
115  *	LSSUSPENDED state may only be set in userret().  Before setting
116  *	those states, we try to ensure that the LWPs will release all
117  *	locks that they hold, and at a minimum try to ensure that the
118  *	LWP can be set runnable again by a signal.
119  *
120  *	LWPs may transition states in the following ways:
121  *
122  *	 RUN -------> ONPROC		ONPROC -----> RUN
123  *		    				    > SLEEP
124  *		    				    > STOPPED
125  *						    > SUSPENDED
126  *						    > ZOMB
127  *						    > IDL (special cases)
128  *
129  *	 STOPPED ---> RUN		SUSPENDED --> RUN
130  *	            > SLEEP
131  *
132  *	 SLEEP -----> ONPROC		IDL --------> RUN
133  *		    > RUN			    > SUSPENDED
134  *		    > STOPPED			    > STOPPED
135  *						    > ONPROC (special cases)
136  *
137  *	Some state transitions are only possible with kernel threads (eg
138  *	ONPROC -> IDL) and happen under tightly controlled circumstances
139  *	free of unwanted side effects.
140  *
141  * Migration
142  *
143  *	Migration of threads from one CPU to another could be performed
144  *	internally by the scheduler via sched_takecpu() or sched_catchlwp()
145  *	functions.  The universal lwp_migrate() function should be used for
146  *	any other cases.  Subsystems in the kernel must be aware that CPU
147  *	of LWP may change, while it is not locked.
148  *
149  * Locking
150  *
151  *	The majority of fields in 'struct lwp' are covered by a single,
152  *	general spin lock pointed to by lwp::l_mutex.  The locks covering
153  *	each field are documented in sys/lwp.h.
154  *
155  *	State transitions must be made with the LWP's general lock held,
156  *	and may cause the LWP's lock pointer to change.  Manipulation of
157  *	the general lock is not performed directly, but through calls to
158  *	lwp_lock(), lwp_unlock() and others.  It should be noted that the
159  *	adaptive locks are not allowed to be released while the LWP's lock
160  *	is being held (unlike for other spin-locks).
161  *
162  *	States and their associated locks:
163  *
164  *	LSONPROC, LSZOMB:
165  *
166  *		Always covered by spc_lwplock, which protects running LWPs.
167  *		This is a per-CPU lock and matches lwp::l_cpu.
168  *
169  *	LSIDL, LSRUN:
170  *
171  *		Always covered by spc_mutex, which protects the run queues.
172  *		This is a per-CPU lock and matches lwp::l_cpu.
173  *
174  *	LSSLEEP:
175  *
176  *		Covered by a lock associated with the sleep queue that the
177  *		LWP resides on.  Matches lwp::l_sleepq::sq_mutex.
178  *
179  *	LSSTOP, LSSUSPENDED:
180  *
181  *		If the LWP was previously sleeping (l_wchan != NULL), then
182  *		l_mutex references the sleep queue lock.  If the LWP was
183  *		runnable or on the CPU when halted, or has been removed from
184  *		the sleep queue since halted, then the lock is spc_lwplock.
185  *
186  *	The lock order is as follows:
187  *
188  *		spc::spc_lwplock ->
189  *		    sleeptab::st_mutex ->
190  *			tschain_t::tc_mutex ->
191  *			    spc::spc_mutex
192  *
193  *	Each process has an scheduler state lock (proc::p_lock), and a
194  *	number of counters on LWPs and their states: p_nzlwps, p_nrlwps, and
195  *	so on.  When an LWP is to be entered into or removed from one of the
196  *	following states, p_lock must be held and the process wide counters
197  *	adjusted:
198  *
199  *		LSIDL, LSZOMB, LSSTOP, LSSUSPENDED
200  *
201  *	(But not always for kernel threads.  There are some special cases
202  *	as mentioned above.  See kern_softint.c.)
203  *
204  *	Note that an LWP is considered running or likely to run soon if in
205  *	one of the following states.  This affects the value of p_nrlwps:
206  *
207  *		LSRUN, LSONPROC, LSSLEEP
208  *
209  *	p_lock does not need to be held when transitioning among these
210  *	three states, hence p_lock is rarely taken for state transitions.
211  */
212 
213 #include <sys/cdefs.h>
214 __KERNEL_RCSID(0, "$NetBSD: kern_lwp.c,v 1.178 2014/09/05 05:57:21 matt Exp $");
215 
216 #include "opt_ddb.h"
217 #include "opt_lockdebug.h"
218 #include "opt_dtrace.h"
219 
220 #define _LWP_API_PRIVATE
221 
222 #include <sys/param.h>
223 #include <sys/systm.h>
224 #include <sys/cpu.h>
225 #include <sys/pool.h>
226 #include <sys/proc.h>
227 #include <sys/syscallargs.h>
228 #include <sys/syscall_stats.h>
229 #include <sys/kauth.h>
230 #include <sys/pserialize.h>
231 #include <sys/sleepq.h>
232 #include <sys/lockdebug.h>
233 #include <sys/kmem.h>
234 #include <sys/pset.h>
235 #include <sys/intr.h>
236 #include <sys/lwpctl.h>
237 #include <sys/atomic.h>
238 #include <sys/filedesc.h>
239 #include <sys/dtrace_bsd.h>
240 #include <sys/sdt.h>
241 #include <sys/xcall.h>
242 #include <sys/uidinfo.h>
243 #include <sys/sysctl.h>
244 
245 #include <uvm/uvm_extern.h>
246 #include <uvm/uvm_object.h>
247 
248 static pool_cache_t	lwp_cache	__read_mostly;
249 struct lwplist		alllwp		__cacheline_aligned;
250 
251 static void		lwp_dtor(void *, void *);
252 
253 /* DTrace proc provider probes */
254 SDT_PROBE_DEFINE(proc,,,lwp_create,lwp-create,
255 	"struct lwp *", NULL,
256 	NULL, NULL, NULL, NULL,
257 	NULL, NULL, NULL, NULL);
258 SDT_PROBE_DEFINE(proc,,,lwp_start,lwp-start,
259 	"struct lwp *", NULL,
260 	NULL, NULL, NULL, NULL,
261 	NULL, NULL, NULL, NULL);
262 SDT_PROBE_DEFINE(proc,,,lwp_exit,lwp-exit,
263 	"struct lwp *", NULL,
264 	NULL, NULL, NULL, NULL,
265 	NULL, NULL, NULL, NULL);
266 
267 struct turnstile turnstile0;
268 struct lwp lwp0 __aligned(MIN_LWP_ALIGNMENT) = {
269 #ifdef LWP0_CPU_INFO
270 	.l_cpu = LWP0_CPU_INFO,
271 #endif
272 #ifdef LWP0_MD_INITIALIZER
273 	.l_md = LWP0_MD_INITIALIZER,
274 #endif
275 	.l_proc = &proc0,
276 	.l_lid = 1,
277 	.l_flag = LW_SYSTEM,
278 	.l_stat = LSONPROC,
279 	.l_ts = &turnstile0,
280 	.l_syncobj = &sched_syncobj,
281 	.l_refcnt = 1,
282 	.l_priority = PRI_USER + NPRI_USER - 1,
283 	.l_inheritedprio = -1,
284 	.l_class = SCHED_OTHER,
285 	.l_psid = PS_NONE,
286 	.l_pi_lenders = SLIST_HEAD_INITIALIZER(&lwp0.l_pi_lenders),
287 	.l_name = __UNCONST("swapper"),
288 	.l_fd = &filedesc0,
289 };
290 
291 static int sysctl_kern_maxlwp(SYSCTLFN_PROTO);
292 
293 /*
294  * sysctl helper routine for kern.maxlwp. Ensures that the new
295  * values are not too low or too high.
296  */
297 static int
298 sysctl_kern_maxlwp(SYSCTLFN_ARGS)
299 {
300 	int error, nmaxlwp;
301 	struct sysctlnode node;
302 
303 	nmaxlwp = maxlwp;
304 	node = *rnode;
305 	node.sysctl_data = &nmaxlwp;
306 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
307 	if (error || newp == NULL)
308 		return error;
309 
310 	if (nmaxlwp < 0 || nmaxlwp >= 65536)
311 		return EINVAL;
312 	if (nmaxlwp > cpu_maxlwp())
313 		return EINVAL;
314 	maxlwp = nmaxlwp;
315 
316 	return 0;
317 }
318 
319 static void
320 sysctl_kern_lwp_setup(void)
321 {
322 	struct sysctllog *clog = NULL;
323 
324 	sysctl_createv(&clog, 0, NULL, NULL,
325 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
326 		       CTLTYPE_INT, "maxlwp",
327 		       SYSCTL_DESCR("Maximum number of simultaneous threads"),
328 		       sysctl_kern_maxlwp, 0, NULL, 0,
329 		       CTL_KERN, CTL_CREATE, CTL_EOL);
330 }
331 
332 void
333 lwpinit(void)
334 {
335 
336 	LIST_INIT(&alllwp);
337 	lwpinit_specificdata();
338 	lwp_sys_init();
339 	lwp_cache = pool_cache_init(sizeof(lwp_t), MIN_LWP_ALIGNMENT, 0, 0,
340 	    "lwppl", NULL, IPL_NONE, NULL, lwp_dtor, NULL);
341 
342 	maxlwp = cpu_maxlwp();
343 	sysctl_kern_lwp_setup();
344 }
345 
346 void
347 lwp0_init(void)
348 {
349 	struct lwp *l = &lwp0;
350 
351 	KASSERT((void *)uvm_lwp_getuarea(l) != NULL);
352 	KASSERT(l->l_lid == proc0.p_nlwpid);
353 
354 	LIST_INSERT_HEAD(&alllwp, l, l_list);
355 
356 	callout_init(&l->l_timeout_ch, CALLOUT_MPSAFE);
357 	callout_setfunc(&l->l_timeout_ch, sleepq_timeout, l);
358 	cv_init(&l->l_sigcv, "sigwait");
359 	cv_init(&l->l_waitcv, "vfork");
360 
361 	kauth_cred_hold(proc0.p_cred);
362 	l->l_cred = proc0.p_cred;
363 
364 	kdtrace_thread_ctor(NULL, l);
365 	lwp_initspecific(l);
366 
367 	SYSCALL_TIME_LWP_INIT(l);
368 }
369 
370 static void
371 lwp_dtor(void *arg, void *obj)
372 {
373 	lwp_t *l = obj;
374 	uint64_t where;
375 	(void)l;
376 
377 	/*
378 	 * Provide a barrier to ensure that all mutex_oncpu() and rw_oncpu()
379 	 * calls will exit before memory of LWP is returned to the pool, where
380 	 * KVA of LWP structure might be freed and re-used for other purposes.
381 	 * Kernel preemption is disabled around mutex_oncpu() and rw_oncpu()
382 	 * callers, therefore cross-call to all CPUs will do the job.  Also,
383 	 * the value of l->l_cpu must be still valid at this point.
384 	 */
385 	KASSERT(l->l_cpu != NULL);
386 	where = xc_broadcast(0, (xcfunc_t)nullop, NULL, NULL);
387 	xc_wait(where);
388 }
389 
390 /*
391  * Set an suspended.
392  *
393  * Must be called with p_lock held, and the LWP locked.  Will unlock the
394  * LWP before return.
395  */
396 int
397 lwp_suspend(struct lwp *curl, struct lwp *t)
398 {
399 	int error;
400 
401 	KASSERT(mutex_owned(t->l_proc->p_lock));
402 	KASSERT(lwp_locked(t, NULL));
403 
404 	KASSERT(curl != t || curl->l_stat == LSONPROC);
405 
406 	/*
407 	 * If the current LWP has been told to exit, we must not suspend anyone
408 	 * else or deadlock could occur.  We won't return to userspace.
409 	 */
410 	if ((curl->l_flag & (LW_WEXIT | LW_WCORE)) != 0) {
411 		lwp_unlock(t);
412 		return (EDEADLK);
413 	}
414 
415 	error = 0;
416 
417 	switch (t->l_stat) {
418 	case LSRUN:
419 	case LSONPROC:
420 		t->l_flag |= LW_WSUSPEND;
421 		lwp_need_userret(t);
422 		lwp_unlock(t);
423 		break;
424 
425 	case LSSLEEP:
426 		t->l_flag |= LW_WSUSPEND;
427 
428 		/*
429 		 * Kick the LWP and try to get it to the kernel boundary
430 		 * so that it will release any locks that it holds.
431 		 * setrunnable() will release the lock.
432 		 */
433 		if ((t->l_flag & LW_SINTR) != 0)
434 			setrunnable(t);
435 		else
436 			lwp_unlock(t);
437 		break;
438 
439 	case LSSUSPENDED:
440 		lwp_unlock(t);
441 		break;
442 
443 	case LSSTOP:
444 		t->l_flag |= LW_WSUSPEND;
445 		setrunnable(t);
446 		break;
447 
448 	case LSIDL:
449 	case LSZOMB:
450 		error = EINTR; /* It's what Solaris does..... */
451 		lwp_unlock(t);
452 		break;
453 	}
454 
455 	return (error);
456 }
457 
458 /*
459  * Restart a suspended LWP.
460  *
461  * Must be called with p_lock held, and the LWP locked.  Will unlock the
462  * LWP before return.
463  */
464 void
465 lwp_continue(struct lwp *l)
466 {
467 
468 	KASSERT(mutex_owned(l->l_proc->p_lock));
469 	KASSERT(lwp_locked(l, NULL));
470 
471 	/* If rebooting or not suspended, then just bail out. */
472 	if ((l->l_flag & LW_WREBOOT) != 0) {
473 		lwp_unlock(l);
474 		return;
475 	}
476 
477 	l->l_flag &= ~LW_WSUSPEND;
478 
479 	if (l->l_stat != LSSUSPENDED) {
480 		lwp_unlock(l);
481 		return;
482 	}
483 
484 	/* setrunnable() will release the lock. */
485 	setrunnable(l);
486 }
487 
488 /*
489  * Restart a stopped LWP.
490  *
491  * Must be called with p_lock held, and the LWP NOT locked.  Will unlock the
492  * LWP before return.
493  */
494 void
495 lwp_unstop(struct lwp *l)
496 {
497 	struct proc *p = l->l_proc;
498 
499 	KASSERT(mutex_owned(proc_lock));
500 	KASSERT(mutex_owned(p->p_lock));
501 
502 	lwp_lock(l);
503 
504 	/* If not stopped, then just bail out. */
505 	if (l->l_stat != LSSTOP) {
506 		lwp_unlock(l);
507 		return;
508 	}
509 
510 	p->p_stat = SACTIVE;
511 	p->p_sflag &= ~PS_STOPPING;
512 
513 	if (!p->p_waited)
514 		p->p_pptr->p_nstopchild--;
515 
516 	if (l->l_wchan == NULL) {
517 		/* setrunnable() will release the lock. */
518 		setrunnable(l);
519 	} else if (p->p_xstat && (l->l_flag & LW_SINTR) != 0) {
520 		/* setrunnable() so we can receive the signal */
521 		setrunnable(l);
522 	} else {
523 		l->l_stat = LSSLEEP;
524 		p->p_nrlwps++;
525 		lwp_unlock(l);
526 	}
527 }
528 
529 /*
530  * Wait for an LWP within the current process to exit.  If 'lid' is
531  * non-zero, we are waiting for a specific LWP.
532  *
533  * Must be called with p->p_lock held.
534  */
535 int
536 lwp_wait(struct lwp *l, lwpid_t lid, lwpid_t *departed, bool exiting)
537 {
538 	const lwpid_t curlid = l->l_lid;
539 	proc_t *p = l->l_proc;
540 	lwp_t *l2;
541 	int error;
542 
543 	KASSERT(mutex_owned(p->p_lock));
544 
545 	p->p_nlwpwait++;
546 	l->l_waitingfor = lid;
547 
548 	for (;;) {
549 		int nfound;
550 
551 		/*
552 		 * Avoid a race between exit1() and sigexit(): if the
553 		 * process is dumping core, then we need to bail out: call
554 		 * into lwp_userret() where we will be suspended until the
555 		 * deed is done.
556 		 */
557 		if ((p->p_sflag & PS_WCORE) != 0) {
558 			mutex_exit(p->p_lock);
559 			lwp_userret(l);
560 			KASSERT(false);
561 		}
562 
563 		/*
564 		 * First off, drain any detached LWP that is waiting to be
565 		 * reaped.
566 		 */
567 		while ((l2 = p->p_zomblwp) != NULL) {
568 			p->p_zomblwp = NULL;
569 			lwp_free(l2, false, false);/* releases proc mutex */
570 			mutex_enter(p->p_lock);
571 		}
572 
573 		/*
574 		 * Now look for an LWP to collect.  If the whole process is
575 		 * exiting, count detached LWPs as eligible to be collected,
576 		 * but don't drain them here.
577 		 */
578 		nfound = 0;
579 		error = 0;
580 		LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
581 			/*
582 			 * If a specific wait and the target is waiting on
583 			 * us, then avoid deadlock.  This also traps LWPs
584 			 * that try to wait on themselves.
585 			 *
586 			 * Note that this does not handle more complicated
587 			 * cycles, like: t1 -> t2 -> t3 -> t1.  The process
588 			 * can still be killed so it is not a major problem.
589 			 */
590 			if (l2->l_lid == lid && l2->l_waitingfor == curlid) {
591 				error = EDEADLK;
592 				break;
593 			}
594 			if (l2 == l)
595 				continue;
596 			if ((l2->l_prflag & LPR_DETACHED) != 0) {
597 				nfound += exiting;
598 				continue;
599 			}
600 			if (lid != 0) {
601 				if (l2->l_lid != lid)
602 					continue;
603 				/*
604 				 * Mark this LWP as the first waiter, if there
605 				 * is no other.
606 				 */
607 				if (l2->l_waiter == 0)
608 					l2->l_waiter = curlid;
609 			} else if (l2->l_waiter != 0) {
610 				/*
611 				 * It already has a waiter - so don't
612 				 * collect it.  If the waiter doesn't
613 				 * grab it we'll get another chance
614 				 * later.
615 				 */
616 				nfound++;
617 				continue;
618 			}
619 			nfound++;
620 
621 			/* No need to lock the LWP in order to see LSZOMB. */
622 			if (l2->l_stat != LSZOMB)
623 				continue;
624 
625 			/*
626 			 * We're no longer waiting.  Reset the "first waiter"
627 			 * pointer on the target, in case it was us.
628 			 */
629 			l->l_waitingfor = 0;
630 			l2->l_waiter = 0;
631 			p->p_nlwpwait--;
632 			if (departed)
633 				*departed = l2->l_lid;
634 			sched_lwp_collect(l2);
635 
636 			/* lwp_free() releases the proc lock. */
637 			lwp_free(l2, false, false);
638 			mutex_enter(p->p_lock);
639 			return 0;
640 		}
641 
642 		if (error != 0)
643 			break;
644 		if (nfound == 0) {
645 			error = ESRCH;
646 			break;
647 		}
648 
649 		/*
650 		 * Note: since the lock will be dropped, need to restart on
651 		 * wakeup to run all LWPs again, e.g. there may be new LWPs.
652 		 */
653 		if (exiting) {
654 			KASSERT(p->p_nlwps > 1);
655 			cv_wait(&p->p_lwpcv, p->p_lock);
656 			error = EAGAIN;
657 			break;
658 		}
659 
660 		/*
661 		 * If all other LWPs are waiting for exits or suspends
662 		 * and the supply of zombies and potential zombies is
663 		 * exhausted, then we are about to deadlock.
664 		 *
665 		 * If the process is exiting (and this LWP is not the one
666 		 * that is coordinating the exit) then bail out now.
667 		 */
668 		if ((p->p_sflag & PS_WEXIT) != 0 ||
669 		    p->p_nrlwps + p->p_nzlwps - p->p_ndlwps <= p->p_nlwpwait) {
670 			error = EDEADLK;
671 			break;
672 		}
673 
674 		/*
675 		 * Sit around and wait for something to happen.  We'll be
676 		 * awoken if any of the conditions examined change: if an
677 		 * LWP exits, is collected, or is detached.
678 		 */
679 		if ((error = cv_wait_sig(&p->p_lwpcv, p->p_lock)) != 0)
680 			break;
681 	}
682 
683 	/*
684 	 * We didn't find any LWPs to collect, we may have received a
685 	 * signal, or some other condition has caused us to bail out.
686 	 *
687 	 * If waiting on a specific LWP, clear the waiters marker: some
688 	 * other LWP may want it.  Then, kick all the remaining waiters
689 	 * so that they can re-check for zombies and for deadlock.
690 	 */
691 	if (lid != 0) {
692 		LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
693 			if (l2->l_lid == lid) {
694 				if (l2->l_waiter == curlid)
695 					l2->l_waiter = 0;
696 				break;
697 			}
698 		}
699 	}
700 	p->p_nlwpwait--;
701 	l->l_waitingfor = 0;
702 	cv_broadcast(&p->p_lwpcv);
703 
704 	return error;
705 }
706 
707 static lwpid_t
708 lwp_find_free_lid(lwpid_t try_lid, lwp_t * new_lwp, proc_t *p)
709 {
710 	#define LID_SCAN (1u << 31)
711 	lwp_t *scan, *free_before;
712 	lwpid_t nxt_lid;
713 
714 	/*
715 	 * We want the first unused lid greater than or equal to
716 	 * try_lid (modulo 2^31).
717 	 * (If nothing else ld.elf_so doesn't want lwpid with the top bit set.)
718 	 * We must not return 0, and avoiding 'LID_SCAN - 1' makes
719 	 * the outer test easier.
720 	 * This would be much easier if the list were sorted in
721 	 * increasing order.
722 	 * The list is kept sorted in decreasing order.
723 	 * This code is only used after a process has generated 2^31 lwp.
724 	 *
725 	 * Code assumes it can always find an id.
726 	 */
727 
728 	try_lid &= LID_SCAN - 1;
729 	if (try_lid <= 1)
730 		try_lid = 2;
731 
732 	free_before = NULL;
733 	nxt_lid = LID_SCAN - 1;
734 	LIST_FOREACH(scan, &p->p_lwps, l_sibling) {
735 		if (scan->l_lid != nxt_lid) {
736 			/* There are available lid before this entry */
737 			free_before = scan;
738 			if (try_lid > scan->l_lid)
739 				break;
740 		}
741 		if (try_lid == scan->l_lid) {
742 			/* The ideal lid is busy, take a higher one */
743 			if (free_before != NULL) {
744 				try_lid = free_before->l_lid + 1;
745 				break;
746 			}
747 			/* No higher ones, reuse low numbers */
748 			try_lid = 2;
749 		}
750 
751 		nxt_lid = scan->l_lid - 1;
752 		if (LIST_NEXT(scan, l_sibling) == NULL) {
753 		    /* The value we have is lower than any existing lwp */
754 		    LIST_INSERT_AFTER(scan, new_lwp, l_sibling);
755 		    return try_lid;
756 		}
757 	}
758 
759 	LIST_INSERT_BEFORE(free_before, new_lwp, l_sibling);
760 	return try_lid;
761 }
762 
763 /*
764  * Create a new LWP within process 'p2', using LWP 'l1' as a template.
765  * The new LWP is created in state LSIDL and must be set running,
766  * suspended, or stopped by the caller.
767  */
768 int
769 lwp_create(lwp_t *l1, proc_t *p2, vaddr_t uaddr, int flags,
770 	   void *stack, size_t stacksize, void (*func)(void *), void *arg,
771 	   lwp_t **rnewlwpp, int sclass)
772 {
773 	struct lwp *l2, *isfree;
774 	turnstile_t *ts;
775 	lwpid_t lid;
776 
777 	KASSERT(l1 == curlwp || l1->l_proc == &proc0);
778 
779 	/*
780 	 * Enforce limits, excluding the first lwp and kthreads.
781 	 */
782 	if (p2->p_nlwps != 0 && p2 != &proc0) {
783 		uid_t uid = kauth_cred_getuid(l1->l_cred);
784 		int count = chglwpcnt(uid, 1);
785 		if (__predict_false(count >
786 		    p2->p_rlimit[RLIMIT_NTHR].rlim_cur)) {
787 			if (kauth_authorize_process(l1->l_cred,
788 			    KAUTH_PROCESS_RLIMIT, p2,
789 			    KAUTH_ARG(KAUTH_REQ_PROCESS_RLIMIT_BYPASS),
790 			    &p2->p_rlimit[RLIMIT_NTHR], KAUTH_ARG(RLIMIT_NTHR))
791 			    != 0) {
792 				(void)chglwpcnt(uid, -1);
793 				return EAGAIN;
794 			}
795 		}
796 	}
797 
798 	/*
799 	 * First off, reap any detached LWP waiting to be collected.
800 	 * We can re-use its LWP structure and turnstile.
801 	 */
802 	isfree = NULL;
803 	if (p2->p_zomblwp != NULL) {
804 		mutex_enter(p2->p_lock);
805 		if ((isfree = p2->p_zomblwp) != NULL) {
806 			p2->p_zomblwp = NULL;
807 			lwp_free(isfree, true, false);/* releases proc mutex */
808 		} else
809 			mutex_exit(p2->p_lock);
810 	}
811 	if (isfree == NULL) {
812 		l2 = pool_cache_get(lwp_cache, PR_WAITOK);
813 		memset(l2, 0, sizeof(*l2));
814 		l2->l_ts = pool_cache_get(turnstile_cache, PR_WAITOK);
815 		SLIST_INIT(&l2->l_pi_lenders);
816 	} else {
817 		l2 = isfree;
818 		ts = l2->l_ts;
819 		KASSERT(l2->l_inheritedprio == -1);
820 		KASSERT(SLIST_EMPTY(&l2->l_pi_lenders));
821 		memset(l2, 0, sizeof(*l2));
822 		l2->l_ts = ts;
823 	}
824 
825 	l2->l_stat = LSIDL;
826 	l2->l_proc = p2;
827 	l2->l_refcnt = 1;
828 	l2->l_class = sclass;
829 
830 	/*
831 	 * If vfork(), we want the LWP to run fast and on the same CPU
832 	 * as its parent, so that it can reuse the VM context and cache
833 	 * footprint on the local CPU.
834 	 */
835 	l2->l_kpriority = ((flags & LWP_VFORK) ? true : false);
836 	l2->l_kpribase = PRI_KERNEL;
837 	l2->l_priority = l1->l_priority;
838 	l2->l_inheritedprio = -1;
839 	l2->l_flag = 0;
840 	l2->l_pflag = LP_MPSAFE;
841 	TAILQ_INIT(&l2->l_ld_locks);
842 
843 	/*
844 	 * For vfork, borrow parent's lwpctl context if it exists.
845 	 * This also causes us to return via lwp_userret.
846 	 */
847 	if (flags & LWP_VFORK && l1->l_lwpctl) {
848 		l2->l_lwpctl = l1->l_lwpctl;
849 		l2->l_flag |= LW_LWPCTL;
850 	}
851 
852 	/*
853 	 * If not the first LWP in the process, grab a reference to the
854 	 * descriptor table.
855 	 */
856 	l2->l_fd = p2->p_fd;
857 	if (p2->p_nlwps != 0) {
858 		KASSERT(l1->l_proc == p2);
859 		fd_hold(l2);
860 	} else {
861 		KASSERT(l1->l_proc != p2);
862 	}
863 
864 	if (p2->p_flag & PK_SYSTEM) {
865 		/* Mark it as a system LWP. */
866 		l2->l_flag |= LW_SYSTEM;
867 	}
868 
869 	kpreempt_disable();
870 	l2->l_mutex = l1->l_cpu->ci_schedstate.spc_mutex;
871 	l2->l_cpu = l1->l_cpu;
872 	kpreempt_enable();
873 
874 	kdtrace_thread_ctor(NULL, l2);
875 	lwp_initspecific(l2);
876 	sched_lwp_fork(l1, l2);
877 	lwp_update_creds(l2);
878 	callout_init(&l2->l_timeout_ch, CALLOUT_MPSAFE);
879 	callout_setfunc(&l2->l_timeout_ch, sleepq_timeout, l2);
880 	cv_init(&l2->l_sigcv, "sigwait");
881 	cv_init(&l2->l_waitcv, "vfork");
882 	l2->l_syncobj = &sched_syncobj;
883 
884 	if (rnewlwpp != NULL)
885 		*rnewlwpp = l2;
886 
887 	/*
888 	 * PCU state needs to be saved before calling uvm_lwp_fork() so that
889 	 * the MD cpu_lwp_fork() can copy the saved state to the new LWP.
890 	 */
891 	pcu_save_all(l1);
892 
893 	uvm_lwp_setuarea(l2, uaddr);
894 	uvm_lwp_fork(l1, l2, stack, stacksize, func,
895 	    (arg != NULL) ? arg : l2);
896 
897 	if ((flags & LWP_PIDLID) != 0) {
898 		lid = proc_alloc_pid(p2);
899 		l2->l_pflag |= LP_PIDLID;
900 	} else {
901 		lid = 0;
902 	}
903 
904 	mutex_enter(p2->p_lock);
905 
906 	if ((flags & LWP_DETACHED) != 0) {
907 		l2->l_prflag = LPR_DETACHED;
908 		p2->p_ndlwps++;
909 	} else
910 		l2->l_prflag = 0;
911 
912 	l2->l_sigstk = l1->l_sigstk;
913 	l2->l_sigmask = l1->l_sigmask;
914 	TAILQ_INIT(&l2->l_sigpend.sp_info);
915 	sigemptyset(&l2->l_sigpend.sp_set);
916 
917 	if (__predict_true(lid == 0)) {
918 		/*
919 		 * XXX: l_lid are expected to be unique (for a process)
920 		 * if LWP_PIDLID is sometimes set this won't be true.
921 		 * Once 2^31 threads have been allocated we have to
922 		 * scan to ensure we allocate a unique value.
923 		 */
924 		lid = ++p2->p_nlwpid;
925 		if (__predict_false(lid & LID_SCAN)) {
926 			lid = lwp_find_free_lid(lid, l2, p2);
927 			p2->p_nlwpid = lid | LID_SCAN;
928 			/* l2 as been inserted into p_lwps in order */
929 			goto skip_insert;
930 		}
931 		p2->p_nlwpid = lid;
932 	}
933 	LIST_INSERT_HEAD(&p2->p_lwps, l2, l_sibling);
934     skip_insert:
935 	l2->l_lid = lid;
936 	p2->p_nlwps++;
937 	p2->p_nrlwps++;
938 
939 	KASSERT(l2->l_affinity == NULL);
940 
941 	if ((p2->p_flag & PK_SYSTEM) == 0) {
942 		/* Inherit the affinity mask. */
943 		if (l1->l_affinity) {
944 			/*
945 			 * Note that we hold the state lock while inheriting
946 			 * the affinity to avoid race with sched_setaffinity().
947 			 */
948 			lwp_lock(l1);
949 			if (l1->l_affinity) {
950 				kcpuset_use(l1->l_affinity);
951 				l2->l_affinity = l1->l_affinity;
952 			}
953 			lwp_unlock(l1);
954 		}
955 		lwp_lock(l2);
956 		/* Inherit a processor-set */
957 		l2->l_psid = l1->l_psid;
958 		/* Look for a CPU to start */
959 		l2->l_cpu = sched_takecpu(l2);
960 		lwp_unlock_to(l2, l2->l_cpu->ci_schedstate.spc_mutex);
961 	}
962 	mutex_exit(p2->p_lock);
963 
964 	SDT_PROBE(proc,,,lwp_create, l2, 0,0,0,0);
965 
966 	mutex_enter(proc_lock);
967 	LIST_INSERT_HEAD(&alllwp, l2, l_list);
968 	mutex_exit(proc_lock);
969 
970 	SYSCALL_TIME_LWP_INIT(l2);
971 
972 	if (p2->p_emul->e_lwp_fork)
973 		(*p2->p_emul->e_lwp_fork)(l1, l2);
974 
975 	return (0);
976 }
977 
978 /*
979  * Called by MD code when a new LWP begins execution.  Must be called
980  * with the previous LWP locked (so at splsched), or if there is no
981  * previous LWP, at splsched.
982  */
983 void
984 lwp_startup(struct lwp *prev, struct lwp *new_lwp)
985 {
986 	KASSERTMSG(new_lwp == curlwp, "l %p curlwp %p prevlwp %p", new_lwp, curlwp, prev);
987 
988 	SDT_PROBE(proc,,,lwp_start, new_lwp, 0,0,0,0);
989 
990 	KASSERT(kpreempt_disabled());
991 	if (prev != NULL) {
992 		/*
993 		 * Normalize the count of the spin-mutexes, it was
994 		 * increased in mi_switch().  Unmark the state of
995 		 * context switch - it is finished for previous LWP.
996 		 */
997 		curcpu()->ci_mtx_count++;
998 		membar_exit();
999 		prev->l_ctxswtch = 0;
1000 	}
1001 	KPREEMPT_DISABLE(new_lwp);
1002 	spl0();
1003 	if (__predict_true(new_lwp->l_proc->p_vmspace))
1004 		pmap_activate(new_lwp);
1005 
1006 	/* Note trip through cpu_switchto(). */
1007 	pserialize_switchpoint();
1008 
1009 	LOCKDEBUG_BARRIER(NULL, 0);
1010 	KPREEMPT_ENABLE(new_lwp);
1011 	if ((new_lwp->l_pflag & LP_MPSAFE) == 0) {
1012 		KERNEL_LOCK(1, new_lwp);
1013 	}
1014 }
1015 
1016 /*
1017  * Exit an LWP.
1018  */
1019 void
1020 lwp_exit(struct lwp *l)
1021 {
1022 	struct proc *p = l->l_proc;
1023 	struct lwp *l2;
1024 	bool current;
1025 
1026 	current = (l == curlwp);
1027 
1028 	KASSERT(current || (l->l_stat == LSIDL && l->l_target_cpu == NULL));
1029 	KASSERT(p == curproc);
1030 
1031 	SDT_PROBE(proc,,,lwp_exit, l, 0,0,0,0);
1032 
1033 	/*
1034 	 * Verify that we hold no locks other than the kernel lock.
1035 	 */
1036 	LOCKDEBUG_BARRIER(&kernel_lock, 0);
1037 
1038 	/*
1039 	 * If we are the last live LWP in a process, we need to exit the
1040 	 * entire process.  We do so with an exit status of zero, because
1041 	 * it's a "controlled" exit, and because that's what Solaris does.
1042 	 *
1043 	 * We are not quite a zombie yet, but for accounting purposes we
1044 	 * must increment the count of zombies here.
1045 	 *
1046 	 * Note: the last LWP's specificdata will be deleted here.
1047 	 */
1048 	mutex_enter(p->p_lock);
1049 	if (p->p_nlwps - p->p_nzlwps == 1) {
1050 		KASSERT(current == true);
1051 		KASSERT(p != &proc0);
1052 		/* XXXSMP kernel_lock not held */
1053 		exit1(l, 0);
1054 		/* NOTREACHED */
1055 	}
1056 	p->p_nzlwps++;
1057 	mutex_exit(p->p_lock);
1058 
1059 	if (p->p_emul->e_lwp_exit)
1060 		(*p->p_emul->e_lwp_exit)(l);
1061 
1062 	/* Drop filedesc reference. */
1063 	fd_free();
1064 
1065 	/* Delete the specificdata while it's still safe to sleep. */
1066 	lwp_finispecific(l);
1067 
1068 	/*
1069 	 * Release our cached credentials.
1070 	 */
1071 	kauth_cred_free(l->l_cred);
1072 	callout_destroy(&l->l_timeout_ch);
1073 
1074 	/*
1075 	 * Remove the LWP from the global list.
1076 	 * Free its LID from the PID namespace if needed.
1077 	 */
1078 	mutex_enter(proc_lock);
1079 	LIST_REMOVE(l, l_list);
1080 	if ((l->l_pflag & LP_PIDLID) != 0 && l->l_lid != p->p_pid) {
1081 		proc_free_pid(l->l_lid);
1082 	}
1083 	mutex_exit(proc_lock);
1084 
1085 	/*
1086 	 * Get rid of all references to the LWP that others (e.g. procfs)
1087 	 * may have, and mark the LWP as a zombie.  If the LWP is detached,
1088 	 * mark it waiting for collection in the proc structure.  Note that
1089 	 * before we can do that, we need to free any other dead, deatched
1090 	 * LWP waiting to meet its maker.
1091 	 */
1092 	mutex_enter(p->p_lock);
1093 	lwp_drainrefs(l);
1094 
1095 	if ((l->l_prflag & LPR_DETACHED) != 0) {
1096 		while ((l2 = p->p_zomblwp) != NULL) {
1097 			p->p_zomblwp = NULL;
1098 			lwp_free(l2, false, false);/* releases proc mutex */
1099 			mutex_enter(p->p_lock);
1100 			l->l_refcnt++;
1101 			lwp_drainrefs(l);
1102 		}
1103 		p->p_zomblwp = l;
1104 	}
1105 
1106 	/*
1107 	 * If we find a pending signal for the process and we have been
1108 	 * asked to check for signals, then we lose: arrange to have
1109 	 * all other LWPs in the process check for signals.
1110 	 */
1111 	if ((l->l_flag & LW_PENDSIG) != 0 &&
1112 	    firstsig(&p->p_sigpend.sp_set) != 0) {
1113 		LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
1114 			lwp_lock(l2);
1115 			l2->l_flag |= LW_PENDSIG;
1116 			lwp_unlock(l2);
1117 		}
1118 	}
1119 
1120 	/*
1121 	 * Release any PCU resources before becoming a zombie.
1122 	 */
1123 	pcu_discard_all(l);
1124 
1125 	lwp_lock(l);
1126 	l->l_stat = LSZOMB;
1127 	if (l->l_name != NULL) {
1128 		strcpy(l->l_name, "(zombie)");
1129 	}
1130 	lwp_unlock(l);
1131 	p->p_nrlwps--;
1132 	cv_broadcast(&p->p_lwpcv);
1133 	if (l->l_lwpctl != NULL)
1134 		l->l_lwpctl->lc_curcpu = LWPCTL_CPU_EXITED;
1135 	mutex_exit(p->p_lock);
1136 
1137 	/*
1138 	 * We can no longer block.  At this point, lwp_free() may already
1139 	 * be gunning for us.  On a multi-CPU system, we may be off p_lwps.
1140 	 *
1141 	 * Free MD LWP resources.
1142 	 */
1143 	cpu_lwp_free(l, 0);
1144 
1145 	if (current) {
1146 		pmap_deactivate(l);
1147 
1148 		/*
1149 		 * Release the kernel lock, and switch away into
1150 		 * oblivion.
1151 		 */
1152 #ifdef notyet
1153 		/* XXXSMP hold in lwp_userret() */
1154 		KERNEL_UNLOCK_LAST(l);
1155 #else
1156 		KERNEL_UNLOCK_ALL(l, NULL);
1157 #endif
1158 		lwp_exit_switchaway(l);
1159 	}
1160 }
1161 
1162 /*
1163  * Free a dead LWP's remaining resources.
1164  *
1165  * XXXLWP limits.
1166  */
1167 void
1168 lwp_free(struct lwp *l, bool recycle, bool last)
1169 {
1170 	struct proc *p = l->l_proc;
1171 	struct rusage *ru;
1172 	ksiginfoq_t kq;
1173 
1174 	KASSERT(l != curlwp);
1175 	KASSERT(last || mutex_owned(p->p_lock));
1176 
1177 	/*
1178 	 * We use the process credentials instead of the lwp credentials here
1179 	 * because the lwp credentials maybe cached (just after a setuid call)
1180 	 * and we don't want pay for syncing, since the lwp is going away
1181 	 * anyway
1182 	 */
1183 	if (p != &proc0 && p->p_nlwps != 1)
1184 		(void)chglwpcnt(kauth_cred_getuid(p->p_cred), -1);
1185 	/*
1186 	 * If this was not the last LWP in the process, then adjust
1187 	 * counters and unlock.
1188 	 */
1189 	if (!last) {
1190 		/*
1191 		 * Add the LWP's run time to the process' base value.
1192 		 * This needs to co-incide with coming off p_lwps.
1193 		 */
1194 		bintime_add(&p->p_rtime, &l->l_rtime);
1195 		p->p_pctcpu += l->l_pctcpu;
1196 		ru = &p->p_stats->p_ru;
1197 		ruadd(ru, &l->l_ru);
1198 		ru->ru_nvcsw += (l->l_ncsw - l->l_nivcsw);
1199 		ru->ru_nivcsw += l->l_nivcsw;
1200 		LIST_REMOVE(l, l_sibling);
1201 		p->p_nlwps--;
1202 		p->p_nzlwps--;
1203 		if ((l->l_prflag & LPR_DETACHED) != 0)
1204 			p->p_ndlwps--;
1205 
1206 		/*
1207 		 * Have any LWPs sleeping in lwp_wait() recheck for
1208 		 * deadlock.
1209 		 */
1210 		cv_broadcast(&p->p_lwpcv);
1211 		mutex_exit(p->p_lock);
1212 	}
1213 
1214 #ifdef MULTIPROCESSOR
1215 	/*
1216 	 * In the unlikely event that the LWP is still on the CPU,
1217 	 * then spin until it has switched away.  We need to release
1218 	 * all locks to avoid deadlock against interrupt handlers on
1219 	 * the target CPU.
1220 	 */
1221 	if ((l->l_pflag & LP_RUNNING) != 0 || l->l_cpu->ci_curlwp == l) {
1222 		int count;
1223 		(void)count; /* XXXgcc */
1224 		KERNEL_UNLOCK_ALL(curlwp, &count);
1225 		while ((l->l_pflag & LP_RUNNING) != 0 ||
1226 		    l->l_cpu->ci_curlwp == l)
1227 			SPINLOCK_BACKOFF_HOOK;
1228 		KERNEL_LOCK(count, curlwp);
1229 	}
1230 #endif
1231 
1232 	/*
1233 	 * Destroy the LWP's remaining signal information.
1234 	 */
1235 	ksiginfo_queue_init(&kq);
1236 	sigclear(&l->l_sigpend, NULL, &kq);
1237 	ksiginfo_queue_drain(&kq);
1238 	cv_destroy(&l->l_sigcv);
1239 	cv_destroy(&l->l_waitcv);
1240 
1241 	/*
1242 	 * Free lwpctl structure and affinity.
1243 	 */
1244 	if (l->l_lwpctl) {
1245 		lwp_ctl_free(l);
1246 	}
1247 	if (l->l_affinity) {
1248 		kcpuset_unuse(l->l_affinity, NULL);
1249 		l->l_affinity = NULL;
1250 	}
1251 
1252 	/*
1253 	 * Free the LWP's turnstile and the LWP structure itself unless the
1254 	 * caller wants to recycle them.  Also, free the scheduler specific
1255 	 * data.
1256 	 *
1257 	 * We can't return turnstile0 to the pool (it didn't come from it),
1258 	 * so if it comes up just drop it quietly and move on.
1259 	 *
1260 	 * We don't recycle the VM resources at this time.
1261 	 */
1262 
1263 	if (!recycle && l->l_ts != &turnstile0)
1264 		pool_cache_put(turnstile_cache, l->l_ts);
1265 	if (l->l_name != NULL)
1266 		kmem_free(l->l_name, MAXCOMLEN);
1267 
1268 	cpu_lwp_free2(l);
1269 	uvm_lwp_exit(l);
1270 
1271 	KASSERT(SLIST_EMPTY(&l->l_pi_lenders));
1272 	KASSERT(l->l_inheritedprio == -1);
1273 	KASSERT(l->l_blcnt == 0);
1274 	kdtrace_thread_dtor(NULL, l);
1275 	if (!recycle)
1276 		pool_cache_put(lwp_cache, l);
1277 }
1278 
1279 /*
1280  * Migrate the LWP to the another CPU.  Unlocks the LWP.
1281  */
1282 void
1283 lwp_migrate(lwp_t *l, struct cpu_info *tci)
1284 {
1285 	struct schedstate_percpu *tspc;
1286 	int lstat = l->l_stat;
1287 
1288 	KASSERT(lwp_locked(l, NULL));
1289 	KASSERT(tci != NULL);
1290 
1291 	/* If LWP is still on the CPU, it must be handled like LSONPROC */
1292 	if ((l->l_pflag & LP_RUNNING) != 0) {
1293 		lstat = LSONPROC;
1294 	}
1295 
1296 	/*
1297 	 * The destination CPU could be changed while previous migration
1298 	 * was not finished.
1299 	 */
1300 	if (l->l_target_cpu != NULL) {
1301 		l->l_target_cpu = tci;
1302 		lwp_unlock(l);
1303 		return;
1304 	}
1305 
1306 	/* Nothing to do if trying to migrate to the same CPU */
1307 	if (l->l_cpu == tci) {
1308 		lwp_unlock(l);
1309 		return;
1310 	}
1311 
1312 	KASSERT(l->l_target_cpu == NULL);
1313 	tspc = &tci->ci_schedstate;
1314 	switch (lstat) {
1315 	case LSRUN:
1316 		l->l_target_cpu = tci;
1317 		break;
1318 	case LSIDL:
1319 		l->l_cpu = tci;
1320 		lwp_unlock_to(l, tspc->spc_mutex);
1321 		return;
1322 	case LSSLEEP:
1323 		l->l_cpu = tci;
1324 		break;
1325 	case LSSTOP:
1326 	case LSSUSPENDED:
1327 		l->l_cpu = tci;
1328 		if (l->l_wchan == NULL) {
1329 			lwp_unlock_to(l, tspc->spc_lwplock);
1330 			return;
1331 		}
1332 		break;
1333 	case LSONPROC:
1334 		l->l_target_cpu = tci;
1335 		spc_lock(l->l_cpu);
1336 		cpu_need_resched(l->l_cpu, RESCHED_KPREEMPT);
1337 		spc_unlock(l->l_cpu);
1338 		break;
1339 	}
1340 	lwp_unlock(l);
1341 }
1342 
1343 /*
1344  * Find the LWP in the process.  Arguments may be zero, in such case,
1345  * the calling process and first LWP in the list will be used.
1346  * On success - returns proc locked.
1347  */
1348 struct lwp *
1349 lwp_find2(pid_t pid, lwpid_t lid)
1350 {
1351 	proc_t *p;
1352 	lwp_t *l;
1353 
1354 	/* Find the process. */
1355 	if (pid != 0) {
1356 		mutex_enter(proc_lock);
1357 		p = proc_find(pid);
1358 		if (p == NULL) {
1359 			mutex_exit(proc_lock);
1360 			return NULL;
1361 		}
1362 		mutex_enter(p->p_lock);
1363 		mutex_exit(proc_lock);
1364 	} else {
1365 		p = curlwp->l_proc;
1366 		mutex_enter(p->p_lock);
1367 	}
1368 	/* Find the thread. */
1369 	if (lid != 0) {
1370 		l = lwp_find(p, lid);
1371 	} else {
1372 		l = LIST_FIRST(&p->p_lwps);
1373 	}
1374 	if (l == NULL) {
1375 		mutex_exit(p->p_lock);
1376 	}
1377 	return l;
1378 }
1379 
1380 /*
1381  * Look up a live LWP within the specified process.
1382  *
1383  * Must be called with p->p_lock held.
1384  */
1385 struct lwp *
1386 lwp_find(struct proc *p, lwpid_t id)
1387 {
1388 	struct lwp *l;
1389 
1390 	KASSERT(mutex_owned(p->p_lock));
1391 
1392 	LIST_FOREACH(l, &p->p_lwps, l_sibling) {
1393 		if (l->l_lid == id)
1394 			break;
1395 	}
1396 
1397 	/*
1398 	 * No need to lock - all of these conditions will
1399 	 * be visible with the process level mutex held.
1400 	 */
1401 	if (l != NULL && (l->l_stat == LSIDL || l->l_stat == LSZOMB))
1402 		l = NULL;
1403 
1404 	return l;
1405 }
1406 
1407 /*
1408  * Update an LWP's cached credentials to mirror the process' master copy.
1409  *
1410  * This happens early in the syscall path, on user trap, and on LWP
1411  * creation.  A long-running LWP can also voluntarily choose to update
1412  * it's credentials by calling this routine.  This may be called from
1413  * LWP_CACHE_CREDS(), which checks l->l_cred != p->p_cred beforehand.
1414  */
1415 void
1416 lwp_update_creds(struct lwp *l)
1417 {
1418 	kauth_cred_t oc;
1419 	struct proc *p;
1420 
1421 	p = l->l_proc;
1422 	oc = l->l_cred;
1423 
1424 	mutex_enter(p->p_lock);
1425 	kauth_cred_hold(p->p_cred);
1426 	l->l_cred = p->p_cred;
1427 	l->l_prflag &= ~LPR_CRMOD;
1428 	mutex_exit(p->p_lock);
1429 	if (oc != NULL)
1430 		kauth_cred_free(oc);
1431 }
1432 
1433 /*
1434  * Verify that an LWP is locked, and optionally verify that the lock matches
1435  * one we specify.
1436  */
1437 int
1438 lwp_locked(struct lwp *l, kmutex_t *mtx)
1439 {
1440 	kmutex_t *cur = l->l_mutex;
1441 
1442 	return mutex_owned(cur) && (mtx == cur || mtx == NULL);
1443 }
1444 
1445 /*
1446  * Lend a new mutex to an LWP.  The old mutex must be held.
1447  */
1448 void
1449 lwp_setlock(struct lwp *l, kmutex_t *mtx)
1450 {
1451 
1452 	KASSERT(mutex_owned(l->l_mutex));
1453 
1454 	membar_exit();
1455 	l->l_mutex = mtx;
1456 }
1457 
1458 /*
1459  * Lend a new mutex to an LWP, and release the old mutex.  The old mutex
1460  * must be held.
1461  */
1462 void
1463 lwp_unlock_to(struct lwp *l, kmutex_t *mtx)
1464 {
1465 	kmutex_t *old;
1466 
1467 	KASSERT(lwp_locked(l, NULL));
1468 
1469 	old = l->l_mutex;
1470 	membar_exit();
1471 	l->l_mutex = mtx;
1472 	mutex_spin_exit(old);
1473 }
1474 
1475 int
1476 lwp_trylock(struct lwp *l)
1477 {
1478 	kmutex_t *old;
1479 
1480 	for (;;) {
1481 		if (!mutex_tryenter(old = l->l_mutex))
1482 			return 0;
1483 		if (__predict_true(l->l_mutex == old))
1484 			return 1;
1485 		mutex_spin_exit(old);
1486 	}
1487 }
1488 
1489 void
1490 lwp_unsleep(lwp_t *l, bool cleanup)
1491 {
1492 
1493 	KASSERT(mutex_owned(l->l_mutex));
1494 	(*l->l_syncobj->sobj_unsleep)(l, cleanup);
1495 }
1496 
1497 /*
1498  * Handle exceptions for mi_userret().  Called if a member of LW_USERRET is
1499  * set.
1500  */
1501 void
1502 lwp_userret(struct lwp *l)
1503 {
1504 	struct proc *p;
1505 	int sig;
1506 
1507 	KASSERT(l == curlwp);
1508 	KASSERT(l->l_stat == LSONPROC);
1509 	p = l->l_proc;
1510 
1511 #ifndef __HAVE_FAST_SOFTINTS
1512 	/* Run pending soft interrupts. */
1513 	if (l->l_cpu->ci_data.cpu_softints != 0)
1514 		softint_overlay();
1515 #endif
1516 
1517 	/*
1518 	 * It is safe to do this read unlocked on a MP system..
1519 	 */
1520 	while ((l->l_flag & LW_USERRET) != 0) {
1521 		/*
1522 		 * Process pending signals first, unless the process
1523 		 * is dumping core or exiting, where we will instead
1524 		 * enter the LW_WSUSPEND case below.
1525 		 */
1526 		if ((l->l_flag & (LW_PENDSIG | LW_WCORE | LW_WEXIT)) ==
1527 		    LW_PENDSIG) {
1528 			mutex_enter(p->p_lock);
1529 			while ((sig = issignal(l)) != 0)
1530 				postsig(sig);
1531 			mutex_exit(p->p_lock);
1532 		}
1533 
1534 		/*
1535 		 * Core-dump or suspend pending.
1536 		 *
1537 		 * In case of core dump, suspend ourselves, so that the kernel
1538 		 * stack and therefore the userland registers saved in the
1539 		 * trapframe are around for coredump() to write them out.
1540 		 * We also need to save any PCU resources that we have so that
1541 		 * they accessible for coredump().  We issue a wakeup on
1542 		 * p->p_lwpcv so that sigexit() will write the core file out
1543 		 * once all other LWPs are suspended.
1544 		 */
1545 		if ((l->l_flag & LW_WSUSPEND) != 0) {
1546 			pcu_save_all(l);
1547 			mutex_enter(p->p_lock);
1548 			p->p_nrlwps--;
1549 			cv_broadcast(&p->p_lwpcv);
1550 			lwp_lock(l);
1551 			l->l_stat = LSSUSPENDED;
1552 			lwp_unlock(l);
1553 			mutex_exit(p->p_lock);
1554 			lwp_lock(l);
1555 			mi_switch(l);
1556 		}
1557 
1558 		/* Process is exiting. */
1559 		if ((l->l_flag & LW_WEXIT) != 0) {
1560 			lwp_exit(l);
1561 			KASSERT(0);
1562 			/* NOTREACHED */
1563 		}
1564 
1565 		/* update lwpctl processor (for vfork child_return) */
1566 		if (l->l_flag & LW_LWPCTL) {
1567 			lwp_lock(l);
1568 			KASSERT(kpreempt_disabled());
1569 			l->l_lwpctl->lc_curcpu = (int)cpu_index(l->l_cpu);
1570 			l->l_lwpctl->lc_pctr++;
1571 			l->l_flag &= ~LW_LWPCTL;
1572 			lwp_unlock(l);
1573 		}
1574 	}
1575 }
1576 
1577 /*
1578  * Force an LWP to enter the kernel, to take a trip through lwp_userret().
1579  */
1580 void
1581 lwp_need_userret(struct lwp *l)
1582 {
1583 	KASSERT(lwp_locked(l, NULL));
1584 
1585 	/*
1586 	 * Since the tests in lwp_userret() are done unlocked, make sure
1587 	 * that the condition will be seen before forcing the LWP to enter
1588 	 * kernel mode.
1589 	 */
1590 	membar_producer();
1591 	cpu_signotify(l);
1592 }
1593 
1594 /*
1595  * Add one reference to an LWP.  This will prevent the LWP from
1596  * exiting, thus keep the lwp structure and PCB around to inspect.
1597  */
1598 void
1599 lwp_addref(struct lwp *l)
1600 {
1601 
1602 	KASSERT(mutex_owned(l->l_proc->p_lock));
1603 	KASSERT(l->l_stat != LSZOMB);
1604 	KASSERT(l->l_refcnt != 0);
1605 
1606 	l->l_refcnt++;
1607 }
1608 
1609 /*
1610  * Remove one reference to an LWP.  If this is the last reference,
1611  * then we must finalize the LWP's death.
1612  */
1613 void
1614 lwp_delref(struct lwp *l)
1615 {
1616 	struct proc *p = l->l_proc;
1617 
1618 	mutex_enter(p->p_lock);
1619 	lwp_delref2(l);
1620 	mutex_exit(p->p_lock);
1621 }
1622 
1623 /*
1624  * Remove one reference to an LWP.  If this is the last reference,
1625  * then we must finalize the LWP's death.  The proc mutex is held
1626  * on entry.
1627  */
1628 void
1629 lwp_delref2(struct lwp *l)
1630 {
1631 	struct proc *p = l->l_proc;
1632 
1633 	KASSERT(mutex_owned(p->p_lock));
1634 	KASSERT(l->l_stat != LSZOMB);
1635 	KASSERT(l->l_refcnt > 0);
1636 	if (--l->l_refcnt == 0)
1637 		cv_broadcast(&p->p_lwpcv);
1638 }
1639 
1640 /*
1641  * Drain all references to the current LWP.
1642  */
1643 void
1644 lwp_drainrefs(struct lwp *l)
1645 {
1646 	struct proc *p = l->l_proc;
1647 
1648 	KASSERT(mutex_owned(p->p_lock));
1649 	KASSERT(l->l_refcnt != 0);
1650 
1651 	l->l_refcnt--;
1652 	while (l->l_refcnt != 0)
1653 		cv_wait(&p->p_lwpcv, p->p_lock);
1654 }
1655 
1656 /*
1657  * Return true if the specified LWP is 'alive'.  Only p->p_lock need
1658  * be held.
1659  */
1660 bool
1661 lwp_alive(lwp_t *l)
1662 {
1663 
1664 	KASSERT(mutex_owned(l->l_proc->p_lock));
1665 
1666 	switch (l->l_stat) {
1667 	case LSSLEEP:
1668 	case LSRUN:
1669 	case LSONPROC:
1670 	case LSSTOP:
1671 	case LSSUSPENDED:
1672 		return true;
1673 	default:
1674 		return false;
1675 	}
1676 }
1677 
1678 /*
1679  * Return first live LWP in the process.
1680  */
1681 lwp_t *
1682 lwp_find_first(proc_t *p)
1683 {
1684 	lwp_t *l;
1685 
1686 	KASSERT(mutex_owned(p->p_lock));
1687 
1688 	LIST_FOREACH(l, &p->p_lwps, l_sibling) {
1689 		if (lwp_alive(l)) {
1690 			return l;
1691 		}
1692 	}
1693 
1694 	return NULL;
1695 }
1696 
1697 /*
1698  * Allocate a new lwpctl structure for a user LWP.
1699  */
1700 int
1701 lwp_ctl_alloc(vaddr_t *uaddr)
1702 {
1703 	lcproc_t *lp;
1704 	u_int bit, i, offset;
1705 	struct uvm_object *uao;
1706 	int error;
1707 	lcpage_t *lcp;
1708 	proc_t *p;
1709 	lwp_t *l;
1710 
1711 	l = curlwp;
1712 	p = l->l_proc;
1713 
1714 	/* don't allow a vforked process to create lwp ctls */
1715 	if (p->p_lflag & PL_PPWAIT)
1716 		return EBUSY;
1717 
1718 	if (l->l_lcpage != NULL) {
1719 		lcp = l->l_lcpage;
1720 		*uaddr = lcp->lcp_uaddr + (vaddr_t)l->l_lwpctl - lcp->lcp_kaddr;
1721 		return 0;
1722 	}
1723 
1724 	/* First time around, allocate header structure for the process. */
1725 	if ((lp = p->p_lwpctl) == NULL) {
1726 		lp = kmem_alloc(sizeof(*lp), KM_SLEEP);
1727 		mutex_init(&lp->lp_lock, MUTEX_DEFAULT, IPL_NONE);
1728 		lp->lp_uao = NULL;
1729 		TAILQ_INIT(&lp->lp_pages);
1730 		mutex_enter(p->p_lock);
1731 		if (p->p_lwpctl == NULL) {
1732 			p->p_lwpctl = lp;
1733 			mutex_exit(p->p_lock);
1734 		} else {
1735 			mutex_exit(p->p_lock);
1736 			mutex_destroy(&lp->lp_lock);
1737 			kmem_free(lp, sizeof(*lp));
1738 			lp = p->p_lwpctl;
1739 		}
1740 	}
1741 
1742  	/*
1743  	 * Set up an anonymous memory region to hold the shared pages.
1744  	 * Map them into the process' address space.  The user vmspace
1745  	 * gets the first reference on the UAO.
1746  	 */
1747 	mutex_enter(&lp->lp_lock);
1748 	if (lp->lp_uao == NULL) {
1749 		lp->lp_uao = uao_create(LWPCTL_UAREA_SZ, 0);
1750 		lp->lp_cur = 0;
1751 		lp->lp_max = LWPCTL_UAREA_SZ;
1752 		lp->lp_uva = p->p_emul->e_vm_default_addr(p,
1753 		     (vaddr_t)p->p_vmspace->vm_daddr, LWPCTL_UAREA_SZ);
1754 		error = uvm_map(&p->p_vmspace->vm_map, &lp->lp_uva,
1755 		    LWPCTL_UAREA_SZ, lp->lp_uao, 0, 0, UVM_MAPFLAG(UVM_PROT_RW,
1756 		    UVM_PROT_RW, UVM_INH_NONE, UVM_ADV_NORMAL, 0));
1757 		if (error != 0) {
1758 			uao_detach(lp->lp_uao);
1759 			lp->lp_uao = NULL;
1760 			mutex_exit(&lp->lp_lock);
1761 			return error;
1762 		}
1763 	}
1764 
1765 	/* Get a free block and allocate for this LWP. */
1766 	TAILQ_FOREACH(lcp, &lp->lp_pages, lcp_chain) {
1767 		if (lcp->lcp_nfree != 0)
1768 			break;
1769 	}
1770 	if (lcp == NULL) {
1771 		/* Nothing available - try to set up a free page. */
1772 		if (lp->lp_cur == lp->lp_max) {
1773 			mutex_exit(&lp->lp_lock);
1774 			return ENOMEM;
1775 		}
1776 		lcp = kmem_alloc(LWPCTL_LCPAGE_SZ, KM_SLEEP);
1777 		if (lcp == NULL) {
1778 			mutex_exit(&lp->lp_lock);
1779 			return ENOMEM;
1780 		}
1781 		/*
1782 		 * Wire the next page down in kernel space.  Since this
1783 		 * is a new mapping, we must add a reference.
1784 		 */
1785 		uao = lp->lp_uao;
1786 		(*uao->pgops->pgo_reference)(uao);
1787 		lcp->lcp_kaddr = vm_map_min(kernel_map);
1788 		error = uvm_map(kernel_map, &lcp->lcp_kaddr, PAGE_SIZE,
1789 		    uao, lp->lp_cur, PAGE_SIZE,
1790 		    UVM_MAPFLAG(UVM_PROT_RW, UVM_PROT_RW,
1791 		    UVM_INH_NONE, UVM_ADV_RANDOM, 0));
1792 		if (error != 0) {
1793 			mutex_exit(&lp->lp_lock);
1794 			kmem_free(lcp, LWPCTL_LCPAGE_SZ);
1795 			(*uao->pgops->pgo_detach)(uao);
1796 			return error;
1797 		}
1798 		error = uvm_map_pageable(kernel_map, lcp->lcp_kaddr,
1799 		    lcp->lcp_kaddr + PAGE_SIZE, FALSE, 0);
1800 		if (error != 0) {
1801 			mutex_exit(&lp->lp_lock);
1802 			uvm_unmap(kernel_map, lcp->lcp_kaddr,
1803 			    lcp->lcp_kaddr + PAGE_SIZE);
1804 			kmem_free(lcp, LWPCTL_LCPAGE_SZ);
1805 			return error;
1806 		}
1807 		/* Prepare the page descriptor and link into the list. */
1808 		lcp->lcp_uaddr = lp->lp_uva + lp->lp_cur;
1809 		lp->lp_cur += PAGE_SIZE;
1810 		lcp->lcp_nfree = LWPCTL_PER_PAGE;
1811 		lcp->lcp_rotor = 0;
1812 		memset(lcp->lcp_bitmap, 0xff, LWPCTL_BITMAP_SZ);
1813 		TAILQ_INSERT_HEAD(&lp->lp_pages, lcp, lcp_chain);
1814 	}
1815 	for (i = lcp->lcp_rotor; lcp->lcp_bitmap[i] == 0;) {
1816 		if (++i >= LWPCTL_BITMAP_ENTRIES)
1817 			i = 0;
1818 	}
1819 	bit = ffs(lcp->lcp_bitmap[i]) - 1;
1820 	lcp->lcp_bitmap[i] ^= (1 << bit);
1821 	lcp->lcp_rotor = i;
1822 	lcp->lcp_nfree--;
1823 	l->l_lcpage = lcp;
1824 	offset = (i << 5) + bit;
1825 	l->l_lwpctl = (lwpctl_t *)lcp->lcp_kaddr + offset;
1826 	*uaddr = lcp->lcp_uaddr + offset * sizeof(lwpctl_t);
1827 	mutex_exit(&lp->lp_lock);
1828 
1829 	KPREEMPT_DISABLE(l);
1830 	l->l_lwpctl->lc_curcpu = (int)curcpu()->ci_data.cpu_index;
1831 	KPREEMPT_ENABLE(l);
1832 
1833 	return 0;
1834 }
1835 
1836 /*
1837  * Free an lwpctl structure back to the per-process list.
1838  */
1839 void
1840 lwp_ctl_free(lwp_t *l)
1841 {
1842 	struct proc *p = l->l_proc;
1843 	lcproc_t *lp;
1844 	lcpage_t *lcp;
1845 	u_int map, offset;
1846 
1847 	/* don't free a lwp context we borrowed for vfork */
1848 	if (p->p_lflag & PL_PPWAIT) {
1849 		l->l_lwpctl = NULL;
1850 		return;
1851 	}
1852 
1853 	lp = p->p_lwpctl;
1854 	KASSERT(lp != NULL);
1855 
1856 	lcp = l->l_lcpage;
1857 	offset = (u_int)((lwpctl_t *)l->l_lwpctl - (lwpctl_t *)lcp->lcp_kaddr);
1858 	KASSERT(offset < LWPCTL_PER_PAGE);
1859 
1860 	mutex_enter(&lp->lp_lock);
1861 	lcp->lcp_nfree++;
1862 	map = offset >> 5;
1863 	lcp->lcp_bitmap[map] |= (1 << (offset & 31));
1864 	if (lcp->lcp_bitmap[lcp->lcp_rotor] == 0)
1865 		lcp->lcp_rotor = map;
1866 	if (TAILQ_FIRST(&lp->lp_pages)->lcp_nfree == 0) {
1867 		TAILQ_REMOVE(&lp->lp_pages, lcp, lcp_chain);
1868 		TAILQ_INSERT_HEAD(&lp->lp_pages, lcp, lcp_chain);
1869 	}
1870 	mutex_exit(&lp->lp_lock);
1871 }
1872 
1873 /*
1874  * Process is exiting; tear down lwpctl state.  This can only be safely
1875  * called by the last LWP in the process.
1876  */
1877 void
1878 lwp_ctl_exit(void)
1879 {
1880 	lcpage_t *lcp, *next;
1881 	lcproc_t *lp;
1882 	proc_t *p;
1883 	lwp_t *l;
1884 
1885 	l = curlwp;
1886 	l->l_lwpctl = NULL;
1887 	l->l_lcpage = NULL;
1888 	p = l->l_proc;
1889 	lp = p->p_lwpctl;
1890 
1891 	KASSERT(lp != NULL);
1892 	KASSERT(p->p_nlwps == 1);
1893 
1894 	for (lcp = TAILQ_FIRST(&lp->lp_pages); lcp != NULL; lcp = next) {
1895 		next = TAILQ_NEXT(lcp, lcp_chain);
1896 		uvm_unmap(kernel_map, lcp->lcp_kaddr,
1897 		    lcp->lcp_kaddr + PAGE_SIZE);
1898 		kmem_free(lcp, LWPCTL_LCPAGE_SZ);
1899 	}
1900 
1901 	if (lp->lp_uao != NULL) {
1902 		uvm_unmap(&p->p_vmspace->vm_map, lp->lp_uva,
1903 		    lp->lp_uva + LWPCTL_UAREA_SZ);
1904 	}
1905 
1906 	mutex_destroy(&lp->lp_lock);
1907 	kmem_free(lp, sizeof(*lp));
1908 	p->p_lwpctl = NULL;
1909 }
1910 
1911 /*
1912  * Return the current LWP's "preemption counter".  Used to detect
1913  * preemption across operations that can tolerate preemption without
1914  * crashing, but which may generate incorrect results if preempted.
1915  */
1916 uint64_t
1917 lwp_pctr(void)
1918 {
1919 
1920 	return curlwp->l_ncsw;
1921 }
1922 
1923 /*
1924  * Set an LWP's private data pointer.
1925  */
1926 int
1927 lwp_setprivate(struct lwp *l, void *ptr)
1928 {
1929 	int error = 0;
1930 
1931 	l->l_private = ptr;
1932 #ifdef __HAVE_CPU_LWP_SETPRIVATE
1933 	error = cpu_lwp_setprivate(l, ptr);
1934 #endif
1935 	return error;
1936 }
1937 
1938 #if defined(DDB)
1939 #include <machine/pcb.h>
1940 
1941 void
1942 lwp_whatis(uintptr_t addr, void (*pr)(const char *, ...))
1943 {
1944 	lwp_t *l;
1945 
1946 	LIST_FOREACH(l, &alllwp, l_list) {
1947 		uintptr_t stack = (uintptr_t)KSTACK_LOWEST_ADDR(l);
1948 
1949 		if (addr < stack || stack + KSTACK_SIZE <= addr) {
1950 			continue;
1951 		}
1952 		(*pr)("%p is %p+%zu, LWP %p's stack\n",
1953 		    (void *)addr, (void *)stack,
1954 		    (size_t)(addr - stack), l);
1955 	}
1956 }
1957 #endif /* defined(DDB) */
1958