1 /* $NetBSD: kern_lwp.c,v 1.128 2009/03/03 21:55:06 rmind Exp $ */ 2 3 /*- 4 * Copyright (c) 2001, 2006, 2007, 2008, 2009 The NetBSD Foundation, Inc. 5 * All rights reserved. 6 * 7 * This code is derived from software contributed to The NetBSD Foundation 8 * by Nathan J. Williams, and Andrew Doran. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS 20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 29 * POSSIBILITY OF SUCH DAMAGE. 30 */ 31 32 /* 33 * Overview 34 * 35 * Lightweight processes (LWPs) are the basic unit or thread of 36 * execution within the kernel. The core state of an LWP is described 37 * by "struct lwp", also known as lwp_t. 38 * 39 * Each LWP is contained within a process (described by "struct proc"), 40 * Every process contains at least one LWP, but may contain more. The 41 * process describes attributes shared among all of its LWPs such as a 42 * private address space, global execution state (stopped, active, 43 * zombie, ...), signal disposition and so on. On a multiprocessor 44 * machine, multiple LWPs be executing concurrently in the kernel. 45 * 46 * Execution states 47 * 48 * At any given time, an LWP has overall state that is described by 49 * lwp::l_stat. The states are broken into two sets below. The first 50 * set is guaranteed to represent the absolute, current state of the 51 * LWP: 52 * 53 * LSONPROC 54 * 55 * On processor: the LWP is executing on a CPU, either in the 56 * kernel or in user space. 57 * 58 * LSRUN 59 * 60 * Runnable: the LWP is parked on a run queue, and may soon be 61 * chosen to run by an idle processor, or by a processor that 62 * has been asked to preempt a currently runnning but lower 63 * priority LWP. If the LWP is not swapped in (LW_INMEM == 0) 64 * then the LWP is not on a run queue, but may be soon. 65 * 66 * LSIDL 67 * 68 * Idle: the LWP has been created but has not yet executed, 69 * or it has ceased executing a unit of work and is waiting 70 * to be started again. 71 * 72 * LSSUSPENDED: 73 * 74 * Suspended: the LWP has had its execution suspended by 75 * another LWP in the same process using the _lwp_suspend() 76 * system call. User-level LWPs also enter the suspended 77 * state when the system is shutting down. 78 * 79 * The second set represent a "statement of intent" on behalf of the 80 * LWP. The LWP may in fact be executing on a processor, may be 81 * sleeping or idle. It is expected to take the necessary action to 82 * stop executing or become "running" again within a short timeframe. 83 * The LP_RUNNING flag in lwp::l_pflag indicates that an LWP is running. 84 * Importantly, it indicates that its state is tied to a CPU. 85 * 86 * LSZOMB: 87 * 88 * Dead or dying: the LWP has released most of its resources 89 * and is: a) about to switch away into oblivion b) has already 90 * switched away. When it switches away, its few remaining 91 * resources can be collected. 92 * 93 * LSSLEEP: 94 * 95 * Sleeping: the LWP has entered itself onto a sleep queue, and 96 * has switched away or will switch away shortly to allow other 97 * LWPs to run on the CPU. 98 * 99 * LSSTOP: 100 * 101 * Stopped: the LWP has been stopped as a result of a job 102 * control signal, or as a result of the ptrace() interface. 103 * 104 * Stopped LWPs may run briefly within the kernel to handle 105 * signals that they receive, but will not return to user space 106 * until their process' state is changed away from stopped. 107 * 108 * Single LWPs within a process can not be set stopped 109 * selectively: all actions that can stop or continue LWPs 110 * occur at the process level. 111 * 112 * State transitions 113 * 114 * Note that the LSSTOP state may only be set when returning to 115 * user space in userret(), or when sleeping interruptably. The 116 * LSSUSPENDED state may only be set in userret(). Before setting 117 * those states, we try to ensure that the LWPs will release all 118 * locks that they hold, and at a minimum try to ensure that the 119 * LWP can be set runnable again by a signal. 120 * 121 * LWPs may transition states in the following ways: 122 * 123 * RUN -------> ONPROC ONPROC -----> RUN 124 * > STOPPED > SLEEP 125 * > SUSPENDED > STOPPED 126 * > SUSPENDED 127 * > ZOMB 128 * 129 * STOPPED ---> RUN SUSPENDED --> RUN 130 * > SLEEP > SLEEP 131 * 132 * SLEEP -----> ONPROC IDL --------> RUN 133 * > RUN > SUSPENDED 134 * > STOPPED > STOPPED 135 * > SUSPENDED 136 * 137 * Other state transitions are possible with kernel threads (eg 138 * ONPROC -> IDL), but only happen under tightly controlled 139 * circumstances the side effects are understood. 140 * 141 * Migration 142 * 143 * Migration of threads from one CPU to another could be performed 144 * internally by the scheduler via sched_takecpu() or sched_catchlwp() 145 * functions. The universal lwp_migrate() function should be used for 146 * any other cases. Subsystems in the kernel must be aware that CPU 147 * of LWP may change, while it is not locked. 148 * 149 * Locking 150 * 151 * The majority of fields in 'struct lwp' are covered by a single, 152 * general spin lock pointed to by lwp::l_mutex. The locks covering 153 * each field are documented in sys/lwp.h. 154 * 155 * State transitions must be made with the LWP's general lock held, 156 * and may cause the LWP's lock pointer to change. Manipulation of 157 * the general lock is not performed directly, but through calls to 158 * lwp_lock(), lwp_relock() and similar. 159 * 160 * States and their associated locks: 161 * 162 * LSONPROC, LSZOMB: 163 * 164 * Always covered by spc_lwplock, which protects running LWPs. 165 * This is a per-CPU lock. 166 * 167 * LSIDL, LSRUN: 168 * 169 * Always covered by spc_mutex, which protects the run queues. 170 * This is a per-CPU lock. 171 * 172 * LSSLEEP: 173 * 174 * Covered by a lock associated with the sleep queue that the 175 * LWP resides on. 176 * 177 * LSSTOP, LSSUSPENDED: 178 * 179 * If the LWP was previously sleeping (l_wchan != NULL), then 180 * l_mutex references the sleep queue lock. If the LWP was 181 * runnable or on the CPU when halted, or has been removed from 182 * the sleep queue since halted, then the lock is spc_lwplock. 183 * 184 * The lock order is as follows: 185 * 186 * spc::spc_lwplock -> 187 * sleeptab::st_mutex -> 188 * tschain_t::tc_mutex -> 189 * spc::spc_mutex 190 * 191 * Each process has an scheduler state lock (proc::p_lock), and a 192 * number of counters on LWPs and their states: p_nzlwps, p_nrlwps, and 193 * so on. When an LWP is to be entered into or removed from one of the 194 * following states, p_lock must be held and the process wide counters 195 * adjusted: 196 * 197 * LSIDL, LSZOMB, LSSTOP, LSSUSPENDED 198 * 199 * Note that an LWP is considered running or likely to run soon if in 200 * one of the following states. This affects the value of p_nrlwps: 201 * 202 * LSRUN, LSONPROC, LSSLEEP 203 * 204 * p_lock does not need to be held when transitioning among these 205 * three states. 206 */ 207 208 #include <sys/cdefs.h> 209 __KERNEL_RCSID(0, "$NetBSD: kern_lwp.c,v 1.128 2009/03/03 21:55:06 rmind Exp $"); 210 211 #include "opt_ddb.h" 212 #include "opt_lockdebug.h" 213 #include "opt_sa.h" 214 215 #define _LWP_API_PRIVATE 216 217 #include <sys/param.h> 218 #include <sys/systm.h> 219 #include <sys/cpu.h> 220 #include <sys/pool.h> 221 #include <sys/proc.h> 222 #include <sys/sa.h> 223 #include <sys/savar.h> 224 #include <sys/syscallargs.h> 225 #include <sys/syscall_stats.h> 226 #include <sys/kauth.h> 227 #include <sys/sleepq.h> 228 #include <sys/user.h> 229 #include <sys/lockdebug.h> 230 #include <sys/kmem.h> 231 #include <sys/pset.h> 232 #include <sys/intr.h> 233 #include <sys/lwpctl.h> 234 #include <sys/atomic.h> 235 236 #include <uvm/uvm_extern.h> 237 #include <uvm/uvm_object.h> 238 239 struct lwplist alllwp = LIST_HEAD_INITIALIZER(alllwp); 240 241 POOL_INIT(lwp_uc_pool, sizeof(ucontext_t), 0, 0, 0, "lwpucpl", 242 &pool_allocator_nointr, IPL_NONE); 243 244 static pool_cache_t lwp_cache; 245 static specificdata_domain_t lwp_specificdata_domain; 246 247 void 248 lwpinit(void) 249 { 250 251 lwp_specificdata_domain = specificdata_domain_create(); 252 KASSERT(lwp_specificdata_domain != NULL); 253 lwp_sys_init(); 254 lwp_cache = pool_cache_init(sizeof(lwp_t), MIN_LWP_ALIGNMENT, 0, 0, 255 "lwppl", NULL, IPL_NONE, NULL, NULL, NULL); 256 } 257 258 /* 259 * Set an suspended. 260 * 261 * Must be called with p_lock held, and the LWP locked. Will unlock the 262 * LWP before return. 263 */ 264 int 265 lwp_suspend(struct lwp *curl, struct lwp *t) 266 { 267 int error; 268 269 KASSERT(mutex_owned(t->l_proc->p_lock)); 270 KASSERT(lwp_locked(t, NULL)); 271 272 KASSERT(curl != t || curl->l_stat == LSONPROC); 273 274 /* 275 * If the current LWP has been told to exit, we must not suspend anyone 276 * else or deadlock could occur. We won't return to userspace. 277 */ 278 if ((curl->l_flag & (LW_WEXIT | LW_WCORE)) != 0) { 279 lwp_unlock(t); 280 return (EDEADLK); 281 } 282 283 error = 0; 284 285 switch (t->l_stat) { 286 case LSRUN: 287 case LSONPROC: 288 t->l_flag |= LW_WSUSPEND; 289 lwp_need_userret(t); 290 lwp_unlock(t); 291 break; 292 293 case LSSLEEP: 294 t->l_flag |= LW_WSUSPEND; 295 296 /* 297 * Kick the LWP and try to get it to the kernel boundary 298 * so that it will release any locks that it holds. 299 * setrunnable() will release the lock. 300 */ 301 if ((t->l_flag & LW_SINTR) != 0) 302 setrunnable(t); 303 else 304 lwp_unlock(t); 305 break; 306 307 case LSSUSPENDED: 308 lwp_unlock(t); 309 break; 310 311 case LSSTOP: 312 t->l_flag |= LW_WSUSPEND; 313 setrunnable(t); 314 break; 315 316 case LSIDL: 317 case LSZOMB: 318 error = EINTR; /* It's what Solaris does..... */ 319 lwp_unlock(t); 320 break; 321 } 322 323 return (error); 324 } 325 326 /* 327 * Restart a suspended LWP. 328 * 329 * Must be called with p_lock held, and the LWP locked. Will unlock the 330 * LWP before return. 331 */ 332 void 333 lwp_continue(struct lwp *l) 334 { 335 336 KASSERT(mutex_owned(l->l_proc->p_lock)); 337 KASSERT(lwp_locked(l, NULL)); 338 339 /* If rebooting or not suspended, then just bail out. */ 340 if ((l->l_flag & LW_WREBOOT) != 0) { 341 lwp_unlock(l); 342 return; 343 } 344 345 l->l_flag &= ~LW_WSUSPEND; 346 347 if (l->l_stat != LSSUSPENDED) { 348 lwp_unlock(l); 349 return; 350 } 351 352 /* setrunnable() will release the lock. */ 353 setrunnable(l); 354 } 355 356 /* 357 * Wait for an LWP within the current process to exit. If 'lid' is 358 * non-zero, we are waiting for a specific LWP. 359 * 360 * Must be called with p->p_lock held. 361 */ 362 int 363 lwp_wait1(struct lwp *l, lwpid_t lid, lwpid_t *departed, int flags) 364 { 365 struct proc *p = l->l_proc; 366 struct lwp *l2; 367 int nfound, error; 368 lwpid_t curlid; 369 bool exiting; 370 371 KASSERT(mutex_owned(p->p_lock)); 372 373 p->p_nlwpwait++; 374 l->l_waitingfor = lid; 375 curlid = l->l_lid; 376 exiting = ((flags & LWPWAIT_EXITCONTROL) != 0); 377 378 for (;;) { 379 /* 380 * Avoid a race between exit1() and sigexit(): if the 381 * process is dumping core, then we need to bail out: call 382 * into lwp_userret() where we will be suspended until the 383 * deed is done. 384 */ 385 if ((p->p_sflag & PS_WCORE) != 0) { 386 mutex_exit(p->p_lock); 387 lwp_userret(l); 388 #ifdef DIAGNOSTIC 389 panic("lwp_wait1"); 390 #endif 391 /* NOTREACHED */ 392 } 393 394 /* 395 * First off, drain any detached LWP that is waiting to be 396 * reaped. 397 */ 398 while ((l2 = p->p_zomblwp) != NULL) { 399 p->p_zomblwp = NULL; 400 lwp_free(l2, false, false);/* releases proc mutex */ 401 mutex_enter(p->p_lock); 402 } 403 404 /* 405 * Now look for an LWP to collect. If the whole process is 406 * exiting, count detached LWPs as eligible to be collected, 407 * but don't drain them here. 408 */ 409 nfound = 0; 410 error = 0; 411 LIST_FOREACH(l2, &p->p_lwps, l_sibling) { 412 /* 413 * If a specific wait and the target is waiting on 414 * us, then avoid deadlock. This also traps LWPs 415 * that try to wait on themselves. 416 * 417 * Note that this does not handle more complicated 418 * cycles, like: t1 -> t2 -> t3 -> t1. The process 419 * can still be killed so it is not a major problem. 420 */ 421 if (l2->l_lid == lid && l2->l_waitingfor == curlid) { 422 error = EDEADLK; 423 break; 424 } 425 if (l2 == l) 426 continue; 427 if ((l2->l_prflag & LPR_DETACHED) != 0) { 428 nfound += exiting; 429 continue; 430 } 431 if (lid != 0) { 432 if (l2->l_lid != lid) 433 continue; 434 /* 435 * Mark this LWP as the first waiter, if there 436 * is no other. 437 */ 438 if (l2->l_waiter == 0) 439 l2->l_waiter = curlid; 440 } else if (l2->l_waiter != 0) { 441 /* 442 * It already has a waiter - so don't 443 * collect it. If the waiter doesn't 444 * grab it we'll get another chance 445 * later. 446 */ 447 nfound++; 448 continue; 449 } 450 nfound++; 451 452 /* No need to lock the LWP in order to see LSZOMB. */ 453 if (l2->l_stat != LSZOMB) 454 continue; 455 456 /* 457 * We're no longer waiting. Reset the "first waiter" 458 * pointer on the target, in case it was us. 459 */ 460 l->l_waitingfor = 0; 461 l2->l_waiter = 0; 462 p->p_nlwpwait--; 463 if (departed) 464 *departed = l2->l_lid; 465 sched_lwp_collect(l2); 466 467 /* lwp_free() releases the proc lock. */ 468 lwp_free(l2, false, false); 469 mutex_enter(p->p_lock); 470 return 0; 471 } 472 473 if (error != 0) 474 break; 475 if (nfound == 0) { 476 error = ESRCH; 477 break; 478 } 479 480 /* 481 * The kernel is careful to ensure that it can not deadlock 482 * when exiting - just keep waiting. 483 */ 484 if (exiting) { 485 KASSERT(p->p_nlwps > 1); 486 cv_wait(&p->p_lwpcv, p->p_lock); 487 continue; 488 } 489 490 /* 491 * If all other LWPs are waiting for exits or suspends 492 * and the supply of zombies and potential zombies is 493 * exhausted, then we are about to deadlock. 494 * 495 * If the process is exiting (and this LWP is not the one 496 * that is coordinating the exit) then bail out now. 497 */ 498 if ((p->p_sflag & PS_WEXIT) != 0 || 499 p->p_nrlwps + p->p_nzlwps - p->p_ndlwps <= p->p_nlwpwait) { 500 error = EDEADLK; 501 break; 502 } 503 504 /* 505 * Sit around and wait for something to happen. We'll be 506 * awoken if any of the conditions examined change: if an 507 * LWP exits, is collected, or is detached. 508 */ 509 if ((error = cv_wait_sig(&p->p_lwpcv, p->p_lock)) != 0) 510 break; 511 } 512 513 /* 514 * We didn't find any LWPs to collect, we may have received a 515 * signal, or some other condition has caused us to bail out. 516 * 517 * If waiting on a specific LWP, clear the waiters marker: some 518 * other LWP may want it. Then, kick all the remaining waiters 519 * so that they can re-check for zombies and for deadlock. 520 */ 521 if (lid != 0) { 522 LIST_FOREACH(l2, &p->p_lwps, l_sibling) { 523 if (l2->l_lid == lid) { 524 if (l2->l_waiter == curlid) 525 l2->l_waiter = 0; 526 break; 527 } 528 } 529 } 530 p->p_nlwpwait--; 531 l->l_waitingfor = 0; 532 cv_broadcast(&p->p_lwpcv); 533 534 return error; 535 } 536 537 /* 538 * Create a new LWP within process 'p2', using LWP 'l1' as a template. 539 * The new LWP is created in state LSIDL and must be set running, 540 * suspended, or stopped by the caller. 541 */ 542 int 543 lwp_create(lwp_t *l1, proc_t *p2, vaddr_t uaddr, bool inmem, int flags, 544 void *stack, size_t stacksize, void (*func)(void *), void *arg, 545 lwp_t **rnewlwpp, int sclass) 546 { 547 struct lwp *l2, *isfree; 548 turnstile_t *ts; 549 550 KASSERT(l1 == curlwp || l1->l_proc == &proc0); 551 552 /* 553 * First off, reap any detached LWP waiting to be collected. 554 * We can re-use its LWP structure and turnstile. 555 */ 556 isfree = NULL; 557 if (p2->p_zomblwp != NULL) { 558 mutex_enter(p2->p_lock); 559 if ((isfree = p2->p_zomblwp) != NULL) { 560 p2->p_zomblwp = NULL; 561 lwp_free(isfree, true, false);/* releases proc mutex */ 562 } else 563 mutex_exit(p2->p_lock); 564 } 565 if (isfree == NULL) { 566 l2 = pool_cache_get(lwp_cache, PR_WAITOK); 567 memset(l2, 0, sizeof(*l2)); 568 l2->l_ts = pool_cache_get(turnstile_cache, PR_WAITOK); 569 SLIST_INIT(&l2->l_pi_lenders); 570 } else { 571 l2 = isfree; 572 ts = l2->l_ts; 573 KASSERT(l2->l_inheritedprio == -1); 574 KASSERT(SLIST_EMPTY(&l2->l_pi_lenders)); 575 memset(l2, 0, sizeof(*l2)); 576 l2->l_ts = ts; 577 } 578 579 l2->l_stat = LSIDL; 580 l2->l_proc = p2; 581 l2->l_refcnt = 1; 582 l2->l_class = sclass; 583 584 /* 585 * If vfork(), we want the LWP to run fast and on the same CPU 586 * as its parent, so that it can reuse the VM context and cache 587 * footprint on the local CPU. 588 */ 589 l2->l_kpriority = ((flags & LWP_VFORK) ? true : false); 590 l2->l_kpribase = PRI_KERNEL; 591 l2->l_priority = l1->l_priority; 592 l2->l_inheritedprio = -1; 593 l2->l_flag = inmem ? LW_INMEM : 0; 594 l2->l_pflag = LP_MPSAFE; 595 l2->l_fd = p2->p_fd; 596 TAILQ_INIT(&l2->l_ld_locks); 597 598 if (p2->p_flag & PK_SYSTEM) { 599 /* Mark it as a system LWP and not a candidate for swapping */ 600 l2->l_flag |= LW_SYSTEM; 601 } 602 603 kpreempt_disable(); 604 l2->l_mutex = l1->l_cpu->ci_schedstate.spc_mutex; 605 l2->l_cpu = l1->l_cpu; 606 kpreempt_enable(); 607 608 lwp_initspecific(l2); 609 sched_lwp_fork(l1, l2); 610 lwp_update_creds(l2); 611 callout_init(&l2->l_timeout_ch, CALLOUT_MPSAFE); 612 callout_setfunc(&l2->l_timeout_ch, sleepq_timeout, l2); 613 mutex_init(&l2->l_swaplock, MUTEX_DEFAULT, IPL_NONE); 614 cv_init(&l2->l_sigcv, "sigwait"); 615 l2->l_syncobj = &sched_syncobj; 616 617 if (rnewlwpp != NULL) 618 *rnewlwpp = l2; 619 620 l2->l_addr = UAREA_TO_USER(uaddr); 621 uvm_lwp_fork(l1, l2, stack, stacksize, func, 622 (arg != NULL) ? arg : l2); 623 624 mutex_enter(p2->p_lock); 625 626 if ((flags & LWP_DETACHED) != 0) { 627 l2->l_prflag = LPR_DETACHED; 628 p2->p_ndlwps++; 629 } else 630 l2->l_prflag = 0; 631 632 l2->l_sigmask = l1->l_sigmask; 633 CIRCLEQ_INIT(&l2->l_sigpend.sp_info); 634 sigemptyset(&l2->l_sigpend.sp_set); 635 636 p2->p_nlwpid++; 637 if (p2->p_nlwpid == 0) 638 p2->p_nlwpid++; 639 l2->l_lid = p2->p_nlwpid; 640 LIST_INSERT_HEAD(&p2->p_lwps, l2, l_sibling); 641 p2->p_nlwps++; 642 643 if ((p2->p_flag & PK_SYSTEM) == 0) { 644 /* Inherit an affinity */ 645 if (l1->l_flag & LW_AFFINITY) { 646 /* 647 * Note that we hold the state lock while inheriting 648 * the affinity to avoid race with sched_setaffinity(). 649 */ 650 lwp_lock(l1); 651 if (l1->l_flag & LW_AFFINITY) { 652 kcpuset_use(l1->l_affinity); 653 l2->l_affinity = l1->l_affinity; 654 l2->l_flag |= LW_AFFINITY; 655 } 656 lwp_unlock(l1); 657 } 658 lwp_lock(l2); 659 /* Inherit a processor-set */ 660 l2->l_psid = l1->l_psid; 661 /* Look for a CPU to start */ 662 l2->l_cpu = sched_takecpu(l2); 663 lwp_unlock_to(l2, l2->l_cpu->ci_schedstate.spc_mutex); 664 } 665 mutex_exit(p2->p_lock); 666 667 mutex_enter(proc_lock); 668 LIST_INSERT_HEAD(&alllwp, l2, l_list); 669 mutex_exit(proc_lock); 670 671 SYSCALL_TIME_LWP_INIT(l2); 672 673 if (p2->p_emul->e_lwp_fork) 674 (*p2->p_emul->e_lwp_fork)(l1, l2); 675 676 return (0); 677 } 678 679 /* 680 * Called by MD code when a new LWP begins execution. Must be called 681 * with the previous LWP locked (so at splsched), or if there is no 682 * previous LWP, at splsched. 683 */ 684 void 685 lwp_startup(struct lwp *prev, struct lwp *new) 686 { 687 688 KASSERT(kpreempt_disabled()); 689 if (prev != NULL) { 690 /* 691 * Normalize the count of the spin-mutexes, it was 692 * increased in mi_switch(). Unmark the state of 693 * context switch - it is finished for previous LWP. 694 */ 695 curcpu()->ci_mtx_count++; 696 membar_exit(); 697 prev->l_ctxswtch = 0; 698 } 699 KPREEMPT_DISABLE(new); 700 spl0(); 701 pmap_activate(new); 702 LOCKDEBUG_BARRIER(NULL, 0); 703 KPREEMPT_ENABLE(new); 704 if ((new->l_pflag & LP_MPSAFE) == 0) { 705 KERNEL_LOCK(1, new); 706 } 707 } 708 709 /* 710 * Exit an LWP. 711 */ 712 void 713 lwp_exit(struct lwp *l) 714 { 715 struct proc *p = l->l_proc; 716 struct lwp *l2; 717 bool current; 718 719 current = (l == curlwp); 720 721 KASSERT(current || (l->l_stat == LSIDL && l->l_target_cpu == NULL)); 722 723 /* 724 * Verify that we hold no locks other than the kernel lock. 725 */ 726 LOCKDEBUG_BARRIER(&kernel_lock, 0); 727 728 /* 729 * If we are the last live LWP in a process, we need to exit the 730 * entire process. We do so with an exit status of zero, because 731 * it's a "controlled" exit, and because that's what Solaris does. 732 * 733 * We are not quite a zombie yet, but for accounting purposes we 734 * must increment the count of zombies here. 735 * 736 * Note: the last LWP's specificdata will be deleted here. 737 */ 738 mutex_enter(p->p_lock); 739 if (p->p_nlwps - p->p_nzlwps == 1) { 740 KASSERT(current == true); 741 /* XXXSMP kernel_lock not held */ 742 exit1(l, 0); 743 /* NOTREACHED */ 744 } 745 p->p_nzlwps++; 746 mutex_exit(p->p_lock); 747 748 if (p->p_emul->e_lwp_exit) 749 (*p->p_emul->e_lwp_exit)(l); 750 751 /* Delete the specificdata while it's still safe to sleep. */ 752 specificdata_fini(lwp_specificdata_domain, &l->l_specdataref); 753 754 /* 755 * Release our cached credentials. 756 */ 757 kauth_cred_free(l->l_cred); 758 callout_destroy(&l->l_timeout_ch); 759 760 /* 761 * While we can still block, mark the LWP as unswappable to 762 * prevent conflicts with the with the swapper. 763 */ 764 if (current) 765 uvm_lwp_hold(l); 766 767 /* 768 * Remove the LWP from the global list. 769 */ 770 mutex_enter(proc_lock); 771 LIST_REMOVE(l, l_list); 772 mutex_exit(proc_lock); 773 774 /* 775 * Get rid of all references to the LWP that others (e.g. procfs) 776 * may have, and mark the LWP as a zombie. If the LWP is detached, 777 * mark it waiting for collection in the proc structure. Note that 778 * before we can do that, we need to free any other dead, deatched 779 * LWP waiting to meet its maker. 780 */ 781 mutex_enter(p->p_lock); 782 lwp_drainrefs(l); 783 784 if ((l->l_prflag & LPR_DETACHED) != 0) { 785 while ((l2 = p->p_zomblwp) != NULL) { 786 p->p_zomblwp = NULL; 787 lwp_free(l2, false, false);/* releases proc mutex */ 788 mutex_enter(p->p_lock); 789 l->l_refcnt++; 790 lwp_drainrefs(l); 791 } 792 p->p_zomblwp = l; 793 } 794 795 /* 796 * If we find a pending signal for the process and we have been 797 * asked to check for signals, then we loose: arrange to have 798 * all other LWPs in the process check for signals. 799 */ 800 if ((l->l_flag & LW_PENDSIG) != 0 && 801 firstsig(&p->p_sigpend.sp_set) != 0) { 802 LIST_FOREACH(l2, &p->p_lwps, l_sibling) { 803 lwp_lock(l2); 804 l2->l_flag |= LW_PENDSIG; 805 lwp_unlock(l2); 806 } 807 } 808 809 lwp_lock(l); 810 l->l_stat = LSZOMB; 811 if (l->l_name != NULL) 812 strcpy(l->l_name, "(zombie)"); 813 if (l->l_flag & LW_AFFINITY) { 814 l->l_flag &= ~LW_AFFINITY; 815 } else { 816 KASSERT(l->l_affinity == NULL); 817 } 818 lwp_unlock(l); 819 p->p_nrlwps--; 820 cv_broadcast(&p->p_lwpcv); 821 if (l->l_lwpctl != NULL) 822 l->l_lwpctl->lc_curcpu = LWPCTL_CPU_EXITED; 823 mutex_exit(p->p_lock); 824 825 /* Safe without lock since LWP is in zombie state */ 826 if (l->l_affinity) { 827 kcpuset_unuse(l->l_affinity, NULL); 828 l->l_affinity = NULL; 829 } 830 831 /* 832 * We can no longer block. At this point, lwp_free() may already 833 * be gunning for us. On a multi-CPU system, we may be off p_lwps. 834 * 835 * Free MD LWP resources. 836 */ 837 #ifndef __NO_CPU_LWP_FREE 838 cpu_lwp_free(l, 0); 839 #endif 840 841 if (current) { 842 pmap_deactivate(l); 843 844 /* 845 * Release the kernel lock, and switch away into 846 * oblivion. 847 */ 848 #ifdef notyet 849 /* XXXSMP hold in lwp_userret() */ 850 KERNEL_UNLOCK_LAST(l); 851 #else 852 KERNEL_UNLOCK_ALL(l, NULL); 853 #endif 854 lwp_exit_switchaway(l); 855 } 856 } 857 858 /* 859 * Free a dead LWP's remaining resources. 860 * 861 * XXXLWP limits. 862 */ 863 void 864 lwp_free(struct lwp *l, bool recycle, bool last) 865 { 866 struct proc *p = l->l_proc; 867 struct rusage *ru; 868 ksiginfoq_t kq; 869 870 KASSERT(l != curlwp); 871 872 /* 873 * If this was not the last LWP in the process, then adjust 874 * counters and unlock. 875 */ 876 if (!last) { 877 /* 878 * Add the LWP's run time to the process' base value. 879 * This needs to co-incide with coming off p_lwps. 880 */ 881 bintime_add(&p->p_rtime, &l->l_rtime); 882 p->p_pctcpu += l->l_pctcpu; 883 ru = &p->p_stats->p_ru; 884 ruadd(ru, &l->l_ru); 885 ru->ru_nvcsw += (l->l_ncsw - l->l_nivcsw); 886 ru->ru_nivcsw += l->l_nivcsw; 887 LIST_REMOVE(l, l_sibling); 888 p->p_nlwps--; 889 p->p_nzlwps--; 890 if ((l->l_prflag & LPR_DETACHED) != 0) 891 p->p_ndlwps--; 892 893 /* 894 * Have any LWPs sleeping in lwp_wait() recheck for 895 * deadlock. 896 */ 897 cv_broadcast(&p->p_lwpcv); 898 mutex_exit(p->p_lock); 899 } 900 901 #ifdef MULTIPROCESSOR 902 /* 903 * In the unlikely event that the LWP is still on the CPU, 904 * then spin until it has switched away. We need to release 905 * all locks to avoid deadlock against interrupt handlers on 906 * the target CPU. 907 */ 908 if ((l->l_pflag & LP_RUNNING) != 0 || l->l_cpu->ci_curlwp == l) { 909 int count; 910 (void)count; /* XXXgcc */ 911 KERNEL_UNLOCK_ALL(curlwp, &count); 912 while ((l->l_pflag & LP_RUNNING) != 0 || 913 l->l_cpu->ci_curlwp == l) 914 SPINLOCK_BACKOFF_HOOK; 915 KERNEL_LOCK(count, curlwp); 916 } 917 #endif 918 919 /* 920 * Destroy the LWP's remaining signal information. 921 */ 922 ksiginfo_queue_init(&kq); 923 sigclear(&l->l_sigpend, NULL, &kq); 924 ksiginfo_queue_drain(&kq); 925 cv_destroy(&l->l_sigcv); 926 mutex_destroy(&l->l_swaplock); 927 928 /* 929 * Free the LWP's turnstile and the LWP structure itself unless the 930 * caller wants to recycle them. Also, free the scheduler specific 931 * data. 932 * 933 * We can't return turnstile0 to the pool (it didn't come from it), 934 * so if it comes up just drop it quietly and move on. 935 * 936 * We don't recycle the VM resources at this time. 937 */ 938 if (l->l_lwpctl != NULL) 939 lwp_ctl_free(l); 940 941 if (!recycle && l->l_ts != &turnstile0) 942 pool_cache_put(turnstile_cache, l->l_ts); 943 if (l->l_name != NULL) 944 kmem_free(l->l_name, MAXCOMLEN); 945 #ifndef __NO_CPU_LWP_FREE 946 cpu_lwp_free2(l); 947 #endif 948 KASSERT((l->l_flag & LW_INMEM) != 0); 949 uvm_lwp_exit(l); 950 KASSERT(SLIST_EMPTY(&l->l_pi_lenders)); 951 KASSERT(l->l_inheritedprio == -1); 952 if (!recycle) 953 pool_cache_put(lwp_cache, l); 954 } 955 956 /* 957 * Migrate the LWP to the another CPU. Unlocks the LWP. 958 */ 959 void 960 lwp_migrate(lwp_t *l, struct cpu_info *tci) 961 { 962 struct schedstate_percpu *tspc; 963 int lstat = l->l_stat; 964 965 KASSERT(lwp_locked(l, NULL)); 966 KASSERT(tci != NULL); 967 968 /* If LWP is still on the CPU, it must be handled like LSONPROC */ 969 if ((l->l_pflag & LP_RUNNING) != 0) { 970 lstat = LSONPROC; 971 } 972 973 /* 974 * The destination CPU could be changed while previous migration 975 * was not finished. 976 */ 977 if (l->l_target_cpu != NULL) { 978 l->l_target_cpu = tci; 979 lwp_unlock(l); 980 return; 981 } 982 983 /* Nothing to do if trying to migrate to the same CPU */ 984 if (l->l_cpu == tci) { 985 lwp_unlock(l); 986 return; 987 } 988 989 KASSERT(l->l_target_cpu == NULL); 990 tspc = &tci->ci_schedstate; 991 switch (lstat) { 992 case LSRUN: 993 if (l->l_flag & LW_INMEM) { 994 l->l_target_cpu = tci; 995 lwp_unlock(l); 996 return; 997 } 998 case LSIDL: 999 l->l_cpu = tci; 1000 lwp_unlock_to(l, tspc->spc_mutex); 1001 return; 1002 case LSSLEEP: 1003 l->l_cpu = tci; 1004 break; 1005 case LSSTOP: 1006 case LSSUSPENDED: 1007 l->l_cpu = tci; 1008 if (l->l_wchan == NULL) { 1009 lwp_unlock_to(l, tspc->spc_lwplock); 1010 return; 1011 } 1012 break; 1013 case LSONPROC: 1014 l->l_target_cpu = tci; 1015 spc_lock(l->l_cpu); 1016 cpu_need_resched(l->l_cpu, RESCHED_KPREEMPT); 1017 spc_unlock(l->l_cpu); 1018 break; 1019 } 1020 lwp_unlock(l); 1021 } 1022 1023 /* 1024 * Find the LWP in the process. Arguments may be zero, in such case, 1025 * the calling process and first LWP in the list will be used. 1026 * On success - returns proc locked. 1027 */ 1028 struct lwp * 1029 lwp_find2(pid_t pid, lwpid_t lid) 1030 { 1031 proc_t *p; 1032 lwp_t *l; 1033 1034 /* Find the process */ 1035 p = (pid == 0) ? curlwp->l_proc : p_find(pid, PFIND_UNLOCK_FAIL); 1036 if (p == NULL) 1037 return NULL; 1038 mutex_enter(p->p_lock); 1039 if (pid != 0) { 1040 /* Case of p_find */ 1041 mutex_exit(proc_lock); 1042 } 1043 1044 /* Find the thread */ 1045 l = (lid == 0) ? LIST_FIRST(&p->p_lwps) : lwp_find(p, lid); 1046 if (l == NULL) { 1047 mutex_exit(p->p_lock); 1048 } 1049 1050 return l; 1051 } 1052 1053 /* 1054 * Look up a live LWP within the speicifed process, and return it locked. 1055 * 1056 * Must be called with p->p_lock held. 1057 */ 1058 struct lwp * 1059 lwp_find(struct proc *p, int id) 1060 { 1061 struct lwp *l; 1062 1063 KASSERT(mutex_owned(p->p_lock)); 1064 1065 LIST_FOREACH(l, &p->p_lwps, l_sibling) { 1066 if (l->l_lid == id) 1067 break; 1068 } 1069 1070 /* 1071 * No need to lock - all of these conditions will 1072 * be visible with the process level mutex held. 1073 */ 1074 if (l != NULL && (l->l_stat == LSIDL || l->l_stat == LSZOMB)) 1075 l = NULL; 1076 1077 return l; 1078 } 1079 1080 /* 1081 * Update an LWP's cached credentials to mirror the process' master copy. 1082 * 1083 * This happens early in the syscall path, on user trap, and on LWP 1084 * creation. A long-running LWP can also voluntarily choose to update 1085 * it's credentials by calling this routine. This may be called from 1086 * LWP_CACHE_CREDS(), which checks l->l_cred != p->p_cred beforehand. 1087 */ 1088 void 1089 lwp_update_creds(struct lwp *l) 1090 { 1091 kauth_cred_t oc; 1092 struct proc *p; 1093 1094 p = l->l_proc; 1095 oc = l->l_cred; 1096 1097 mutex_enter(p->p_lock); 1098 kauth_cred_hold(p->p_cred); 1099 l->l_cred = p->p_cred; 1100 l->l_prflag &= ~LPR_CRMOD; 1101 mutex_exit(p->p_lock); 1102 if (oc != NULL) 1103 kauth_cred_free(oc); 1104 } 1105 1106 /* 1107 * Verify that an LWP is locked, and optionally verify that the lock matches 1108 * one we specify. 1109 */ 1110 int 1111 lwp_locked(struct lwp *l, kmutex_t *mtx) 1112 { 1113 kmutex_t *cur = l->l_mutex; 1114 1115 return mutex_owned(cur) && (mtx == cur || mtx == NULL); 1116 } 1117 1118 /* 1119 * Lock an LWP. 1120 */ 1121 kmutex_t * 1122 lwp_lock_retry(struct lwp *l, kmutex_t *old) 1123 { 1124 1125 /* 1126 * XXXgcc ignoring kmutex_t * volatile on i386 1127 * 1128 * gcc version 4.1.2 20061021 prerelease (NetBSD nb1 20061021) 1129 */ 1130 #if 1 1131 while (l->l_mutex != old) { 1132 #else 1133 for (;;) { 1134 #endif 1135 mutex_spin_exit(old); 1136 old = l->l_mutex; 1137 mutex_spin_enter(old); 1138 1139 /* 1140 * mutex_enter() will have posted a read barrier. Re-test 1141 * l->l_mutex. If it has changed, we need to try again. 1142 */ 1143 #if 1 1144 } 1145 #else 1146 } while (__predict_false(l->l_mutex != old)); 1147 #endif 1148 1149 return old; 1150 } 1151 1152 /* 1153 * Lend a new mutex to an LWP. The old mutex must be held. 1154 */ 1155 void 1156 lwp_setlock(struct lwp *l, kmutex_t *new) 1157 { 1158 1159 KASSERT(mutex_owned(l->l_mutex)); 1160 1161 membar_exit(); 1162 l->l_mutex = new; 1163 } 1164 1165 /* 1166 * Lend a new mutex to an LWP, and release the old mutex. The old mutex 1167 * must be held. 1168 */ 1169 void 1170 lwp_unlock_to(struct lwp *l, kmutex_t *new) 1171 { 1172 kmutex_t *old; 1173 1174 KASSERT(mutex_owned(l->l_mutex)); 1175 1176 old = l->l_mutex; 1177 membar_exit(); 1178 l->l_mutex = new; 1179 mutex_spin_exit(old); 1180 } 1181 1182 /* 1183 * Acquire a new mutex, and donate it to an LWP. The LWP must already be 1184 * locked. 1185 */ 1186 void 1187 lwp_relock(struct lwp *l, kmutex_t *new) 1188 { 1189 kmutex_t *old; 1190 1191 KASSERT(mutex_owned(l->l_mutex)); 1192 1193 old = l->l_mutex; 1194 if (old != new) { 1195 mutex_spin_enter(new); 1196 l->l_mutex = new; 1197 mutex_spin_exit(old); 1198 } 1199 } 1200 1201 int 1202 lwp_trylock(struct lwp *l) 1203 { 1204 kmutex_t *old; 1205 1206 for (;;) { 1207 if (!mutex_tryenter(old = l->l_mutex)) 1208 return 0; 1209 if (__predict_true(l->l_mutex == old)) 1210 return 1; 1211 mutex_spin_exit(old); 1212 } 1213 } 1214 1215 u_int 1216 lwp_unsleep(lwp_t *l, bool cleanup) 1217 { 1218 1219 KASSERT(mutex_owned(l->l_mutex)); 1220 1221 return (*l->l_syncobj->sobj_unsleep)(l, cleanup); 1222 } 1223 1224 1225 /* 1226 * Handle exceptions for mi_userret(). Called if a member of LW_USERRET is 1227 * set. 1228 */ 1229 void 1230 lwp_userret(struct lwp *l) 1231 { 1232 struct proc *p; 1233 void (*hook)(void); 1234 int sig; 1235 1236 KASSERT(l == curlwp); 1237 KASSERT(l->l_stat == LSONPROC); 1238 p = l->l_proc; 1239 1240 #ifndef __HAVE_FAST_SOFTINTS 1241 /* Run pending soft interrupts. */ 1242 if (l->l_cpu->ci_data.cpu_softints != 0) 1243 softint_overlay(); 1244 #endif 1245 1246 #ifdef KERN_SA 1247 /* Generate UNBLOCKED upcall if needed */ 1248 if (l->l_flag & LW_SA_BLOCKING) { 1249 sa_unblock_userret(l); 1250 /* NOTREACHED */ 1251 } 1252 #endif 1253 1254 /* 1255 * It should be safe to do this read unlocked on a multiprocessor 1256 * system.. 1257 * 1258 * LW_SA_UPCALL will be handled after the while() loop, so don't 1259 * consider it now. 1260 */ 1261 while ((l->l_flag & (LW_USERRET & ~(LW_SA_UPCALL))) != 0) { 1262 /* 1263 * Process pending signals first, unless the process 1264 * is dumping core or exiting, where we will instead 1265 * enter the LW_WSUSPEND case below. 1266 */ 1267 if ((l->l_flag & (LW_PENDSIG | LW_WCORE | LW_WEXIT)) == 1268 LW_PENDSIG) { 1269 mutex_enter(p->p_lock); 1270 while ((sig = issignal(l)) != 0) 1271 postsig(sig); 1272 mutex_exit(p->p_lock); 1273 } 1274 1275 /* 1276 * Core-dump or suspend pending. 1277 * 1278 * In case of core dump, suspend ourselves, so that the 1279 * kernel stack and therefore the userland registers saved 1280 * in the trapframe are around for coredump() to write them 1281 * out. We issue a wakeup on p->p_lwpcv so that sigexit() 1282 * will write the core file out once all other LWPs are 1283 * suspended. 1284 */ 1285 if ((l->l_flag & LW_WSUSPEND) != 0) { 1286 mutex_enter(p->p_lock); 1287 p->p_nrlwps--; 1288 cv_broadcast(&p->p_lwpcv); 1289 lwp_lock(l); 1290 l->l_stat = LSSUSPENDED; 1291 lwp_unlock(l); 1292 mutex_exit(p->p_lock); 1293 lwp_lock(l); 1294 mi_switch(l); 1295 } 1296 1297 /* Process is exiting. */ 1298 if ((l->l_flag & LW_WEXIT) != 0) { 1299 lwp_exit(l); 1300 KASSERT(0); 1301 /* NOTREACHED */ 1302 } 1303 1304 /* Call userret hook; used by Linux emulation. */ 1305 if ((l->l_flag & LW_WUSERRET) != 0) { 1306 lwp_lock(l); 1307 l->l_flag &= ~LW_WUSERRET; 1308 lwp_unlock(l); 1309 hook = p->p_userret; 1310 p->p_userret = NULL; 1311 (*hook)(); 1312 } 1313 } 1314 1315 #ifdef KERN_SA 1316 /* 1317 * Timer events are handled specially. We only try once to deliver 1318 * pending timer upcalls; if if fails, we can try again on the next 1319 * loop around. If we need to re-enter lwp_userret(), MD code will 1320 * bounce us back here through the trap path after we return. 1321 */ 1322 if (p->p_timerpend) 1323 timerupcall(l); 1324 if (l->l_flag & LW_SA_UPCALL) 1325 sa_upcall_userret(l); 1326 #endif /* KERN_SA */ 1327 } 1328 1329 /* 1330 * Force an LWP to enter the kernel, to take a trip through lwp_userret(). 1331 */ 1332 void 1333 lwp_need_userret(struct lwp *l) 1334 { 1335 KASSERT(lwp_locked(l, NULL)); 1336 1337 /* 1338 * Since the tests in lwp_userret() are done unlocked, make sure 1339 * that the condition will be seen before forcing the LWP to enter 1340 * kernel mode. 1341 */ 1342 membar_producer(); 1343 cpu_signotify(l); 1344 } 1345 1346 /* 1347 * Add one reference to an LWP. This will prevent the LWP from 1348 * exiting, thus keep the lwp structure and PCB around to inspect. 1349 */ 1350 void 1351 lwp_addref(struct lwp *l) 1352 { 1353 1354 KASSERT(mutex_owned(l->l_proc->p_lock)); 1355 KASSERT(l->l_stat != LSZOMB); 1356 KASSERT(l->l_refcnt != 0); 1357 1358 l->l_refcnt++; 1359 } 1360 1361 /* 1362 * Remove one reference to an LWP. If this is the last reference, 1363 * then we must finalize the LWP's death. 1364 */ 1365 void 1366 lwp_delref(struct lwp *l) 1367 { 1368 struct proc *p = l->l_proc; 1369 1370 mutex_enter(p->p_lock); 1371 KASSERT(l->l_stat != LSZOMB); 1372 KASSERT(l->l_refcnt > 0); 1373 if (--l->l_refcnt == 0) 1374 cv_broadcast(&p->p_lwpcv); 1375 mutex_exit(p->p_lock); 1376 } 1377 1378 /* 1379 * Drain all references to the current LWP. 1380 */ 1381 void 1382 lwp_drainrefs(struct lwp *l) 1383 { 1384 struct proc *p = l->l_proc; 1385 1386 KASSERT(mutex_owned(p->p_lock)); 1387 KASSERT(l->l_refcnt != 0); 1388 1389 l->l_refcnt--; 1390 while (l->l_refcnt != 0) 1391 cv_wait(&p->p_lwpcv, p->p_lock); 1392 } 1393 1394 /* 1395 * Return true if the specified LWP is 'alive'. Only p->p_lock need 1396 * be held. 1397 */ 1398 bool 1399 lwp_alive(lwp_t *l) 1400 { 1401 1402 KASSERT(mutex_owned(l->l_proc->p_lock)); 1403 1404 switch (l->l_stat) { 1405 case LSSLEEP: 1406 case LSRUN: 1407 case LSONPROC: 1408 case LSSTOP: 1409 case LSSUSPENDED: 1410 return true; 1411 default: 1412 return false; 1413 } 1414 } 1415 1416 /* 1417 * Return first live LWP in the process. 1418 */ 1419 lwp_t * 1420 lwp_find_first(proc_t *p) 1421 { 1422 lwp_t *l; 1423 1424 KASSERT(mutex_owned(p->p_lock)); 1425 1426 LIST_FOREACH(l, &p->p_lwps, l_sibling) { 1427 if (lwp_alive(l)) { 1428 return l; 1429 } 1430 } 1431 1432 return NULL; 1433 } 1434 1435 /* 1436 * lwp_specific_key_create -- 1437 * Create a key for subsystem lwp-specific data. 1438 */ 1439 int 1440 lwp_specific_key_create(specificdata_key_t *keyp, specificdata_dtor_t dtor) 1441 { 1442 1443 return (specificdata_key_create(lwp_specificdata_domain, keyp, dtor)); 1444 } 1445 1446 /* 1447 * lwp_specific_key_delete -- 1448 * Delete a key for subsystem lwp-specific data. 1449 */ 1450 void 1451 lwp_specific_key_delete(specificdata_key_t key) 1452 { 1453 1454 specificdata_key_delete(lwp_specificdata_domain, key); 1455 } 1456 1457 /* 1458 * lwp_initspecific -- 1459 * Initialize an LWP's specificdata container. 1460 */ 1461 void 1462 lwp_initspecific(struct lwp *l) 1463 { 1464 int error; 1465 1466 error = specificdata_init(lwp_specificdata_domain, &l->l_specdataref); 1467 KASSERT(error == 0); 1468 } 1469 1470 /* 1471 * lwp_finispecific -- 1472 * Finalize an LWP's specificdata container. 1473 */ 1474 void 1475 lwp_finispecific(struct lwp *l) 1476 { 1477 1478 specificdata_fini(lwp_specificdata_domain, &l->l_specdataref); 1479 } 1480 1481 /* 1482 * lwp_getspecific -- 1483 * Return lwp-specific data corresponding to the specified key. 1484 * 1485 * Note: LWP specific data is NOT INTERLOCKED. An LWP should access 1486 * only its OWN SPECIFIC DATA. If it is necessary to access another 1487 * LWP's specifc data, care must be taken to ensure that doing so 1488 * would not cause internal data structure inconsistency (i.e. caller 1489 * can guarantee that the target LWP is not inside an lwp_getspecific() 1490 * or lwp_setspecific() call). 1491 */ 1492 void * 1493 lwp_getspecific(specificdata_key_t key) 1494 { 1495 1496 return (specificdata_getspecific_unlocked(lwp_specificdata_domain, 1497 &curlwp->l_specdataref, key)); 1498 } 1499 1500 void * 1501 _lwp_getspecific_by_lwp(struct lwp *l, specificdata_key_t key) 1502 { 1503 1504 return (specificdata_getspecific_unlocked(lwp_specificdata_domain, 1505 &l->l_specdataref, key)); 1506 } 1507 1508 /* 1509 * lwp_setspecific -- 1510 * Set lwp-specific data corresponding to the specified key. 1511 */ 1512 void 1513 lwp_setspecific(specificdata_key_t key, void *data) 1514 { 1515 1516 specificdata_setspecific(lwp_specificdata_domain, 1517 &curlwp->l_specdataref, key, data); 1518 } 1519 1520 /* 1521 * Allocate a new lwpctl structure for a user LWP. 1522 */ 1523 int 1524 lwp_ctl_alloc(vaddr_t *uaddr) 1525 { 1526 lcproc_t *lp; 1527 u_int bit, i, offset; 1528 struct uvm_object *uao; 1529 int error; 1530 lcpage_t *lcp; 1531 proc_t *p; 1532 lwp_t *l; 1533 1534 l = curlwp; 1535 p = l->l_proc; 1536 1537 if (l->l_lcpage != NULL) { 1538 lcp = l->l_lcpage; 1539 *uaddr = lcp->lcp_uaddr + (vaddr_t)l->l_lwpctl - lcp->lcp_kaddr; 1540 return (EINVAL); 1541 } 1542 1543 /* First time around, allocate header structure for the process. */ 1544 if ((lp = p->p_lwpctl) == NULL) { 1545 lp = kmem_alloc(sizeof(*lp), KM_SLEEP); 1546 mutex_init(&lp->lp_lock, MUTEX_DEFAULT, IPL_NONE); 1547 lp->lp_uao = NULL; 1548 TAILQ_INIT(&lp->lp_pages); 1549 mutex_enter(p->p_lock); 1550 if (p->p_lwpctl == NULL) { 1551 p->p_lwpctl = lp; 1552 mutex_exit(p->p_lock); 1553 } else { 1554 mutex_exit(p->p_lock); 1555 mutex_destroy(&lp->lp_lock); 1556 kmem_free(lp, sizeof(*lp)); 1557 lp = p->p_lwpctl; 1558 } 1559 } 1560 1561 /* 1562 * Set up an anonymous memory region to hold the shared pages. 1563 * Map them into the process' address space. The user vmspace 1564 * gets the first reference on the UAO. 1565 */ 1566 mutex_enter(&lp->lp_lock); 1567 if (lp->lp_uao == NULL) { 1568 lp->lp_uao = uao_create(LWPCTL_UAREA_SZ, 0); 1569 lp->lp_cur = 0; 1570 lp->lp_max = LWPCTL_UAREA_SZ; 1571 lp->lp_uva = p->p_emul->e_vm_default_addr(p, 1572 (vaddr_t)p->p_vmspace->vm_daddr, LWPCTL_UAREA_SZ); 1573 error = uvm_map(&p->p_vmspace->vm_map, &lp->lp_uva, 1574 LWPCTL_UAREA_SZ, lp->lp_uao, 0, 0, UVM_MAPFLAG(UVM_PROT_RW, 1575 UVM_PROT_RW, UVM_INH_NONE, UVM_ADV_NORMAL, 0)); 1576 if (error != 0) { 1577 uao_detach(lp->lp_uao); 1578 lp->lp_uao = NULL; 1579 mutex_exit(&lp->lp_lock); 1580 return error; 1581 } 1582 } 1583 1584 /* Get a free block and allocate for this LWP. */ 1585 TAILQ_FOREACH(lcp, &lp->lp_pages, lcp_chain) { 1586 if (lcp->lcp_nfree != 0) 1587 break; 1588 } 1589 if (lcp == NULL) { 1590 /* Nothing available - try to set up a free page. */ 1591 if (lp->lp_cur == lp->lp_max) { 1592 mutex_exit(&lp->lp_lock); 1593 return ENOMEM; 1594 } 1595 lcp = kmem_alloc(LWPCTL_LCPAGE_SZ, KM_SLEEP); 1596 if (lcp == NULL) { 1597 mutex_exit(&lp->lp_lock); 1598 return ENOMEM; 1599 } 1600 /* 1601 * Wire the next page down in kernel space. Since this 1602 * is a new mapping, we must add a reference. 1603 */ 1604 uao = lp->lp_uao; 1605 (*uao->pgops->pgo_reference)(uao); 1606 lcp->lcp_kaddr = vm_map_min(kernel_map); 1607 error = uvm_map(kernel_map, &lcp->lcp_kaddr, PAGE_SIZE, 1608 uao, lp->lp_cur, PAGE_SIZE, 1609 UVM_MAPFLAG(UVM_PROT_RW, UVM_PROT_RW, 1610 UVM_INH_NONE, UVM_ADV_RANDOM, 0)); 1611 if (error != 0) { 1612 mutex_exit(&lp->lp_lock); 1613 kmem_free(lcp, LWPCTL_LCPAGE_SZ); 1614 (*uao->pgops->pgo_detach)(uao); 1615 return error; 1616 } 1617 error = uvm_map_pageable(kernel_map, lcp->lcp_kaddr, 1618 lcp->lcp_kaddr + PAGE_SIZE, FALSE, 0); 1619 if (error != 0) { 1620 mutex_exit(&lp->lp_lock); 1621 uvm_unmap(kernel_map, lcp->lcp_kaddr, 1622 lcp->lcp_kaddr + PAGE_SIZE); 1623 kmem_free(lcp, LWPCTL_LCPAGE_SZ); 1624 return error; 1625 } 1626 /* Prepare the page descriptor and link into the list. */ 1627 lcp->lcp_uaddr = lp->lp_uva + lp->lp_cur; 1628 lp->lp_cur += PAGE_SIZE; 1629 lcp->lcp_nfree = LWPCTL_PER_PAGE; 1630 lcp->lcp_rotor = 0; 1631 memset(lcp->lcp_bitmap, 0xff, LWPCTL_BITMAP_SZ); 1632 TAILQ_INSERT_HEAD(&lp->lp_pages, lcp, lcp_chain); 1633 } 1634 for (i = lcp->lcp_rotor; lcp->lcp_bitmap[i] == 0;) { 1635 if (++i >= LWPCTL_BITMAP_ENTRIES) 1636 i = 0; 1637 } 1638 bit = ffs(lcp->lcp_bitmap[i]) - 1; 1639 lcp->lcp_bitmap[i] ^= (1 << bit); 1640 lcp->lcp_rotor = i; 1641 lcp->lcp_nfree--; 1642 l->l_lcpage = lcp; 1643 offset = (i << 5) + bit; 1644 l->l_lwpctl = (lwpctl_t *)lcp->lcp_kaddr + offset; 1645 *uaddr = lcp->lcp_uaddr + offset * sizeof(lwpctl_t); 1646 mutex_exit(&lp->lp_lock); 1647 1648 KPREEMPT_DISABLE(l); 1649 l->l_lwpctl->lc_curcpu = (int)curcpu()->ci_data.cpu_index; 1650 KPREEMPT_ENABLE(l); 1651 1652 return 0; 1653 } 1654 1655 /* 1656 * Free an lwpctl structure back to the per-process list. 1657 */ 1658 void 1659 lwp_ctl_free(lwp_t *l) 1660 { 1661 lcproc_t *lp; 1662 lcpage_t *lcp; 1663 u_int map, offset; 1664 1665 lp = l->l_proc->p_lwpctl; 1666 KASSERT(lp != NULL); 1667 1668 lcp = l->l_lcpage; 1669 offset = (u_int)((lwpctl_t *)l->l_lwpctl - (lwpctl_t *)lcp->lcp_kaddr); 1670 KASSERT(offset < LWPCTL_PER_PAGE); 1671 1672 mutex_enter(&lp->lp_lock); 1673 lcp->lcp_nfree++; 1674 map = offset >> 5; 1675 lcp->lcp_bitmap[map] |= (1 << (offset & 31)); 1676 if (lcp->lcp_bitmap[lcp->lcp_rotor] == 0) 1677 lcp->lcp_rotor = map; 1678 if (TAILQ_FIRST(&lp->lp_pages)->lcp_nfree == 0) { 1679 TAILQ_REMOVE(&lp->lp_pages, lcp, lcp_chain); 1680 TAILQ_INSERT_HEAD(&lp->lp_pages, lcp, lcp_chain); 1681 } 1682 mutex_exit(&lp->lp_lock); 1683 } 1684 1685 /* 1686 * Process is exiting; tear down lwpctl state. This can only be safely 1687 * called by the last LWP in the process. 1688 */ 1689 void 1690 lwp_ctl_exit(void) 1691 { 1692 lcpage_t *lcp, *next; 1693 lcproc_t *lp; 1694 proc_t *p; 1695 lwp_t *l; 1696 1697 l = curlwp; 1698 l->l_lwpctl = NULL; 1699 l->l_lcpage = NULL; 1700 p = l->l_proc; 1701 lp = p->p_lwpctl; 1702 1703 KASSERT(lp != NULL); 1704 KASSERT(p->p_nlwps == 1); 1705 1706 for (lcp = TAILQ_FIRST(&lp->lp_pages); lcp != NULL; lcp = next) { 1707 next = TAILQ_NEXT(lcp, lcp_chain); 1708 uvm_unmap(kernel_map, lcp->lcp_kaddr, 1709 lcp->lcp_kaddr + PAGE_SIZE); 1710 kmem_free(lcp, LWPCTL_LCPAGE_SZ); 1711 } 1712 1713 if (lp->lp_uao != NULL) { 1714 uvm_unmap(&p->p_vmspace->vm_map, lp->lp_uva, 1715 lp->lp_uva + LWPCTL_UAREA_SZ); 1716 } 1717 1718 mutex_destroy(&lp->lp_lock); 1719 kmem_free(lp, sizeof(*lp)); 1720 p->p_lwpctl = NULL; 1721 } 1722 1723 #if defined(DDB) 1724 void 1725 lwp_whatis(uintptr_t addr, void (*pr)(const char *, ...)) 1726 { 1727 lwp_t *l; 1728 1729 LIST_FOREACH(l, &alllwp, l_list) { 1730 uintptr_t stack = (uintptr_t)KSTACK_LOWEST_ADDR(l); 1731 1732 if (addr < stack || stack + KSTACK_SIZE <= addr) { 1733 continue; 1734 } 1735 (*pr)("%p is %p+%zu, LWP %p's stack\n", 1736 (void *)addr, (void *)stack, 1737 (size_t)(addr - stack), l); 1738 } 1739 } 1740 #endif /* defined(DDB) */ 1741