xref: /netbsd-src/sys/kern/kern_lwp.c (revision 5dd36a3bc8bf2a9dec29ceb6349550414570c447)
1 /*	$NetBSD: kern_lwp.c,v 1.228 2020/02/27 20:52:25 ad Exp $	*/
2 
3 /*-
4  * Copyright (c) 2001, 2006, 2007, 2008, 2009, 2019, 2020
5  *     The NetBSD Foundation, Inc.
6  * All rights reserved.
7  *
8  * This code is derived from software contributed to The NetBSD Foundation
9  * by Nathan J. Williams, and Andrew Doran.
10  *
11  * Redistribution and use in source and binary forms, with or without
12  * modification, are permitted provided that the following conditions
13  * are met:
14  * 1. Redistributions of source code must retain the above copyright
15  *    notice, this list of conditions and the following disclaimer.
16  * 2. Redistributions in binary form must reproduce the above copyright
17  *    notice, this list of conditions and the following disclaimer in the
18  *    documentation and/or other materials provided with the distribution.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
21  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
22  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
23  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
24  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30  * POSSIBILITY OF SUCH DAMAGE.
31  */
32 
33 /*
34  * Overview
35  *
36  *	Lightweight processes (LWPs) are the basic unit or thread of
37  *	execution within the kernel.  The core state of an LWP is described
38  *	by "struct lwp", also known as lwp_t.
39  *
40  *	Each LWP is contained within a process (described by "struct proc"),
41  *	Every process contains at least one LWP, but may contain more.  The
42  *	process describes attributes shared among all of its LWPs such as a
43  *	private address space, global execution state (stopped, active,
44  *	zombie, ...), signal disposition and so on.  On a multiprocessor
45  *	machine, multiple LWPs be executing concurrently in the kernel.
46  *
47  * Execution states
48  *
49  *	At any given time, an LWP has overall state that is described by
50  *	lwp::l_stat.  The states are broken into two sets below.  The first
51  *	set is guaranteed to represent the absolute, current state of the
52  *	LWP:
53  *
54  *	LSONPROC
55  *
56  *		On processor: the LWP is executing on a CPU, either in the
57  *		kernel or in user space.
58  *
59  *	LSRUN
60  *
61  *		Runnable: the LWP is parked on a run queue, and may soon be
62  *		chosen to run by an idle processor, or by a processor that
63  *		has been asked to preempt a currently runnning but lower
64  *		priority LWP.
65  *
66  *	LSIDL
67  *
68  *		Idle: the LWP has been created but has not yet executed,
69  *		or it has ceased executing a unit of work and is waiting
70  *		to be started again.
71  *
72  *	LSSUSPENDED:
73  *
74  *		Suspended: the LWP has had its execution suspended by
75  *		another LWP in the same process using the _lwp_suspend()
76  *		system call.  User-level LWPs also enter the suspended
77  *		state when the system is shutting down.
78  *
79  *	The second set represent a "statement of intent" on behalf of the
80  *	LWP.  The LWP may in fact be executing on a processor, may be
81  *	sleeping or idle. It is expected to take the necessary action to
82  *	stop executing or become "running" again within a short timeframe.
83  *	The LP_RUNNING flag in lwp::l_pflag indicates that an LWP is running.
84  *	Importantly, it indicates that its state is tied to a CPU.
85  *
86  *	LSZOMB:
87  *
88  *		Dead or dying: the LWP has released most of its resources
89  *		and is about to switch away into oblivion, or has already
90  *		switched away.  When it switches away, its few remaining
91  *		resources can be collected.
92  *
93  *	LSSLEEP:
94  *
95  *		Sleeping: the LWP has entered itself onto a sleep queue, and
96  *		has switched away or will switch away shortly to allow other
97  *		LWPs to run on the CPU.
98  *
99  *	LSSTOP:
100  *
101  *		Stopped: the LWP has been stopped as a result of a job
102  *		control signal, or as a result of the ptrace() interface.
103  *
104  *		Stopped LWPs may run briefly within the kernel to handle
105  *		signals that they receive, but will not return to user space
106  *		until their process' state is changed away from stopped.
107  *
108  *		Single LWPs within a process can not be set stopped
109  *		selectively: all actions that can stop or continue LWPs
110  *		occur at the process level.
111  *
112  * State transitions
113  *
114  *	Note that the LSSTOP state may only be set when returning to
115  *	user space in userret(), or when sleeping interruptably.  The
116  *	LSSUSPENDED state may only be set in userret().  Before setting
117  *	those states, we try to ensure that the LWPs will release all
118  *	locks that they hold, and at a minimum try to ensure that the
119  *	LWP can be set runnable again by a signal.
120  *
121  *	LWPs may transition states in the following ways:
122  *
123  *	 RUN -------> ONPROC		ONPROC -----> RUN
124  *		    				    > SLEEP
125  *		    				    > STOPPED
126  *						    > SUSPENDED
127  *						    > ZOMB
128  *						    > IDL (special cases)
129  *
130  *	 STOPPED ---> RUN		SUSPENDED --> RUN
131  *	            > SLEEP
132  *
133  *	 SLEEP -----> ONPROC		IDL --------> RUN
134  *		    > RUN			    > SUSPENDED
135  *		    > STOPPED			    > STOPPED
136  *						    > ONPROC (special cases)
137  *
138  *	Some state transitions are only possible with kernel threads (eg
139  *	ONPROC -> IDL) and happen under tightly controlled circumstances
140  *	free of unwanted side effects.
141  *
142  * Migration
143  *
144  *	Migration of threads from one CPU to another could be performed
145  *	internally by the scheduler via sched_takecpu() or sched_catchlwp()
146  *	functions.  The universal lwp_migrate() function should be used for
147  *	any other cases.  Subsystems in the kernel must be aware that CPU
148  *	of LWP may change, while it is not locked.
149  *
150  * Locking
151  *
152  *	The majority of fields in 'struct lwp' are covered by a single,
153  *	general spin lock pointed to by lwp::l_mutex.  The locks covering
154  *	each field are documented in sys/lwp.h.
155  *
156  *	State transitions must be made with the LWP's general lock held,
157  *	and may cause the LWP's lock pointer to change.  Manipulation of
158  *	the general lock is not performed directly, but through calls to
159  *	lwp_lock(), lwp_unlock() and others.  It should be noted that the
160  *	adaptive locks are not allowed to be released while the LWP's lock
161  *	is being held (unlike for other spin-locks).
162  *
163  *	States and their associated locks:
164  *
165  *	LSIDL, LSONPROC, LSZOMB, LSSUPENDED:
166  *
167  *		Always covered by spc_lwplock, which protects LWPs not
168  *		associated with any other sync object.  This is a per-CPU
169  *		lock and matches lwp::l_cpu.
170  *
171  *	LSRUN:
172  *
173  *		Always covered by spc_mutex, which protects the run queues.
174  *		This is a per-CPU lock and matches lwp::l_cpu.
175  *
176  *	LSSLEEP:
177  *
178  *		Covered by a lock associated with the sleep queue (sometimes
179  *		a turnstile sleep queue) that the LWP resides on.  This can
180  *		be spc_lwplock for SOBJ_SLEEPQ_NULL (an "untracked" sleep).
181  *
182  *	LSSTOP:
183  *
184  *		If the LWP was previously sleeping (l_wchan != NULL), then
185  *		l_mutex references the sleep queue lock.  If the LWP was
186  *		runnable or on the CPU when halted, or has been removed from
187  *		the sleep queue since halted, then the lock is spc_lwplock.
188  *
189  *	The lock order is as follows:
190  *
191  *		sleepq -> turnstile -> spc_lwplock -> spc_mutex
192  *
193  *	Each process has an scheduler state lock (proc::p_lock), and a
194  *	number of counters on LWPs and their states: p_nzlwps, p_nrlwps, and
195  *	so on.  When an LWP is to be entered into or removed from one of the
196  *	following states, p_lock must be held and the process wide counters
197  *	adjusted:
198  *
199  *		LSIDL, LSZOMB, LSSTOP, LSSUSPENDED
200  *
201  *	(But not always for kernel threads.  There are some special cases
202  *	as mentioned above: soft interrupts, and the idle loops.)
203  *
204  *	Note that an LWP is considered running or likely to run soon if in
205  *	one of the following states.  This affects the value of p_nrlwps:
206  *
207  *		LSRUN, LSONPROC, LSSLEEP
208  *
209  *	p_lock does not need to be held when transitioning among these
210  *	three states, hence p_lock is rarely taken for state transitions.
211  */
212 
213 #include <sys/cdefs.h>
214 __KERNEL_RCSID(0, "$NetBSD: kern_lwp.c,v 1.228 2020/02/27 20:52:25 ad Exp $");
215 
216 #include "opt_ddb.h"
217 #include "opt_lockdebug.h"
218 #include "opt_dtrace.h"
219 
220 #define _LWP_API_PRIVATE
221 
222 #include <sys/param.h>
223 #include <sys/systm.h>
224 #include <sys/cpu.h>
225 #include <sys/pool.h>
226 #include <sys/proc.h>
227 #include <sys/syscallargs.h>
228 #include <sys/syscall_stats.h>
229 #include <sys/kauth.h>
230 #include <sys/sleepq.h>
231 #include <sys/lockdebug.h>
232 #include <sys/kmem.h>
233 #include <sys/pset.h>
234 #include <sys/intr.h>
235 #include <sys/lwpctl.h>
236 #include <sys/atomic.h>
237 #include <sys/filedesc.h>
238 #include <sys/fstrans.h>
239 #include <sys/dtrace_bsd.h>
240 #include <sys/sdt.h>
241 #include <sys/ptrace.h>
242 #include <sys/xcall.h>
243 #include <sys/uidinfo.h>
244 #include <sys/sysctl.h>
245 #include <sys/psref.h>
246 #include <sys/msan.h>
247 
248 #include <uvm/uvm_extern.h>
249 #include <uvm/uvm_object.h>
250 
251 static pool_cache_t	lwp_cache	__read_mostly;
252 struct lwplist		alllwp		__cacheline_aligned;
253 
254 static void		lwp_dtor(void *, void *);
255 
256 /* DTrace proc provider probes */
257 SDT_PROVIDER_DEFINE(proc);
258 
259 SDT_PROBE_DEFINE1(proc, kernel, , lwp__create, "struct lwp *");
260 SDT_PROBE_DEFINE1(proc, kernel, , lwp__start, "struct lwp *");
261 SDT_PROBE_DEFINE1(proc, kernel, , lwp__exit, "struct lwp *");
262 
263 struct turnstile turnstile0 __cacheline_aligned;
264 struct lwp lwp0 __aligned(MIN_LWP_ALIGNMENT) = {
265 #ifdef LWP0_CPU_INFO
266 	.l_cpu = LWP0_CPU_INFO,
267 #endif
268 #ifdef LWP0_MD_INITIALIZER
269 	.l_md = LWP0_MD_INITIALIZER,
270 #endif
271 	.l_proc = &proc0,
272 	.l_lid = 1,
273 	.l_flag = LW_SYSTEM,
274 	.l_stat = LSONPROC,
275 	.l_ts = &turnstile0,
276 	.l_syncobj = &sched_syncobj,
277 	.l_refcnt = 1,
278 	.l_priority = PRI_USER + NPRI_USER - 1,
279 	.l_inheritedprio = -1,
280 	.l_class = SCHED_OTHER,
281 	.l_psid = PS_NONE,
282 	.l_pi_lenders = SLIST_HEAD_INITIALIZER(&lwp0.l_pi_lenders),
283 	.l_name = __UNCONST("swapper"),
284 	.l_fd = &filedesc0,
285 };
286 
287 static int sysctl_kern_maxlwp(SYSCTLFN_PROTO);
288 
289 /*
290  * sysctl helper routine for kern.maxlwp. Ensures that the new
291  * values are not too low or too high.
292  */
293 static int
294 sysctl_kern_maxlwp(SYSCTLFN_ARGS)
295 {
296 	int error, nmaxlwp;
297 	struct sysctlnode node;
298 
299 	nmaxlwp = maxlwp;
300 	node = *rnode;
301 	node.sysctl_data = &nmaxlwp;
302 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
303 	if (error || newp == NULL)
304 		return error;
305 
306 	if (nmaxlwp < 0 || nmaxlwp >= 65536)
307 		return EINVAL;
308 	if (nmaxlwp > cpu_maxlwp())
309 		return EINVAL;
310 	maxlwp = nmaxlwp;
311 
312 	return 0;
313 }
314 
315 static void
316 sysctl_kern_lwp_setup(void)
317 {
318 	struct sysctllog *clog = NULL;
319 
320 	sysctl_createv(&clog, 0, NULL, NULL,
321 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
322 		       CTLTYPE_INT, "maxlwp",
323 		       SYSCTL_DESCR("Maximum number of simultaneous threads"),
324 		       sysctl_kern_maxlwp, 0, NULL, 0,
325 		       CTL_KERN, CTL_CREATE, CTL_EOL);
326 }
327 
328 void
329 lwpinit(void)
330 {
331 
332 	LIST_INIT(&alllwp);
333 	lwpinit_specificdata();
334 	lwp_cache = pool_cache_init(sizeof(lwp_t), MIN_LWP_ALIGNMENT, 0, 0,
335 	    "lwppl", NULL, IPL_NONE, NULL, lwp_dtor, NULL);
336 
337 	maxlwp = cpu_maxlwp();
338 	sysctl_kern_lwp_setup();
339 }
340 
341 void
342 lwp0_init(void)
343 {
344 	struct lwp *l = &lwp0;
345 
346 	KASSERT((void *)uvm_lwp_getuarea(l) != NULL);
347 	KASSERT(l->l_lid == proc0.p_nlwpid);
348 
349 	LIST_INSERT_HEAD(&alllwp, l, l_list);
350 
351 	callout_init(&l->l_timeout_ch, CALLOUT_MPSAFE);
352 	callout_setfunc(&l->l_timeout_ch, sleepq_timeout, l);
353 	cv_init(&l->l_sigcv, "sigwait");
354 	cv_init(&l->l_waitcv, "vfork");
355 
356 	kauth_cred_hold(proc0.p_cred);
357 	l->l_cred = proc0.p_cred;
358 
359 	kdtrace_thread_ctor(NULL, l);
360 	lwp_initspecific(l);
361 
362 	SYSCALL_TIME_LWP_INIT(l);
363 }
364 
365 static void
366 lwp_dtor(void *arg, void *obj)
367 {
368 	lwp_t *l = obj;
369 	(void)l;
370 
371 	/*
372 	 * Provide a barrier to ensure that all mutex_oncpu() and rw_oncpu()
373 	 * calls will exit before memory of LWP is returned to the pool, where
374 	 * KVA of LWP structure might be freed and re-used for other purposes.
375 	 * Kernel preemption is disabled around mutex_oncpu() and rw_oncpu()
376 	 * callers, therefore cross-call to all CPUs will do the job.  Also,
377 	 * the value of l->l_cpu must be still valid at this point.
378 	 */
379 	KASSERT(l->l_cpu != NULL);
380 	xc_barrier(0);
381 }
382 
383 /*
384  * Set an suspended.
385  *
386  * Must be called with p_lock held, and the LWP locked.  Will unlock the
387  * LWP before return.
388  */
389 int
390 lwp_suspend(struct lwp *curl, struct lwp *t)
391 {
392 	int error;
393 
394 	KASSERT(mutex_owned(t->l_proc->p_lock));
395 	KASSERT(lwp_locked(t, NULL));
396 
397 	KASSERT(curl != t || curl->l_stat == LSONPROC);
398 
399 	/*
400 	 * If the current LWP has been told to exit, we must not suspend anyone
401 	 * else or deadlock could occur.  We won't return to userspace.
402 	 */
403 	if ((curl->l_flag & (LW_WEXIT | LW_WCORE)) != 0) {
404 		lwp_unlock(t);
405 		return (EDEADLK);
406 	}
407 
408 	if ((t->l_flag & LW_DBGSUSPEND) != 0) {
409 		lwp_unlock(t);
410 		return 0;
411 	}
412 
413 	error = 0;
414 
415 	switch (t->l_stat) {
416 	case LSRUN:
417 	case LSONPROC:
418 		t->l_flag |= LW_WSUSPEND;
419 		lwp_need_userret(t);
420 		lwp_unlock(t);
421 		break;
422 
423 	case LSSLEEP:
424 		t->l_flag |= LW_WSUSPEND;
425 
426 		/*
427 		 * Kick the LWP and try to get it to the kernel boundary
428 		 * so that it will release any locks that it holds.
429 		 * setrunnable() will release the lock.
430 		 */
431 		if ((t->l_flag & LW_SINTR) != 0)
432 			setrunnable(t);
433 		else
434 			lwp_unlock(t);
435 		break;
436 
437 	case LSSUSPENDED:
438 		lwp_unlock(t);
439 		break;
440 
441 	case LSSTOP:
442 		t->l_flag |= LW_WSUSPEND;
443 		setrunnable(t);
444 		break;
445 
446 	case LSIDL:
447 	case LSZOMB:
448 		error = EINTR; /* It's what Solaris does..... */
449 		lwp_unlock(t);
450 		break;
451 	}
452 
453 	return (error);
454 }
455 
456 /*
457  * Restart a suspended LWP.
458  *
459  * Must be called with p_lock held, and the LWP locked.  Will unlock the
460  * LWP before return.
461  */
462 void
463 lwp_continue(struct lwp *l)
464 {
465 
466 	KASSERT(mutex_owned(l->l_proc->p_lock));
467 	KASSERT(lwp_locked(l, NULL));
468 
469 	/* If rebooting or not suspended, then just bail out. */
470 	if ((l->l_flag & LW_WREBOOT) != 0) {
471 		lwp_unlock(l);
472 		return;
473 	}
474 
475 	l->l_flag &= ~LW_WSUSPEND;
476 
477 	if (l->l_stat != LSSUSPENDED || (l->l_flag & LW_DBGSUSPEND) != 0) {
478 		lwp_unlock(l);
479 		return;
480 	}
481 
482 	/* setrunnable() will release the lock. */
483 	setrunnable(l);
484 }
485 
486 /*
487  * Restart a stopped LWP.
488  *
489  * Must be called with p_lock held, and the LWP NOT locked.  Will unlock the
490  * LWP before return.
491  */
492 void
493 lwp_unstop(struct lwp *l)
494 {
495 	struct proc *p = l->l_proc;
496 
497 	KASSERT(mutex_owned(proc_lock));
498 	KASSERT(mutex_owned(p->p_lock));
499 
500 	lwp_lock(l);
501 
502 	KASSERT((l->l_flag & LW_DBGSUSPEND) == 0);
503 
504 	/* If not stopped, then just bail out. */
505 	if (l->l_stat != LSSTOP) {
506 		lwp_unlock(l);
507 		return;
508 	}
509 
510 	p->p_stat = SACTIVE;
511 	p->p_sflag &= ~PS_STOPPING;
512 
513 	if (!p->p_waited)
514 		p->p_pptr->p_nstopchild--;
515 
516 	if (l->l_wchan == NULL) {
517 		/* setrunnable() will release the lock. */
518 		setrunnable(l);
519 	} else if (p->p_xsig && (l->l_flag & LW_SINTR) != 0) {
520 		/* setrunnable() so we can receive the signal */
521 		setrunnable(l);
522 	} else {
523 		l->l_stat = LSSLEEP;
524 		p->p_nrlwps++;
525 		lwp_unlock(l);
526 	}
527 }
528 
529 /*
530  * Wait for an LWP within the current process to exit.  If 'lid' is
531  * non-zero, we are waiting for a specific LWP.
532  *
533  * Must be called with p->p_lock held.
534  */
535 int
536 lwp_wait(struct lwp *l, lwpid_t lid, lwpid_t *departed, bool exiting)
537 {
538 	const lwpid_t curlid = l->l_lid;
539 	proc_t *p = l->l_proc;
540 	lwp_t *l2, *next;
541 	int error;
542 
543 	KASSERT(mutex_owned(p->p_lock));
544 
545 	p->p_nlwpwait++;
546 	l->l_waitingfor = lid;
547 
548 	for (;;) {
549 		int nfound;
550 
551 		/*
552 		 * Avoid a race between exit1() and sigexit(): if the
553 		 * process is dumping core, then we need to bail out: call
554 		 * into lwp_userret() where we will be suspended until the
555 		 * deed is done.
556 		 */
557 		if ((p->p_sflag & PS_WCORE) != 0) {
558 			mutex_exit(p->p_lock);
559 			lwp_userret(l);
560 			KASSERT(false);
561 		}
562 
563 		/*
564 		 * First off, drain any detached LWP that is waiting to be
565 		 * reaped.
566 		 */
567 		while ((l2 = p->p_zomblwp) != NULL) {
568 			p->p_zomblwp = NULL;
569 			lwp_free(l2, false, false);/* releases proc mutex */
570 			mutex_enter(p->p_lock);
571 		}
572 
573 		/*
574 		 * Now look for an LWP to collect.  If the whole process is
575 		 * exiting, count detached LWPs as eligible to be collected,
576 		 * but don't drain them here.
577 		 */
578 		nfound = 0;
579 		error = 0;
580 
581 		/*
582 		 * If given a specific LID, go via the tree and make sure
583 		 * it's not detached.
584 		 */
585 		if (lid != 0) {
586 			l2 = radix_tree_lookup_node(&p->p_lwptree,
587 			    (uint64_t)(lid - 1));
588 			if (l2 == NULL) {
589 				error = ESRCH;
590 				break;
591 			}
592 			KASSERT(l2->l_lid == lid);
593 			if ((l2->l_prflag & LPR_DETACHED) != 0) {
594 				error = EINVAL;
595 				break;
596 			}
597 		} else {
598 			l2 = LIST_FIRST(&p->p_lwps);
599 		}
600 		for (; l2 != NULL; l2 = next) {
601 			next = (lid != 0 ? NULL : LIST_NEXT(l2, l_sibling));
602 
603 			/*
604 			 * If a specific wait and the target is waiting on
605 			 * us, then avoid deadlock.  This also traps LWPs
606 			 * that try to wait on themselves.
607 			 *
608 			 * Note that this does not handle more complicated
609 			 * cycles, like: t1 -> t2 -> t3 -> t1.  The process
610 			 * can still be killed so it is not a major problem.
611 			 */
612 			if (l2->l_lid == lid && l2->l_waitingfor == curlid) {
613 				error = EDEADLK;
614 				break;
615 			}
616 			if (l2 == l)
617 				continue;
618 			if ((l2->l_prflag & LPR_DETACHED) != 0) {
619 				nfound += exiting;
620 				continue;
621 			}
622 			if (lid != 0) {
623 				/*
624 				 * Mark this LWP as the first waiter, if there
625 				 * is no other.
626 				 */
627 				if (l2->l_waiter == 0)
628 					l2->l_waiter = curlid;
629 			} else if (l2->l_waiter != 0) {
630 				/*
631 				 * It already has a waiter - so don't
632 				 * collect it.  If the waiter doesn't
633 				 * grab it we'll get another chance
634 				 * later.
635 				 */
636 				nfound++;
637 				continue;
638 			}
639 			nfound++;
640 
641 			/* No need to lock the LWP in order to see LSZOMB. */
642 			if (l2->l_stat != LSZOMB)
643 				continue;
644 
645 			/*
646 			 * We're no longer waiting.  Reset the "first waiter"
647 			 * pointer on the target, in case it was us.
648 			 */
649 			l->l_waitingfor = 0;
650 			l2->l_waiter = 0;
651 			p->p_nlwpwait--;
652 			if (departed)
653 				*departed = l2->l_lid;
654 			sched_lwp_collect(l2);
655 
656 			/* lwp_free() releases the proc lock. */
657 			lwp_free(l2, false, false);
658 			mutex_enter(p->p_lock);
659 			return 0;
660 		}
661 
662 		if (error != 0)
663 			break;
664 		if (nfound == 0) {
665 			error = ESRCH;
666 			break;
667 		}
668 
669 		/*
670 		 * Note: since the lock will be dropped, need to restart on
671 		 * wakeup to run all LWPs again, e.g. there may be new LWPs.
672 		 */
673 		if (exiting) {
674 			KASSERT(p->p_nlwps > 1);
675 			error = cv_timedwait(&p->p_lwpcv, p->p_lock, 1);
676 			break;
677 		}
678 
679 		/*
680 		 * If all other LWPs are waiting for exits or suspends
681 		 * and the supply of zombies and potential zombies is
682 		 * exhausted, then we are about to deadlock.
683 		 */
684 		if ((p->p_sflag & PS_WEXIT) != 0 ||
685 		    p->p_nrlwps + p->p_nzlwps - p->p_ndlwps <= p->p_nlwpwait) {
686 			error = EDEADLK;
687 			break;
688 		}
689 
690 		/*
691 		 * Sit around and wait for something to happen.  We'll be
692 		 * awoken if any of the conditions examined change: if an
693 		 * LWP exits, is collected, or is detached.
694 		 */
695 		if ((error = cv_wait_sig(&p->p_lwpcv, p->p_lock)) != 0)
696 			break;
697 	}
698 
699 	/*
700 	 * We didn't find any LWPs to collect, we may have received a
701 	 * signal, or some other condition has caused us to bail out.
702 	 *
703 	 * If waiting on a specific LWP, clear the waiters marker: some
704 	 * other LWP may want it.  Then, kick all the remaining waiters
705 	 * so that they can re-check for zombies and for deadlock.
706 	 */
707 	if (lid != 0) {
708 		l2 = radix_tree_lookup_node(&p->p_lwptree,
709 		    (uint64_t)(lid - 1));
710 		KASSERT(l2 == NULL || l2->l_lid == lid);
711 
712 		if (l2 != NULL && l2->l_waiter == curlid)
713 			l2->l_waiter = 0;
714 	}
715 	p->p_nlwpwait--;
716 	l->l_waitingfor = 0;
717 	cv_broadcast(&p->p_lwpcv);
718 
719 	return error;
720 }
721 
722 /*
723  * Find an unused LID for a new LWP.
724  */
725 static lwpid_t
726 lwp_find_free_lid(struct proc *p)
727 {
728 	struct lwp *gang[32];
729 	lwpid_t lid;
730 	unsigned n;
731 
732 	KASSERT(mutex_owned(p->p_lock));
733 	KASSERT(p->p_nlwpid > 0);
734 
735 	/*
736 	 * Scoot forward through the tree in blocks of LIDs doing gang
737 	 * lookup with dense=true, meaning the lookup will terminate the
738 	 * instant a hole is encountered.  Most of the time the first entry
739 	 * (p->p_nlwpid) is free and the lookup fails fast.
740 	 */
741 	for (lid = p->p_nlwpid;;) {
742 		n = radix_tree_gang_lookup_node(&p->p_lwptree, lid - 1,
743 		    (void **)gang, __arraycount(gang), true);
744 		if (n == 0) {
745 			/* Start point was empty. */
746 			break;
747 		}
748 		KASSERT(gang[0]->l_lid == lid);
749 		lid = gang[n - 1]->l_lid + 1;
750 		if (n < __arraycount(gang)) {
751 			/* Scan encountered a hole. */
752 			break;
753 		}
754 	}
755 
756 	return (lwpid_t)lid;
757 }
758 
759 /*
760  * Create a new LWP within process 'p2', using LWP 'l1' as a template.
761  * The new LWP is created in state LSIDL and must be set running,
762  * suspended, or stopped by the caller.
763  */
764 int
765 lwp_create(lwp_t *l1, proc_t *p2, vaddr_t uaddr, int flags,
766     void *stack, size_t stacksize, void (*func)(void *), void *arg,
767     lwp_t **rnewlwpp, int sclass, const sigset_t *sigmask,
768     const stack_t *sigstk)
769 {
770 	struct lwp *l2;
771 	turnstile_t *ts;
772 	lwpid_t lid;
773 
774 	KASSERT(l1 == curlwp || l1->l_proc == &proc0);
775 
776 	/*
777 	 * Enforce limits, excluding the first lwp and kthreads.  We must
778 	 * use the process credentials here when adjusting the limit, as
779 	 * they are what's tied to the accounting entity.  However for
780 	 * authorizing the action, we'll use the LWP's credentials.
781 	 */
782 	mutex_enter(p2->p_lock);
783 	if (p2->p_nlwps != 0 && p2 != &proc0) {
784 		uid_t uid = kauth_cred_getuid(p2->p_cred);
785 		int count = chglwpcnt(uid, 1);
786 		if (__predict_false(count >
787 		    p2->p_rlimit[RLIMIT_NTHR].rlim_cur)) {
788 			if (kauth_authorize_process(l1->l_cred,
789 			    KAUTH_PROCESS_RLIMIT, p2,
790 			    KAUTH_ARG(KAUTH_REQ_PROCESS_RLIMIT_BYPASS),
791 			    &p2->p_rlimit[RLIMIT_NTHR], KAUTH_ARG(RLIMIT_NTHR))
792 			    != 0) {
793 				(void)chglwpcnt(uid, -1);
794 				mutex_exit(p2->p_lock);
795 				return EAGAIN;
796 			}
797 		}
798 	}
799 
800 	/*
801 	 * First off, reap any detached LWP waiting to be collected.
802 	 * We can re-use its LWP structure and turnstile.
803 	 */
804 	if ((l2 = p2->p_zomblwp) != NULL) {
805 		p2->p_zomblwp = NULL;
806 		lwp_free(l2, true, false);
807 		/* p2 now unlocked by lwp_free() */
808 		ts = l2->l_ts;
809 		KASSERT(l2->l_inheritedprio == -1);
810 		KASSERT(SLIST_EMPTY(&l2->l_pi_lenders));
811 		memset(l2, 0, sizeof(*l2));
812 		l2->l_ts = ts;
813 	} else {
814 		mutex_exit(p2->p_lock);
815 		l2 = pool_cache_get(lwp_cache, PR_WAITOK);
816 		memset(l2, 0, sizeof(*l2));
817 		l2->l_ts = pool_cache_get(turnstile_cache, PR_WAITOK);
818 		SLIST_INIT(&l2->l_pi_lenders);
819 	}
820 
821 	l2->l_stat = LSIDL;
822 	l2->l_proc = p2;
823 	l2->l_refcnt = 1;
824 	l2->l_class = sclass;
825 
826 	/*
827 	 * If vfork(), we want the LWP to run fast and on the same CPU
828 	 * as its parent, so that it can reuse the VM context and cache
829 	 * footprint on the local CPU.
830 	 */
831 	l2->l_kpriority = ((flags & LWP_VFORK) ? true : false);
832 	l2->l_kpribase = PRI_KERNEL;
833 	l2->l_priority = l1->l_priority;
834 	l2->l_inheritedprio = -1;
835 	l2->l_protectprio = -1;
836 	l2->l_auxprio = -1;
837 	l2->l_flag = 0;
838 	l2->l_pflag = LP_MPSAFE;
839 	TAILQ_INIT(&l2->l_ld_locks);
840 	l2->l_psrefs = 0;
841 	kmsan_lwp_alloc(l2);
842 
843 	/*
844 	 * For vfork, borrow parent's lwpctl context if it exists.
845 	 * This also causes us to return via lwp_userret.
846 	 */
847 	if (flags & LWP_VFORK && l1->l_lwpctl) {
848 		l2->l_lwpctl = l1->l_lwpctl;
849 		l2->l_flag |= LW_LWPCTL;
850 	}
851 
852 	/*
853 	 * If not the first LWP in the process, grab a reference to the
854 	 * descriptor table.
855 	 */
856 	l2->l_fd = p2->p_fd;
857 	if (p2->p_nlwps != 0) {
858 		KASSERT(l1->l_proc == p2);
859 		fd_hold(l2);
860 	} else {
861 		KASSERT(l1->l_proc != p2);
862 	}
863 
864 	if (p2->p_flag & PK_SYSTEM) {
865 		/* Mark it as a system LWP. */
866 		l2->l_flag |= LW_SYSTEM;
867 	}
868 
869 	kpreempt_disable();
870 	l2->l_mutex = l1->l_cpu->ci_schedstate.spc_lwplock;
871 	l2->l_cpu = l1->l_cpu;
872 	kpreempt_enable();
873 
874 	kdtrace_thread_ctor(NULL, l2);
875 	lwp_initspecific(l2);
876 	sched_lwp_fork(l1, l2);
877 	lwp_update_creds(l2);
878 	callout_init(&l2->l_timeout_ch, CALLOUT_MPSAFE);
879 	callout_setfunc(&l2->l_timeout_ch, sleepq_timeout, l2);
880 	cv_init(&l2->l_sigcv, "sigwait");
881 	cv_init(&l2->l_waitcv, "vfork");
882 	l2->l_syncobj = &sched_syncobj;
883 	PSREF_DEBUG_INIT_LWP(l2);
884 
885 	if (rnewlwpp != NULL)
886 		*rnewlwpp = l2;
887 
888 	/*
889 	 * PCU state needs to be saved before calling uvm_lwp_fork() so that
890 	 * the MD cpu_lwp_fork() can copy the saved state to the new LWP.
891 	 */
892 	pcu_save_all(l1);
893 #if PCU_UNIT_COUNT > 0
894 	l2->l_pcu_valid = l1->l_pcu_valid;
895 #endif
896 
897 	uvm_lwp_setuarea(l2, uaddr);
898 	uvm_lwp_fork(l1, l2, stack, stacksize, func, (arg != NULL) ? arg : l2);
899 
900 	if ((flags & LWP_PIDLID) != 0) {
901 		/* Linux threads: use a PID. */
902 		lid = proc_alloc_pid(p2);
903 		l2->l_pflag |= LP_PIDLID;
904 	} else if (p2->p_nlwps == 0) {
905 		/*
906 		 * First LWP in process.  Copy the parent's LID to avoid
907 		 * causing problems for fork() + threads.  Don't give
908 		 * subsequent threads the distinction of using LID 1.
909 		 */
910 		lid = l1->l_lid;
911 		p2->p_nlwpid = 2;
912 	} else {
913 		/* Scan the radix tree for a free LID. */
914 		lid = 0;
915 	}
916 
917 	/*
918 	 * Allocate LID if needed, and insert into the radix tree.  The
919 	 * first LWP in most processes has a LID of 1.  It turns out that if
920 	 * you insert an item with a key of zero to a radixtree, it's stored
921 	 * directly in the root (p_lwptree) and no extra memory is
922 	 * allocated.  We therefore always subtract 1 from the LID, which
923 	 * means no memory is allocated for the tree unless the program is
924 	 * using threads.  NB: the allocation and insert must take place
925 	 * under the same hold of p_lock.
926 	 */
927 	mutex_enter(p2->p_lock);
928 	for (;;) {
929 		int error;
930 
931 		l2->l_lid = (lid == 0 ? lwp_find_free_lid(p2) : lid);
932 
933 		rw_enter(&p2->p_treelock, RW_WRITER);
934 		error = radix_tree_insert_node(&p2->p_lwptree,
935 		    (uint64_t)(l2->l_lid - 1), l2);
936 		rw_exit(&p2->p_treelock);
937 
938 		if (__predict_true(error == 0)) {
939 			if (lid == 0)
940 				p2->p_nlwpid = l2->l_lid + 1;
941 			break;
942 		}
943 
944 		KASSERT(error == ENOMEM);
945 		mutex_exit(p2->p_lock);
946 		radix_tree_await_memory();
947 		mutex_enter(p2->p_lock);
948 	}
949 
950 	if ((flags & LWP_DETACHED) != 0) {
951 		l2->l_prflag = LPR_DETACHED;
952 		p2->p_ndlwps++;
953 	} else
954 		l2->l_prflag = 0;
955 
956 	if (l1->l_proc == p2) {
957 		/*
958 		 * These flags are set while p_lock is held.  Copy with
959 		 * p_lock held too, so the LWP doesn't sneak into the
960 		 * process without them being set.
961 		 */
962 		l2->l_flag |= (l1->l_flag & (LW_WEXIT | LW_WREBOOT | LW_WCORE));
963 	} else {
964 		/* fork(): pending core/exit doesn't apply to child. */
965 		l2->l_flag |= (l1->l_flag & LW_WREBOOT);
966 	}
967 
968 	l2->l_sigstk = *sigstk;
969 	l2->l_sigmask = *sigmask;
970 	TAILQ_INIT(&l2->l_sigpend.sp_info);
971 	sigemptyset(&l2->l_sigpend.sp_set);
972 	LIST_INSERT_HEAD(&p2->p_lwps, l2, l_sibling);
973 	p2->p_nlwps++;
974 	p2->p_nrlwps++;
975 
976 	KASSERT(l2->l_affinity == NULL);
977 
978 	/* Inherit the affinity mask. */
979 	if (l1->l_affinity) {
980 		/*
981 		 * Note that we hold the state lock while inheriting
982 		 * the affinity to avoid race with sched_setaffinity().
983 		 */
984 		lwp_lock(l1);
985 		if (l1->l_affinity) {
986 			kcpuset_use(l1->l_affinity);
987 			l2->l_affinity = l1->l_affinity;
988 		}
989 		lwp_unlock(l1);
990 	}
991 
992 	/* This marks the end of the "must be atomic" section. */
993 	mutex_exit(p2->p_lock);
994 
995 	SDT_PROBE(proc, kernel, , lwp__create, l2, 0, 0, 0, 0);
996 
997 	mutex_enter(proc_lock);
998 	LIST_INSERT_HEAD(&alllwp, l2, l_list);
999 	/* Inherit a processor-set */
1000 	l2->l_psid = l1->l_psid;
1001 	mutex_exit(proc_lock);
1002 
1003 	SYSCALL_TIME_LWP_INIT(l2);
1004 
1005 	if (p2->p_emul->e_lwp_fork)
1006 		(*p2->p_emul->e_lwp_fork)(l1, l2);
1007 
1008 	return (0);
1009 }
1010 
1011 /*
1012  * Set a new LWP running.  If the process is stopping, then the LWP is
1013  * created stopped.
1014  */
1015 void
1016 lwp_start(lwp_t *l, int flags)
1017 {
1018 	proc_t *p = l->l_proc;
1019 
1020 	mutex_enter(p->p_lock);
1021 	lwp_lock(l);
1022 	KASSERT(l->l_stat == LSIDL);
1023 	if ((flags & LWP_SUSPENDED) != 0) {
1024 		/* It'll suspend itself in lwp_userret(). */
1025 		l->l_flag |= LW_WSUSPEND;
1026 	}
1027 	if (p->p_stat == SSTOP || (p->p_sflag & PS_STOPPING) != 0) {
1028 		KASSERT(l->l_wchan == NULL);
1029 	    	l->l_stat = LSSTOP;
1030 		p->p_nrlwps--;
1031 		lwp_unlock(l);
1032 	} else {
1033 		setrunnable(l);
1034 		/* LWP now unlocked */
1035 	}
1036 	mutex_exit(p->p_lock);
1037 }
1038 
1039 /*
1040  * Called by MD code when a new LWP begins execution.  Must be called
1041  * with the previous LWP locked (so at splsched), or if there is no
1042  * previous LWP, at splsched.
1043  */
1044 void
1045 lwp_startup(struct lwp *prev, struct lwp *new_lwp)
1046 {
1047 	kmutex_t *lock;
1048 
1049 	KASSERTMSG(new_lwp == curlwp, "l %p curlwp %p prevlwp %p", new_lwp, curlwp, prev);
1050 	KASSERT(kpreempt_disabled());
1051 	KASSERT(prev != NULL);
1052 	KASSERT((prev->l_pflag & LP_RUNNING) != 0);
1053 	KASSERT(curcpu()->ci_mtx_count == -2);
1054 
1055 	/*
1056 	 * Immediately mark the previous LWP as no longer running and unlock
1057 	 * (to keep lock wait times short as possible).  If a zombie, don't
1058 	 * touch after clearing LP_RUNNING as it could be reaped by another
1059 	 * CPU.  Issue a memory barrier to ensure this.
1060 	 */
1061 	lock = prev->l_mutex;
1062 	if (__predict_false(prev->l_stat == LSZOMB)) {
1063 		membar_sync();
1064 	}
1065 	prev->l_pflag &= ~LP_RUNNING;
1066 	mutex_spin_exit(lock);
1067 
1068 	/* Correct spin mutex count after mi_switch(). */
1069 	curcpu()->ci_mtx_count = 0;
1070 
1071 	/* Install new VM context. */
1072 	if (__predict_true(new_lwp->l_proc->p_vmspace)) {
1073 		pmap_activate(new_lwp);
1074 	}
1075 
1076 	/* We remain at IPL_SCHED from mi_switch() - reset it. */
1077 	spl0();
1078 
1079 	LOCKDEBUG_BARRIER(NULL, 0);
1080 	SDT_PROBE(proc, kernel, , lwp__start, new_lwp, 0, 0, 0, 0);
1081 
1082 	/* For kthreads, acquire kernel lock if not MPSAFE. */
1083 	if (__predict_false((new_lwp->l_pflag & LP_MPSAFE) == 0)) {
1084 		KERNEL_LOCK(1, new_lwp);
1085 	}
1086 }
1087 
1088 /*
1089  * Exit an LWP.
1090  */
1091 void
1092 lwp_exit(struct lwp *l)
1093 {
1094 	struct proc *p = l->l_proc;
1095 	struct lwp *l2;
1096 	bool current;
1097 
1098 	current = (l == curlwp);
1099 
1100 	KASSERT(current || (l->l_stat == LSIDL && l->l_target_cpu == NULL));
1101 	KASSERT(p == curproc);
1102 
1103 	SDT_PROBE(proc, kernel, , lwp__exit, l, 0, 0, 0, 0);
1104 
1105 	/* Verify that we hold no locks; for DIAGNOSTIC check kernel_lock. */
1106 	LOCKDEBUG_BARRIER(NULL, 0);
1107 	KASSERTMSG(curcpu()->ci_biglock_count == 0, "kernel_lock leaked");
1108 
1109 	/*
1110 	 * If we are the last live LWP in a process, we need to exit the
1111 	 * entire process.  We do so with an exit status of zero, because
1112 	 * it's a "controlled" exit, and because that's what Solaris does.
1113 	 *
1114 	 * We are not quite a zombie yet, but for accounting purposes we
1115 	 * must increment the count of zombies here.
1116 	 *
1117 	 * Note: the last LWP's specificdata will be deleted here.
1118 	 */
1119 	mutex_enter(p->p_lock);
1120 	if (p->p_nlwps - p->p_nzlwps == 1) {
1121 		KASSERT(current == true);
1122 		KASSERT(p != &proc0);
1123 		exit1(l, 0, 0);
1124 		/* NOTREACHED */
1125 	}
1126 	p->p_nzlwps++;
1127 	mutex_exit(p->p_lock);
1128 
1129 	if (p->p_emul->e_lwp_exit)
1130 		(*p->p_emul->e_lwp_exit)(l);
1131 
1132 	/* Drop filedesc reference. */
1133 	fd_free();
1134 
1135 	/* Release fstrans private data. */
1136 	fstrans_lwp_dtor(l);
1137 
1138 	/* Delete the specificdata while it's still safe to sleep. */
1139 	lwp_finispecific(l);
1140 
1141 	/*
1142 	 * Release our cached credentials.
1143 	 */
1144 	kauth_cred_free(l->l_cred);
1145 	callout_destroy(&l->l_timeout_ch);
1146 
1147 	/*
1148 	 * If traced, report LWP exit event to the debugger.
1149 	 *
1150 	 * Remove the LWP from the global list.
1151 	 * Free its LID from the PID namespace if needed.
1152 	 */
1153 	mutex_enter(proc_lock);
1154 
1155 	if ((p->p_slflag & (PSL_TRACED|PSL_TRACELWP_EXIT)) ==
1156 	    (PSL_TRACED|PSL_TRACELWP_EXIT)) {
1157 		mutex_enter(p->p_lock);
1158 		if (ISSET(p->p_sflag, PS_WEXIT)) {
1159 			mutex_exit(p->p_lock);
1160 			/*
1161 			 * We are exiting, bail out without informing parent
1162 			 * about a terminating LWP as it would deadlock.
1163 			 */
1164 		} else {
1165 			eventswitch(TRAP_LWP, PTRACE_LWP_EXIT, l->l_lid);
1166 			mutex_enter(proc_lock);
1167 		}
1168 	}
1169 
1170 	LIST_REMOVE(l, l_list);
1171 	if ((l->l_pflag & LP_PIDLID) != 0 && l->l_lid != p->p_pid) {
1172 		proc_free_pid(l->l_lid);
1173 	}
1174 	mutex_exit(proc_lock);
1175 
1176 	/*
1177 	 * Get rid of all references to the LWP that others (e.g. procfs)
1178 	 * may have, and mark the LWP as a zombie.  If the LWP is detached,
1179 	 * mark it waiting for collection in the proc structure.  Note that
1180 	 * before we can do that, we need to free any other dead, deatched
1181 	 * LWP waiting to meet its maker.
1182 	 */
1183 	mutex_enter(p->p_lock);
1184 	lwp_drainrefs(l);
1185 
1186 	if ((l->l_prflag & LPR_DETACHED) != 0) {
1187 		while ((l2 = p->p_zomblwp) != NULL) {
1188 			p->p_zomblwp = NULL;
1189 			lwp_free(l2, false, false);/* releases proc mutex */
1190 			mutex_enter(p->p_lock);
1191 			l->l_refcnt++;
1192 			lwp_drainrefs(l);
1193 		}
1194 		p->p_zomblwp = l;
1195 	}
1196 
1197 	/*
1198 	 * If we find a pending signal for the process and we have been
1199 	 * asked to check for signals, then we lose: arrange to have
1200 	 * all other LWPs in the process check for signals.
1201 	 */
1202 	if ((l->l_flag & LW_PENDSIG) != 0 &&
1203 	    firstsig(&p->p_sigpend.sp_set) != 0) {
1204 		LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
1205 			lwp_lock(l2);
1206 			signotify(l2);
1207 			lwp_unlock(l2);
1208 		}
1209 	}
1210 
1211 	/*
1212 	 * Release any PCU resources before becoming a zombie.
1213 	 */
1214 	pcu_discard_all(l);
1215 
1216 	lwp_lock(l);
1217 	l->l_stat = LSZOMB;
1218 	if (l->l_name != NULL) {
1219 		strcpy(l->l_name, "(zombie)");
1220 	}
1221 	lwp_unlock(l);
1222 	p->p_nrlwps--;
1223 	cv_broadcast(&p->p_lwpcv);
1224 	if (l->l_lwpctl != NULL)
1225 		l->l_lwpctl->lc_curcpu = LWPCTL_CPU_EXITED;
1226 	mutex_exit(p->p_lock);
1227 
1228 	/*
1229 	 * We can no longer block.  At this point, lwp_free() may already
1230 	 * be gunning for us.  On a multi-CPU system, we may be off p_lwps.
1231 	 *
1232 	 * Free MD LWP resources.
1233 	 */
1234 	cpu_lwp_free(l, 0);
1235 
1236 	if (current) {
1237 		/* Switch away into oblivion. */
1238 		lwp_lock(l);
1239 		spc_lock(l->l_cpu);
1240 		mi_switch(l);
1241 		panic("lwp_exit");
1242 	}
1243 }
1244 
1245 /*
1246  * Free a dead LWP's remaining resources.
1247  *
1248  * XXXLWP limits.
1249  */
1250 void
1251 lwp_free(struct lwp *l, bool recycle, bool last)
1252 {
1253 	struct proc *p = l->l_proc;
1254 	struct rusage *ru;
1255 	struct lwp *l2 __diagused;
1256 	ksiginfoq_t kq;
1257 
1258 	KASSERT(l != curlwp);
1259 	KASSERT(last || mutex_owned(p->p_lock));
1260 
1261 	/*
1262 	 * We use the process credentials instead of the lwp credentials here
1263 	 * because the lwp credentials maybe cached (just after a setuid call)
1264 	 * and we don't want pay for syncing, since the lwp is going away
1265 	 * anyway
1266 	 */
1267 	if (p != &proc0 && p->p_nlwps != 1)
1268 		(void)chglwpcnt(kauth_cred_getuid(p->p_cred), -1);
1269 
1270 	/*
1271 	 * If this was not the last LWP in the process, then adjust counters
1272 	 * and unlock.  This is done differently for the last LWP in exit1().
1273 	 */
1274 	if (!last) {
1275 		/*
1276 		 * Add the LWP's run time to the process' base value.
1277 		 * This needs to co-incide with coming off p_lwps.
1278 		 */
1279 		bintime_add(&p->p_rtime, &l->l_rtime);
1280 		p->p_pctcpu += l->l_pctcpu;
1281 		ru = &p->p_stats->p_ru;
1282 		ruadd(ru, &l->l_ru);
1283 		ru->ru_nvcsw += (l->l_ncsw - l->l_nivcsw);
1284 		ru->ru_nivcsw += l->l_nivcsw;
1285 		LIST_REMOVE(l, l_sibling);
1286 		p->p_nlwps--;
1287 		p->p_nzlwps--;
1288 		if ((l->l_prflag & LPR_DETACHED) != 0)
1289 			p->p_ndlwps--;
1290 
1291 		/* Make note of the LID being free, and remove from tree. */
1292 		if (l->l_lid < p->p_nlwpid)
1293 			p->p_nlwpid = l->l_lid;
1294 		rw_enter(&p->p_treelock, RW_WRITER);
1295 		l2 = radix_tree_remove_node(&p->p_lwptree,
1296 		    (uint64_t)(l->l_lid - 1));
1297 		KASSERT(l2 == l);
1298 		rw_exit(&p->p_treelock);
1299 
1300 		/*
1301 		 * Have any LWPs sleeping in lwp_wait() recheck for
1302 		 * deadlock.
1303 		 */
1304 		cv_broadcast(&p->p_lwpcv);
1305 		mutex_exit(p->p_lock);
1306 	}
1307 
1308 	/*
1309 	 * In the unlikely event that the LWP is still on the CPU,
1310 	 * then spin until it has switched away.
1311 	 */
1312 	membar_consumer();
1313 	while (__predict_false((l->l_pflag & LP_RUNNING) != 0)) {
1314 		SPINLOCK_BACKOFF_HOOK;
1315 	}
1316 
1317 	/*
1318 	 * Destroy the LWP's remaining signal information.
1319 	 */
1320 	ksiginfo_queue_init(&kq);
1321 	sigclear(&l->l_sigpend, NULL, &kq);
1322 	ksiginfo_queue_drain(&kq);
1323 	cv_destroy(&l->l_sigcv);
1324 	cv_destroy(&l->l_waitcv);
1325 
1326 	/*
1327 	 * Free lwpctl structure and affinity.
1328 	 */
1329 	if (l->l_lwpctl) {
1330 		lwp_ctl_free(l);
1331 	}
1332 	if (l->l_affinity) {
1333 		kcpuset_unuse(l->l_affinity, NULL);
1334 		l->l_affinity = NULL;
1335 	}
1336 
1337 	/*
1338 	 * Free the LWP's turnstile and the LWP structure itself unless the
1339 	 * caller wants to recycle them.  Also, free the scheduler specific
1340 	 * data.
1341 	 *
1342 	 * We can't return turnstile0 to the pool (it didn't come from it),
1343 	 * so if it comes up just drop it quietly and move on.
1344 	 *
1345 	 * We don't recycle the VM resources at this time.
1346 	 */
1347 
1348 	if (!recycle && l->l_ts != &turnstile0)
1349 		pool_cache_put(turnstile_cache, l->l_ts);
1350 	if (l->l_name != NULL)
1351 		kmem_free(l->l_name, MAXCOMLEN);
1352 
1353 	kmsan_lwp_free(l);
1354 	cpu_lwp_free2(l);
1355 	uvm_lwp_exit(l);
1356 
1357 	KASSERT(SLIST_EMPTY(&l->l_pi_lenders));
1358 	KASSERT(l->l_inheritedprio == -1);
1359 	KASSERT(l->l_blcnt == 0);
1360 	kdtrace_thread_dtor(NULL, l);
1361 	if (!recycle)
1362 		pool_cache_put(lwp_cache, l);
1363 }
1364 
1365 /*
1366  * Migrate the LWP to the another CPU.  Unlocks the LWP.
1367  */
1368 void
1369 lwp_migrate(lwp_t *l, struct cpu_info *tci)
1370 {
1371 	struct schedstate_percpu *tspc;
1372 	int lstat = l->l_stat;
1373 
1374 	KASSERT(lwp_locked(l, NULL));
1375 	KASSERT(tci != NULL);
1376 
1377 	/* If LWP is still on the CPU, it must be handled like LSONPROC */
1378 	if ((l->l_pflag & LP_RUNNING) != 0) {
1379 		lstat = LSONPROC;
1380 	}
1381 
1382 	/*
1383 	 * The destination CPU could be changed while previous migration
1384 	 * was not finished.
1385 	 */
1386 	if (l->l_target_cpu != NULL) {
1387 		l->l_target_cpu = tci;
1388 		lwp_unlock(l);
1389 		return;
1390 	}
1391 
1392 	/* Nothing to do if trying to migrate to the same CPU */
1393 	if (l->l_cpu == tci) {
1394 		lwp_unlock(l);
1395 		return;
1396 	}
1397 
1398 	KASSERT(l->l_target_cpu == NULL);
1399 	tspc = &tci->ci_schedstate;
1400 	switch (lstat) {
1401 	case LSRUN:
1402 		l->l_target_cpu = tci;
1403 		break;
1404 	case LSSLEEP:
1405 		l->l_cpu = tci;
1406 		break;
1407 	case LSIDL:
1408 	case LSSTOP:
1409 	case LSSUSPENDED:
1410 		l->l_cpu = tci;
1411 		if (l->l_wchan == NULL) {
1412 			lwp_unlock_to(l, tspc->spc_lwplock);
1413 			return;
1414 		}
1415 		break;
1416 	case LSONPROC:
1417 		l->l_target_cpu = tci;
1418 		spc_lock(l->l_cpu);
1419 		sched_resched_cpu(l->l_cpu, PRI_USER_RT, true);
1420 		/* spc now unlocked */
1421 		break;
1422 	}
1423 	lwp_unlock(l);
1424 }
1425 
1426 /*
1427  * Find the LWP in the process.  Arguments may be zero, in such case,
1428  * the calling process and first LWP in the list will be used.
1429  * On success - returns proc locked.
1430  */
1431 struct lwp *
1432 lwp_find2(pid_t pid, lwpid_t lid)
1433 {
1434 	proc_t *p;
1435 	lwp_t *l;
1436 
1437 	/* Find the process. */
1438 	if (pid != 0) {
1439 		mutex_enter(proc_lock);
1440 		p = proc_find(pid);
1441 		if (p == NULL) {
1442 			mutex_exit(proc_lock);
1443 			return NULL;
1444 		}
1445 		mutex_enter(p->p_lock);
1446 		mutex_exit(proc_lock);
1447 	} else {
1448 		p = curlwp->l_proc;
1449 		mutex_enter(p->p_lock);
1450 	}
1451 	/* Find the thread. */
1452 	if (lid != 0) {
1453 		l = lwp_find(p, lid);
1454 	} else {
1455 		l = LIST_FIRST(&p->p_lwps);
1456 	}
1457 	if (l == NULL) {
1458 		mutex_exit(p->p_lock);
1459 	}
1460 	return l;
1461 }
1462 
1463 /*
1464  * Look up a live LWP within the specified process.
1465  *
1466  * Must be called with p->p_lock held (as it looks at the radix tree,
1467  * and also wants to exclude idle and zombie LWPs).
1468  */
1469 struct lwp *
1470 lwp_find(struct proc *p, lwpid_t id)
1471 {
1472 	struct lwp *l;
1473 
1474 	KASSERT(mutex_owned(p->p_lock));
1475 
1476 	l = radix_tree_lookup_node(&p->p_lwptree, (uint64_t)(id - 1));
1477 	KASSERT(l == NULL || l->l_lid == id);
1478 
1479 	/*
1480 	 * No need to lock - all of these conditions will
1481 	 * be visible with the process level mutex held.
1482 	 */
1483 	if (l != NULL && (l->l_stat == LSIDL || l->l_stat == LSZOMB))
1484 		l = NULL;
1485 
1486 	return l;
1487 }
1488 
1489 /*
1490  * Update an LWP's cached credentials to mirror the process' master copy.
1491  *
1492  * This happens early in the syscall path, on user trap, and on LWP
1493  * creation.  A long-running LWP can also voluntarily choose to update
1494  * its credentials by calling this routine.  This may be called from
1495  * LWP_CACHE_CREDS(), which checks l->l_cred != p->p_cred beforehand.
1496  */
1497 void
1498 lwp_update_creds(struct lwp *l)
1499 {
1500 	kauth_cred_t oc;
1501 	struct proc *p;
1502 
1503 	p = l->l_proc;
1504 	oc = l->l_cred;
1505 
1506 	mutex_enter(p->p_lock);
1507 	kauth_cred_hold(p->p_cred);
1508 	l->l_cred = p->p_cred;
1509 	l->l_prflag &= ~LPR_CRMOD;
1510 	mutex_exit(p->p_lock);
1511 	if (oc != NULL)
1512 		kauth_cred_free(oc);
1513 }
1514 
1515 /*
1516  * Verify that an LWP is locked, and optionally verify that the lock matches
1517  * one we specify.
1518  */
1519 int
1520 lwp_locked(struct lwp *l, kmutex_t *mtx)
1521 {
1522 	kmutex_t *cur = l->l_mutex;
1523 
1524 	return mutex_owned(cur) && (mtx == cur || mtx == NULL);
1525 }
1526 
1527 /*
1528  * Lend a new mutex to an LWP.  The old mutex must be held.
1529  */
1530 kmutex_t *
1531 lwp_setlock(struct lwp *l, kmutex_t *mtx)
1532 {
1533 	kmutex_t *oldmtx = l->l_mutex;
1534 
1535 	KASSERT(mutex_owned(oldmtx));
1536 
1537 	membar_exit();
1538 	l->l_mutex = mtx;
1539 	return oldmtx;
1540 }
1541 
1542 /*
1543  * Lend a new mutex to an LWP, and release the old mutex.  The old mutex
1544  * must be held.
1545  */
1546 void
1547 lwp_unlock_to(struct lwp *l, kmutex_t *mtx)
1548 {
1549 	kmutex_t *old;
1550 
1551 	KASSERT(lwp_locked(l, NULL));
1552 
1553 	old = l->l_mutex;
1554 	membar_exit();
1555 	l->l_mutex = mtx;
1556 	mutex_spin_exit(old);
1557 }
1558 
1559 int
1560 lwp_trylock(struct lwp *l)
1561 {
1562 	kmutex_t *old;
1563 
1564 	for (;;) {
1565 		if (!mutex_tryenter(old = l->l_mutex))
1566 			return 0;
1567 		if (__predict_true(l->l_mutex == old))
1568 			return 1;
1569 		mutex_spin_exit(old);
1570 	}
1571 }
1572 
1573 void
1574 lwp_unsleep(lwp_t *l, bool unlock)
1575 {
1576 
1577 	KASSERT(mutex_owned(l->l_mutex));
1578 	(*l->l_syncobj->sobj_unsleep)(l, unlock);
1579 }
1580 
1581 /*
1582  * Handle exceptions for mi_userret().  Called if a member of LW_USERRET is
1583  * set.
1584  */
1585 void
1586 lwp_userret(struct lwp *l)
1587 {
1588 	struct proc *p;
1589 	int sig;
1590 
1591 	KASSERT(l == curlwp);
1592 	KASSERT(l->l_stat == LSONPROC);
1593 	p = l->l_proc;
1594 
1595 #ifndef __HAVE_FAST_SOFTINTS
1596 	/* Run pending soft interrupts. */
1597 	if (l->l_cpu->ci_data.cpu_softints != 0)
1598 		softint_overlay();
1599 #endif
1600 
1601 	/*
1602 	 * It is safe to do this read unlocked on a MP system..
1603 	 */
1604 	while ((l->l_flag & LW_USERRET) != 0) {
1605 		/*
1606 		 * Process pending signals first, unless the process
1607 		 * is dumping core or exiting, where we will instead
1608 		 * enter the LW_WSUSPEND case below.
1609 		 */
1610 		if ((l->l_flag & (LW_PENDSIG | LW_WCORE | LW_WEXIT)) ==
1611 		    LW_PENDSIG) {
1612 			mutex_enter(p->p_lock);
1613 			while ((sig = issignal(l)) != 0)
1614 				postsig(sig);
1615 			mutex_exit(p->p_lock);
1616 		}
1617 
1618 		/*
1619 		 * Core-dump or suspend pending.
1620 		 *
1621 		 * In case of core dump, suspend ourselves, so that the kernel
1622 		 * stack and therefore the userland registers saved in the
1623 		 * trapframe are around for coredump() to write them out.
1624 		 * We also need to save any PCU resources that we have so that
1625 		 * they accessible for coredump().  We issue a wakeup on
1626 		 * p->p_lwpcv so that sigexit() will write the core file out
1627 		 * once all other LWPs are suspended.
1628 		 */
1629 		if ((l->l_flag & LW_WSUSPEND) != 0) {
1630 			pcu_save_all(l);
1631 			mutex_enter(p->p_lock);
1632 			p->p_nrlwps--;
1633 			cv_broadcast(&p->p_lwpcv);
1634 			lwp_lock(l);
1635 			l->l_stat = LSSUSPENDED;
1636 			lwp_unlock(l);
1637 			mutex_exit(p->p_lock);
1638 			lwp_lock(l);
1639 			spc_lock(l->l_cpu);
1640 			mi_switch(l);
1641 		}
1642 
1643 		/* Process is exiting. */
1644 		if ((l->l_flag & LW_WEXIT) != 0) {
1645 			lwp_exit(l);
1646 			KASSERT(0);
1647 			/* NOTREACHED */
1648 		}
1649 
1650 		/* update lwpctl processor (for vfork child_return) */
1651 		if (l->l_flag & LW_LWPCTL) {
1652 			lwp_lock(l);
1653 			KASSERT(kpreempt_disabled());
1654 			l->l_lwpctl->lc_curcpu = (int)cpu_index(l->l_cpu);
1655 			l->l_lwpctl->lc_pctr++;
1656 			l->l_flag &= ~LW_LWPCTL;
1657 			lwp_unlock(l);
1658 		}
1659 	}
1660 }
1661 
1662 /*
1663  * Force an LWP to enter the kernel, to take a trip through lwp_userret().
1664  */
1665 void
1666 lwp_need_userret(struct lwp *l)
1667 {
1668 
1669 	KASSERT(!cpu_intr_p());
1670 	KASSERT(lwp_locked(l, NULL));
1671 
1672 	/*
1673 	 * If the LWP is in any state other than LSONPROC, we know that it
1674 	 * is executing in-kernel and will hit userret() on the way out.
1675 	 *
1676 	 * If the LWP is curlwp, then we know we'll be back out to userspace
1677 	 * soon (can't be called from a hardware interrupt here).
1678 	 *
1679 	 * Otherwise, we can't be sure what the LWP is doing, so first make
1680 	 * sure the update to l_flag will be globally visible, and then
1681 	 * force the LWP to take a trip through trap() where it will do
1682 	 * userret().
1683 	 */
1684 	if (l->l_stat == LSONPROC && l != curlwp) {
1685 		membar_producer();
1686 		cpu_signotify(l);
1687 	}
1688 }
1689 
1690 /*
1691  * Add one reference to an LWP.  This will prevent the LWP from
1692  * exiting, thus keep the lwp structure and PCB around to inspect.
1693  */
1694 void
1695 lwp_addref(struct lwp *l)
1696 {
1697 
1698 	KASSERT(mutex_owned(l->l_proc->p_lock));
1699 	KASSERT(l->l_stat != LSZOMB);
1700 	KASSERT(l->l_refcnt != 0);
1701 
1702 	l->l_refcnt++;
1703 }
1704 
1705 /*
1706  * Remove one reference to an LWP.  If this is the last reference,
1707  * then we must finalize the LWP's death.
1708  */
1709 void
1710 lwp_delref(struct lwp *l)
1711 {
1712 	struct proc *p = l->l_proc;
1713 
1714 	mutex_enter(p->p_lock);
1715 	lwp_delref2(l);
1716 	mutex_exit(p->p_lock);
1717 }
1718 
1719 /*
1720  * Remove one reference to an LWP.  If this is the last reference,
1721  * then we must finalize the LWP's death.  The proc mutex is held
1722  * on entry.
1723  */
1724 void
1725 lwp_delref2(struct lwp *l)
1726 {
1727 	struct proc *p = l->l_proc;
1728 
1729 	KASSERT(mutex_owned(p->p_lock));
1730 	KASSERT(l->l_stat != LSZOMB);
1731 	KASSERT(l->l_refcnt > 0);
1732 	if (--l->l_refcnt == 0)
1733 		cv_broadcast(&p->p_lwpcv);
1734 }
1735 
1736 /*
1737  * Drain all references to the current LWP.
1738  */
1739 void
1740 lwp_drainrefs(struct lwp *l)
1741 {
1742 	struct proc *p = l->l_proc;
1743 
1744 	KASSERT(mutex_owned(p->p_lock));
1745 	KASSERT(l->l_refcnt != 0);
1746 
1747 	l->l_refcnt--;
1748 	while (l->l_refcnt != 0)
1749 		cv_wait(&p->p_lwpcv, p->p_lock);
1750 }
1751 
1752 /*
1753  * Return true if the specified LWP is 'alive'.  Only p->p_lock need
1754  * be held.
1755  */
1756 bool
1757 lwp_alive(lwp_t *l)
1758 {
1759 
1760 	KASSERT(mutex_owned(l->l_proc->p_lock));
1761 
1762 	switch (l->l_stat) {
1763 	case LSSLEEP:
1764 	case LSRUN:
1765 	case LSONPROC:
1766 	case LSSTOP:
1767 	case LSSUSPENDED:
1768 		return true;
1769 	default:
1770 		return false;
1771 	}
1772 }
1773 
1774 /*
1775  * Return first live LWP in the process.
1776  */
1777 lwp_t *
1778 lwp_find_first(proc_t *p)
1779 {
1780 	lwp_t *l;
1781 
1782 	KASSERT(mutex_owned(p->p_lock));
1783 
1784 	LIST_FOREACH(l, &p->p_lwps, l_sibling) {
1785 		if (lwp_alive(l)) {
1786 			return l;
1787 		}
1788 	}
1789 
1790 	return NULL;
1791 }
1792 
1793 /*
1794  * Allocate a new lwpctl structure for a user LWP.
1795  */
1796 int
1797 lwp_ctl_alloc(vaddr_t *uaddr)
1798 {
1799 	lcproc_t *lp;
1800 	u_int bit, i, offset;
1801 	struct uvm_object *uao;
1802 	int error;
1803 	lcpage_t *lcp;
1804 	proc_t *p;
1805 	lwp_t *l;
1806 
1807 	l = curlwp;
1808 	p = l->l_proc;
1809 
1810 	/* don't allow a vforked process to create lwp ctls */
1811 	if (p->p_lflag & PL_PPWAIT)
1812 		return EBUSY;
1813 
1814 	if (l->l_lcpage != NULL) {
1815 		lcp = l->l_lcpage;
1816 		*uaddr = lcp->lcp_uaddr + (vaddr_t)l->l_lwpctl - lcp->lcp_kaddr;
1817 		return 0;
1818 	}
1819 
1820 	/* First time around, allocate header structure for the process. */
1821 	if ((lp = p->p_lwpctl) == NULL) {
1822 		lp = kmem_alloc(sizeof(*lp), KM_SLEEP);
1823 		mutex_init(&lp->lp_lock, MUTEX_DEFAULT, IPL_NONE);
1824 		lp->lp_uao = NULL;
1825 		TAILQ_INIT(&lp->lp_pages);
1826 		mutex_enter(p->p_lock);
1827 		if (p->p_lwpctl == NULL) {
1828 			p->p_lwpctl = lp;
1829 			mutex_exit(p->p_lock);
1830 		} else {
1831 			mutex_exit(p->p_lock);
1832 			mutex_destroy(&lp->lp_lock);
1833 			kmem_free(lp, sizeof(*lp));
1834 			lp = p->p_lwpctl;
1835 		}
1836 	}
1837 
1838  	/*
1839  	 * Set up an anonymous memory region to hold the shared pages.
1840  	 * Map them into the process' address space.  The user vmspace
1841  	 * gets the first reference on the UAO.
1842  	 */
1843 	mutex_enter(&lp->lp_lock);
1844 	if (lp->lp_uao == NULL) {
1845 		lp->lp_uao = uao_create(LWPCTL_UAREA_SZ, 0);
1846 		lp->lp_cur = 0;
1847 		lp->lp_max = LWPCTL_UAREA_SZ;
1848 		lp->lp_uva = p->p_emul->e_vm_default_addr(p,
1849 		     (vaddr_t)p->p_vmspace->vm_daddr, LWPCTL_UAREA_SZ,
1850 		     p->p_vmspace->vm_map.flags & VM_MAP_TOPDOWN);
1851 		error = uvm_map(&p->p_vmspace->vm_map, &lp->lp_uva,
1852 		    LWPCTL_UAREA_SZ, lp->lp_uao, 0, 0, UVM_MAPFLAG(UVM_PROT_RW,
1853 		    UVM_PROT_RW, UVM_INH_NONE, UVM_ADV_NORMAL, 0));
1854 		if (error != 0) {
1855 			uao_detach(lp->lp_uao);
1856 			lp->lp_uao = NULL;
1857 			mutex_exit(&lp->lp_lock);
1858 			return error;
1859 		}
1860 	}
1861 
1862 	/* Get a free block and allocate for this LWP. */
1863 	TAILQ_FOREACH(lcp, &lp->lp_pages, lcp_chain) {
1864 		if (lcp->lcp_nfree != 0)
1865 			break;
1866 	}
1867 	if (lcp == NULL) {
1868 		/* Nothing available - try to set up a free page. */
1869 		if (lp->lp_cur == lp->lp_max) {
1870 			mutex_exit(&lp->lp_lock);
1871 			return ENOMEM;
1872 		}
1873 		lcp = kmem_alloc(LWPCTL_LCPAGE_SZ, KM_SLEEP);
1874 
1875 		/*
1876 		 * Wire the next page down in kernel space.  Since this
1877 		 * is a new mapping, we must add a reference.
1878 		 */
1879 		uao = lp->lp_uao;
1880 		(*uao->pgops->pgo_reference)(uao);
1881 		lcp->lcp_kaddr = vm_map_min(kernel_map);
1882 		error = uvm_map(kernel_map, &lcp->lcp_kaddr, PAGE_SIZE,
1883 		    uao, lp->lp_cur, PAGE_SIZE,
1884 		    UVM_MAPFLAG(UVM_PROT_RW, UVM_PROT_RW,
1885 		    UVM_INH_NONE, UVM_ADV_RANDOM, 0));
1886 		if (error != 0) {
1887 			mutex_exit(&lp->lp_lock);
1888 			kmem_free(lcp, LWPCTL_LCPAGE_SZ);
1889 			(*uao->pgops->pgo_detach)(uao);
1890 			return error;
1891 		}
1892 		error = uvm_map_pageable(kernel_map, lcp->lcp_kaddr,
1893 		    lcp->lcp_kaddr + PAGE_SIZE, FALSE, 0);
1894 		if (error != 0) {
1895 			mutex_exit(&lp->lp_lock);
1896 			uvm_unmap(kernel_map, lcp->lcp_kaddr,
1897 			    lcp->lcp_kaddr + PAGE_SIZE);
1898 			kmem_free(lcp, LWPCTL_LCPAGE_SZ);
1899 			return error;
1900 		}
1901 		/* Prepare the page descriptor and link into the list. */
1902 		lcp->lcp_uaddr = lp->lp_uva + lp->lp_cur;
1903 		lp->lp_cur += PAGE_SIZE;
1904 		lcp->lcp_nfree = LWPCTL_PER_PAGE;
1905 		lcp->lcp_rotor = 0;
1906 		memset(lcp->lcp_bitmap, 0xff, LWPCTL_BITMAP_SZ);
1907 		TAILQ_INSERT_HEAD(&lp->lp_pages, lcp, lcp_chain);
1908 	}
1909 	for (i = lcp->lcp_rotor; lcp->lcp_bitmap[i] == 0;) {
1910 		if (++i >= LWPCTL_BITMAP_ENTRIES)
1911 			i = 0;
1912 	}
1913 	bit = ffs(lcp->lcp_bitmap[i]) - 1;
1914 	lcp->lcp_bitmap[i] ^= (1U << bit);
1915 	lcp->lcp_rotor = i;
1916 	lcp->lcp_nfree--;
1917 	l->l_lcpage = lcp;
1918 	offset = (i << 5) + bit;
1919 	l->l_lwpctl = (lwpctl_t *)lcp->lcp_kaddr + offset;
1920 	*uaddr = lcp->lcp_uaddr + offset * sizeof(lwpctl_t);
1921 	mutex_exit(&lp->lp_lock);
1922 
1923 	KPREEMPT_DISABLE(l);
1924 	l->l_lwpctl->lc_curcpu = (int)cpu_index(curcpu());
1925 	KPREEMPT_ENABLE(l);
1926 
1927 	return 0;
1928 }
1929 
1930 /*
1931  * Free an lwpctl structure back to the per-process list.
1932  */
1933 void
1934 lwp_ctl_free(lwp_t *l)
1935 {
1936 	struct proc *p = l->l_proc;
1937 	lcproc_t *lp;
1938 	lcpage_t *lcp;
1939 	u_int map, offset;
1940 
1941 	/* don't free a lwp context we borrowed for vfork */
1942 	if (p->p_lflag & PL_PPWAIT) {
1943 		l->l_lwpctl = NULL;
1944 		return;
1945 	}
1946 
1947 	lp = p->p_lwpctl;
1948 	KASSERT(lp != NULL);
1949 
1950 	lcp = l->l_lcpage;
1951 	offset = (u_int)((lwpctl_t *)l->l_lwpctl - (lwpctl_t *)lcp->lcp_kaddr);
1952 	KASSERT(offset < LWPCTL_PER_PAGE);
1953 
1954 	mutex_enter(&lp->lp_lock);
1955 	lcp->lcp_nfree++;
1956 	map = offset >> 5;
1957 	lcp->lcp_bitmap[map] |= (1U << (offset & 31));
1958 	if (lcp->lcp_bitmap[lcp->lcp_rotor] == 0)
1959 		lcp->lcp_rotor = map;
1960 	if (TAILQ_FIRST(&lp->lp_pages)->lcp_nfree == 0) {
1961 		TAILQ_REMOVE(&lp->lp_pages, lcp, lcp_chain);
1962 		TAILQ_INSERT_HEAD(&lp->lp_pages, lcp, lcp_chain);
1963 	}
1964 	mutex_exit(&lp->lp_lock);
1965 }
1966 
1967 /*
1968  * Process is exiting; tear down lwpctl state.  This can only be safely
1969  * called by the last LWP in the process.
1970  */
1971 void
1972 lwp_ctl_exit(void)
1973 {
1974 	lcpage_t *lcp, *next;
1975 	lcproc_t *lp;
1976 	proc_t *p;
1977 	lwp_t *l;
1978 
1979 	l = curlwp;
1980 	l->l_lwpctl = NULL;
1981 	l->l_lcpage = NULL;
1982 	p = l->l_proc;
1983 	lp = p->p_lwpctl;
1984 
1985 	KASSERT(lp != NULL);
1986 	KASSERT(p->p_nlwps == 1);
1987 
1988 	for (lcp = TAILQ_FIRST(&lp->lp_pages); lcp != NULL; lcp = next) {
1989 		next = TAILQ_NEXT(lcp, lcp_chain);
1990 		uvm_unmap(kernel_map, lcp->lcp_kaddr,
1991 		    lcp->lcp_kaddr + PAGE_SIZE);
1992 		kmem_free(lcp, LWPCTL_LCPAGE_SZ);
1993 	}
1994 
1995 	if (lp->lp_uao != NULL) {
1996 		uvm_unmap(&p->p_vmspace->vm_map, lp->lp_uva,
1997 		    lp->lp_uva + LWPCTL_UAREA_SZ);
1998 	}
1999 
2000 	mutex_destroy(&lp->lp_lock);
2001 	kmem_free(lp, sizeof(*lp));
2002 	p->p_lwpctl = NULL;
2003 }
2004 
2005 /*
2006  * Return the current LWP's "preemption counter".  Used to detect
2007  * preemption across operations that can tolerate preemption without
2008  * crashing, but which may generate incorrect results if preempted.
2009  */
2010 uint64_t
2011 lwp_pctr(void)
2012 {
2013 
2014 	return curlwp->l_ncsw;
2015 }
2016 
2017 /*
2018  * Set an LWP's private data pointer.
2019  */
2020 int
2021 lwp_setprivate(struct lwp *l, void *ptr)
2022 {
2023 	int error = 0;
2024 
2025 	l->l_private = ptr;
2026 #ifdef __HAVE_CPU_LWP_SETPRIVATE
2027 	error = cpu_lwp_setprivate(l, ptr);
2028 #endif
2029 	return error;
2030 }
2031 
2032 /*
2033  * Renumber the first and only LWP in a process on exec() or fork().
2034  * Don't bother with p_treelock here as this is the only live LWP in
2035  * the proc right now.
2036  */
2037 void
2038 lwp_renumber(lwp_t *l, lwpid_t lid)
2039 {
2040 	lwp_t *l2 __diagused;
2041 	proc_t *p = l->l_proc;
2042 	int error;
2043 
2044 	KASSERT(p->p_nlwps == 1);
2045 
2046 	while (l->l_lid != lid) {
2047 		mutex_enter(p->p_lock);
2048 		error = radix_tree_insert_node(&p->p_lwptree, lid - 1, l);
2049 		if (error == 0) {
2050 			l2 = radix_tree_remove_node(&p->p_lwptree,
2051 			    (uint64_t)(l->l_lid - 1));
2052 			KASSERT(l2 == l);
2053 			p->p_nlwpid = lid + 1;
2054 			l->l_lid = lid;
2055 		}
2056 		mutex_exit(p->p_lock);
2057 
2058 		if (error == 0)
2059 			break;
2060 
2061 		KASSERT(error == ENOMEM);
2062 		radix_tree_await_memory();
2063 	}
2064 }
2065 
2066 #if defined(DDB)
2067 #include <machine/pcb.h>
2068 
2069 void
2070 lwp_whatis(uintptr_t addr, void (*pr)(const char *, ...))
2071 {
2072 	lwp_t *l;
2073 
2074 	LIST_FOREACH(l, &alllwp, l_list) {
2075 		uintptr_t stack = (uintptr_t)KSTACK_LOWEST_ADDR(l);
2076 
2077 		if (addr < stack || stack + KSTACK_SIZE <= addr) {
2078 			continue;
2079 		}
2080 		(*pr)("%p is %p+%zu, LWP %p's stack\n",
2081 		    (void *)addr, (void *)stack,
2082 		    (size_t)(addr - stack), l);
2083 	}
2084 }
2085 #endif /* defined(DDB) */
2086