1 /* $NetBSD: kern_lwp.c,v 1.172 2012/08/30 02:26:02 matt Exp $ */ 2 3 /*- 4 * Copyright (c) 2001, 2006, 2007, 2008, 2009 The NetBSD Foundation, Inc. 5 * All rights reserved. 6 * 7 * This code is derived from software contributed to The NetBSD Foundation 8 * by Nathan J. Williams, and Andrew Doran. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS 20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 29 * POSSIBILITY OF SUCH DAMAGE. 30 */ 31 32 /* 33 * Overview 34 * 35 * Lightweight processes (LWPs) are the basic unit or thread of 36 * execution within the kernel. The core state of an LWP is described 37 * by "struct lwp", also known as lwp_t. 38 * 39 * Each LWP is contained within a process (described by "struct proc"), 40 * Every process contains at least one LWP, but may contain more. The 41 * process describes attributes shared among all of its LWPs such as a 42 * private address space, global execution state (stopped, active, 43 * zombie, ...), signal disposition and so on. On a multiprocessor 44 * machine, multiple LWPs be executing concurrently in the kernel. 45 * 46 * Execution states 47 * 48 * At any given time, an LWP has overall state that is described by 49 * lwp::l_stat. The states are broken into two sets below. The first 50 * set is guaranteed to represent the absolute, current state of the 51 * LWP: 52 * 53 * LSONPROC 54 * 55 * On processor: the LWP is executing on a CPU, either in the 56 * kernel or in user space. 57 * 58 * LSRUN 59 * 60 * Runnable: the LWP is parked on a run queue, and may soon be 61 * chosen to run by an idle processor, or by a processor that 62 * has been asked to preempt a currently runnning but lower 63 * priority LWP. 64 * 65 * LSIDL 66 * 67 * Idle: the LWP has been created but has not yet executed, 68 * or it has ceased executing a unit of work and is waiting 69 * to be started again. 70 * 71 * LSSUSPENDED: 72 * 73 * Suspended: the LWP has had its execution suspended by 74 * another LWP in the same process using the _lwp_suspend() 75 * system call. User-level LWPs also enter the suspended 76 * state when the system is shutting down. 77 * 78 * The second set represent a "statement of intent" on behalf of the 79 * LWP. The LWP may in fact be executing on a processor, may be 80 * sleeping or idle. It is expected to take the necessary action to 81 * stop executing or become "running" again within a short timeframe. 82 * The LP_RUNNING flag in lwp::l_pflag indicates that an LWP is running. 83 * Importantly, it indicates that its state is tied to a CPU. 84 * 85 * LSZOMB: 86 * 87 * Dead or dying: the LWP has released most of its resources 88 * and is about to switch away into oblivion, or has already 89 * switched away. When it switches away, its few remaining 90 * resources can be collected. 91 * 92 * LSSLEEP: 93 * 94 * Sleeping: the LWP has entered itself onto a sleep queue, and 95 * has switched away or will switch away shortly to allow other 96 * LWPs to run on the CPU. 97 * 98 * LSSTOP: 99 * 100 * Stopped: the LWP has been stopped as a result of a job 101 * control signal, or as a result of the ptrace() interface. 102 * 103 * Stopped LWPs may run briefly within the kernel to handle 104 * signals that they receive, but will not return to user space 105 * until their process' state is changed away from stopped. 106 * 107 * Single LWPs within a process can not be set stopped 108 * selectively: all actions that can stop or continue LWPs 109 * occur at the process level. 110 * 111 * State transitions 112 * 113 * Note that the LSSTOP state may only be set when returning to 114 * user space in userret(), or when sleeping interruptably. The 115 * LSSUSPENDED state may only be set in userret(). Before setting 116 * those states, we try to ensure that the LWPs will release all 117 * locks that they hold, and at a minimum try to ensure that the 118 * LWP can be set runnable again by a signal. 119 * 120 * LWPs may transition states in the following ways: 121 * 122 * RUN -------> ONPROC ONPROC -----> RUN 123 * > SLEEP 124 * > STOPPED 125 * > SUSPENDED 126 * > ZOMB 127 * > IDL (special cases) 128 * 129 * STOPPED ---> RUN SUSPENDED --> RUN 130 * > SLEEP 131 * 132 * SLEEP -----> ONPROC IDL --------> RUN 133 * > RUN > SUSPENDED 134 * > STOPPED > STOPPED 135 * > ONPROC (special cases) 136 * 137 * Some state transitions are only possible with kernel threads (eg 138 * ONPROC -> IDL) and happen under tightly controlled circumstances 139 * free of unwanted side effects. 140 * 141 * Migration 142 * 143 * Migration of threads from one CPU to another could be performed 144 * internally by the scheduler via sched_takecpu() or sched_catchlwp() 145 * functions. The universal lwp_migrate() function should be used for 146 * any other cases. Subsystems in the kernel must be aware that CPU 147 * of LWP may change, while it is not locked. 148 * 149 * Locking 150 * 151 * The majority of fields in 'struct lwp' are covered by a single, 152 * general spin lock pointed to by lwp::l_mutex. The locks covering 153 * each field are documented in sys/lwp.h. 154 * 155 * State transitions must be made with the LWP's general lock held, 156 * and may cause the LWP's lock pointer to change. Manipulation of 157 * the general lock is not performed directly, but through calls to 158 * lwp_lock(), lwp_unlock() and others. It should be noted that the 159 * adaptive locks are not allowed to be released while the LWP's lock 160 * is being held (unlike for other spin-locks). 161 * 162 * States and their associated locks: 163 * 164 * LSONPROC, LSZOMB: 165 * 166 * Always covered by spc_lwplock, which protects running LWPs. 167 * This is a per-CPU lock and matches lwp::l_cpu. 168 * 169 * LSIDL, LSRUN: 170 * 171 * Always covered by spc_mutex, which protects the run queues. 172 * This is a per-CPU lock and matches lwp::l_cpu. 173 * 174 * LSSLEEP: 175 * 176 * Covered by a lock associated with the sleep queue that the 177 * LWP resides on. Matches lwp::l_sleepq::sq_mutex. 178 * 179 * LSSTOP, LSSUSPENDED: 180 * 181 * If the LWP was previously sleeping (l_wchan != NULL), then 182 * l_mutex references the sleep queue lock. If the LWP was 183 * runnable or on the CPU when halted, or has been removed from 184 * the sleep queue since halted, then the lock is spc_lwplock. 185 * 186 * The lock order is as follows: 187 * 188 * spc::spc_lwplock -> 189 * sleeptab::st_mutex -> 190 * tschain_t::tc_mutex -> 191 * spc::spc_mutex 192 * 193 * Each process has an scheduler state lock (proc::p_lock), and a 194 * number of counters on LWPs and their states: p_nzlwps, p_nrlwps, and 195 * so on. When an LWP is to be entered into or removed from one of the 196 * following states, p_lock must be held and the process wide counters 197 * adjusted: 198 * 199 * LSIDL, LSZOMB, LSSTOP, LSSUSPENDED 200 * 201 * (But not always for kernel threads. There are some special cases 202 * as mentioned above. See kern_softint.c.) 203 * 204 * Note that an LWP is considered running or likely to run soon if in 205 * one of the following states. This affects the value of p_nrlwps: 206 * 207 * LSRUN, LSONPROC, LSSLEEP 208 * 209 * p_lock does not need to be held when transitioning among these 210 * three states, hence p_lock is rarely taken for state transitions. 211 */ 212 213 #include <sys/cdefs.h> 214 __KERNEL_RCSID(0, "$NetBSD: kern_lwp.c,v 1.172 2012/08/30 02:26:02 matt Exp $"); 215 216 #include "opt_ddb.h" 217 #include "opt_lockdebug.h" 218 #include "opt_dtrace.h" 219 220 #define _LWP_API_PRIVATE 221 222 #include <sys/param.h> 223 #include <sys/systm.h> 224 #include <sys/cpu.h> 225 #include <sys/pool.h> 226 #include <sys/proc.h> 227 #include <sys/syscallargs.h> 228 #include <sys/syscall_stats.h> 229 #include <sys/kauth.h> 230 #include <sys/pserialize.h> 231 #include <sys/sleepq.h> 232 #include <sys/lockdebug.h> 233 #include <sys/kmem.h> 234 #include <sys/pset.h> 235 #include <sys/intr.h> 236 #include <sys/lwpctl.h> 237 #include <sys/atomic.h> 238 #include <sys/filedesc.h> 239 #include <sys/dtrace_bsd.h> 240 #include <sys/sdt.h> 241 #include <sys/xcall.h> 242 #include <sys/uidinfo.h> 243 #include <sys/sysctl.h> 244 245 #include <uvm/uvm_extern.h> 246 #include <uvm/uvm_object.h> 247 248 static pool_cache_t lwp_cache __read_mostly; 249 struct lwplist alllwp __cacheline_aligned; 250 251 static void lwp_dtor(void *, void *); 252 253 /* DTrace proc provider probes */ 254 SDT_PROBE_DEFINE(proc,,,lwp_create, 255 "struct lwp *", NULL, 256 NULL, NULL, NULL, NULL, 257 NULL, NULL, NULL, NULL); 258 SDT_PROBE_DEFINE(proc,,,lwp_start, 259 "struct lwp *", NULL, 260 NULL, NULL, NULL, NULL, 261 NULL, NULL, NULL, NULL); 262 SDT_PROBE_DEFINE(proc,,,lwp_exit, 263 "struct lwp *", NULL, 264 NULL, NULL, NULL, NULL, 265 NULL, NULL, NULL, NULL); 266 267 struct turnstile turnstile0; 268 struct lwp lwp0 __aligned(MIN_LWP_ALIGNMENT) = { 269 #ifdef LWP0_CPU_INFO 270 .l_cpu = LWP0_CPU_INFO, 271 #endif 272 #ifdef LWP0_MD_INITIALIZER 273 .l_md = LWP0_MD_INITIALIZER, 274 #endif 275 .l_proc = &proc0, 276 .l_lid = 1, 277 .l_flag = LW_SYSTEM, 278 .l_stat = LSONPROC, 279 .l_ts = &turnstile0, 280 .l_syncobj = &sched_syncobj, 281 .l_refcnt = 1, 282 .l_priority = PRI_USER + NPRI_USER - 1, 283 .l_inheritedprio = -1, 284 .l_class = SCHED_OTHER, 285 .l_psid = PS_NONE, 286 .l_pi_lenders = SLIST_HEAD_INITIALIZER(&lwp0.l_pi_lenders), 287 .l_name = __UNCONST("swapper"), 288 .l_fd = &filedesc0, 289 }; 290 291 static int sysctl_kern_maxlwp(SYSCTLFN_PROTO); 292 293 /* 294 * sysctl helper routine for kern.maxlwp. Ensures that the new 295 * values are not too low or too high. 296 */ 297 static int 298 sysctl_kern_maxlwp(SYSCTLFN_ARGS) 299 { 300 int error, nmaxlwp; 301 struct sysctlnode node; 302 303 nmaxlwp = maxlwp; 304 node = *rnode; 305 node.sysctl_data = &nmaxlwp; 306 error = sysctl_lookup(SYSCTLFN_CALL(&node)); 307 if (error || newp == NULL) 308 return error; 309 310 if (nmaxlwp < 0 || nmaxlwp >= 65536) 311 return EINVAL; 312 if (nmaxlwp > cpu_maxlwp()) 313 return EINVAL; 314 maxlwp = nmaxlwp; 315 316 return 0; 317 } 318 319 static void 320 sysctl_kern_lwp_setup(void) 321 { 322 struct sysctllog *clog = NULL; 323 324 sysctl_createv(&clog, 0, NULL, NULL, 325 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, 326 CTLTYPE_INT, "maxlwp", 327 SYSCTL_DESCR("Maximum number of simultaneous threads"), 328 sysctl_kern_maxlwp, 0, NULL, 0, 329 CTL_KERN, CTL_CREATE, CTL_EOL); 330 } 331 332 void 333 lwpinit(void) 334 { 335 336 LIST_INIT(&alllwp); 337 lwpinit_specificdata(); 338 lwp_sys_init(); 339 lwp_cache = pool_cache_init(sizeof(lwp_t), MIN_LWP_ALIGNMENT, 0, 0, 340 "lwppl", NULL, IPL_NONE, NULL, lwp_dtor, NULL); 341 342 maxlwp = cpu_maxlwp(); 343 sysctl_kern_lwp_setup(); 344 } 345 346 void 347 lwp0_init(void) 348 { 349 struct lwp *l = &lwp0; 350 351 KASSERT((void *)uvm_lwp_getuarea(l) != NULL); 352 KASSERT(l->l_lid == proc0.p_nlwpid); 353 354 LIST_INSERT_HEAD(&alllwp, l, l_list); 355 356 callout_init(&l->l_timeout_ch, CALLOUT_MPSAFE); 357 callout_setfunc(&l->l_timeout_ch, sleepq_timeout, l); 358 cv_init(&l->l_sigcv, "sigwait"); 359 cv_init(&l->l_waitcv, "vfork"); 360 361 kauth_cred_hold(proc0.p_cred); 362 l->l_cred = proc0.p_cred; 363 364 kdtrace_thread_ctor(NULL, l); 365 lwp_initspecific(l); 366 367 SYSCALL_TIME_LWP_INIT(l); 368 } 369 370 static void 371 lwp_dtor(void *arg, void *obj) 372 { 373 lwp_t *l = obj; 374 uint64_t where; 375 (void)l; 376 377 /* 378 * Provide a barrier to ensure that all mutex_oncpu() and rw_oncpu() 379 * calls will exit before memory of LWP is returned to the pool, where 380 * KVA of LWP structure might be freed and re-used for other purposes. 381 * Kernel preemption is disabled around mutex_oncpu() and rw_oncpu() 382 * callers, therefore cross-call to all CPUs will do the job. Also, 383 * the value of l->l_cpu must be still valid at this point. 384 */ 385 KASSERT(l->l_cpu != NULL); 386 where = xc_broadcast(0, (xcfunc_t)nullop, NULL, NULL); 387 xc_wait(where); 388 } 389 390 /* 391 * Set an suspended. 392 * 393 * Must be called with p_lock held, and the LWP locked. Will unlock the 394 * LWP before return. 395 */ 396 int 397 lwp_suspend(struct lwp *curl, struct lwp *t) 398 { 399 int error; 400 401 KASSERT(mutex_owned(t->l_proc->p_lock)); 402 KASSERT(lwp_locked(t, NULL)); 403 404 KASSERT(curl != t || curl->l_stat == LSONPROC); 405 406 /* 407 * If the current LWP has been told to exit, we must not suspend anyone 408 * else or deadlock could occur. We won't return to userspace. 409 */ 410 if ((curl->l_flag & (LW_WEXIT | LW_WCORE)) != 0) { 411 lwp_unlock(t); 412 return (EDEADLK); 413 } 414 415 error = 0; 416 417 switch (t->l_stat) { 418 case LSRUN: 419 case LSONPROC: 420 t->l_flag |= LW_WSUSPEND; 421 lwp_need_userret(t); 422 lwp_unlock(t); 423 break; 424 425 case LSSLEEP: 426 t->l_flag |= LW_WSUSPEND; 427 428 /* 429 * Kick the LWP and try to get it to the kernel boundary 430 * so that it will release any locks that it holds. 431 * setrunnable() will release the lock. 432 */ 433 if ((t->l_flag & LW_SINTR) != 0) 434 setrunnable(t); 435 else 436 lwp_unlock(t); 437 break; 438 439 case LSSUSPENDED: 440 lwp_unlock(t); 441 break; 442 443 case LSSTOP: 444 t->l_flag |= LW_WSUSPEND; 445 setrunnable(t); 446 break; 447 448 case LSIDL: 449 case LSZOMB: 450 error = EINTR; /* It's what Solaris does..... */ 451 lwp_unlock(t); 452 break; 453 } 454 455 return (error); 456 } 457 458 /* 459 * Restart a suspended LWP. 460 * 461 * Must be called with p_lock held, and the LWP locked. Will unlock the 462 * LWP before return. 463 */ 464 void 465 lwp_continue(struct lwp *l) 466 { 467 468 KASSERT(mutex_owned(l->l_proc->p_lock)); 469 KASSERT(lwp_locked(l, NULL)); 470 471 /* If rebooting or not suspended, then just bail out. */ 472 if ((l->l_flag & LW_WREBOOT) != 0) { 473 lwp_unlock(l); 474 return; 475 } 476 477 l->l_flag &= ~LW_WSUSPEND; 478 479 if (l->l_stat != LSSUSPENDED) { 480 lwp_unlock(l); 481 return; 482 } 483 484 /* setrunnable() will release the lock. */ 485 setrunnable(l); 486 } 487 488 /* 489 * Restart a stopped LWP. 490 * 491 * Must be called with p_lock held, and the LWP NOT locked. Will unlock the 492 * LWP before return. 493 */ 494 void 495 lwp_unstop(struct lwp *l) 496 { 497 struct proc *p = l->l_proc; 498 499 KASSERT(mutex_owned(proc_lock)); 500 KASSERT(mutex_owned(p->p_lock)); 501 502 lwp_lock(l); 503 504 /* If not stopped, then just bail out. */ 505 if (l->l_stat != LSSTOP) { 506 lwp_unlock(l); 507 return; 508 } 509 510 p->p_stat = SACTIVE; 511 p->p_sflag &= ~PS_STOPPING; 512 513 if (!p->p_waited) 514 p->p_pptr->p_nstopchild--; 515 516 if (l->l_wchan == NULL) { 517 /* setrunnable() will release the lock. */ 518 setrunnable(l); 519 } else if (p->p_xstat && (l->l_flag & LW_SINTR) != 0) { 520 /* setrunnable() so we can receive the signal */ 521 setrunnable(l); 522 } else { 523 l->l_stat = LSSLEEP; 524 p->p_nrlwps++; 525 lwp_unlock(l); 526 } 527 } 528 529 /* 530 * Wait for an LWP within the current process to exit. If 'lid' is 531 * non-zero, we are waiting for a specific LWP. 532 * 533 * Must be called with p->p_lock held. 534 */ 535 int 536 lwp_wait1(struct lwp *l, lwpid_t lid, lwpid_t *departed, int flags) 537 { 538 struct proc *p = l->l_proc; 539 struct lwp *l2; 540 int nfound, error; 541 lwpid_t curlid; 542 bool exiting; 543 544 KASSERT(mutex_owned(p->p_lock)); 545 546 p->p_nlwpwait++; 547 l->l_waitingfor = lid; 548 curlid = l->l_lid; 549 exiting = ((flags & LWPWAIT_EXITCONTROL) != 0); 550 551 for (;;) { 552 /* 553 * Avoid a race between exit1() and sigexit(): if the 554 * process is dumping core, then we need to bail out: call 555 * into lwp_userret() where we will be suspended until the 556 * deed is done. 557 */ 558 if ((p->p_sflag & PS_WCORE) != 0) { 559 mutex_exit(p->p_lock); 560 lwp_userret(l); 561 #ifdef DIAGNOSTIC 562 panic("lwp_wait1"); 563 #endif 564 /* NOTREACHED */ 565 } 566 567 /* 568 * First off, drain any detached LWP that is waiting to be 569 * reaped. 570 */ 571 while ((l2 = p->p_zomblwp) != NULL) { 572 p->p_zomblwp = NULL; 573 lwp_free(l2, false, false);/* releases proc mutex */ 574 mutex_enter(p->p_lock); 575 } 576 577 /* 578 * Now look for an LWP to collect. If the whole process is 579 * exiting, count detached LWPs as eligible to be collected, 580 * but don't drain them here. 581 */ 582 nfound = 0; 583 error = 0; 584 LIST_FOREACH(l2, &p->p_lwps, l_sibling) { 585 /* 586 * If a specific wait and the target is waiting on 587 * us, then avoid deadlock. This also traps LWPs 588 * that try to wait on themselves. 589 * 590 * Note that this does not handle more complicated 591 * cycles, like: t1 -> t2 -> t3 -> t1. The process 592 * can still be killed so it is not a major problem. 593 */ 594 if (l2->l_lid == lid && l2->l_waitingfor == curlid) { 595 error = EDEADLK; 596 break; 597 } 598 if (l2 == l) 599 continue; 600 if ((l2->l_prflag & LPR_DETACHED) != 0) { 601 nfound += exiting; 602 continue; 603 } 604 if (lid != 0) { 605 if (l2->l_lid != lid) 606 continue; 607 /* 608 * Mark this LWP as the first waiter, if there 609 * is no other. 610 */ 611 if (l2->l_waiter == 0) 612 l2->l_waiter = curlid; 613 } else if (l2->l_waiter != 0) { 614 /* 615 * It already has a waiter - so don't 616 * collect it. If the waiter doesn't 617 * grab it we'll get another chance 618 * later. 619 */ 620 nfound++; 621 continue; 622 } 623 nfound++; 624 625 /* No need to lock the LWP in order to see LSZOMB. */ 626 if (l2->l_stat != LSZOMB) 627 continue; 628 629 /* 630 * We're no longer waiting. Reset the "first waiter" 631 * pointer on the target, in case it was us. 632 */ 633 l->l_waitingfor = 0; 634 l2->l_waiter = 0; 635 p->p_nlwpwait--; 636 if (departed) 637 *departed = l2->l_lid; 638 sched_lwp_collect(l2); 639 640 /* lwp_free() releases the proc lock. */ 641 lwp_free(l2, false, false); 642 mutex_enter(p->p_lock); 643 return 0; 644 } 645 646 if (error != 0) 647 break; 648 if (nfound == 0) { 649 error = ESRCH; 650 break; 651 } 652 653 /* 654 * The kernel is careful to ensure that it can not deadlock 655 * when exiting - just keep waiting. 656 */ 657 if (exiting) { 658 KASSERT(p->p_nlwps > 1); 659 cv_wait(&p->p_lwpcv, p->p_lock); 660 continue; 661 } 662 663 /* 664 * If all other LWPs are waiting for exits or suspends 665 * and the supply of zombies and potential zombies is 666 * exhausted, then we are about to deadlock. 667 * 668 * If the process is exiting (and this LWP is not the one 669 * that is coordinating the exit) then bail out now. 670 */ 671 if ((p->p_sflag & PS_WEXIT) != 0 || 672 p->p_nrlwps + p->p_nzlwps - p->p_ndlwps <= p->p_nlwpwait) { 673 error = EDEADLK; 674 break; 675 } 676 677 /* 678 * Sit around and wait for something to happen. We'll be 679 * awoken if any of the conditions examined change: if an 680 * LWP exits, is collected, or is detached. 681 */ 682 if ((error = cv_wait_sig(&p->p_lwpcv, p->p_lock)) != 0) 683 break; 684 } 685 686 /* 687 * We didn't find any LWPs to collect, we may have received a 688 * signal, or some other condition has caused us to bail out. 689 * 690 * If waiting on a specific LWP, clear the waiters marker: some 691 * other LWP may want it. Then, kick all the remaining waiters 692 * so that they can re-check for zombies and for deadlock. 693 */ 694 if (lid != 0) { 695 LIST_FOREACH(l2, &p->p_lwps, l_sibling) { 696 if (l2->l_lid == lid) { 697 if (l2->l_waiter == curlid) 698 l2->l_waiter = 0; 699 break; 700 } 701 } 702 } 703 p->p_nlwpwait--; 704 l->l_waitingfor = 0; 705 cv_broadcast(&p->p_lwpcv); 706 707 return error; 708 } 709 710 /* 711 * Create a new LWP within process 'p2', using LWP 'l1' as a template. 712 * The new LWP is created in state LSIDL and must be set running, 713 * suspended, or stopped by the caller. 714 */ 715 int 716 lwp_create(lwp_t *l1, proc_t *p2, vaddr_t uaddr, int flags, 717 void *stack, size_t stacksize, void (*func)(void *), void *arg, 718 lwp_t **rnewlwpp, int sclass) 719 { 720 struct lwp *l2, *isfree; 721 turnstile_t *ts; 722 lwpid_t lid; 723 724 KASSERT(l1 == curlwp || l1->l_proc == &proc0); 725 726 /* 727 * Enforce limits, excluding the first lwp and kthreads. 728 */ 729 if (p2->p_nlwps != 0 && p2 != &proc0) { 730 uid_t uid = kauth_cred_getuid(l1->l_cred); 731 int count = chglwpcnt(uid, 1); 732 if (__predict_false(count > 733 p2->p_rlimit[RLIMIT_NTHR].rlim_cur)) { 734 if (kauth_authorize_process(l1->l_cred, 735 KAUTH_PROCESS_RLIMIT, p2, 736 KAUTH_ARG(KAUTH_REQ_PROCESS_RLIMIT_BYPASS), 737 &p2->p_rlimit[RLIMIT_NTHR], KAUTH_ARG(RLIMIT_NTHR)) 738 != 0) { 739 (void)chglwpcnt(uid, -1); 740 return EAGAIN; 741 } 742 } 743 } 744 745 /* 746 * First off, reap any detached LWP waiting to be collected. 747 * We can re-use its LWP structure and turnstile. 748 */ 749 isfree = NULL; 750 if (p2->p_zomblwp != NULL) { 751 mutex_enter(p2->p_lock); 752 if ((isfree = p2->p_zomblwp) != NULL) { 753 p2->p_zomblwp = NULL; 754 lwp_free(isfree, true, false);/* releases proc mutex */ 755 } else 756 mutex_exit(p2->p_lock); 757 } 758 if (isfree == NULL) { 759 l2 = pool_cache_get(lwp_cache, PR_WAITOK); 760 memset(l2, 0, sizeof(*l2)); 761 l2->l_ts = pool_cache_get(turnstile_cache, PR_WAITOK); 762 SLIST_INIT(&l2->l_pi_lenders); 763 } else { 764 l2 = isfree; 765 ts = l2->l_ts; 766 KASSERT(l2->l_inheritedprio == -1); 767 KASSERT(SLIST_EMPTY(&l2->l_pi_lenders)); 768 memset(l2, 0, sizeof(*l2)); 769 l2->l_ts = ts; 770 } 771 772 l2->l_stat = LSIDL; 773 l2->l_proc = p2; 774 l2->l_refcnt = 1; 775 l2->l_class = sclass; 776 777 /* 778 * If vfork(), we want the LWP to run fast and on the same CPU 779 * as its parent, so that it can reuse the VM context and cache 780 * footprint on the local CPU. 781 */ 782 l2->l_kpriority = ((flags & LWP_VFORK) ? true : false); 783 l2->l_kpribase = PRI_KERNEL; 784 l2->l_priority = l1->l_priority; 785 l2->l_inheritedprio = -1; 786 l2->l_flag = 0; 787 l2->l_pflag = LP_MPSAFE; 788 TAILQ_INIT(&l2->l_ld_locks); 789 790 /* 791 * For vfork, borrow parent's lwpctl context if it exists. 792 * This also causes us to return via lwp_userret. 793 */ 794 if (flags & LWP_VFORK && l1->l_lwpctl) { 795 l2->l_lwpctl = l1->l_lwpctl; 796 l2->l_flag |= LW_LWPCTL; 797 } 798 799 /* 800 * If not the first LWP in the process, grab a reference to the 801 * descriptor table. 802 */ 803 l2->l_fd = p2->p_fd; 804 if (p2->p_nlwps != 0) { 805 KASSERT(l1->l_proc == p2); 806 fd_hold(l2); 807 } else { 808 KASSERT(l1->l_proc != p2); 809 } 810 811 if (p2->p_flag & PK_SYSTEM) { 812 /* Mark it as a system LWP. */ 813 l2->l_flag |= LW_SYSTEM; 814 } 815 816 kpreempt_disable(); 817 l2->l_mutex = l1->l_cpu->ci_schedstate.spc_mutex; 818 l2->l_cpu = l1->l_cpu; 819 kpreempt_enable(); 820 821 kdtrace_thread_ctor(NULL, l2); 822 lwp_initspecific(l2); 823 sched_lwp_fork(l1, l2); 824 lwp_update_creds(l2); 825 callout_init(&l2->l_timeout_ch, CALLOUT_MPSAFE); 826 callout_setfunc(&l2->l_timeout_ch, sleepq_timeout, l2); 827 cv_init(&l2->l_sigcv, "sigwait"); 828 cv_init(&l2->l_waitcv, "vfork"); 829 l2->l_syncobj = &sched_syncobj; 830 831 if (rnewlwpp != NULL) 832 *rnewlwpp = l2; 833 834 /* 835 * PCU state needs to be saved before calling uvm_lwp_fork() so that 836 * the MD cpu_lwp_fork() can copy the saved state to the new LWP. 837 */ 838 pcu_save_all(l1); 839 840 uvm_lwp_setuarea(l2, uaddr); 841 uvm_lwp_fork(l1, l2, stack, stacksize, func, 842 (arg != NULL) ? arg : l2); 843 844 if ((flags & LWP_PIDLID) != 0) { 845 lid = proc_alloc_pid(p2); 846 l2->l_pflag |= LP_PIDLID; 847 } else { 848 lid = 0; 849 } 850 851 mutex_enter(p2->p_lock); 852 853 if ((flags & LWP_DETACHED) != 0) { 854 l2->l_prflag = LPR_DETACHED; 855 p2->p_ndlwps++; 856 } else 857 l2->l_prflag = 0; 858 859 l2->l_sigstk = l1->l_sigstk; 860 l2->l_sigmask = l1->l_sigmask; 861 CIRCLEQ_INIT(&l2->l_sigpend.sp_info); 862 sigemptyset(&l2->l_sigpend.sp_set); 863 864 if (lid == 0) { 865 p2->p_nlwpid++; 866 if (p2->p_nlwpid == 0) 867 p2->p_nlwpid++; 868 lid = p2->p_nlwpid; 869 } 870 l2->l_lid = lid; 871 LIST_INSERT_HEAD(&p2->p_lwps, l2, l_sibling); 872 p2->p_nlwps++; 873 p2->p_nrlwps++; 874 875 KASSERT(l2->l_affinity == NULL); 876 877 if ((p2->p_flag & PK_SYSTEM) == 0) { 878 /* Inherit the affinity mask. */ 879 if (l1->l_affinity) { 880 /* 881 * Note that we hold the state lock while inheriting 882 * the affinity to avoid race with sched_setaffinity(). 883 */ 884 lwp_lock(l1); 885 if (l1->l_affinity) { 886 kcpuset_use(l1->l_affinity); 887 l2->l_affinity = l1->l_affinity; 888 } 889 lwp_unlock(l1); 890 } 891 lwp_lock(l2); 892 /* Inherit a processor-set */ 893 l2->l_psid = l1->l_psid; 894 /* Look for a CPU to start */ 895 l2->l_cpu = sched_takecpu(l2); 896 lwp_unlock_to(l2, l2->l_cpu->ci_schedstate.spc_mutex); 897 } 898 mutex_exit(p2->p_lock); 899 900 SDT_PROBE(proc,,,lwp_create, l2, 0,0,0,0); 901 902 mutex_enter(proc_lock); 903 LIST_INSERT_HEAD(&alllwp, l2, l_list); 904 mutex_exit(proc_lock); 905 906 SYSCALL_TIME_LWP_INIT(l2); 907 908 if (p2->p_emul->e_lwp_fork) 909 (*p2->p_emul->e_lwp_fork)(l1, l2); 910 911 return (0); 912 } 913 914 /* 915 * Called by MD code when a new LWP begins execution. Must be called 916 * with the previous LWP locked (so at splsched), or if there is no 917 * previous LWP, at splsched. 918 */ 919 void 920 lwp_startup(struct lwp *prev, struct lwp *new) 921 { 922 KASSERTMSG(new == curlwp, "l %p curlwp %p prevlwp %p", new, curlwp, prev); 923 924 SDT_PROBE(proc,,,lwp_start, new, 0,0,0,0); 925 926 KASSERT(kpreempt_disabled()); 927 if (prev != NULL) { 928 /* 929 * Normalize the count of the spin-mutexes, it was 930 * increased in mi_switch(). Unmark the state of 931 * context switch - it is finished for previous LWP. 932 */ 933 curcpu()->ci_mtx_count++; 934 membar_exit(); 935 prev->l_ctxswtch = 0; 936 } 937 KPREEMPT_DISABLE(new); 938 spl0(); 939 if (__predict_true(new->l_proc->p_vmspace)) 940 pmap_activate(new); 941 942 /* Note trip through cpu_switchto(). */ 943 pserialize_switchpoint(); 944 945 LOCKDEBUG_BARRIER(NULL, 0); 946 KPREEMPT_ENABLE(new); 947 if ((new->l_pflag & LP_MPSAFE) == 0) { 948 KERNEL_LOCK(1, new); 949 } 950 } 951 952 /* 953 * Exit an LWP. 954 */ 955 void 956 lwp_exit(struct lwp *l) 957 { 958 struct proc *p = l->l_proc; 959 struct lwp *l2; 960 bool current; 961 962 current = (l == curlwp); 963 964 KASSERT(current || (l->l_stat == LSIDL && l->l_target_cpu == NULL)); 965 KASSERT(p == curproc); 966 967 SDT_PROBE(proc,,,lwp_exit, l, 0,0,0,0); 968 969 /* 970 * Verify that we hold no locks other than the kernel lock. 971 */ 972 LOCKDEBUG_BARRIER(&kernel_lock, 0); 973 974 /* 975 * If we are the last live LWP in a process, we need to exit the 976 * entire process. We do so with an exit status of zero, because 977 * it's a "controlled" exit, and because that's what Solaris does. 978 * 979 * We are not quite a zombie yet, but for accounting purposes we 980 * must increment the count of zombies here. 981 * 982 * Note: the last LWP's specificdata will be deleted here. 983 */ 984 mutex_enter(p->p_lock); 985 if (p->p_nlwps - p->p_nzlwps == 1) { 986 KASSERT(current == true); 987 KASSERT(p != &proc0); 988 /* XXXSMP kernel_lock not held */ 989 exit1(l, 0); 990 /* NOTREACHED */ 991 } 992 p->p_nzlwps++; 993 mutex_exit(p->p_lock); 994 995 if (p->p_emul->e_lwp_exit) 996 (*p->p_emul->e_lwp_exit)(l); 997 998 /* Drop filedesc reference. */ 999 fd_free(); 1000 1001 /* Delete the specificdata while it's still safe to sleep. */ 1002 lwp_finispecific(l); 1003 1004 /* 1005 * Release our cached credentials. 1006 */ 1007 kauth_cred_free(l->l_cred); 1008 callout_destroy(&l->l_timeout_ch); 1009 1010 /* 1011 * Remove the LWP from the global list. 1012 * Free its LID from the PID namespace if needed. 1013 */ 1014 mutex_enter(proc_lock); 1015 LIST_REMOVE(l, l_list); 1016 if ((l->l_pflag & LP_PIDLID) != 0 && l->l_lid != p->p_pid) { 1017 proc_free_pid(l->l_lid); 1018 } 1019 mutex_exit(proc_lock); 1020 1021 /* 1022 * Get rid of all references to the LWP that others (e.g. procfs) 1023 * may have, and mark the LWP as a zombie. If the LWP is detached, 1024 * mark it waiting for collection in the proc structure. Note that 1025 * before we can do that, we need to free any other dead, deatched 1026 * LWP waiting to meet its maker. 1027 */ 1028 mutex_enter(p->p_lock); 1029 lwp_drainrefs(l); 1030 1031 if ((l->l_prflag & LPR_DETACHED) != 0) { 1032 while ((l2 = p->p_zomblwp) != NULL) { 1033 p->p_zomblwp = NULL; 1034 lwp_free(l2, false, false);/* releases proc mutex */ 1035 mutex_enter(p->p_lock); 1036 l->l_refcnt++; 1037 lwp_drainrefs(l); 1038 } 1039 p->p_zomblwp = l; 1040 } 1041 1042 /* 1043 * If we find a pending signal for the process and we have been 1044 * asked to check for signals, then we lose: arrange to have 1045 * all other LWPs in the process check for signals. 1046 */ 1047 if ((l->l_flag & LW_PENDSIG) != 0 && 1048 firstsig(&p->p_sigpend.sp_set) != 0) { 1049 LIST_FOREACH(l2, &p->p_lwps, l_sibling) { 1050 lwp_lock(l2); 1051 l2->l_flag |= LW_PENDSIG; 1052 lwp_unlock(l2); 1053 } 1054 } 1055 1056 /* 1057 * Release any PCU resources before becoming a zombie. 1058 */ 1059 pcu_discard_all(l); 1060 1061 lwp_lock(l); 1062 l->l_stat = LSZOMB; 1063 if (l->l_name != NULL) { 1064 strcpy(l->l_name, "(zombie)"); 1065 } 1066 lwp_unlock(l); 1067 p->p_nrlwps--; 1068 cv_broadcast(&p->p_lwpcv); 1069 if (l->l_lwpctl != NULL) 1070 l->l_lwpctl->lc_curcpu = LWPCTL_CPU_EXITED; 1071 mutex_exit(p->p_lock); 1072 1073 /* 1074 * We can no longer block. At this point, lwp_free() may already 1075 * be gunning for us. On a multi-CPU system, we may be off p_lwps. 1076 * 1077 * Free MD LWP resources. 1078 */ 1079 cpu_lwp_free(l, 0); 1080 1081 if (current) { 1082 pmap_deactivate(l); 1083 1084 /* 1085 * Release the kernel lock, and switch away into 1086 * oblivion. 1087 */ 1088 #ifdef notyet 1089 /* XXXSMP hold in lwp_userret() */ 1090 KERNEL_UNLOCK_LAST(l); 1091 #else 1092 KERNEL_UNLOCK_ALL(l, NULL); 1093 #endif 1094 lwp_exit_switchaway(l); 1095 } 1096 } 1097 1098 /* 1099 * Free a dead LWP's remaining resources. 1100 * 1101 * XXXLWP limits. 1102 */ 1103 void 1104 lwp_free(struct lwp *l, bool recycle, bool last) 1105 { 1106 struct proc *p = l->l_proc; 1107 struct rusage *ru; 1108 ksiginfoq_t kq; 1109 1110 KASSERT(l != curlwp); 1111 KASSERT(last || mutex_owned(p->p_lock)); 1112 1113 if (p != &proc0 && p->p_nlwps != 1) 1114 (void)chglwpcnt(kauth_cred_getuid(l->l_cred), -1); 1115 /* 1116 * If this was not the last LWP in the process, then adjust 1117 * counters and unlock. 1118 */ 1119 if (!last) { 1120 /* 1121 * Add the LWP's run time to the process' base value. 1122 * This needs to co-incide with coming off p_lwps. 1123 */ 1124 bintime_add(&p->p_rtime, &l->l_rtime); 1125 p->p_pctcpu += l->l_pctcpu; 1126 ru = &p->p_stats->p_ru; 1127 ruadd(ru, &l->l_ru); 1128 ru->ru_nvcsw += (l->l_ncsw - l->l_nivcsw); 1129 ru->ru_nivcsw += l->l_nivcsw; 1130 LIST_REMOVE(l, l_sibling); 1131 p->p_nlwps--; 1132 p->p_nzlwps--; 1133 if ((l->l_prflag & LPR_DETACHED) != 0) 1134 p->p_ndlwps--; 1135 1136 /* 1137 * Have any LWPs sleeping in lwp_wait() recheck for 1138 * deadlock. 1139 */ 1140 cv_broadcast(&p->p_lwpcv); 1141 mutex_exit(p->p_lock); 1142 } 1143 1144 #ifdef MULTIPROCESSOR 1145 /* 1146 * In the unlikely event that the LWP is still on the CPU, 1147 * then spin until it has switched away. We need to release 1148 * all locks to avoid deadlock against interrupt handlers on 1149 * the target CPU. 1150 */ 1151 if ((l->l_pflag & LP_RUNNING) != 0 || l->l_cpu->ci_curlwp == l) { 1152 int count; 1153 (void)count; /* XXXgcc */ 1154 KERNEL_UNLOCK_ALL(curlwp, &count); 1155 while ((l->l_pflag & LP_RUNNING) != 0 || 1156 l->l_cpu->ci_curlwp == l) 1157 SPINLOCK_BACKOFF_HOOK; 1158 KERNEL_LOCK(count, curlwp); 1159 } 1160 #endif 1161 1162 /* 1163 * Destroy the LWP's remaining signal information. 1164 */ 1165 ksiginfo_queue_init(&kq); 1166 sigclear(&l->l_sigpend, NULL, &kq); 1167 ksiginfo_queue_drain(&kq); 1168 cv_destroy(&l->l_sigcv); 1169 cv_destroy(&l->l_waitcv); 1170 1171 /* 1172 * Free lwpctl structure and affinity. 1173 */ 1174 if (l->l_lwpctl) { 1175 lwp_ctl_free(l); 1176 } 1177 if (l->l_affinity) { 1178 kcpuset_unuse(l->l_affinity, NULL); 1179 l->l_affinity = NULL; 1180 } 1181 1182 /* 1183 * Free the LWP's turnstile and the LWP structure itself unless the 1184 * caller wants to recycle them. Also, free the scheduler specific 1185 * data. 1186 * 1187 * We can't return turnstile0 to the pool (it didn't come from it), 1188 * so if it comes up just drop it quietly and move on. 1189 * 1190 * We don't recycle the VM resources at this time. 1191 */ 1192 1193 if (!recycle && l->l_ts != &turnstile0) 1194 pool_cache_put(turnstile_cache, l->l_ts); 1195 if (l->l_name != NULL) 1196 kmem_free(l->l_name, MAXCOMLEN); 1197 1198 cpu_lwp_free2(l); 1199 uvm_lwp_exit(l); 1200 1201 KASSERT(SLIST_EMPTY(&l->l_pi_lenders)); 1202 KASSERT(l->l_inheritedprio == -1); 1203 KASSERT(l->l_blcnt == 0); 1204 kdtrace_thread_dtor(NULL, l); 1205 if (!recycle) 1206 pool_cache_put(lwp_cache, l); 1207 } 1208 1209 /* 1210 * Migrate the LWP to the another CPU. Unlocks the LWP. 1211 */ 1212 void 1213 lwp_migrate(lwp_t *l, struct cpu_info *tci) 1214 { 1215 struct schedstate_percpu *tspc; 1216 int lstat = l->l_stat; 1217 1218 KASSERT(lwp_locked(l, NULL)); 1219 KASSERT(tci != NULL); 1220 1221 /* If LWP is still on the CPU, it must be handled like LSONPROC */ 1222 if ((l->l_pflag & LP_RUNNING) != 0) { 1223 lstat = LSONPROC; 1224 } 1225 1226 /* 1227 * The destination CPU could be changed while previous migration 1228 * was not finished. 1229 */ 1230 if (l->l_target_cpu != NULL) { 1231 l->l_target_cpu = tci; 1232 lwp_unlock(l); 1233 return; 1234 } 1235 1236 /* Nothing to do if trying to migrate to the same CPU */ 1237 if (l->l_cpu == tci) { 1238 lwp_unlock(l); 1239 return; 1240 } 1241 1242 KASSERT(l->l_target_cpu == NULL); 1243 tspc = &tci->ci_schedstate; 1244 switch (lstat) { 1245 case LSRUN: 1246 l->l_target_cpu = tci; 1247 break; 1248 case LSIDL: 1249 l->l_cpu = tci; 1250 lwp_unlock_to(l, tspc->spc_mutex); 1251 return; 1252 case LSSLEEP: 1253 l->l_cpu = tci; 1254 break; 1255 case LSSTOP: 1256 case LSSUSPENDED: 1257 l->l_cpu = tci; 1258 if (l->l_wchan == NULL) { 1259 lwp_unlock_to(l, tspc->spc_lwplock); 1260 return; 1261 } 1262 break; 1263 case LSONPROC: 1264 l->l_target_cpu = tci; 1265 spc_lock(l->l_cpu); 1266 cpu_need_resched(l->l_cpu, RESCHED_KPREEMPT); 1267 spc_unlock(l->l_cpu); 1268 break; 1269 } 1270 lwp_unlock(l); 1271 } 1272 1273 /* 1274 * Find the LWP in the process. Arguments may be zero, in such case, 1275 * the calling process and first LWP in the list will be used. 1276 * On success - returns proc locked. 1277 */ 1278 struct lwp * 1279 lwp_find2(pid_t pid, lwpid_t lid) 1280 { 1281 proc_t *p; 1282 lwp_t *l; 1283 1284 /* Find the process. */ 1285 if (pid != 0) { 1286 mutex_enter(proc_lock); 1287 p = proc_find(pid); 1288 if (p == NULL) { 1289 mutex_exit(proc_lock); 1290 return NULL; 1291 } 1292 mutex_enter(p->p_lock); 1293 mutex_exit(proc_lock); 1294 } else { 1295 p = curlwp->l_proc; 1296 mutex_enter(p->p_lock); 1297 } 1298 /* Find the thread. */ 1299 if (lid != 0) { 1300 l = lwp_find(p, lid); 1301 } else { 1302 l = LIST_FIRST(&p->p_lwps); 1303 } 1304 if (l == NULL) { 1305 mutex_exit(p->p_lock); 1306 } 1307 return l; 1308 } 1309 1310 /* 1311 * Look up a live LWP within the specified process. 1312 * 1313 * Must be called with p->p_lock held. 1314 */ 1315 struct lwp * 1316 lwp_find(struct proc *p, lwpid_t id) 1317 { 1318 struct lwp *l; 1319 1320 KASSERT(mutex_owned(p->p_lock)); 1321 1322 LIST_FOREACH(l, &p->p_lwps, l_sibling) { 1323 if (l->l_lid == id) 1324 break; 1325 } 1326 1327 /* 1328 * No need to lock - all of these conditions will 1329 * be visible with the process level mutex held. 1330 */ 1331 if (l != NULL && (l->l_stat == LSIDL || l->l_stat == LSZOMB)) 1332 l = NULL; 1333 1334 return l; 1335 } 1336 1337 /* 1338 * Update an LWP's cached credentials to mirror the process' master copy. 1339 * 1340 * This happens early in the syscall path, on user trap, and on LWP 1341 * creation. A long-running LWP can also voluntarily choose to update 1342 * it's credentials by calling this routine. This may be called from 1343 * LWP_CACHE_CREDS(), which checks l->l_cred != p->p_cred beforehand. 1344 */ 1345 void 1346 lwp_update_creds(struct lwp *l) 1347 { 1348 kauth_cred_t oc; 1349 struct proc *p; 1350 1351 p = l->l_proc; 1352 oc = l->l_cred; 1353 1354 mutex_enter(p->p_lock); 1355 kauth_cred_hold(p->p_cred); 1356 l->l_cred = p->p_cred; 1357 l->l_prflag &= ~LPR_CRMOD; 1358 mutex_exit(p->p_lock); 1359 if (oc != NULL) 1360 kauth_cred_free(oc); 1361 } 1362 1363 /* 1364 * Verify that an LWP is locked, and optionally verify that the lock matches 1365 * one we specify. 1366 */ 1367 int 1368 lwp_locked(struct lwp *l, kmutex_t *mtx) 1369 { 1370 kmutex_t *cur = l->l_mutex; 1371 1372 return mutex_owned(cur) && (mtx == cur || mtx == NULL); 1373 } 1374 1375 /* 1376 * Lend a new mutex to an LWP. The old mutex must be held. 1377 */ 1378 void 1379 lwp_setlock(struct lwp *l, kmutex_t *new) 1380 { 1381 1382 KASSERT(mutex_owned(l->l_mutex)); 1383 1384 membar_exit(); 1385 l->l_mutex = new; 1386 } 1387 1388 /* 1389 * Lend a new mutex to an LWP, and release the old mutex. The old mutex 1390 * must be held. 1391 */ 1392 void 1393 lwp_unlock_to(struct lwp *l, kmutex_t *new) 1394 { 1395 kmutex_t *old; 1396 1397 KASSERT(lwp_locked(l, NULL)); 1398 1399 old = l->l_mutex; 1400 membar_exit(); 1401 l->l_mutex = new; 1402 mutex_spin_exit(old); 1403 } 1404 1405 int 1406 lwp_trylock(struct lwp *l) 1407 { 1408 kmutex_t *old; 1409 1410 for (;;) { 1411 if (!mutex_tryenter(old = l->l_mutex)) 1412 return 0; 1413 if (__predict_true(l->l_mutex == old)) 1414 return 1; 1415 mutex_spin_exit(old); 1416 } 1417 } 1418 1419 void 1420 lwp_unsleep(lwp_t *l, bool cleanup) 1421 { 1422 1423 KASSERT(mutex_owned(l->l_mutex)); 1424 (*l->l_syncobj->sobj_unsleep)(l, cleanup); 1425 } 1426 1427 /* 1428 * Handle exceptions for mi_userret(). Called if a member of LW_USERRET is 1429 * set. 1430 */ 1431 void 1432 lwp_userret(struct lwp *l) 1433 { 1434 struct proc *p; 1435 int sig; 1436 1437 KASSERT(l == curlwp); 1438 KASSERT(l->l_stat == LSONPROC); 1439 p = l->l_proc; 1440 1441 #ifndef __HAVE_FAST_SOFTINTS 1442 /* Run pending soft interrupts. */ 1443 if (l->l_cpu->ci_data.cpu_softints != 0) 1444 softint_overlay(); 1445 #endif 1446 1447 /* 1448 * It is safe to do this read unlocked on a MP system.. 1449 */ 1450 while ((l->l_flag & LW_USERRET) != 0) { 1451 /* 1452 * Process pending signals first, unless the process 1453 * is dumping core or exiting, where we will instead 1454 * enter the LW_WSUSPEND case below. 1455 */ 1456 if ((l->l_flag & (LW_PENDSIG | LW_WCORE | LW_WEXIT)) == 1457 LW_PENDSIG) { 1458 mutex_enter(p->p_lock); 1459 while ((sig = issignal(l)) != 0) 1460 postsig(sig); 1461 mutex_exit(p->p_lock); 1462 } 1463 1464 /* 1465 * Core-dump or suspend pending. 1466 * 1467 * In case of core dump, suspend ourselves, so that the kernel 1468 * stack and therefore the userland registers saved in the 1469 * trapframe are around for coredump() to write them out. 1470 * We also need to save any PCU resources that we have so that 1471 * they accessible for coredump(). We issue a wakeup on 1472 * p->p_lwpcv so that sigexit() will write the core file out 1473 * once all other LWPs are suspended. 1474 */ 1475 if ((l->l_flag & LW_WSUSPEND) != 0) { 1476 pcu_save_all(l); 1477 mutex_enter(p->p_lock); 1478 p->p_nrlwps--; 1479 cv_broadcast(&p->p_lwpcv); 1480 lwp_lock(l); 1481 l->l_stat = LSSUSPENDED; 1482 lwp_unlock(l); 1483 mutex_exit(p->p_lock); 1484 lwp_lock(l); 1485 mi_switch(l); 1486 } 1487 1488 /* Process is exiting. */ 1489 if ((l->l_flag & LW_WEXIT) != 0) { 1490 lwp_exit(l); 1491 KASSERT(0); 1492 /* NOTREACHED */ 1493 } 1494 1495 /* update lwpctl processor (for vfork child_return) */ 1496 if (l->l_flag & LW_LWPCTL) { 1497 lwp_lock(l); 1498 KASSERT(kpreempt_disabled()); 1499 l->l_lwpctl->lc_curcpu = (int)cpu_index(l->l_cpu); 1500 l->l_lwpctl->lc_pctr++; 1501 l->l_flag &= ~LW_LWPCTL; 1502 lwp_unlock(l); 1503 } 1504 } 1505 } 1506 1507 /* 1508 * Force an LWP to enter the kernel, to take a trip through lwp_userret(). 1509 */ 1510 void 1511 lwp_need_userret(struct lwp *l) 1512 { 1513 KASSERT(lwp_locked(l, NULL)); 1514 1515 /* 1516 * Since the tests in lwp_userret() are done unlocked, make sure 1517 * that the condition will be seen before forcing the LWP to enter 1518 * kernel mode. 1519 */ 1520 membar_producer(); 1521 cpu_signotify(l); 1522 } 1523 1524 /* 1525 * Add one reference to an LWP. This will prevent the LWP from 1526 * exiting, thus keep the lwp structure and PCB around to inspect. 1527 */ 1528 void 1529 lwp_addref(struct lwp *l) 1530 { 1531 1532 KASSERT(mutex_owned(l->l_proc->p_lock)); 1533 KASSERT(l->l_stat != LSZOMB); 1534 KASSERT(l->l_refcnt != 0); 1535 1536 l->l_refcnt++; 1537 } 1538 1539 /* 1540 * Remove one reference to an LWP. If this is the last reference, 1541 * then we must finalize the LWP's death. 1542 */ 1543 void 1544 lwp_delref(struct lwp *l) 1545 { 1546 struct proc *p = l->l_proc; 1547 1548 mutex_enter(p->p_lock); 1549 lwp_delref2(l); 1550 mutex_exit(p->p_lock); 1551 } 1552 1553 /* 1554 * Remove one reference to an LWP. If this is the last reference, 1555 * then we must finalize the LWP's death. The proc mutex is held 1556 * on entry. 1557 */ 1558 void 1559 lwp_delref2(struct lwp *l) 1560 { 1561 struct proc *p = l->l_proc; 1562 1563 KASSERT(mutex_owned(p->p_lock)); 1564 KASSERT(l->l_stat != LSZOMB); 1565 KASSERT(l->l_refcnt > 0); 1566 if (--l->l_refcnt == 0) 1567 cv_broadcast(&p->p_lwpcv); 1568 } 1569 1570 /* 1571 * Drain all references to the current LWP. 1572 */ 1573 void 1574 lwp_drainrefs(struct lwp *l) 1575 { 1576 struct proc *p = l->l_proc; 1577 1578 KASSERT(mutex_owned(p->p_lock)); 1579 KASSERT(l->l_refcnt != 0); 1580 1581 l->l_refcnt--; 1582 while (l->l_refcnt != 0) 1583 cv_wait(&p->p_lwpcv, p->p_lock); 1584 } 1585 1586 /* 1587 * Return true if the specified LWP is 'alive'. Only p->p_lock need 1588 * be held. 1589 */ 1590 bool 1591 lwp_alive(lwp_t *l) 1592 { 1593 1594 KASSERT(mutex_owned(l->l_proc->p_lock)); 1595 1596 switch (l->l_stat) { 1597 case LSSLEEP: 1598 case LSRUN: 1599 case LSONPROC: 1600 case LSSTOP: 1601 case LSSUSPENDED: 1602 return true; 1603 default: 1604 return false; 1605 } 1606 } 1607 1608 /* 1609 * Return first live LWP in the process. 1610 */ 1611 lwp_t * 1612 lwp_find_first(proc_t *p) 1613 { 1614 lwp_t *l; 1615 1616 KASSERT(mutex_owned(p->p_lock)); 1617 1618 LIST_FOREACH(l, &p->p_lwps, l_sibling) { 1619 if (lwp_alive(l)) { 1620 return l; 1621 } 1622 } 1623 1624 return NULL; 1625 } 1626 1627 /* 1628 * Allocate a new lwpctl structure for a user LWP. 1629 */ 1630 int 1631 lwp_ctl_alloc(vaddr_t *uaddr) 1632 { 1633 lcproc_t *lp; 1634 u_int bit, i, offset; 1635 struct uvm_object *uao; 1636 int error; 1637 lcpage_t *lcp; 1638 proc_t *p; 1639 lwp_t *l; 1640 1641 l = curlwp; 1642 p = l->l_proc; 1643 1644 /* don't allow a vforked process to create lwp ctls */ 1645 if (p->p_lflag & PL_PPWAIT) 1646 return EBUSY; 1647 1648 if (l->l_lcpage != NULL) { 1649 lcp = l->l_lcpage; 1650 *uaddr = lcp->lcp_uaddr + (vaddr_t)l->l_lwpctl - lcp->lcp_kaddr; 1651 return 0; 1652 } 1653 1654 /* First time around, allocate header structure for the process. */ 1655 if ((lp = p->p_lwpctl) == NULL) { 1656 lp = kmem_alloc(sizeof(*lp), KM_SLEEP); 1657 mutex_init(&lp->lp_lock, MUTEX_DEFAULT, IPL_NONE); 1658 lp->lp_uao = NULL; 1659 TAILQ_INIT(&lp->lp_pages); 1660 mutex_enter(p->p_lock); 1661 if (p->p_lwpctl == NULL) { 1662 p->p_lwpctl = lp; 1663 mutex_exit(p->p_lock); 1664 } else { 1665 mutex_exit(p->p_lock); 1666 mutex_destroy(&lp->lp_lock); 1667 kmem_free(lp, sizeof(*lp)); 1668 lp = p->p_lwpctl; 1669 } 1670 } 1671 1672 /* 1673 * Set up an anonymous memory region to hold the shared pages. 1674 * Map them into the process' address space. The user vmspace 1675 * gets the first reference on the UAO. 1676 */ 1677 mutex_enter(&lp->lp_lock); 1678 if (lp->lp_uao == NULL) { 1679 lp->lp_uao = uao_create(LWPCTL_UAREA_SZ, 0); 1680 lp->lp_cur = 0; 1681 lp->lp_max = LWPCTL_UAREA_SZ; 1682 lp->lp_uva = p->p_emul->e_vm_default_addr(p, 1683 (vaddr_t)p->p_vmspace->vm_daddr, LWPCTL_UAREA_SZ); 1684 error = uvm_map(&p->p_vmspace->vm_map, &lp->lp_uva, 1685 LWPCTL_UAREA_SZ, lp->lp_uao, 0, 0, UVM_MAPFLAG(UVM_PROT_RW, 1686 UVM_PROT_RW, UVM_INH_NONE, UVM_ADV_NORMAL, 0)); 1687 if (error != 0) { 1688 uao_detach(lp->lp_uao); 1689 lp->lp_uao = NULL; 1690 mutex_exit(&lp->lp_lock); 1691 return error; 1692 } 1693 } 1694 1695 /* Get a free block and allocate for this LWP. */ 1696 TAILQ_FOREACH(lcp, &lp->lp_pages, lcp_chain) { 1697 if (lcp->lcp_nfree != 0) 1698 break; 1699 } 1700 if (lcp == NULL) { 1701 /* Nothing available - try to set up a free page. */ 1702 if (lp->lp_cur == lp->lp_max) { 1703 mutex_exit(&lp->lp_lock); 1704 return ENOMEM; 1705 } 1706 lcp = kmem_alloc(LWPCTL_LCPAGE_SZ, KM_SLEEP); 1707 if (lcp == NULL) { 1708 mutex_exit(&lp->lp_lock); 1709 return ENOMEM; 1710 } 1711 /* 1712 * Wire the next page down in kernel space. Since this 1713 * is a new mapping, we must add a reference. 1714 */ 1715 uao = lp->lp_uao; 1716 (*uao->pgops->pgo_reference)(uao); 1717 lcp->lcp_kaddr = vm_map_min(kernel_map); 1718 error = uvm_map(kernel_map, &lcp->lcp_kaddr, PAGE_SIZE, 1719 uao, lp->lp_cur, PAGE_SIZE, 1720 UVM_MAPFLAG(UVM_PROT_RW, UVM_PROT_RW, 1721 UVM_INH_NONE, UVM_ADV_RANDOM, 0)); 1722 if (error != 0) { 1723 mutex_exit(&lp->lp_lock); 1724 kmem_free(lcp, LWPCTL_LCPAGE_SZ); 1725 (*uao->pgops->pgo_detach)(uao); 1726 return error; 1727 } 1728 error = uvm_map_pageable(kernel_map, lcp->lcp_kaddr, 1729 lcp->lcp_kaddr + PAGE_SIZE, FALSE, 0); 1730 if (error != 0) { 1731 mutex_exit(&lp->lp_lock); 1732 uvm_unmap(kernel_map, lcp->lcp_kaddr, 1733 lcp->lcp_kaddr + PAGE_SIZE); 1734 kmem_free(lcp, LWPCTL_LCPAGE_SZ); 1735 return error; 1736 } 1737 /* Prepare the page descriptor and link into the list. */ 1738 lcp->lcp_uaddr = lp->lp_uva + lp->lp_cur; 1739 lp->lp_cur += PAGE_SIZE; 1740 lcp->lcp_nfree = LWPCTL_PER_PAGE; 1741 lcp->lcp_rotor = 0; 1742 memset(lcp->lcp_bitmap, 0xff, LWPCTL_BITMAP_SZ); 1743 TAILQ_INSERT_HEAD(&lp->lp_pages, lcp, lcp_chain); 1744 } 1745 for (i = lcp->lcp_rotor; lcp->lcp_bitmap[i] == 0;) { 1746 if (++i >= LWPCTL_BITMAP_ENTRIES) 1747 i = 0; 1748 } 1749 bit = ffs(lcp->lcp_bitmap[i]) - 1; 1750 lcp->lcp_bitmap[i] ^= (1 << bit); 1751 lcp->lcp_rotor = i; 1752 lcp->lcp_nfree--; 1753 l->l_lcpage = lcp; 1754 offset = (i << 5) + bit; 1755 l->l_lwpctl = (lwpctl_t *)lcp->lcp_kaddr + offset; 1756 *uaddr = lcp->lcp_uaddr + offset * sizeof(lwpctl_t); 1757 mutex_exit(&lp->lp_lock); 1758 1759 KPREEMPT_DISABLE(l); 1760 l->l_lwpctl->lc_curcpu = (int)curcpu()->ci_data.cpu_index; 1761 KPREEMPT_ENABLE(l); 1762 1763 return 0; 1764 } 1765 1766 /* 1767 * Free an lwpctl structure back to the per-process list. 1768 */ 1769 void 1770 lwp_ctl_free(lwp_t *l) 1771 { 1772 struct proc *p = l->l_proc; 1773 lcproc_t *lp; 1774 lcpage_t *lcp; 1775 u_int map, offset; 1776 1777 /* don't free a lwp context we borrowed for vfork */ 1778 if (p->p_lflag & PL_PPWAIT) { 1779 l->l_lwpctl = NULL; 1780 return; 1781 } 1782 1783 lp = p->p_lwpctl; 1784 KASSERT(lp != NULL); 1785 1786 lcp = l->l_lcpage; 1787 offset = (u_int)((lwpctl_t *)l->l_lwpctl - (lwpctl_t *)lcp->lcp_kaddr); 1788 KASSERT(offset < LWPCTL_PER_PAGE); 1789 1790 mutex_enter(&lp->lp_lock); 1791 lcp->lcp_nfree++; 1792 map = offset >> 5; 1793 lcp->lcp_bitmap[map] |= (1 << (offset & 31)); 1794 if (lcp->lcp_bitmap[lcp->lcp_rotor] == 0) 1795 lcp->lcp_rotor = map; 1796 if (TAILQ_FIRST(&lp->lp_pages)->lcp_nfree == 0) { 1797 TAILQ_REMOVE(&lp->lp_pages, lcp, lcp_chain); 1798 TAILQ_INSERT_HEAD(&lp->lp_pages, lcp, lcp_chain); 1799 } 1800 mutex_exit(&lp->lp_lock); 1801 } 1802 1803 /* 1804 * Process is exiting; tear down lwpctl state. This can only be safely 1805 * called by the last LWP in the process. 1806 */ 1807 void 1808 lwp_ctl_exit(void) 1809 { 1810 lcpage_t *lcp, *next; 1811 lcproc_t *lp; 1812 proc_t *p; 1813 lwp_t *l; 1814 1815 l = curlwp; 1816 l->l_lwpctl = NULL; 1817 l->l_lcpage = NULL; 1818 p = l->l_proc; 1819 lp = p->p_lwpctl; 1820 1821 KASSERT(lp != NULL); 1822 KASSERT(p->p_nlwps == 1); 1823 1824 for (lcp = TAILQ_FIRST(&lp->lp_pages); lcp != NULL; lcp = next) { 1825 next = TAILQ_NEXT(lcp, lcp_chain); 1826 uvm_unmap(kernel_map, lcp->lcp_kaddr, 1827 lcp->lcp_kaddr + PAGE_SIZE); 1828 kmem_free(lcp, LWPCTL_LCPAGE_SZ); 1829 } 1830 1831 if (lp->lp_uao != NULL) { 1832 uvm_unmap(&p->p_vmspace->vm_map, lp->lp_uva, 1833 lp->lp_uva + LWPCTL_UAREA_SZ); 1834 } 1835 1836 mutex_destroy(&lp->lp_lock); 1837 kmem_free(lp, sizeof(*lp)); 1838 p->p_lwpctl = NULL; 1839 } 1840 1841 /* 1842 * Return the current LWP's "preemption counter". Used to detect 1843 * preemption across operations that can tolerate preemption without 1844 * crashing, but which may generate incorrect results if preempted. 1845 */ 1846 uint64_t 1847 lwp_pctr(void) 1848 { 1849 1850 return curlwp->l_ncsw; 1851 } 1852 1853 /* 1854 * Set an LWP's private data pointer. 1855 */ 1856 int 1857 lwp_setprivate(struct lwp *l, void *ptr) 1858 { 1859 int error = 0; 1860 1861 l->l_private = ptr; 1862 #ifdef __HAVE_CPU_LWP_SETPRIVATE 1863 error = cpu_lwp_setprivate(l, ptr); 1864 #endif 1865 return error; 1866 } 1867 1868 #if defined(DDB) 1869 #include <machine/pcb.h> 1870 1871 void 1872 lwp_whatis(uintptr_t addr, void (*pr)(const char *, ...)) 1873 { 1874 lwp_t *l; 1875 1876 LIST_FOREACH(l, &alllwp, l_list) { 1877 uintptr_t stack = (uintptr_t)KSTACK_LOWEST_ADDR(l); 1878 1879 if (addr < stack || stack + KSTACK_SIZE <= addr) { 1880 continue; 1881 } 1882 (*pr)("%p is %p+%zu, LWP %p's stack\n", 1883 (void *)addr, (void *)stack, 1884 (size_t)(addr - stack), l); 1885 } 1886 } 1887 #endif /* defined(DDB) */ 1888