1 /* $NetBSD: kern_lwp.c,v 1.140 2010/02/23 22:19:27 darran Exp $ */ 2 3 /*- 4 * Copyright (c) 2001, 2006, 2007, 2008, 2009 The NetBSD Foundation, Inc. 5 * All rights reserved. 6 * 7 * This code is derived from software contributed to The NetBSD Foundation 8 * by Nathan J. Williams, and Andrew Doran. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS 20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 29 * POSSIBILITY OF SUCH DAMAGE. 30 */ 31 32 /* 33 * Overview 34 * 35 * Lightweight processes (LWPs) are the basic unit or thread of 36 * execution within the kernel. The core state of an LWP is described 37 * by "struct lwp", also known as lwp_t. 38 * 39 * Each LWP is contained within a process (described by "struct proc"), 40 * Every process contains at least one LWP, but may contain more. The 41 * process describes attributes shared among all of its LWPs such as a 42 * private address space, global execution state (stopped, active, 43 * zombie, ...), signal disposition and so on. On a multiprocessor 44 * machine, multiple LWPs be executing concurrently in the kernel. 45 * 46 * Execution states 47 * 48 * At any given time, an LWP has overall state that is described by 49 * lwp::l_stat. The states are broken into two sets below. The first 50 * set is guaranteed to represent the absolute, current state of the 51 * LWP: 52 * 53 * LSONPROC 54 * 55 * On processor: the LWP is executing on a CPU, either in the 56 * kernel or in user space. 57 * 58 * LSRUN 59 * 60 * Runnable: the LWP is parked on a run queue, and may soon be 61 * chosen to run by an idle processor, or by a processor that 62 * has been asked to preempt a currently runnning but lower 63 * priority LWP. 64 * 65 * LSIDL 66 * 67 * Idle: the LWP has been created but has not yet executed, 68 * or it has ceased executing a unit of work and is waiting 69 * to be started again. 70 * 71 * LSSUSPENDED: 72 * 73 * Suspended: the LWP has had its execution suspended by 74 * another LWP in the same process using the _lwp_suspend() 75 * system call. User-level LWPs also enter the suspended 76 * state when the system is shutting down. 77 * 78 * The second set represent a "statement of intent" on behalf of the 79 * LWP. The LWP may in fact be executing on a processor, may be 80 * sleeping or idle. It is expected to take the necessary action to 81 * stop executing or become "running" again within a short timeframe. 82 * The LP_RUNNING flag in lwp::l_pflag indicates that an LWP is running. 83 * Importantly, it indicates that its state is tied to a CPU. 84 * 85 * LSZOMB: 86 * 87 * Dead or dying: the LWP has released most of its resources 88 * and is about to switch away into oblivion, or has already 89 * switched away. When it switches away, its few remaining 90 * resources can be collected. 91 * 92 * LSSLEEP: 93 * 94 * Sleeping: the LWP has entered itself onto a sleep queue, and 95 * has switched away or will switch away shortly to allow other 96 * LWPs to run on the CPU. 97 * 98 * LSSTOP: 99 * 100 * Stopped: the LWP has been stopped as a result of a job 101 * control signal, or as a result of the ptrace() interface. 102 * 103 * Stopped LWPs may run briefly within the kernel to handle 104 * signals that they receive, but will not return to user space 105 * until their process' state is changed away from stopped. 106 * 107 * Single LWPs within a process can not be set stopped 108 * selectively: all actions that can stop or continue LWPs 109 * occur at the process level. 110 * 111 * State transitions 112 * 113 * Note that the LSSTOP state may only be set when returning to 114 * user space in userret(), or when sleeping interruptably. The 115 * LSSUSPENDED state may only be set in userret(). Before setting 116 * those states, we try to ensure that the LWPs will release all 117 * locks that they hold, and at a minimum try to ensure that the 118 * LWP can be set runnable again by a signal. 119 * 120 * LWPs may transition states in the following ways: 121 * 122 * RUN -------> ONPROC ONPROC -----> RUN 123 * > SLEEP 124 * > STOPPED 125 * > SUSPENDED 126 * > ZOMB 127 * > IDL (special cases) 128 * 129 * STOPPED ---> RUN SUSPENDED --> RUN 130 * > SLEEP 131 * 132 * SLEEP -----> ONPROC IDL --------> RUN 133 * > RUN > SUSPENDED 134 * > STOPPED > STOPPED 135 * > ONPROC (special cases) 136 * 137 * Some state transitions are only possible with kernel threads (eg 138 * ONPROC -> IDL) and happen under tightly controlled circumstances 139 * free of unwanted side effects. 140 * 141 * Migration 142 * 143 * Migration of threads from one CPU to another could be performed 144 * internally by the scheduler via sched_takecpu() or sched_catchlwp() 145 * functions. The universal lwp_migrate() function should be used for 146 * any other cases. Subsystems in the kernel must be aware that CPU 147 * of LWP may change, while it is not locked. 148 * 149 * Locking 150 * 151 * The majority of fields in 'struct lwp' are covered by a single, 152 * general spin lock pointed to by lwp::l_mutex. The locks covering 153 * each field are documented in sys/lwp.h. 154 * 155 * State transitions must be made with the LWP's general lock held, 156 * and may cause the LWP's lock pointer to change. Manipulation of 157 * the general lock is not performed directly, but through calls to 158 * lwp_lock(), lwp_relock() and similar. 159 * 160 * States and their associated locks: 161 * 162 * LSONPROC, LSZOMB: 163 * 164 * Always covered by spc_lwplock, which protects running LWPs. 165 * This is a per-CPU lock and matches lwp::l_cpu. 166 * 167 * LSIDL, LSRUN: 168 * 169 * Always covered by spc_mutex, which protects the run queues. 170 * This is a per-CPU lock and matches lwp::l_cpu. 171 * 172 * LSSLEEP: 173 * 174 * Covered by a lock associated with the sleep queue that the 175 * LWP resides on. Matches lwp::l_sleepq::sq_mutex. 176 * 177 * LSSTOP, LSSUSPENDED: 178 * 179 * If the LWP was previously sleeping (l_wchan != NULL), then 180 * l_mutex references the sleep queue lock. If the LWP was 181 * runnable or on the CPU when halted, or has been removed from 182 * the sleep queue since halted, then the lock is spc_lwplock. 183 * 184 * The lock order is as follows: 185 * 186 * spc::spc_lwplock -> 187 * sleeptab::st_mutex -> 188 * tschain_t::tc_mutex -> 189 * spc::spc_mutex 190 * 191 * Each process has an scheduler state lock (proc::p_lock), and a 192 * number of counters on LWPs and their states: p_nzlwps, p_nrlwps, and 193 * so on. When an LWP is to be entered into or removed from one of the 194 * following states, p_lock must be held and the process wide counters 195 * adjusted: 196 * 197 * LSIDL, LSZOMB, LSSTOP, LSSUSPENDED 198 * 199 * (But not always for kernel threads. There are some special cases 200 * as mentioned above. See kern_softint.c.) 201 * 202 * Note that an LWP is considered running or likely to run soon if in 203 * one of the following states. This affects the value of p_nrlwps: 204 * 205 * LSRUN, LSONPROC, LSSLEEP 206 * 207 * p_lock does not need to be held when transitioning among these 208 * three states, hence p_lock is rarely taken for state transitions. 209 */ 210 211 #include <sys/cdefs.h> 212 __KERNEL_RCSID(0, "$NetBSD: kern_lwp.c,v 1.140 2010/02/23 22:19:27 darran Exp $"); 213 214 #include "opt_ddb.h" 215 #include "opt_lockdebug.h" 216 #include "opt_sa.h" 217 #include "opt_dtrace.h" 218 219 #define _LWP_API_PRIVATE 220 221 #include <sys/param.h> 222 #include <sys/systm.h> 223 #include <sys/cpu.h> 224 #include <sys/pool.h> 225 #include <sys/proc.h> 226 #include <sys/sa.h> 227 #include <sys/savar.h> 228 #include <sys/syscallargs.h> 229 #include <sys/syscall_stats.h> 230 #include <sys/kauth.h> 231 #include <sys/sleepq.h> 232 #include <sys/lockdebug.h> 233 #include <sys/kmem.h> 234 #include <sys/pset.h> 235 #include <sys/intr.h> 236 #include <sys/lwpctl.h> 237 #include <sys/atomic.h> 238 #include <sys/filedesc.h> 239 #include <sys/dtrace_bsd.h> 240 241 #include <uvm/uvm_extern.h> 242 #include <uvm/uvm_object.h> 243 244 struct lwplist alllwp = LIST_HEAD_INITIALIZER(alllwp); 245 246 struct pool lwp_uc_pool; 247 248 static pool_cache_t lwp_cache; 249 static specificdata_domain_t lwp_specificdata_domain; 250 251 void 252 lwpinit(void) 253 { 254 255 pool_init(&lwp_uc_pool, sizeof(ucontext_t), 0, 0, 0, "lwpucpl", 256 &pool_allocator_nointr, IPL_NONE); 257 lwp_specificdata_domain = specificdata_domain_create(); 258 KASSERT(lwp_specificdata_domain != NULL); 259 lwp_sys_init(); 260 lwp_cache = pool_cache_init(sizeof(lwp_t), MIN_LWP_ALIGNMENT, 0, 0, 261 "lwppl", NULL, IPL_NONE, NULL, NULL, NULL); 262 } 263 264 /* 265 * Set an suspended. 266 * 267 * Must be called with p_lock held, and the LWP locked. Will unlock the 268 * LWP before return. 269 */ 270 int 271 lwp_suspend(struct lwp *curl, struct lwp *t) 272 { 273 int error; 274 275 KASSERT(mutex_owned(t->l_proc->p_lock)); 276 KASSERT(lwp_locked(t, NULL)); 277 278 KASSERT(curl != t || curl->l_stat == LSONPROC); 279 280 /* 281 * If the current LWP has been told to exit, we must not suspend anyone 282 * else or deadlock could occur. We won't return to userspace. 283 */ 284 if ((curl->l_flag & (LW_WEXIT | LW_WCORE)) != 0) { 285 lwp_unlock(t); 286 return (EDEADLK); 287 } 288 289 error = 0; 290 291 switch (t->l_stat) { 292 case LSRUN: 293 case LSONPROC: 294 t->l_flag |= LW_WSUSPEND; 295 lwp_need_userret(t); 296 lwp_unlock(t); 297 break; 298 299 case LSSLEEP: 300 t->l_flag |= LW_WSUSPEND; 301 302 /* 303 * Kick the LWP and try to get it to the kernel boundary 304 * so that it will release any locks that it holds. 305 * setrunnable() will release the lock. 306 */ 307 if ((t->l_flag & LW_SINTR) != 0) 308 setrunnable(t); 309 else 310 lwp_unlock(t); 311 break; 312 313 case LSSUSPENDED: 314 lwp_unlock(t); 315 break; 316 317 case LSSTOP: 318 t->l_flag |= LW_WSUSPEND; 319 setrunnable(t); 320 break; 321 322 case LSIDL: 323 case LSZOMB: 324 error = EINTR; /* It's what Solaris does..... */ 325 lwp_unlock(t); 326 break; 327 } 328 329 return (error); 330 } 331 332 /* 333 * Restart a suspended LWP. 334 * 335 * Must be called with p_lock held, and the LWP locked. Will unlock the 336 * LWP before return. 337 */ 338 void 339 lwp_continue(struct lwp *l) 340 { 341 342 KASSERT(mutex_owned(l->l_proc->p_lock)); 343 KASSERT(lwp_locked(l, NULL)); 344 345 /* If rebooting or not suspended, then just bail out. */ 346 if ((l->l_flag & LW_WREBOOT) != 0) { 347 lwp_unlock(l); 348 return; 349 } 350 351 l->l_flag &= ~LW_WSUSPEND; 352 353 if (l->l_stat != LSSUSPENDED) { 354 lwp_unlock(l); 355 return; 356 } 357 358 /* setrunnable() will release the lock. */ 359 setrunnable(l); 360 } 361 362 /* 363 * Wait for an LWP within the current process to exit. If 'lid' is 364 * non-zero, we are waiting for a specific LWP. 365 * 366 * Must be called with p->p_lock held. 367 */ 368 int 369 lwp_wait1(struct lwp *l, lwpid_t lid, lwpid_t *departed, int flags) 370 { 371 struct proc *p = l->l_proc; 372 struct lwp *l2; 373 int nfound, error; 374 lwpid_t curlid; 375 bool exiting; 376 377 KASSERT(mutex_owned(p->p_lock)); 378 379 p->p_nlwpwait++; 380 l->l_waitingfor = lid; 381 curlid = l->l_lid; 382 exiting = ((flags & LWPWAIT_EXITCONTROL) != 0); 383 384 for (;;) { 385 /* 386 * Avoid a race between exit1() and sigexit(): if the 387 * process is dumping core, then we need to bail out: call 388 * into lwp_userret() where we will be suspended until the 389 * deed is done. 390 */ 391 if ((p->p_sflag & PS_WCORE) != 0) { 392 mutex_exit(p->p_lock); 393 lwp_userret(l); 394 #ifdef DIAGNOSTIC 395 panic("lwp_wait1"); 396 #endif 397 /* NOTREACHED */ 398 } 399 400 /* 401 * First off, drain any detached LWP that is waiting to be 402 * reaped. 403 */ 404 while ((l2 = p->p_zomblwp) != NULL) { 405 p->p_zomblwp = NULL; 406 lwp_free(l2, false, false);/* releases proc mutex */ 407 mutex_enter(p->p_lock); 408 } 409 410 /* 411 * Now look for an LWP to collect. If the whole process is 412 * exiting, count detached LWPs as eligible to be collected, 413 * but don't drain them here. 414 */ 415 nfound = 0; 416 error = 0; 417 LIST_FOREACH(l2, &p->p_lwps, l_sibling) { 418 /* 419 * If a specific wait and the target is waiting on 420 * us, then avoid deadlock. This also traps LWPs 421 * that try to wait on themselves. 422 * 423 * Note that this does not handle more complicated 424 * cycles, like: t1 -> t2 -> t3 -> t1. The process 425 * can still be killed so it is not a major problem. 426 */ 427 if (l2->l_lid == lid && l2->l_waitingfor == curlid) { 428 error = EDEADLK; 429 break; 430 } 431 if (l2 == l) 432 continue; 433 if ((l2->l_prflag & LPR_DETACHED) != 0) { 434 nfound += exiting; 435 continue; 436 } 437 if (lid != 0) { 438 if (l2->l_lid != lid) 439 continue; 440 /* 441 * Mark this LWP as the first waiter, if there 442 * is no other. 443 */ 444 if (l2->l_waiter == 0) 445 l2->l_waiter = curlid; 446 } else if (l2->l_waiter != 0) { 447 /* 448 * It already has a waiter - so don't 449 * collect it. If the waiter doesn't 450 * grab it we'll get another chance 451 * later. 452 */ 453 nfound++; 454 continue; 455 } 456 nfound++; 457 458 /* No need to lock the LWP in order to see LSZOMB. */ 459 if (l2->l_stat != LSZOMB) 460 continue; 461 462 /* 463 * We're no longer waiting. Reset the "first waiter" 464 * pointer on the target, in case it was us. 465 */ 466 l->l_waitingfor = 0; 467 l2->l_waiter = 0; 468 p->p_nlwpwait--; 469 if (departed) 470 *departed = l2->l_lid; 471 sched_lwp_collect(l2); 472 473 /* lwp_free() releases the proc lock. */ 474 lwp_free(l2, false, false); 475 mutex_enter(p->p_lock); 476 return 0; 477 } 478 479 if (error != 0) 480 break; 481 if (nfound == 0) { 482 error = ESRCH; 483 break; 484 } 485 486 /* 487 * The kernel is careful to ensure that it can not deadlock 488 * when exiting - just keep waiting. 489 */ 490 if (exiting) { 491 KASSERT(p->p_nlwps > 1); 492 cv_wait(&p->p_lwpcv, p->p_lock); 493 continue; 494 } 495 496 /* 497 * If all other LWPs are waiting for exits or suspends 498 * and the supply of zombies and potential zombies is 499 * exhausted, then we are about to deadlock. 500 * 501 * If the process is exiting (and this LWP is not the one 502 * that is coordinating the exit) then bail out now. 503 */ 504 if ((p->p_sflag & PS_WEXIT) != 0 || 505 p->p_nrlwps + p->p_nzlwps - p->p_ndlwps <= p->p_nlwpwait) { 506 error = EDEADLK; 507 break; 508 } 509 510 /* 511 * Sit around and wait for something to happen. We'll be 512 * awoken if any of the conditions examined change: if an 513 * LWP exits, is collected, or is detached. 514 */ 515 if ((error = cv_wait_sig(&p->p_lwpcv, p->p_lock)) != 0) 516 break; 517 } 518 519 /* 520 * We didn't find any LWPs to collect, we may have received a 521 * signal, or some other condition has caused us to bail out. 522 * 523 * If waiting on a specific LWP, clear the waiters marker: some 524 * other LWP may want it. Then, kick all the remaining waiters 525 * so that they can re-check for zombies and for deadlock. 526 */ 527 if (lid != 0) { 528 LIST_FOREACH(l2, &p->p_lwps, l_sibling) { 529 if (l2->l_lid == lid) { 530 if (l2->l_waiter == curlid) 531 l2->l_waiter = 0; 532 break; 533 } 534 } 535 } 536 p->p_nlwpwait--; 537 l->l_waitingfor = 0; 538 cv_broadcast(&p->p_lwpcv); 539 540 return error; 541 } 542 543 /* 544 * Create a new LWP within process 'p2', using LWP 'l1' as a template. 545 * The new LWP is created in state LSIDL and must be set running, 546 * suspended, or stopped by the caller. 547 */ 548 int 549 lwp_create(lwp_t *l1, proc_t *p2, vaddr_t uaddr, int flags, 550 void *stack, size_t stacksize, void (*func)(void *), void *arg, 551 lwp_t **rnewlwpp, int sclass) 552 { 553 struct lwp *l2, *isfree; 554 turnstile_t *ts; 555 556 KASSERT(l1 == curlwp || l1->l_proc == &proc0); 557 558 /* 559 * First off, reap any detached LWP waiting to be collected. 560 * We can re-use its LWP structure and turnstile. 561 */ 562 isfree = NULL; 563 if (p2->p_zomblwp != NULL) { 564 mutex_enter(p2->p_lock); 565 if ((isfree = p2->p_zomblwp) != NULL) { 566 p2->p_zomblwp = NULL; 567 lwp_free(isfree, true, false);/* releases proc mutex */ 568 } else 569 mutex_exit(p2->p_lock); 570 } 571 if (isfree == NULL) { 572 l2 = pool_cache_get(lwp_cache, PR_WAITOK); 573 memset(l2, 0, sizeof(*l2)); 574 l2->l_ts = pool_cache_get(turnstile_cache, PR_WAITOK); 575 SLIST_INIT(&l2->l_pi_lenders); 576 } else { 577 l2 = isfree; 578 ts = l2->l_ts; 579 KASSERT(l2->l_inheritedprio == -1); 580 KASSERT(SLIST_EMPTY(&l2->l_pi_lenders)); 581 memset(l2, 0, sizeof(*l2)); 582 l2->l_ts = ts; 583 } 584 585 l2->l_stat = LSIDL; 586 l2->l_proc = p2; 587 l2->l_refcnt = 1; 588 l2->l_class = sclass; 589 590 /* 591 * If vfork(), we want the LWP to run fast and on the same CPU 592 * as its parent, so that it can reuse the VM context and cache 593 * footprint on the local CPU. 594 */ 595 l2->l_kpriority = ((flags & LWP_VFORK) ? true : false); 596 l2->l_kpribase = PRI_KERNEL; 597 l2->l_priority = l1->l_priority; 598 l2->l_inheritedprio = -1; 599 l2->l_flag = 0; 600 l2->l_pflag = LP_MPSAFE; 601 TAILQ_INIT(&l2->l_ld_locks); 602 603 /* 604 * If not the first LWP in the process, grab a reference to the 605 * descriptor table. 606 */ 607 l2->l_fd = p2->p_fd; 608 if (p2->p_nlwps != 0) { 609 KASSERT(l1->l_proc == p2); 610 fd_hold(l2); 611 } else { 612 KASSERT(l1->l_proc != p2); 613 } 614 615 if (p2->p_flag & PK_SYSTEM) { 616 /* Mark it as a system LWP. */ 617 l2->l_flag |= LW_SYSTEM; 618 } 619 620 kpreempt_disable(); 621 l2->l_mutex = l1->l_cpu->ci_schedstate.spc_mutex; 622 l2->l_cpu = l1->l_cpu; 623 kpreempt_enable(); 624 625 kdtrace_thread_ctor(NULL, l2); 626 lwp_initspecific(l2); 627 sched_lwp_fork(l1, l2); 628 lwp_update_creds(l2); 629 callout_init(&l2->l_timeout_ch, CALLOUT_MPSAFE); 630 callout_setfunc(&l2->l_timeout_ch, sleepq_timeout, l2); 631 cv_init(&l2->l_sigcv, "sigwait"); 632 l2->l_syncobj = &sched_syncobj; 633 634 if (rnewlwpp != NULL) 635 *rnewlwpp = l2; 636 637 uvm_lwp_setuarea(l2, uaddr); 638 uvm_lwp_fork(l1, l2, stack, stacksize, func, 639 (arg != NULL) ? arg : l2); 640 641 mutex_enter(p2->p_lock); 642 643 if ((flags & LWP_DETACHED) != 0) { 644 l2->l_prflag = LPR_DETACHED; 645 p2->p_ndlwps++; 646 } else 647 l2->l_prflag = 0; 648 649 l2->l_sigmask = l1->l_sigmask; 650 CIRCLEQ_INIT(&l2->l_sigpend.sp_info); 651 sigemptyset(&l2->l_sigpend.sp_set); 652 653 p2->p_nlwpid++; 654 if (p2->p_nlwpid == 0) 655 p2->p_nlwpid++; 656 l2->l_lid = p2->p_nlwpid; 657 LIST_INSERT_HEAD(&p2->p_lwps, l2, l_sibling); 658 p2->p_nlwps++; 659 660 if ((p2->p_flag & PK_SYSTEM) == 0) { 661 /* Inherit an affinity */ 662 if (l1->l_flag & LW_AFFINITY) { 663 /* 664 * Note that we hold the state lock while inheriting 665 * the affinity to avoid race with sched_setaffinity(). 666 */ 667 lwp_lock(l1); 668 if (l1->l_flag & LW_AFFINITY) { 669 kcpuset_use(l1->l_affinity); 670 l2->l_affinity = l1->l_affinity; 671 l2->l_flag |= LW_AFFINITY; 672 } 673 lwp_unlock(l1); 674 } 675 lwp_lock(l2); 676 /* Inherit a processor-set */ 677 l2->l_psid = l1->l_psid; 678 /* Look for a CPU to start */ 679 l2->l_cpu = sched_takecpu(l2); 680 lwp_unlock_to(l2, l2->l_cpu->ci_schedstate.spc_mutex); 681 } 682 mutex_exit(p2->p_lock); 683 684 mutex_enter(proc_lock); 685 LIST_INSERT_HEAD(&alllwp, l2, l_list); 686 mutex_exit(proc_lock); 687 688 SYSCALL_TIME_LWP_INIT(l2); 689 690 if (p2->p_emul->e_lwp_fork) 691 (*p2->p_emul->e_lwp_fork)(l1, l2); 692 693 return (0); 694 } 695 696 /* 697 * Called by MD code when a new LWP begins execution. Must be called 698 * with the previous LWP locked (so at splsched), or if there is no 699 * previous LWP, at splsched. 700 */ 701 void 702 lwp_startup(struct lwp *prev, struct lwp *new) 703 { 704 705 KASSERT(kpreempt_disabled()); 706 if (prev != NULL) { 707 /* 708 * Normalize the count of the spin-mutexes, it was 709 * increased in mi_switch(). Unmark the state of 710 * context switch - it is finished for previous LWP. 711 */ 712 curcpu()->ci_mtx_count++; 713 membar_exit(); 714 prev->l_ctxswtch = 0; 715 } 716 KPREEMPT_DISABLE(new); 717 spl0(); 718 pmap_activate(new); 719 LOCKDEBUG_BARRIER(NULL, 0); 720 KPREEMPT_ENABLE(new); 721 if ((new->l_pflag & LP_MPSAFE) == 0) { 722 KERNEL_LOCK(1, new); 723 } 724 } 725 726 /* 727 * Exit an LWP. 728 */ 729 void 730 lwp_exit(struct lwp *l) 731 { 732 struct proc *p = l->l_proc; 733 struct lwp *l2; 734 bool current; 735 736 current = (l == curlwp); 737 738 KASSERT(current || (l->l_stat == LSIDL && l->l_target_cpu == NULL)); 739 KASSERT(p == curproc); 740 741 /* 742 * Verify that we hold no locks other than the kernel lock. 743 */ 744 LOCKDEBUG_BARRIER(&kernel_lock, 0); 745 746 /* 747 * If we are the last live LWP in a process, we need to exit the 748 * entire process. We do so with an exit status of zero, because 749 * it's a "controlled" exit, and because that's what Solaris does. 750 * 751 * We are not quite a zombie yet, but for accounting purposes we 752 * must increment the count of zombies here. 753 * 754 * Note: the last LWP's specificdata will be deleted here. 755 */ 756 mutex_enter(p->p_lock); 757 if (p->p_nlwps - p->p_nzlwps == 1) { 758 KASSERT(current == true); 759 /* XXXSMP kernel_lock not held */ 760 exit1(l, 0); 761 /* NOTREACHED */ 762 } 763 p->p_nzlwps++; 764 mutex_exit(p->p_lock); 765 766 if (p->p_emul->e_lwp_exit) 767 (*p->p_emul->e_lwp_exit)(l); 768 769 /* Drop filedesc reference. */ 770 fd_free(); 771 772 /* Delete the specificdata while it's still safe to sleep. */ 773 specificdata_fini(lwp_specificdata_domain, &l->l_specdataref); 774 775 /* 776 * Release our cached credentials. 777 */ 778 kauth_cred_free(l->l_cred); 779 callout_destroy(&l->l_timeout_ch); 780 781 /* 782 * Remove the LWP from the global list. 783 */ 784 mutex_enter(proc_lock); 785 LIST_REMOVE(l, l_list); 786 mutex_exit(proc_lock); 787 788 /* 789 * Get rid of all references to the LWP that others (e.g. procfs) 790 * may have, and mark the LWP as a zombie. If the LWP is detached, 791 * mark it waiting for collection in the proc structure. Note that 792 * before we can do that, we need to free any other dead, deatched 793 * LWP waiting to meet its maker. 794 */ 795 mutex_enter(p->p_lock); 796 lwp_drainrefs(l); 797 798 if ((l->l_prflag & LPR_DETACHED) != 0) { 799 while ((l2 = p->p_zomblwp) != NULL) { 800 p->p_zomblwp = NULL; 801 lwp_free(l2, false, false);/* releases proc mutex */ 802 mutex_enter(p->p_lock); 803 l->l_refcnt++; 804 lwp_drainrefs(l); 805 } 806 p->p_zomblwp = l; 807 } 808 809 /* 810 * If we find a pending signal for the process and we have been 811 * asked to check for signals, then we loose: arrange to have 812 * all other LWPs in the process check for signals. 813 */ 814 if ((l->l_flag & LW_PENDSIG) != 0 && 815 firstsig(&p->p_sigpend.sp_set) != 0) { 816 LIST_FOREACH(l2, &p->p_lwps, l_sibling) { 817 lwp_lock(l2); 818 l2->l_flag |= LW_PENDSIG; 819 lwp_unlock(l2); 820 } 821 } 822 823 lwp_lock(l); 824 l->l_stat = LSZOMB; 825 if (l->l_name != NULL) 826 strcpy(l->l_name, "(zombie)"); 827 if (l->l_flag & LW_AFFINITY) { 828 l->l_flag &= ~LW_AFFINITY; 829 } else { 830 KASSERT(l->l_affinity == NULL); 831 } 832 lwp_unlock(l); 833 p->p_nrlwps--; 834 cv_broadcast(&p->p_lwpcv); 835 if (l->l_lwpctl != NULL) 836 l->l_lwpctl->lc_curcpu = LWPCTL_CPU_EXITED; 837 mutex_exit(p->p_lock); 838 839 /* Safe without lock since LWP is in zombie state */ 840 if (l->l_affinity) { 841 kcpuset_unuse(l->l_affinity, NULL); 842 l->l_affinity = NULL; 843 } 844 845 /* 846 * We can no longer block. At this point, lwp_free() may already 847 * be gunning for us. On a multi-CPU system, we may be off p_lwps. 848 * 849 * Free MD LWP resources. 850 */ 851 cpu_lwp_free(l, 0); 852 853 if (current) { 854 pmap_deactivate(l); 855 856 /* 857 * Release the kernel lock, and switch away into 858 * oblivion. 859 */ 860 #ifdef notyet 861 /* XXXSMP hold in lwp_userret() */ 862 KERNEL_UNLOCK_LAST(l); 863 #else 864 KERNEL_UNLOCK_ALL(l, NULL); 865 #endif 866 lwp_exit_switchaway(l); 867 } 868 } 869 870 /* 871 * Free a dead LWP's remaining resources. 872 * 873 * XXXLWP limits. 874 */ 875 void 876 lwp_free(struct lwp *l, bool recycle, bool last) 877 { 878 struct proc *p = l->l_proc; 879 struct rusage *ru; 880 ksiginfoq_t kq; 881 882 KASSERT(l != curlwp); 883 884 /* 885 * If this was not the last LWP in the process, then adjust 886 * counters and unlock. 887 */ 888 if (!last) { 889 /* 890 * Add the LWP's run time to the process' base value. 891 * This needs to co-incide with coming off p_lwps. 892 */ 893 bintime_add(&p->p_rtime, &l->l_rtime); 894 p->p_pctcpu += l->l_pctcpu; 895 ru = &p->p_stats->p_ru; 896 ruadd(ru, &l->l_ru); 897 ru->ru_nvcsw += (l->l_ncsw - l->l_nivcsw); 898 ru->ru_nivcsw += l->l_nivcsw; 899 LIST_REMOVE(l, l_sibling); 900 p->p_nlwps--; 901 p->p_nzlwps--; 902 if ((l->l_prflag & LPR_DETACHED) != 0) 903 p->p_ndlwps--; 904 905 /* 906 * Have any LWPs sleeping in lwp_wait() recheck for 907 * deadlock. 908 */ 909 cv_broadcast(&p->p_lwpcv); 910 mutex_exit(p->p_lock); 911 } 912 913 #ifdef MULTIPROCESSOR 914 /* 915 * In the unlikely event that the LWP is still on the CPU, 916 * then spin until it has switched away. We need to release 917 * all locks to avoid deadlock against interrupt handlers on 918 * the target CPU. 919 */ 920 if ((l->l_pflag & LP_RUNNING) != 0 || l->l_cpu->ci_curlwp == l) { 921 int count; 922 (void)count; /* XXXgcc */ 923 KERNEL_UNLOCK_ALL(curlwp, &count); 924 while ((l->l_pflag & LP_RUNNING) != 0 || 925 l->l_cpu->ci_curlwp == l) 926 SPINLOCK_BACKOFF_HOOK; 927 KERNEL_LOCK(count, curlwp); 928 } 929 #endif 930 931 /* 932 * Destroy the LWP's remaining signal information. 933 */ 934 ksiginfo_queue_init(&kq); 935 sigclear(&l->l_sigpend, NULL, &kq); 936 ksiginfo_queue_drain(&kq); 937 cv_destroy(&l->l_sigcv); 938 939 /* 940 * Free the LWP's turnstile and the LWP structure itself unless the 941 * caller wants to recycle them. Also, free the scheduler specific 942 * data. 943 * 944 * We can't return turnstile0 to the pool (it didn't come from it), 945 * so if it comes up just drop it quietly and move on. 946 * 947 * We don't recycle the VM resources at this time. 948 */ 949 if (l->l_lwpctl != NULL) 950 lwp_ctl_free(l); 951 952 if (!recycle && l->l_ts != &turnstile0) 953 pool_cache_put(turnstile_cache, l->l_ts); 954 if (l->l_name != NULL) 955 kmem_free(l->l_name, MAXCOMLEN); 956 957 cpu_lwp_free2(l); 958 uvm_lwp_exit(l); 959 960 KASSERT(SLIST_EMPTY(&l->l_pi_lenders)); 961 KASSERT(l->l_inheritedprio == -1); 962 kdtrace_thread_dtor(NULL, l); 963 if (!recycle) 964 pool_cache_put(lwp_cache, l); 965 } 966 967 /* 968 * Migrate the LWP to the another CPU. Unlocks the LWP. 969 */ 970 void 971 lwp_migrate(lwp_t *l, struct cpu_info *tci) 972 { 973 struct schedstate_percpu *tspc; 974 int lstat = l->l_stat; 975 976 KASSERT(lwp_locked(l, NULL)); 977 KASSERT(tci != NULL); 978 979 /* If LWP is still on the CPU, it must be handled like LSONPROC */ 980 if ((l->l_pflag & LP_RUNNING) != 0) { 981 lstat = LSONPROC; 982 } 983 984 /* 985 * The destination CPU could be changed while previous migration 986 * was not finished. 987 */ 988 if (l->l_target_cpu != NULL) { 989 l->l_target_cpu = tci; 990 lwp_unlock(l); 991 return; 992 } 993 994 /* Nothing to do if trying to migrate to the same CPU */ 995 if (l->l_cpu == tci) { 996 lwp_unlock(l); 997 return; 998 } 999 1000 KASSERT(l->l_target_cpu == NULL); 1001 tspc = &tci->ci_schedstate; 1002 switch (lstat) { 1003 case LSRUN: 1004 l->l_target_cpu = tci; 1005 break; 1006 case LSIDL: 1007 l->l_cpu = tci; 1008 lwp_unlock_to(l, tspc->spc_mutex); 1009 return; 1010 case LSSLEEP: 1011 l->l_cpu = tci; 1012 break; 1013 case LSSTOP: 1014 case LSSUSPENDED: 1015 l->l_cpu = tci; 1016 if (l->l_wchan == NULL) { 1017 lwp_unlock_to(l, tspc->spc_lwplock); 1018 return; 1019 } 1020 break; 1021 case LSONPROC: 1022 l->l_target_cpu = tci; 1023 spc_lock(l->l_cpu); 1024 cpu_need_resched(l->l_cpu, RESCHED_KPREEMPT); 1025 spc_unlock(l->l_cpu); 1026 break; 1027 } 1028 lwp_unlock(l); 1029 } 1030 1031 /* 1032 * Find the LWP in the process. Arguments may be zero, in such case, 1033 * the calling process and first LWP in the list will be used. 1034 * On success - returns proc locked. 1035 */ 1036 struct lwp * 1037 lwp_find2(pid_t pid, lwpid_t lid) 1038 { 1039 proc_t *p; 1040 lwp_t *l; 1041 1042 /* Find the process */ 1043 p = (pid == 0) ? curlwp->l_proc : p_find(pid, PFIND_UNLOCK_FAIL); 1044 if (p == NULL) 1045 return NULL; 1046 mutex_enter(p->p_lock); 1047 if (pid != 0) { 1048 /* Case of p_find */ 1049 mutex_exit(proc_lock); 1050 } 1051 1052 /* Find the thread */ 1053 l = (lid == 0) ? LIST_FIRST(&p->p_lwps) : lwp_find(p, lid); 1054 if (l == NULL) { 1055 mutex_exit(p->p_lock); 1056 } 1057 1058 return l; 1059 } 1060 1061 /* 1062 * Look up a live LWP within the speicifed process, and return it locked. 1063 * 1064 * Must be called with p->p_lock held. 1065 */ 1066 struct lwp * 1067 lwp_find(struct proc *p, int id) 1068 { 1069 struct lwp *l; 1070 1071 KASSERT(mutex_owned(p->p_lock)); 1072 1073 LIST_FOREACH(l, &p->p_lwps, l_sibling) { 1074 if (l->l_lid == id) 1075 break; 1076 } 1077 1078 /* 1079 * No need to lock - all of these conditions will 1080 * be visible with the process level mutex held. 1081 */ 1082 if (l != NULL && (l->l_stat == LSIDL || l->l_stat == LSZOMB)) 1083 l = NULL; 1084 1085 return l; 1086 } 1087 1088 /* 1089 * Update an LWP's cached credentials to mirror the process' master copy. 1090 * 1091 * This happens early in the syscall path, on user trap, and on LWP 1092 * creation. A long-running LWP can also voluntarily choose to update 1093 * it's credentials by calling this routine. This may be called from 1094 * LWP_CACHE_CREDS(), which checks l->l_cred != p->p_cred beforehand. 1095 */ 1096 void 1097 lwp_update_creds(struct lwp *l) 1098 { 1099 kauth_cred_t oc; 1100 struct proc *p; 1101 1102 p = l->l_proc; 1103 oc = l->l_cred; 1104 1105 mutex_enter(p->p_lock); 1106 kauth_cred_hold(p->p_cred); 1107 l->l_cred = p->p_cred; 1108 l->l_prflag &= ~LPR_CRMOD; 1109 mutex_exit(p->p_lock); 1110 if (oc != NULL) 1111 kauth_cred_free(oc); 1112 } 1113 1114 /* 1115 * Verify that an LWP is locked, and optionally verify that the lock matches 1116 * one we specify. 1117 */ 1118 int 1119 lwp_locked(struct lwp *l, kmutex_t *mtx) 1120 { 1121 kmutex_t *cur = l->l_mutex; 1122 1123 return mutex_owned(cur) && (mtx == cur || mtx == NULL); 1124 } 1125 1126 /* 1127 * Lock an LWP. 1128 */ 1129 kmutex_t * 1130 lwp_lock_retry(struct lwp *l, kmutex_t *old) 1131 { 1132 1133 /* 1134 * XXXgcc ignoring kmutex_t * volatile on i386 1135 * 1136 * gcc version 4.1.2 20061021 prerelease (NetBSD nb1 20061021) 1137 */ 1138 #if 1 1139 while (l->l_mutex != old) { 1140 #else 1141 for (;;) { 1142 #endif 1143 mutex_spin_exit(old); 1144 old = l->l_mutex; 1145 mutex_spin_enter(old); 1146 1147 /* 1148 * mutex_enter() will have posted a read barrier. Re-test 1149 * l->l_mutex. If it has changed, we need to try again. 1150 */ 1151 #if 1 1152 } 1153 #else 1154 } while (__predict_false(l->l_mutex != old)); 1155 #endif 1156 1157 return old; 1158 } 1159 1160 /* 1161 * Lend a new mutex to an LWP. The old mutex must be held. 1162 */ 1163 void 1164 lwp_setlock(struct lwp *l, kmutex_t *new) 1165 { 1166 1167 KASSERT(mutex_owned(l->l_mutex)); 1168 1169 membar_exit(); 1170 l->l_mutex = new; 1171 } 1172 1173 /* 1174 * Lend a new mutex to an LWP, and release the old mutex. The old mutex 1175 * must be held. 1176 */ 1177 void 1178 lwp_unlock_to(struct lwp *l, kmutex_t *new) 1179 { 1180 kmutex_t *old; 1181 1182 KASSERT(mutex_owned(l->l_mutex)); 1183 1184 old = l->l_mutex; 1185 membar_exit(); 1186 l->l_mutex = new; 1187 mutex_spin_exit(old); 1188 } 1189 1190 /* 1191 * Acquire a new mutex, and donate it to an LWP. The LWP must already be 1192 * locked. 1193 */ 1194 void 1195 lwp_relock(struct lwp *l, kmutex_t *new) 1196 { 1197 kmutex_t *old; 1198 1199 KASSERT(mutex_owned(l->l_mutex)); 1200 1201 old = l->l_mutex; 1202 if (old != new) { 1203 mutex_spin_enter(new); 1204 l->l_mutex = new; 1205 mutex_spin_exit(old); 1206 } 1207 } 1208 1209 int 1210 lwp_trylock(struct lwp *l) 1211 { 1212 kmutex_t *old; 1213 1214 for (;;) { 1215 if (!mutex_tryenter(old = l->l_mutex)) 1216 return 0; 1217 if (__predict_true(l->l_mutex == old)) 1218 return 1; 1219 mutex_spin_exit(old); 1220 } 1221 } 1222 1223 void 1224 lwp_unsleep(lwp_t *l, bool cleanup) 1225 { 1226 1227 KASSERT(mutex_owned(l->l_mutex)); 1228 (*l->l_syncobj->sobj_unsleep)(l, cleanup); 1229 } 1230 1231 1232 /* 1233 * Handle exceptions for mi_userret(). Called if a member of LW_USERRET is 1234 * set. 1235 */ 1236 void 1237 lwp_userret(struct lwp *l) 1238 { 1239 struct proc *p; 1240 void (*hook)(void); 1241 int sig; 1242 1243 KASSERT(l == curlwp); 1244 KASSERT(l->l_stat == LSONPROC); 1245 p = l->l_proc; 1246 1247 #ifndef __HAVE_FAST_SOFTINTS 1248 /* Run pending soft interrupts. */ 1249 if (l->l_cpu->ci_data.cpu_softints != 0) 1250 softint_overlay(); 1251 #endif 1252 1253 #ifdef KERN_SA 1254 /* Generate UNBLOCKED upcall if needed */ 1255 if (l->l_flag & LW_SA_BLOCKING) { 1256 sa_unblock_userret(l); 1257 /* NOTREACHED */ 1258 } 1259 #endif 1260 1261 /* 1262 * It should be safe to do this read unlocked on a multiprocessor 1263 * system.. 1264 * 1265 * LW_SA_UPCALL will be handled after the while() loop, so don't 1266 * consider it now. 1267 */ 1268 while ((l->l_flag & (LW_USERRET & ~(LW_SA_UPCALL))) != 0) { 1269 /* 1270 * Process pending signals first, unless the process 1271 * is dumping core or exiting, where we will instead 1272 * enter the LW_WSUSPEND case below. 1273 */ 1274 if ((l->l_flag & (LW_PENDSIG | LW_WCORE | LW_WEXIT)) == 1275 LW_PENDSIG) { 1276 mutex_enter(p->p_lock); 1277 while ((sig = issignal(l)) != 0) 1278 postsig(sig); 1279 mutex_exit(p->p_lock); 1280 } 1281 1282 /* 1283 * Core-dump or suspend pending. 1284 * 1285 * In case of core dump, suspend ourselves, so that the 1286 * kernel stack and therefore the userland registers saved 1287 * in the trapframe are around for coredump() to write them 1288 * out. We issue a wakeup on p->p_lwpcv so that sigexit() 1289 * will write the core file out once all other LWPs are 1290 * suspended. 1291 */ 1292 if ((l->l_flag & LW_WSUSPEND) != 0) { 1293 mutex_enter(p->p_lock); 1294 p->p_nrlwps--; 1295 cv_broadcast(&p->p_lwpcv); 1296 lwp_lock(l); 1297 l->l_stat = LSSUSPENDED; 1298 lwp_unlock(l); 1299 mutex_exit(p->p_lock); 1300 lwp_lock(l); 1301 mi_switch(l); 1302 } 1303 1304 /* Process is exiting. */ 1305 if ((l->l_flag & LW_WEXIT) != 0) { 1306 lwp_exit(l); 1307 KASSERT(0); 1308 /* NOTREACHED */ 1309 } 1310 1311 /* Call userret hook; used by Linux emulation. */ 1312 if ((l->l_flag & LW_WUSERRET) != 0) { 1313 lwp_lock(l); 1314 l->l_flag &= ~LW_WUSERRET; 1315 lwp_unlock(l); 1316 hook = p->p_userret; 1317 p->p_userret = NULL; 1318 (*hook)(); 1319 } 1320 } 1321 1322 #ifdef KERN_SA 1323 /* 1324 * Timer events are handled specially. We only try once to deliver 1325 * pending timer upcalls; if if fails, we can try again on the next 1326 * loop around. If we need to re-enter lwp_userret(), MD code will 1327 * bounce us back here through the trap path after we return. 1328 */ 1329 if (p->p_timerpend) 1330 timerupcall(l); 1331 if (l->l_flag & LW_SA_UPCALL) 1332 sa_upcall_userret(l); 1333 #endif /* KERN_SA */ 1334 } 1335 1336 /* 1337 * Force an LWP to enter the kernel, to take a trip through lwp_userret(). 1338 */ 1339 void 1340 lwp_need_userret(struct lwp *l) 1341 { 1342 KASSERT(lwp_locked(l, NULL)); 1343 1344 /* 1345 * Since the tests in lwp_userret() are done unlocked, make sure 1346 * that the condition will be seen before forcing the LWP to enter 1347 * kernel mode. 1348 */ 1349 membar_producer(); 1350 cpu_signotify(l); 1351 } 1352 1353 /* 1354 * Add one reference to an LWP. This will prevent the LWP from 1355 * exiting, thus keep the lwp structure and PCB around to inspect. 1356 */ 1357 void 1358 lwp_addref(struct lwp *l) 1359 { 1360 1361 KASSERT(mutex_owned(l->l_proc->p_lock)); 1362 KASSERT(l->l_stat != LSZOMB); 1363 KASSERT(l->l_refcnt != 0); 1364 1365 l->l_refcnt++; 1366 } 1367 1368 /* 1369 * Remove one reference to an LWP. If this is the last reference, 1370 * then we must finalize the LWP's death. 1371 */ 1372 void 1373 lwp_delref(struct lwp *l) 1374 { 1375 struct proc *p = l->l_proc; 1376 1377 mutex_enter(p->p_lock); 1378 KASSERT(l->l_stat != LSZOMB); 1379 KASSERT(l->l_refcnt > 0); 1380 if (--l->l_refcnt == 0) 1381 cv_broadcast(&p->p_lwpcv); 1382 mutex_exit(p->p_lock); 1383 } 1384 1385 /* 1386 * Drain all references to the current LWP. 1387 */ 1388 void 1389 lwp_drainrefs(struct lwp *l) 1390 { 1391 struct proc *p = l->l_proc; 1392 1393 KASSERT(mutex_owned(p->p_lock)); 1394 KASSERT(l->l_refcnt != 0); 1395 1396 l->l_refcnt--; 1397 while (l->l_refcnt != 0) 1398 cv_wait(&p->p_lwpcv, p->p_lock); 1399 } 1400 1401 /* 1402 * Return true if the specified LWP is 'alive'. Only p->p_lock need 1403 * be held. 1404 */ 1405 bool 1406 lwp_alive(lwp_t *l) 1407 { 1408 1409 KASSERT(mutex_owned(l->l_proc->p_lock)); 1410 1411 switch (l->l_stat) { 1412 case LSSLEEP: 1413 case LSRUN: 1414 case LSONPROC: 1415 case LSSTOP: 1416 case LSSUSPENDED: 1417 return true; 1418 default: 1419 return false; 1420 } 1421 } 1422 1423 /* 1424 * Return first live LWP in the process. 1425 */ 1426 lwp_t * 1427 lwp_find_first(proc_t *p) 1428 { 1429 lwp_t *l; 1430 1431 KASSERT(mutex_owned(p->p_lock)); 1432 1433 LIST_FOREACH(l, &p->p_lwps, l_sibling) { 1434 if (lwp_alive(l)) { 1435 return l; 1436 } 1437 } 1438 1439 return NULL; 1440 } 1441 1442 /* 1443 * lwp_specific_key_create -- 1444 * Create a key for subsystem lwp-specific data. 1445 */ 1446 int 1447 lwp_specific_key_create(specificdata_key_t *keyp, specificdata_dtor_t dtor) 1448 { 1449 1450 return (specificdata_key_create(lwp_specificdata_domain, keyp, dtor)); 1451 } 1452 1453 /* 1454 * lwp_specific_key_delete -- 1455 * Delete a key for subsystem lwp-specific data. 1456 */ 1457 void 1458 lwp_specific_key_delete(specificdata_key_t key) 1459 { 1460 1461 specificdata_key_delete(lwp_specificdata_domain, key); 1462 } 1463 1464 /* 1465 * lwp_initspecific -- 1466 * Initialize an LWP's specificdata container. 1467 */ 1468 void 1469 lwp_initspecific(struct lwp *l) 1470 { 1471 int error; 1472 1473 error = specificdata_init(lwp_specificdata_domain, &l->l_specdataref); 1474 KASSERT(error == 0); 1475 } 1476 1477 /* 1478 * lwp_finispecific -- 1479 * Finalize an LWP's specificdata container. 1480 */ 1481 void 1482 lwp_finispecific(struct lwp *l) 1483 { 1484 1485 specificdata_fini(lwp_specificdata_domain, &l->l_specdataref); 1486 } 1487 1488 /* 1489 * lwp_getspecific -- 1490 * Return lwp-specific data corresponding to the specified key. 1491 * 1492 * Note: LWP specific data is NOT INTERLOCKED. An LWP should access 1493 * only its OWN SPECIFIC DATA. If it is necessary to access another 1494 * LWP's specifc data, care must be taken to ensure that doing so 1495 * would not cause internal data structure inconsistency (i.e. caller 1496 * can guarantee that the target LWP is not inside an lwp_getspecific() 1497 * or lwp_setspecific() call). 1498 */ 1499 void * 1500 lwp_getspecific(specificdata_key_t key) 1501 { 1502 1503 return (specificdata_getspecific_unlocked(lwp_specificdata_domain, 1504 &curlwp->l_specdataref, key)); 1505 } 1506 1507 void * 1508 _lwp_getspecific_by_lwp(struct lwp *l, specificdata_key_t key) 1509 { 1510 1511 return (specificdata_getspecific_unlocked(lwp_specificdata_domain, 1512 &l->l_specdataref, key)); 1513 } 1514 1515 /* 1516 * lwp_setspecific -- 1517 * Set lwp-specific data corresponding to the specified key. 1518 */ 1519 void 1520 lwp_setspecific(specificdata_key_t key, void *data) 1521 { 1522 1523 specificdata_setspecific(lwp_specificdata_domain, 1524 &curlwp->l_specdataref, key, data); 1525 } 1526 1527 /* 1528 * Allocate a new lwpctl structure for a user LWP. 1529 */ 1530 int 1531 lwp_ctl_alloc(vaddr_t *uaddr) 1532 { 1533 lcproc_t *lp; 1534 u_int bit, i, offset; 1535 struct uvm_object *uao; 1536 int error; 1537 lcpage_t *lcp; 1538 proc_t *p; 1539 lwp_t *l; 1540 1541 l = curlwp; 1542 p = l->l_proc; 1543 1544 if (l->l_lcpage != NULL) { 1545 lcp = l->l_lcpage; 1546 *uaddr = lcp->lcp_uaddr + (vaddr_t)l->l_lwpctl - lcp->lcp_kaddr; 1547 return (EINVAL); 1548 } 1549 1550 /* First time around, allocate header structure for the process. */ 1551 if ((lp = p->p_lwpctl) == NULL) { 1552 lp = kmem_alloc(sizeof(*lp), KM_SLEEP); 1553 mutex_init(&lp->lp_lock, MUTEX_DEFAULT, IPL_NONE); 1554 lp->lp_uao = NULL; 1555 TAILQ_INIT(&lp->lp_pages); 1556 mutex_enter(p->p_lock); 1557 if (p->p_lwpctl == NULL) { 1558 p->p_lwpctl = lp; 1559 mutex_exit(p->p_lock); 1560 } else { 1561 mutex_exit(p->p_lock); 1562 mutex_destroy(&lp->lp_lock); 1563 kmem_free(lp, sizeof(*lp)); 1564 lp = p->p_lwpctl; 1565 } 1566 } 1567 1568 /* 1569 * Set up an anonymous memory region to hold the shared pages. 1570 * Map them into the process' address space. The user vmspace 1571 * gets the first reference on the UAO. 1572 */ 1573 mutex_enter(&lp->lp_lock); 1574 if (lp->lp_uao == NULL) { 1575 lp->lp_uao = uao_create(LWPCTL_UAREA_SZ, 0); 1576 lp->lp_cur = 0; 1577 lp->lp_max = LWPCTL_UAREA_SZ; 1578 lp->lp_uva = p->p_emul->e_vm_default_addr(p, 1579 (vaddr_t)p->p_vmspace->vm_daddr, LWPCTL_UAREA_SZ); 1580 error = uvm_map(&p->p_vmspace->vm_map, &lp->lp_uva, 1581 LWPCTL_UAREA_SZ, lp->lp_uao, 0, 0, UVM_MAPFLAG(UVM_PROT_RW, 1582 UVM_PROT_RW, UVM_INH_NONE, UVM_ADV_NORMAL, 0)); 1583 if (error != 0) { 1584 uao_detach(lp->lp_uao); 1585 lp->lp_uao = NULL; 1586 mutex_exit(&lp->lp_lock); 1587 return error; 1588 } 1589 } 1590 1591 /* Get a free block and allocate for this LWP. */ 1592 TAILQ_FOREACH(lcp, &lp->lp_pages, lcp_chain) { 1593 if (lcp->lcp_nfree != 0) 1594 break; 1595 } 1596 if (lcp == NULL) { 1597 /* Nothing available - try to set up a free page. */ 1598 if (lp->lp_cur == lp->lp_max) { 1599 mutex_exit(&lp->lp_lock); 1600 return ENOMEM; 1601 } 1602 lcp = kmem_alloc(LWPCTL_LCPAGE_SZ, KM_SLEEP); 1603 if (lcp == NULL) { 1604 mutex_exit(&lp->lp_lock); 1605 return ENOMEM; 1606 } 1607 /* 1608 * Wire the next page down in kernel space. Since this 1609 * is a new mapping, we must add a reference. 1610 */ 1611 uao = lp->lp_uao; 1612 (*uao->pgops->pgo_reference)(uao); 1613 lcp->lcp_kaddr = vm_map_min(kernel_map); 1614 error = uvm_map(kernel_map, &lcp->lcp_kaddr, PAGE_SIZE, 1615 uao, lp->lp_cur, PAGE_SIZE, 1616 UVM_MAPFLAG(UVM_PROT_RW, UVM_PROT_RW, 1617 UVM_INH_NONE, UVM_ADV_RANDOM, 0)); 1618 if (error != 0) { 1619 mutex_exit(&lp->lp_lock); 1620 kmem_free(lcp, LWPCTL_LCPAGE_SZ); 1621 (*uao->pgops->pgo_detach)(uao); 1622 return error; 1623 } 1624 error = uvm_map_pageable(kernel_map, lcp->lcp_kaddr, 1625 lcp->lcp_kaddr + PAGE_SIZE, FALSE, 0); 1626 if (error != 0) { 1627 mutex_exit(&lp->lp_lock); 1628 uvm_unmap(kernel_map, lcp->lcp_kaddr, 1629 lcp->lcp_kaddr + PAGE_SIZE); 1630 kmem_free(lcp, LWPCTL_LCPAGE_SZ); 1631 return error; 1632 } 1633 /* Prepare the page descriptor and link into the list. */ 1634 lcp->lcp_uaddr = lp->lp_uva + lp->lp_cur; 1635 lp->lp_cur += PAGE_SIZE; 1636 lcp->lcp_nfree = LWPCTL_PER_PAGE; 1637 lcp->lcp_rotor = 0; 1638 memset(lcp->lcp_bitmap, 0xff, LWPCTL_BITMAP_SZ); 1639 TAILQ_INSERT_HEAD(&lp->lp_pages, lcp, lcp_chain); 1640 } 1641 for (i = lcp->lcp_rotor; lcp->lcp_bitmap[i] == 0;) { 1642 if (++i >= LWPCTL_BITMAP_ENTRIES) 1643 i = 0; 1644 } 1645 bit = ffs(lcp->lcp_bitmap[i]) - 1; 1646 lcp->lcp_bitmap[i] ^= (1 << bit); 1647 lcp->lcp_rotor = i; 1648 lcp->lcp_nfree--; 1649 l->l_lcpage = lcp; 1650 offset = (i << 5) + bit; 1651 l->l_lwpctl = (lwpctl_t *)lcp->lcp_kaddr + offset; 1652 *uaddr = lcp->lcp_uaddr + offset * sizeof(lwpctl_t); 1653 mutex_exit(&lp->lp_lock); 1654 1655 KPREEMPT_DISABLE(l); 1656 l->l_lwpctl->lc_curcpu = (int)curcpu()->ci_data.cpu_index; 1657 KPREEMPT_ENABLE(l); 1658 1659 return 0; 1660 } 1661 1662 /* 1663 * Free an lwpctl structure back to the per-process list. 1664 */ 1665 void 1666 lwp_ctl_free(lwp_t *l) 1667 { 1668 lcproc_t *lp; 1669 lcpage_t *lcp; 1670 u_int map, offset; 1671 1672 lp = l->l_proc->p_lwpctl; 1673 KASSERT(lp != NULL); 1674 1675 lcp = l->l_lcpage; 1676 offset = (u_int)((lwpctl_t *)l->l_lwpctl - (lwpctl_t *)lcp->lcp_kaddr); 1677 KASSERT(offset < LWPCTL_PER_PAGE); 1678 1679 mutex_enter(&lp->lp_lock); 1680 lcp->lcp_nfree++; 1681 map = offset >> 5; 1682 lcp->lcp_bitmap[map] |= (1 << (offset & 31)); 1683 if (lcp->lcp_bitmap[lcp->lcp_rotor] == 0) 1684 lcp->lcp_rotor = map; 1685 if (TAILQ_FIRST(&lp->lp_pages)->lcp_nfree == 0) { 1686 TAILQ_REMOVE(&lp->lp_pages, lcp, lcp_chain); 1687 TAILQ_INSERT_HEAD(&lp->lp_pages, lcp, lcp_chain); 1688 } 1689 mutex_exit(&lp->lp_lock); 1690 } 1691 1692 /* 1693 * Process is exiting; tear down lwpctl state. This can only be safely 1694 * called by the last LWP in the process. 1695 */ 1696 void 1697 lwp_ctl_exit(void) 1698 { 1699 lcpage_t *lcp, *next; 1700 lcproc_t *lp; 1701 proc_t *p; 1702 lwp_t *l; 1703 1704 l = curlwp; 1705 l->l_lwpctl = NULL; 1706 l->l_lcpage = NULL; 1707 p = l->l_proc; 1708 lp = p->p_lwpctl; 1709 1710 KASSERT(lp != NULL); 1711 KASSERT(p->p_nlwps == 1); 1712 1713 for (lcp = TAILQ_FIRST(&lp->lp_pages); lcp != NULL; lcp = next) { 1714 next = TAILQ_NEXT(lcp, lcp_chain); 1715 uvm_unmap(kernel_map, lcp->lcp_kaddr, 1716 lcp->lcp_kaddr + PAGE_SIZE); 1717 kmem_free(lcp, LWPCTL_LCPAGE_SZ); 1718 } 1719 1720 if (lp->lp_uao != NULL) { 1721 uvm_unmap(&p->p_vmspace->vm_map, lp->lp_uva, 1722 lp->lp_uva + LWPCTL_UAREA_SZ); 1723 } 1724 1725 mutex_destroy(&lp->lp_lock); 1726 kmem_free(lp, sizeof(*lp)); 1727 p->p_lwpctl = NULL; 1728 } 1729 1730 /* 1731 * Return the current LWP's "preemption counter". Used to detect 1732 * preemption across operations that can tolerate preemption without 1733 * crashing, but which may generate incorrect results if preempted. 1734 */ 1735 uint64_t 1736 lwp_pctr(void) 1737 { 1738 1739 return curlwp->l_ncsw; 1740 } 1741 1742 #if defined(DDB) 1743 void 1744 lwp_whatis(uintptr_t addr, void (*pr)(const char *, ...)) 1745 { 1746 lwp_t *l; 1747 1748 LIST_FOREACH(l, &alllwp, l_list) { 1749 uintptr_t stack = (uintptr_t)KSTACK_LOWEST_ADDR(l); 1750 1751 if (addr < stack || stack + KSTACK_SIZE <= addr) { 1752 continue; 1753 } 1754 (*pr)("%p is %p+%zu, LWP %p's stack\n", 1755 (void *)addr, (void *)stack, 1756 (size_t)(addr - stack), l); 1757 } 1758 } 1759 #endif /* defined(DDB) */ 1760