1 /* $NetBSD: kern_lwp.c,v 1.246 2021/12/22 16:57:28 thorpej Exp $ */ 2 3 /*- 4 * Copyright (c) 2001, 2006, 2007, 2008, 2009, 2019, 2020 5 * The NetBSD Foundation, Inc. 6 * All rights reserved. 7 * 8 * This code is derived from software contributed to The NetBSD Foundation 9 * by Nathan J. Williams, and Andrew Doran. 10 * 11 * Redistribution and use in source and binary forms, with or without 12 * modification, are permitted provided that the following conditions 13 * are met: 14 * 1. Redistributions of source code must retain the above copyright 15 * notice, this list of conditions and the following disclaimer. 16 * 2. Redistributions in binary form must reproduce the above copyright 17 * notice, this list of conditions and the following disclaimer in the 18 * documentation and/or other materials provided with the distribution. 19 * 20 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS 21 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 22 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 23 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 24 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 25 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 26 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 27 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 28 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 29 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 30 * POSSIBILITY OF SUCH DAMAGE. 31 */ 32 33 /* 34 * Overview 35 * 36 * Lightweight processes (LWPs) are the basic unit or thread of 37 * execution within the kernel. The core state of an LWP is described 38 * by "struct lwp", also known as lwp_t. 39 * 40 * Each LWP is contained within a process (described by "struct proc"), 41 * Every process contains at least one LWP, but may contain more. The 42 * process describes attributes shared among all of its LWPs such as a 43 * private address space, global execution state (stopped, active, 44 * zombie, ...), signal disposition and so on. On a multiprocessor 45 * machine, multiple LWPs be executing concurrently in the kernel. 46 * 47 * Execution states 48 * 49 * At any given time, an LWP has overall state that is described by 50 * lwp::l_stat. The states are broken into two sets below. The first 51 * set is guaranteed to represent the absolute, current state of the 52 * LWP: 53 * 54 * LSONPROC 55 * 56 * On processor: the LWP is executing on a CPU, either in the 57 * kernel or in user space. 58 * 59 * LSRUN 60 * 61 * Runnable: the LWP is parked on a run queue, and may soon be 62 * chosen to run by an idle processor, or by a processor that 63 * has been asked to preempt a currently runnning but lower 64 * priority LWP. 65 * 66 * LSIDL 67 * 68 * Idle: the LWP has been created but has not yet executed, or 69 * it has ceased executing a unit of work and is waiting to be 70 * started again. This state exists so that the LWP can occupy 71 * a slot in the process & PID table, but without having to 72 * worry about being touched; lookups of the LWP by ID will 73 * fail while in this state. The LWP will become visible for 74 * lookup once its state transitions further. Some special 75 * kernel threads also (ab)use this state to indicate that they 76 * are idle (soft interrupts and idle LWPs). 77 * 78 * LSSUSPENDED: 79 * 80 * Suspended: the LWP has had its execution suspended by 81 * another LWP in the same process using the _lwp_suspend() 82 * system call. User-level LWPs also enter the suspended 83 * state when the system is shutting down. 84 * 85 * The second set represent a "statement of intent" on behalf of the 86 * LWP. The LWP may in fact be executing on a processor, may be 87 * sleeping or idle. It is expected to take the necessary action to 88 * stop executing or become "running" again within a short timeframe. 89 * The LP_RUNNING flag in lwp::l_pflag indicates that an LWP is running. 90 * Importantly, it indicates that its state is tied to a CPU. 91 * 92 * LSZOMB: 93 * 94 * Dead or dying: the LWP has released most of its resources 95 * and is about to switch away into oblivion, or has already 96 * switched away. When it switches away, its few remaining 97 * resources can be collected. 98 * 99 * LSSLEEP: 100 * 101 * Sleeping: the LWP has entered itself onto a sleep queue, and 102 * has switched away or will switch away shortly to allow other 103 * LWPs to run on the CPU. 104 * 105 * LSSTOP: 106 * 107 * Stopped: the LWP has been stopped as a result of a job 108 * control signal, or as a result of the ptrace() interface. 109 * 110 * Stopped LWPs may run briefly within the kernel to handle 111 * signals that they receive, but will not return to user space 112 * until their process' state is changed away from stopped. 113 * 114 * Single LWPs within a process can not be set stopped 115 * selectively: all actions that can stop or continue LWPs 116 * occur at the process level. 117 * 118 * State transitions 119 * 120 * Note that the LSSTOP state may only be set when returning to 121 * user space in userret(), or when sleeping interruptably. The 122 * LSSUSPENDED state may only be set in userret(). Before setting 123 * those states, we try to ensure that the LWPs will release all 124 * locks that they hold, and at a minimum try to ensure that the 125 * LWP can be set runnable again by a signal. 126 * 127 * LWPs may transition states in the following ways: 128 * 129 * RUN -------> ONPROC ONPROC -----> RUN 130 * > SLEEP 131 * > STOPPED 132 * > SUSPENDED 133 * > ZOMB 134 * > IDL (special cases) 135 * 136 * STOPPED ---> RUN SUSPENDED --> RUN 137 * > SLEEP 138 * 139 * SLEEP -----> ONPROC IDL --------> RUN 140 * > RUN > SUSPENDED 141 * > STOPPED > STOPPED 142 * > ONPROC (special cases) 143 * 144 * Some state transitions are only possible with kernel threads (eg 145 * ONPROC -> IDL) and happen under tightly controlled circumstances 146 * free of unwanted side effects. 147 * 148 * Migration 149 * 150 * Migration of threads from one CPU to another could be performed 151 * internally by the scheduler via sched_takecpu() or sched_catchlwp() 152 * functions. The universal lwp_migrate() function should be used for 153 * any other cases. Subsystems in the kernel must be aware that CPU 154 * of LWP may change, while it is not locked. 155 * 156 * Locking 157 * 158 * The majority of fields in 'struct lwp' are covered by a single, 159 * general spin lock pointed to by lwp::l_mutex. The locks covering 160 * each field are documented in sys/lwp.h. 161 * 162 * State transitions must be made with the LWP's general lock held, 163 * and may cause the LWP's lock pointer to change. Manipulation of 164 * the general lock is not performed directly, but through calls to 165 * lwp_lock(), lwp_unlock() and others. It should be noted that the 166 * adaptive locks are not allowed to be released while the LWP's lock 167 * is being held (unlike for other spin-locks). 168 * 169 * States and their associated locks: 170 * 171 * LSIDL, LSONPROC, LSZOMB, LSSUPENDED: 172 * 173 * Always covered by spc_lwplock, which protects LWPs not 174 * associated with any other sync object. This is a per-CPU 175 * lock and matches lwp::l_cpu. 176 * 177 * LSRUN: 178 * 179 * Always covered by spc_mutex, which protects the run queues. 180 * This is a per-CPU lock and matches lwp::l_cpu. 181 * 182 * LSSLEEP: 183 * 184 * Covered by a lock associated with the sleep queue (sometimes 185 * a turnstile sleep queue) that the LWP resides on. This can 186 * be spc_lwplock for SOBJ_SLEEPQ_NULL (an "untracked" sleep). 187 * 188 * LSSTOP: 189 * 190 * If the LWP was previously sleeping (l_wchan != NULL), then 191 * l_mutex references the sleep queue lock. If the LWP was 192 * runnable or on the CPU when halted, or has been removed from 193 * the sleep queue since halted, then the lock is spc_lwplock. 194 * 195 * The lock order is as follows: 196 * 197 * sleepq -> turnstile -> spc_lwplock -> spc_mutex 198 * 199 * Each process has a scheduler state lock (proc::p_lock), and a 200 * number of counters on LWPs and their states: p_nzlwps, p_nrlwps, and 201 * so on. When an LWP is to be entered into or removed from one of the 202 * following states, p_lock must be held and the process wide counters 203 * adjusted: 204 * 205 * LSIDL, LSZOMB, LSSTOP, LSSUSPENDED 206 * 207 * (But not always for kernel threads. There are some special cases 208 * as mentioned above: soft interrupts, and the idle loops.) 209 * 210 * Note that an LWP is considered running or likely to run soon if in 211 * one of the following states. This affects the value of p_nrlwps: 212 * 213 * LSRUN, LSONPROC, LSSLEEP 214 * 215 * p_lock does not need to be held when transitioning among these 216 * three states, hence p_lock is rarely taken for state transitions. 217 */ 218 219 #include <sys/cdefs.h> 220 __KERNEL_RCSID(0, "$NetBSD: kern_lwp.c,v 1.246 2021/12/22 16:57:28 thorpej Exp $"); 221 222 #include "opt_ddb.h" 223 #include "opt_lockdebug.h" 224 #include "opt_dtrace.h" 225 226 #define _LWP_API_PRIVATE 227 228 #include <sys/param.h> 229 #include <sys/systm.h> 230 #include <sys/cpu.h> 231 #include <sys/pool.h> 232 #include <sys/proc.h> 233 #include <sys/syscallargs.h> 234 #include <sys/syscall_stats.h> 235 #include <sys/kauth.h> 236 #include <sys/sleepq.h> 237 #include <sys/lockdebug.h> 238 #include <sys/kmem.h> 239 #include <sys/pset.h> 240 #include <sys/intr.h> 241 #include <sys/lwpctl.h> 242 #include <sys/atomic.h> 243 #include <sys/filedesc.h> 244 #include <sys/fstrans.h> 245 #include <sys/dtrace_bsd.h> 246 #include <sys/sdt.h> 247 #include <sys/ptrace.h> 248 #include <sys/xcall.h> 249 #include <sys/uidinfo.h> 250 #include <sys/sysctl.h> 251 #include <sys/psref.h> 252 #include <sys/msan.h> 253 #include <sys/kcov.h> 254 #include <sys/cprng.h> 255 #include <sys/futex.h> 256 257 #include <uvm/uvm_extern.h> 258 #include <uvm/uvm_object.h> 259 260 static pool_cache_t lwp_cache __read_mostly; 261 struct lwplist alllwp __cacheline_aligned; 262 263 static int lwp_ctor(void *, void *, int); 264 static void lwp_dtor(void *, void *); 265 266 /* DTrace proc provider probes */ 267 SDT_PROVIDER_DEFINE(proc); 268 269 SDT_PROBE_DEFINE1(proc, kernel, , lwp__create, "struct lwp *"); 270 SDT_PROBE_DEFINE1(proc, kernel, , lwp__start, "struct lwp *"); 271 SDT_PROBE_DEFINE1(proc, kernel, , lwp__exit, "struct lwp *"); 272 273 struct turnstile turnstile0 __cacheline_aligned; 274 struct lwp lwp0 __aligned(MIN_LWP_ALIGNMENT) = { 275 #ifdef LWP0_CPU_INFO 276 .l_cpu = LWP0_CPU_INFO, 277 #endif 278 #ifdef LWP0_MD_INITIALIZER 279 .l_md = LWP0_MD_INITIALIZER, 280 #endif 281 .l_proc = &proc0, 282 .l_lid = 0, /* we own proc0's slot in the pid table */ 283 .l_flag = LW_SYSTEM, 284 .l_stat = LSONPROC, 285 .l_ts = &turnstile0, 286 .l_syncobj = &sched_syncobj, 287 .l_refcnt = 0, 288 .l_priority = PRI_USER + NPRI_USER - 1, 289 .l_inheritedprio = -1, 290 .l_class = SCHED_OTHER, 291 .l_psid = PS_NONE, 292 .l_pi_lenders = SLIST_HEAD_INITIALIZER(&lwp0.l_pi_lenders), 293 .l_name = __UNCONST("swapper"), 294 .l_fd = &filedesc0, 295 }; 296 297 static int sysctl_kern_maxlwp(SYSCTLFN_PROTO); 298 299 /* 300 * sysctl helper routine for kern.maxlwp. Ensures that the new 301 * values are not too low or too high. 302 */ 303 static int 304 sysctl_kern_maxlwp(SYSCTLFN_ARGS) 305 { 306 int error, nmaxlwp; 307 struct sysctlnode node; 308 309 nmaxlwp = maxlwp; 310 node = *rnode; 311 node.sysctl_data = &nmaxlwp; 312 error = sysctl_lookup(SYSCTLFN_CALL(&node)); 313 if (error || newp == NULL) 314 return error; 315 316 if (nmaxlwp < 0 || nmaxlwp >= 65536) 317 return EINVAL; 318 if (nmaxlwp > cpu_maxlwp()) 319 return EINVAL; 320 maxlwp = nmaxlwp; 321 322 return 0; 323 } 324 325 static void 326 sysctl_kern_lwp_setup(void) 327 { 328 sysctl_createv(NULL, 0, NULL, NULL, 329 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, 330 CTLTYPE_INT, "maxlwp", 331 SYSCTL_DESCR("Maximum number of simultaneous threads"), 332 sysctl_kern_maxlwp, 0, NULL, 0, 333 CTL_KERN, CTL_CREATE, CTL_EOL); 334 } 335 336 void 337 lwpinit(void) 338 { 339 340 LIST_INIT(&alllwp); 341 lwpinit_specificdata(); 342 /* 343 * Provide a barrier to ensure that all mutex_oncpu() and rw_oncpu() 344 * calls will exit before memory of LWPs is returned to the pool, where 345 * KVA of LWP structure might be freed and re-used for other purposes. 346 * Kernel preemption is disabled around mutex_oncpu() and rw_oncpu() 347 * callers, therefore a regular passive serialization barrier will 348 * do the job. 349 */ 350 lwp_cache = pool_cache_init(sizeof(lwp_t), MIN_LWP_ALIGNMENT, 0, 351 PR_PSERIALIZE, "lwppl", NULL, IPL_NONE, lwp_ctor, lwp_dtor, NULL); 352 353 maxlwp = cpu_maxlwp(); 354 sysctl_kern_lwp_setup(); 355 } 356 357 void 358 lwp0_init(void) 359 { 360 struct lwp *l = &lwp0; 361 362 KASSERT((void *)uvm_lwp_getuarea(l) != NULL); 363 364 LIST_INSERT_HEAD(&alllwp, l, l_list); 365 366 callout_init(&l->l_timeout_ch, CALLOUT_MPSAFE); 367 callout_setfunc(&l->l_timeout_ch, sleepq_timeout, l); 368 cv_init(&l->l_sigcv, "sigwait"); 369 cv_init(&l->l_waitcv, "vfork"); 370 371 kauth_cred_hold(proc0.p_cred); 372 l->l_cred = proc0.p_cred; 373 374 kdtrace_thread_ctor(NULL, l); 375 lwp_initspecific(l); 376 377 SYSCALL_TIME_LWP_INIT(l); 378 } 379 380 /* 381 * Initialize the non-zeroed portion of an lwp_t. 382 */ 383 static int 384 lwp_ctor(void *arg, void *obj, int flags) 385 { 386 lwp_t *l = obj; 387 388 l->l_stat = LSIDL; 389 l->l_cpu = curcpu(); 390 l->l_mutex = l->l_cpu->ci_schedstate.spc_lwplock; 391 l->l_ts = pool_get(&turnstile_pool, flags); 392 393 if (l->l_ts == NULL) { 394 return ENOMEM; 395 } else { 396 turnstile_ctor(l->l_ts); 397 return 0; 398 } 399 } 400 401 static void 402 lwp_dtor(void *arg, void *obj) 403 { 404 lwp_t *l = obj; 405 406 /* 407 * The value of l->l_cpu must still be valid at this point. 408 */ 409 KASSERT(l->l_cpu != NULL); 410 411 /* 412 * We can't return turnstile0 to the pool (it didn't come from it), 413 * so if it comes up just drop it quietly and move on. 414 */ 415 if (l->l_ts != &turnstile0) 416 pool_put(&turnstile_pool, l->l_ts); 417 } 418 419 /* 420 * Set an LWP suspended. 421 * 422 * Must be called with p_lock held, and the LWP locked. Will unlock the 423 * LWP before return. 424 */ 425 int 426 lwp_suspend(struct lwp *curl, struct lwp *t) 427 { 428 int error; 429 430 KASSERT(mutex_owned(t->l_proc->p_lock)); 431 KASSERT(lwp_locked(t, NULL)); 432 433 KASSERT(curl != t || curl->l_stat == LSONPROC); 434 435 /* 436 * If the current LWP has been told to exit, we must not suspend anyone 437 * else or deadlock could occur. We won't return to userspace. 438 */ 439 if ((curl->l_flag & (LW_WEXIT | LW_WCORE)) != 0) { 440 lwp_unlock(t); 441 return (EDEADLK); 442 } 443 444 if ((t->l_flag & LW_DBGSUSPEND) != 0) { 445 lwp_unlock(t); 446 return 0; 447 } 448 449 error = 0; 450 451 switch (t->l_stat) { 452 case LSRUN: 453 case LSONPROC: 454 t->l_flag |= LW_WSUSPEND; 455 lwp_need_userret(t); 456 lwp_unlock(t); 457 break; 458 459 case LSSLEEP: 460 t->l_flag |= LW_WSUSPEND; 461 462 /* 463 * Kick the LWP and try to get it to the kernel boundary 464 * so that it will release any locks that it holds. 465 * setrunnable() will release the lock. 466 */ 467 if ((t->l_flag & LW_SINTR) != 0) 468 setrunnable(t); 469 else 470 lwp_unlock(t); 471 break; 472 473 case LSSUSPENDED: 474 lwp_unlock(t); 475 break; 476 477 case LSSTOP: 478 t->l_flag |= LW_WSUSPEND; 479 setrunnable(t); 480 break; 481 482 case LSIDL: 483 case LSZOMB: 484 error = EINTR; /* It's what Solaris does..... */ 485 lwp_unlock(t); 486 break; 487 } 488 489 return (error); 490 } 491 492 /* 493 * Restart a suspended LWP. 494 * 495 * Must be called with p_lock held, and the LWP locked. Will unlock the 496 * LWP before return. 497 */ 498 void 499 lwp_continue(struct lwp *l) 500 { 501 502 KASSERT(mutex_owned(l->l_proc->p_lock)); 503 KASSERT(lwp_locked(l, NULL)); 504 505 /* If rebooting or not suspended, then just bail out. */ 506 if ((l->l_flag & LW_WREBOOT) != 0) { 507 lwp_unlock(l); 508 return; 509 } 510 511 l->l_flag &= ~LW_WSUSPEND; 512 513 if (l->l_stat != LSSUSPENDED || (l->l_flag & LW_DBGSUSPEND) != 0) { 514 lwp_unlock(l); 515 return; 516 } 517 518 /* setrunnable() will release the lock. */ 519 setrunnable(l); 520 } 521 522 /* 523 * Restart a stopped LWP. 524 * 525 * Must be called with p_lock held, and the LWP NOT locked. Will unlock the 526 * LWP before return. 527 */ 528 void 529 lwp_unstop(struct lwp *l) 530 { 531 struct proc *p = l->l_proc; 532 533 KASSERT(mutex_owned(&proc_lock)); 534 KASSERT(mutex_owned(p->p_lock)); 535 536 lwp_lock(l); 537 538 KASSERT((l->l_flag & LW_DBGSUSPEND) == 0); 539 540 /* If not stopped, then just bail out. */ 541 if (l->l_stat != LSSTOP) { 542 lwp_unlock(l); 543 return; 544 } 545 546 p->p_stat = SACTIVE; 547 p->p_sflag &= ~PS_STOPPING; 548 549 if (!p->p_waited) 550 p->p_pptr->p_nstopchild--; 551 552 if (l->l_wchan == NULL) { 553 /* setrunnable() will release the lock. */ 554 setrunnable(l); 555 } else if (p->p_xsig && (l->l_flag & LW_SINTR) != 0) { 556 /* setrunnable() so we can receive the signal */ 557 setrunnable(l); 558 } else { 559 l->l_stat = LSSLEEP; 560 p->p_nrlwps++; 561 lwp_unlock(l); 562 } 563 } 564 565 /* 566 * Wait for an LWP within the current process to exit. If 'lid' is 567 * non-zero, we are waiting for a specific LWP. 568 * 569 * Must be called with p->p_lock held. 570 */ 571 int 572 lwp_wait(struct lwp *l, lwpid_t lid, lwpid_t *departed, bool exiting) 573 { 574 const lwpid_t curlid = l->l_lid; 575 proc_t *p = l->l_proc; 576 lwp_t *l2, *next; 577 int error; 578 579 KASSERT(mutex_owned(p->p_lock)); 580 581 p->p_nlwpwait++; 582 l->l_waitingfor = lid; 583 584 for (;;) { 585 int nfound; 586 587 /* 588 * Avoid a race between exit1() and sigexit(): if the 589 * process is dumping core, then we need to bail out: call 590 * into lwp_userret() where we will be suspended until the 591 * deed is done. 592 */ 593 if ((p->p_sflag & PS_WCORE) != 0) { 594 mutex_exit(p->p_lock); 595 lwp_userret(l); 596 KASSERT(false); 597 } 598 599 /* 600 * First off, drain any detached LWP that is waiting to be 601 * reaped. 602 */ 603 while ((l2 = p->p_zomblwp) != NULL) { 604 p->p_zomblwp = NULL; 605 lwp_free(l2, false, false);/* releases proc mutex */ 606 mutex_enter(p->p_lock); 607 } 608 609 /* 610 * Now look for an LWP to collect. If the whole process is 611 * exiting, count detached LWPs as eligible to be collected, 612 * but don't drain them here. 613 */ 614 nfound = 0; 615 error = 0; 616 617 /* 618 * If given a specific LID, go via pid_table and make sure 619 * it's not detached. 620 */ 621 if (lid != 0) { 622 l2 = proc_find_lwp(p, lid); 623 if (l2 == NULL) { 624 error = ESRCH; 625 break; 626 } 627 KASSERT(l2->l_lid == lid); 628 if ((l2->l_prflag & LPR_DETACHED) != 0) { 629 error = EINVAL; 630 break; 631 } 632 } else { 633 l2 = LIST_FIRST(&p->p_lwps); 634 } 635 for (; l2 != NULL; l2 = next) { 636 next = (lid != 0 ? NULL : LIST_NEXT(l2, l_sibling)); 637 638 /* 639 * If a specific wait and the target is waiting on 640 * us, then avoid deadlock. This also traps LWPs 641 * that try to wait on themselves. 642 * 643 * Note that this does not handle more complicated 644 * cycles, like: t1 -> t2 -> t3 -> t1. The process 645 * can still be killed so it is not a major problem. 646 */ 647 if (l2->l_lid == lid && l2->l_waitingfor == curlid) { 648 error = EDEADLK; 649 break; 650 } 651 if (l2 == l) 652 continue; 653 if ((l2->l_prflag & LPR_DETACHED) != 0) { 654 nfound += exiting; 655 continue; 656 } 657 if (lid != 0) { 658 /* 659 * Mark this LWP as the first waiter, if there 660 * is no other. 661 */ 662 if (l2->l_waiter == 0) 663 l2->l_waiter = curlid; 664 } else if (l2->l_waiter != 0) { 665 /* 666 * It already has a waiter - so don't 667 * collect it. If the waiter doesn't 668 * grab it we'll get another chance 669 * later. 670 */ 671 nfound++; 672 continue; 673 } 674 nfound++; 675 676 /* No need to lock the LWP in order to see LSZOMB. */ 677 if (l2->l_stat != LSZOMB) 678 continue; 679 680 /* 681 * We're no longer waiting. Reset the "first waiter" 682 * pointer on the target, in case it was us. 683 */ 684 l->l_waitingfor = 0; 685 l2->l_waiter = 0; 686 p->p_nlwpwait--; 687 if (departed) 688 *departed = l2->l_lid; 689 sched_lwp_collect(l2); 690 691 /* lwp_free() releases the proc lock. */ 692 lwp_free(l2, false, false); 693 mutex_enter(p->p_lock); 694 return 0; 695 } 696 697 if (error != 0) 698 break; 699 if (nfound == 0) { 700 error = ESRCH; 701 break; 702 } 703 704 /* 705 * Note: since the lock will be dropped, need to restart on 706 * wakeup to run all LWPs again, e.g. there may be new LWPs. 707 */ 708 if (exiting) { 709 KASSERT(p->p_nlwps > 1); 710 error = cv_timedwait(&p->p_lwpcv, p->p_lock, 1); 711 break; 712 } 713 714 /* 715 * Break out if all LWPs are in _lwp_wait(). There are 716 * other ways to hang the process with _lwp_wait(), but the 717 * sleep is interruptable so little point checking for them. 718 */ 719 if (p->p_nlwpwait == p->p_nlwps) { 720 error = EDEADLK; 721 break; 722 } 723 724 /* 725 * Sit around and wait for something to happen. We'll be 726 * awoken if any of the conditions examined change: if an 727 * LWP exits, is collected, or is detached. 728 */ 729 if ((error = cv_wait_sig(&p->p_lwpcv, p->p_lock)) != 0) 730 break; 731 } 732 733 /* 734 * We didn't find any LWPs to collect, we may have received a 735 * signal, or some other condition has caused us to bail out. 736 * 737 * If waiting on a specific LWP, clear the waiters marker: some 738 * other LWP may want it. Then, kick all the remaining waiters 739 * so that they can re-check for zombies and for deadlock. 740 */ 741 if (lid != 0) { 742 l2 = proc_find_lwp(p, lid); 743 KASSERT(l2 == NULL || l2->l_lid == lid); 744 745 if (l2 != NULL && l2->l_waiter == curlid) 746 l2->l_waiter = 0; 747 } 748 p->p_nlwpwait--; 749 l->l_waitingfor = 0; 750 cv_broadcast(&p->p_lwpcv); 751 752 return error; 753 } 754 755 /* 756 * Create a new LWP within process 'p2', using LWP 'l1' as a template. 757 * The new LWP is created in state LSIDL and must be set running, 758 * suspended, or stopped by the caller. 759 */ 760 int 761 lwp_create(lwp_t *l1, proc_t *p2, vaddr_t uaddr, int flags, 762 void *stack, size_t stacksize, void (*func)(void *), void *arg, 763 lwp_t **rnewlwpp, int sclass, const sigset_t *sigmask, 764 const stack_t *sigstk) 765 { 766 struct lwp *l2; 767 768 KASSERT(l1 == curlwp || l1->l_proc == &proc0); 769 770 /* 771 * Enforce limits, excluding the first lwp and kthreads. We must 772 * use the process credentials here when adjusting the limit, as 773 * they are what's tied to the accounting entity. However for 774 * authorizing the action, we'll use the LWP's credentials. 775 */ 776 mutex_enter(p2->p_lock); 777 if (p2->p_nlwps != 0 && p2 != &proc0) { 778 uid_t uid = kauth_cred_getuid(p2->p_cred); 779 int count = chglwpcnt(uid, 1); 780 if (__predict_false(count > 781 p2->p_rlimit[RLIMIT_NTHR].rlim_cur)) { 782 if (kauth_authorize_process(l1->l_cred, 783 KAUTH_PROCESS_RLIMIT, p2, 784 KAUTH_ARG(KAUTH_REQ_PROCESS_RLIMIT_BYPASS), 785 &p2->p_rlimit[RLIMIT_NTHR], KAUTH_ARG(RLIMIT_NTHR)) 786 != 0) { 787 (void)chglwpcnt(uid, -1); 788 mutex_exit(p2->p_lock); 789 return EAGAIN; 790 } 791 } 792 } 793 794 /* 795 * First off, reap any detached LWP waiting to be collected. 796 * We can re-use its LWP structure and turnstile. 797 */ 798 if ((l2 = p2->p_zomblwp) != NULL) { 799 p2->p_zomblwp = NULL; 800 lwp_free(l2, true, false); 801 /* p2 now unlocked by lwp_free() */ 802 KASSERT(l2->l_ts != NULL); 803 KASSERT(l2->l_inheritedprio == -1); 804 KASSERT(SLIST_EMPTY(&l2->l_pi_lenders)); 805 memset(&l2->l_startzero, 0, sizeof(*l2) - 806 offsetof(lwp_t, l_startzero)); 807 } else { 808 mutex_exit(p2->p_lock); 809 l2 = pool_cache_get(lwp_cache, PR_WAITOK); 810 memset(&l2->l_startzero, 0, sizeof(*l2) - 811 offsetof(lwp_t, l_startzero)); 812 SLIST_INIT(&l2->l_pi_lenders); 813 } 814 815 /* 816 * Because of lockless lookup via pid_table, the LWP can be locked 817 * and inspected briefly even after it's freed, so a few fields are 818 * kept stable. 819 */ 820 KASSERT(l2->l_stat == LSIDL); 821 KASSERT(l2->l_cpu != NULL); 822 KASSERT(l2->l_ts != NULL); 823 KASSERT(l2->l_mutex == l2->l_cpu->ci_schedstate.spc_lwplock); 824 825 l2->l_proc = p2; 826 l2->l_refcnt = 0; 827 l2->l_class = sclass; 828 829 /* 830 * Allocate a process ID for this LWP. We need to do this now 831 * while we can still unwind if it fails. Beacuse we're marked 832 * as LSIDL, no lookups by the ID will succeed. 833 * 834 * N.B. this will always succeed for the first LWP in a process, 835 * because proc_alloc_lwpid() will usurp the slot. Also note 836 * that l2->l_proc MUST be valid so that lookups of the proc 837 * will succeed, even if the LWP itself is not visible. 838 */ 839 if (__predict_false(proc_alloc_lwpid(p2, l2) == -1)) { 840 pool_cache_put(lwp_cache, l2); 841 return EAGAIN; 842 } 843 844 /* 845 * If vfork(), we want the LWP to run fast and on the same CPU 846 * as its parent, so that it can reuse the VM context and cache 847 * footprint on the local CPU. 848 */ 849 l2->l_kpriority = ((flags & LWP_VFORK) ? true : false); 850 l2->l_kpribase = PRI_KERNEL; 851 l2->l_priority = l1->l_priority; 852 l2->l_inheritedprio = -1; 853 l2->l_protectprio = -1; 854 l2->l_auxprio = -1; 855 l2->l_flag = 0; 856 l2->l_pflag = LP_MPSAFE; 857 TAILQ_INIT(&l2->l_ld_locks); 858 l2->l_psrefs = 0; 859 kmsan_lwp_alloc(l2); 860 861 /* 862 * For vfork, borrow parent's lwpctl context if it exists. 863 * This also causes us to return via lwp_userret. 864 */ 865 if (flags & LWP_VFORK && l1->l_lwpctl) { 866 l2->l_lwpctl = l1->l_lwpctl; 867 l2->l_flag |= LW_LWPCTL; 868 } 869 870 /* 871 * If not the first LWP in the process, grab a reference to the 872 * descriptor table. 873 */ 874 l2->l_fd = p2->p_fd; 875 if (p2->p_nlwps != 0) { 876 KASSERT(l1->l_proc == p2); 877 fd_hold(l2); 878 } else { 879 KASSERT(l1->l_proc != p2); 880 } 881 882 if (p2->p_flag & PK_SYSTEM) { 883 /* Mark it as a system LWP. */ 884 l2->l_flag |= LW_SYSTEM; 885 } 886 887 kdtrace_thread_ctor(NULL, l2); 888 lwp_initspecific(l2); 889 sched_lwp_fork(l1, l2); 890 lwp_update_creds(l2); 891 callout_init(&l2->l_timeout_ch, CALLOUT_MPSAFE); 892 callout_setfunc(&l2->l_timeout_ch, sleepq_timeout, l2); 893 cv_init(&l2->l_sigcv, "sigwait"); 894 cv_init(&l2->l_waitcv, "vfork"); 895 l2->l_syncobj = &sched_syncobj; 896 PSREF_DEBUG_INIT_LWP(l2); 897 898 if (rnewlwpp != NULL) 899 *rnewlwpp = l2; 900 901 /* 902 * PCU state needs to be saved before calling uvm_lwp_fork() so that 903 * the MD cpu_lwp_fork() can copy the saved state to the new LWP. 904 */ 905 pcu_save_all(l1); 906 #if PCU_UNIT_COUNT > 0 907 l2->l_pcu_valid = l1->l_pcu_valid; 908 #endif 909 910 uvm_lwp_setuarea(l2, uaddr); 911 uvm_lwp_fork(l1, l2, stack, stacksize, func, (arg != NULL) ? arg : l2); 912 913 mutex_enter(p2->p_lock); 914 if ((flags & LWP_DETACHED) != 0) { 915 l2->l_prflag = LPR_DETACHED; 916 p2->p_ndlwps++; 917 } else 918 l2->l_prflag = 0; 919 920 if (l1->l_proc == p2) { 921 /* 922 * These flags are set while p_lock is held. Copy with 923 * p_lock held too, so the LWP doesn't sneak into the 924 * process without them being set. 925 */ 926 l2->l_flag |= (l1->l_flag & (LW_WEXIT | LW_WREBOOT | LW_WCORE)); 927 } else { 928 /* fork(): pending core/exit doesn't apply to child. */ 929 l2->l_flag |= (l1->l_flag & LW_WREBOOT); 930 } 931 932 l2->l_sigstk = *sigstk; 933 l2->l_sigmask = *sigmask; 934 TAILQ_INIT(&l2->l_sigpend.sp_info); 935 sigemptyset(&l2->l_sigpend.sp_set); 936 LIST_INSERT_HEAD(&p2->p_lwps, l2, l_sibling); 937 p2->p_nlwps++; 938 p2->p_nrlwps++; 939 940 KASSERT(l2->l_affinity == NULL); 941 942 /* Inherit the affinity mask. */ 943 if (l1->l_affinity) { 944 /* 945 * Note that we hold the state lock while inheriting 946 * the affinity to avoid race with sched_setaffinity(). 947 */ 948 lwp_lock(l1); 949 if (l1->l_affinity) { 950 kcpuset_use(l1->l_affinity); 951 l2->l_affinity = l1->l_affinity; 952 } 953 lwp_unlock(l1); 954 } 955 956 /* This marks the end of the "must be atomic" section. */ 957 mutex_exit(p2->p_lock); 958 959 SDT_PROBE(proc, kernel, , lwp__create, l2, 0, 0, 0, 0); 960 961 mutex_enter(&proc_lock); 962 LIST_INSERT_HEAD(&alllwp, l2, l_list); 963 /* Inherit a processor-set */ 964 l2->l_psid = l1->l_psid; 965 mutex_exit(&proc_lock); 966 967 SYSCALL_TIME_LWP_INIT(l2); 968 969 if (p2->p_emul->e_lwp_fork) 970 (*p2->p_emul->e_lwp_fork)(l1, l2); 971 972 return (0); 973 } 974 975 /* 976 * Set a new LWP running. If the process is stopping, then the LWP is 977 * created stopped. 978 */ 979 void 980 lwp_start(lwp_t *l, int flags) 981 { 982 proc_t *p = l->l_proc; 983 984 mutex_enter(p->p_lock); 985 lwp_lock(l); 986 KASSERT(l->l_stat == LSIDL); 987 if ((flags & LWP_SUSPENDED) != 0) { 988 /* It'll suspend itself in lwp_userret(). */ 989 l->l_flag |= LW_WSUSPEND; 990 } 991 if (p->p_stat == SSTOP || (p->p_sflag & PS_STOPPING) != 0) { 992 KASSERT(l->l_wchan == NULL); 993 l->l_stat = LSSTOP; 994 p->p_nrlwps--; 995 lwp_unlock(l); 996 } else { 997 setrunnable(l); 998 /* LWP now unlocked */ 999 } 1000 mutex_exit(p->p_lock); 1001 } 1002 1003 /* 1004 * Called by MD code when a new LWP begins execution. Must be called 1005 * with the previous LWP locked (so at splsched), or if there is no 1006 * previous LWP, at splsched. 1007 */ 1008 void 1009 lwp_startup(struct lwp *prev, struct lwp *new_lwp) 1010 { 1011 kmutex_t *lock; 1012 1013 KASSERTMSG(new_lwp == curlwp, "l %p curlwp %p prevlwp %p", new_lwp, curlwp, prev); 1014 KASSERT(kpreempt_disabled()); 1015 KASSERT(prev != NULL); 1016 KASSERT((prev->l_pflag & LP_RUNNING) != 0); 1017 KASSERT(curcpu()->ci_mtx_count == -2); 1018 1019 /* 1020 * Immediately mark the previous LWP as no longer running and unlock 1021 * (to keep lock wait times short as possible). If a zombie, don't 1022 * touch after clearing LP_RUNNING as it could be reaped by another 1023 * CPU. Issue a memory barrier to ensure this. 1024 */ 1025 lock = prev->l_mutex; 1026 if (__predict_false(prev->l_stat == LSZOMB)) { 1027 membar_sync(); 1028 } 1029 prev->l_pflag &= ~LP_RUNNING; 1030 mutex_spin_exit(lock); 1031 1032 /* Correct spin mutex count after mi_switch(). */ 1033 curcpu()->ci_mtx_count = 0; 1034 1035 /* Install new VM context. */ 1036 if (__predict_true(new_lwp->l_proc->p_vmspace)) { 1037 pmap_activate(new_lwp); 1038 } 1039 1040 /* We remain at IPL_SCHED from mi_switch() - reset it. */ 1041 spl0(); 1042 1043 LOCKDEBUG_BARRIER(NULL, 0); 1044 SDT_PROBE(proc, kernel, , lwp__start, new_lwp, 0, 0, 0, 0); 1045 1046 /* For kthreads, acquire kernel lock if not MPSAFE. */ 1047 if (__predict_false((new_lwp->l_pflag & LP_MPSAFE) == 0)) { 1048 KERNEL_LOCK(1, new_lwp); 1049 } 1050 } 1051 1052 /* 1053 * Exit an LWP. 1054 * 1055 * *** WARNING *** This can be called with (l != curlwp) in error paths. 1056 */ 1057 void 1058 lwp_exit(struct lwp *l) 1059 { 1060 struct proc *p = l->l_proc; 1061 struct lwp *l2; 1062 bool current; 1063 1064 current = (l == curlwp); 1065 1066 KASSERT(current || (l->l_stat == LSIDL && l->l_target_cpu == NULL)); 1067 KASSERT(p == curproc); 1068 1069 SDT_PROBE(proc, kernel, , lwp__exit, l, 0, 0, 0, 0); 1070 1071 /* Verify that we hold no locks; for DIAGNOSTIC check kernel_lock. */ 1072 LOCKDEBUG_BARRIER(NULL, 0); 1073 KASSERTMSG(curcpu()->ci_biglock_count == 0, "kernel_lock leaked"); 1074 1075 /* 1076 * If we are the last live LWP in a process, we need to exit the 1077 * entire process. We do so with an exit status of zero, because 1078 * it's a "controlled" exit, and because that's what Solaris does. 1079 * 1080 * We are not quite a zombie yet, but for accounting purposes we 1081 * must increment the count of zombies here. 1082 * 1083 * Note: the last LWP's specificdata will be deleted here. 1084 */ 1085 mutex_enter(p->p_lock); 1086 if (p->p_nlwps - p->p_nzlwps == 1) { 1087 KASSERT(current == true); 1088 KASSERT(p != &proc0); 1089 exit1(l, 0, 0); 1090 /* NOTREACHED */ 1091 } 1092 p->p_nzlwps++; 1093 1094 /* 1095 * Perform any required thread cleanup. Do this early so 1096 * anyone wanting to look us up with lwp_getref_lwpid() will 1097 * fail to find us before we become a zombie. 1098 * 1099 * N.B. this will unlock p->p_lock on our behalf. 1100 */ 1101 lwp_thread_cleanup(l); 1102 1103 if (p->p_emul->e_lwp_exit) 1104 (*p->p_emul->e_lwp_exit)(l); 1105 1106 /* Drop filedesc reference. */ 1107 fd_free(); 1108 1109 /* Release fstrans private data. */ 1110 fstrans_lwp_dtor(l); 1111 1112 /* Delete the specificdata while it's still safe to sleep. */ 1113 lwp_finispecific(l); 1114 1115 /* 1116 * Release our cached credentials. 1117 */ 1118 kauth_cred_free(l->l_cred); 1119 callout_destroy(&l->l_timeout_ch); 1120 1121 /* 1122 * If traced, report LWP exit event to the debugger. 1123 * 1124 * Remove the LWP from the global list. 1125 * Free its LID from the PID namespace if needed. 1126 */ 1127 mutex_enter(&proc_lock); 1128 1129 if ((p->p_slflag & (PSL_TRACED|PSL_TRACELWP_EXIT)) == 1130 (PSL_TRACED|PSL_TRACELWP_EXIT)) { 1131 mutex_enter(p->p_lock); 1132 if (ISSET(p->p_sflag, PS_WEXIT)) { 1133 mutex_exit(p->p_lock); 1134 /* 1135 * We are exiting, bail out without informing parent 1136 * about a terminating LWP as it would deadlock. 1137 */ 1138 } else { 1139 eventswitch(TRAP_LWP, PTRACE_LWP_EXIT, l->l_lid); 1140 mutex_enter(&proc_lock); 1141 } 1142 } 1143 1144 LIST_REMOVE(l, l_list); 1145 mutex_exit(&proc_lock); 1146 1147 /* 1148 * Get rid of all references to the LWP that others (e.g. procfs) 1149 * may have, and mark the LWP as a zombie. If the LWP is detached, 1150 * mark it waiting for collection in the proc structure. Note that 1151 * before we can do that, we need to free any other dead, deatched 1152 * LWP waiting to meet its maker. 1153 * 1154 * All conditions need to be observed upon under the same hold of 1155 * p_lock, because if the lock is dropped any of them can change. 1156 */ 1157 mutex_enter(p->p_lock); 1158 for (;;) { 1159 if (lwp_drainrefs(l)) 1160 continue; 1161 if ((l->l_prflag & LPR_DETACHED) != 0) { 1162 if ((l2 = p->p_zomblwp) != NULL) { 1163 p->p_zomblwp = NULL; 1164 lwp_free(l2, false, false); 1165 /* proc now unlocked */ 1166 mutex_enter(p->p_lock); 1167 continue; 1168 } 1169 p->p_zomblwp = l; 1170 } 1171 break; 1172 } 1173 1174 /* 1175 * If we find a pending signal for the process and we have been 1176 * asked to check for signals, then we lose: arrange to have 1177 * all other LWPs in the process check for signals. 1178 */ 1179 if ((l->l_flag & LW_PENDSIG) != 0 && 1180 firstsig(&p->p_sigpend.sp_set) != 0) { 1181 LIST_FOREACH(l2, &p->p_lwps, l_sibling) { 1182 lwp_lock(l2); 1183 signotify(l2); 1184 lwp_unlock(l2); 1185 } 1186 } 1187 1188 /* 1189 * Release any PCU resources before becoming a zombie. 1190 */ 1191 pcu_discard_all(l); 1192 1193 lwp_lock(l); 1194 l->l_stat = LSZOMB; 1195 if (l->l_name != NULL) { 1196 strcpy(l->l_name, "(zombie)"); 1197 } 1198 lwp_unlock(l); 1199 p->p_nrlwps--; 1200 cv_broadcast(&p->p_lwpcv); 1201 if (l->l_lwpctl != NULL) 1202 l->l_lwpctl->lc_curcpu = LWPCTL_CPU_EXITED; 1203 mutex_exit(p->p_lock); 1204 1205 /* 1206 * We can no longer block. At this point, lwp_free() may already 1207 * be gunning for us. On a multi-CPU system, we may be off p_lwps. 1208 * 1209 * Free MD LWP resources. 1210 */ 1211 cpu_lwp_free(l, 0); 1212 1213 if (current) { 1214 /* Switch away into oblivion. */ 1215 lwp_lock(l); 1216 spc_lock(l->l_cpu); 1217 mi_switch(l); 1218 panic("lwp_exit"); 1219 } 1220 } 1221 1222 /* 1223 * Free a dead LWP's remaining resources. 1224 * 1225 * XXXLWP limits. 1226 */ 1227 void 1228 lwp_free(struct lwp *l, bool recycle, bool last) 1229 { 1230 struct proc *p = l->l_proc; 1231 struct rusage *ru; 1232 ksiginfoq_t kq; 1233 1234 KASSERT(l != curlwp); 1235 KASSERT(last || mutex_owned(p->p_lock)); 1236 1237 /* 1238 * We use the process credentials instead of the lwp credentials here 1239 * because the lwp credentials maybe cached (just after a setuid call) 1240 * and we don't want pay for syncing, since the lwp is going away 1241 * anyway 1242 */ 1243 if (p != &proc0 && p->p_nlwps != 1) 1244 (void)chglwpcnt(kauth_cred_getuid(p->p_cred), -1); 1245 1246 /* 1247 * In the unlikely event that the LWP is still on the CPU, 1248 * then spin until it has switched away. 1249 */ 1250 membar_consumer(); 1251 while (__predict_false((l->l_pflag & LP_RUNNING) != 0)) { 1252 SPINLOCK_BACKOFF_HOOK; 1253 } 1254 1255 /* 1256 * Now that the LWP's known off the CPU, reset its state back to 1257 * LSIDL, which defeats anything that might have gotten a hold on 1258 * the LWP via pid_table before the ID was freed. It's important 1259 * to do this with both the LWP locked and p_lock held. 1260 * 1261 * Also reset the CPU and lock pointer back to curcpu(), since the 1262 * LWP will in all likelyhood be cached with the current CPU in 1263 * lwp_cache when we free it and later allocated from there again 1264 * (avoid incidental lock contention). 1265 */ 1266 lwp_lock(l); 1267 l->l_stat = LSIDL; 1268 l->l_cpu = curcpu(); 1269 lwp_unlock_to(l, l->l_cpu->ci_schedstate.spc_lwplock); 1270 1271 /* 1272 * If this was not the last LWP in the process, then adjust counters 1273 * and unlock. This is done differently for the last LWP in exit1(). 1274 */ 1275 if (!last) { 1276 /* 1277 * Add the LWP's run time to the process' base value. 1278 * This needs to co-incide with coming off p_lwps. 1279 */ 1280 bintime_add(&p->p_rtime, &l->l_rtime); 1281 p->p_pctcpu += l->l_pctcpu; 1282 ru = &p->p_stats->p_ru; 1283 ruadd(ru, &l->l_ru); 1284 ru->ru_nvcsw += (l->l_ncsw - l->l_nivcsw); 1285 ru->ru_nivcsw += l->l_nivcsw; 1286 LIST_REMOVE(l, l_sibling); 1287 p->p_nlwps--; 1288 p->p_nzlwps--; 1289 if ((l->l_prflag & LPR_DETACHED) != 0) 1290 p->p_ndlwps--; 1291 1292 /* 1293 * Have any LWPs sleeping in lwp_wait() recheck for 1294 * deadlock. 1295 */ 1296 cv_broadcast(&p->p_lwpcv); 1297 mutex_exit(p->p_lock); 1298 1299 /* Free the LWP ID. */ 1300 mutex_enter(&proc_lock); 1301 proc_free_lwpid(p, l->l_lid); 1302 mutex_exit(&proc_lock); 1303 } 1304 1305 /* 1306 * Destroy the LWP's remaining signal information. 1307 */ 1308 ksiginfo_queue_init(&kq); 1309 sigclear(&l->l_sigpend, NULL, &kq); 1310 ksiginfo_queue_drain(&kq); 1311 cv_destroy(&l->l_sigcv); 1312 cv_destroy(&l->l_waitcv); 1313 1314 /* 1315 * Free lwpctl structure and affinity. 1316 */ 1317 if (l->l_lwpctl) { 1318 lwp_ctl_free(l); 1319 } 1320 if (l->l_affinity) { 1321 kcpuset_unuse(l->l_affinity, NULL); 1322 l->l_affinity = NULL; 1323 } 1324 1325 /* 1326 * Free remaining data structures and the LWP itself unless the 1327 * caller wants to recycle. 1328 */ 1329 if (l->l_name != NULL) 1330 kmem_free(l->l_name, MAXCOMLEN); 1331 1332 kmsan_lwp_free(l); 1333 kcov_lwp_free(l); 1334 cpu_lwp_free2(l); 1335 uvm_lwp_exit(l); 1336 1337 KASSERT(SLIST_EMPTY(&l->l_pi_lenders)); 1338 KASSERT(l->l_inheritedprio == -1); 1339 KASSERT(l->l_blcnt == 0); 1340 kdtrace_thread_dtor(NULL, l); 1341 if (!recycle) 1342 pool_cache_put(lwp_cache, l); 1343 } 1344 1345 /* 1346 * Migrate the LWP to the another CPU. Unlocks the LWP. 1347 */ 1348 void 1349 lwp_migrate(lwp_t *l, struct cpu_info *tci) 1350 { 1351 struct schedstate_percpu *tspc; 1352 int lstat = l->l_stat; 1353 1354 KASSERT(lwp_locked(l, NULL)); 1355 KASSERT(tci != NULL); 1356 1357 /* If LWP is still on the CPU, it must be handled like LSONPROC */ 1358 if ((l->l_pflag & LP_RUNNING) != 0) { 1359 lstat = LSONPROC; 1360 } 1361 1362 /* 1363 * The destination CPU could be changed while previous migration 1364 * was not finished. 1365 */ 1366 if (l->l_target_cpu != NULL) { 1367 l->l_target_cpu = tci; 1368 lwp_unlock(l); 1369 return; 1370 } 1371 1372 /* Nothing to do if trying to migrate to the same CPU */ 1373 if (l->l_cpu == tci) { 1374 lwp_unlock(l); 1375 return; 1376 } 1377 1378 KASSERT(l->l_target_cpu == NULL); 1379 tspc = &tci->ci_schedstate; 1380 switch (lstat) { 1381 case LSRUN: 1382 l->l_target_cpu = tci; 1383 break; 1384 case LSSLEEP: 1385 l->l_cpu = tci; 1386 break; 1387 case LSIDL: 1388 case LSSTOP: 1389 case LSSUSPENDED: 1390 l->l_cpu = tci; 1391 if (l->l_wchan == NULL) { 1392 lwp_unlock_to(l, tspc->spc_lwplock); 1393 return; 1394 } 1395 break; 1396 case LSONPROC: 1397 l->l_target_cpu = tci; 1398 spc_lock(l->l_cpu); 1399 sched_resched_cpu(l->l_cpu, PRI_USER_RT, true); 1400 /* spc now unlocked */ 1401 break; 1402 } 1403 lwp_unlock(l); 1404 } 1405 1406 #define lwp_find_exclude(l) \ 1407 ((l)->l_stat == LSIDL || (l)->l_stat == LSZOMB) 1408 1409 /* 1410 * Find the LWP in the process. Arguments may be zero, in such case, 1411 * the calling process and first LWP in the list will be used. 1412 * On success - returns proc locked. 1413 * 1414 * => pid == 0 -> look in curproc. 1415 * => pid == -1 -> match any proc. 1416 * => otherwise look up the proc. 1417 * 1418 * => lid == 0 -> first LWP in the proc 1419 * => otherwise specific LWP 1420 */ 1421 struct lwp * 1422 lwp_find2(pid_t pid, lwpid_t lid) 1423 { 1424 proc_t *p; 1425 lwp_t *l; 1426 1427 /* First LWP of specified proc. */ 1428 if (lid == 0) { 1429 switch (pid) { 1430 case -1: 1431 /* No lookup keys. */ 1432 return NULL; 1433 case 0: 1434 p = curproc; 1435 mutex_enter(p->p_lock); 1436 break; 1437 default: 1438 mutex_enter(&proc_lock); 1439 p = proc_find(pid); 1440 if (__predict_false(p == NULL)) { 1441 mutex_exit(&proc_lock); 1442 return NULL; 1443 } 1444 mutex_enter(p->p_lock); 1445 mutex_exit(&proc_lock); 1446 break; 1447 } 1448 LIST_FOREACH(l, &p->p_lwps, l_sibling) { 1449 if (__predict_true(!lwp_find_exclude(l))) 1450 break; 1451 } 1452 goto out; 1453 } 1454 1455 l = proc_find_lwp_acquire_proc(lid, &p); 1456 if (l == NULL) 1457 return NULL; 1458 KASSERT(p != NULL); 1459 KASSERT(mutex_owned(p->p_lock)); 1460 1461 if (__predict_false(lwp_find_exclude(l))) { 1462 l = NULL; 1463 goto out; 1464 } 1465 1466 /* Apply proc filter, if applicable. */ 1467 switch (pid) { 1468 case -1: 1469 /* Match anything. */ 1470 break; 1471 case 0: 1472 if (p != curproc) 1473 l = NULL; 1474 break; 1475 default: 1476 if (p->p_pid != pid) 1477 l = NULL; 1478 break; 1479 } 1480 1481 out: 1482 if (__predict_false(l == NULL)) { 1483 mutex_exit(p->p_lock); 1484 } 1485 return l; 1486 } 1487 1488 /* 1489 * Look up a live LWP within the specified process. 1490 * 1491 * Must be called with p->p_lock held (as it looks at the radix tree, 1492 * and also wants to exclude idle and zombie LWPs). 1493 */ 1494 struct lwp * 1495 lwp_find(struct proc *p, lwpid_t id) 1496 { 1497 struct lwp *l; 1498 1499 KASSERT(mutex_owned(p->p_lock)); 1500 1501 l = proc_find_lwp(p, id); 1502 KASSERT(l == NULL || l->l_lid == id); 1503 1504 /* 1505 * No need to lock - all of these conditions will 1506 * be visible with the process level mutex held. 1507 */ 1508 if (__predict_false(l != NULL && lwp_find_exclude(l))) 1509 l = NULL; 1510 1511 return l; 1512 } 1513 1514 /* 1515 * Update an LWP's cached credentials to mirror the process' master copy. 1516 * 1517 * This happens early in the syscall path, on user trap, and on LWP 1518 * creation. A long-running LWP can also voluntarily choose to update 1519 * its credentials by calling this routine. This may be called from 1520 * LWP_CACHE_CREDS(), which checks l->l_cred != p->p_cred beforehand. 1521 */ 1522 void 1523 lwp_update_creds(struct lwp *l) 1524 { 1525 kauth_cred_t oc; 1526 struct proc *p; 1527 1528 p = l->l_proc; 1529 oc = l->l_cred; 1530 1531 mutex_enter(p->p_lock); 1532 kauth_cred_hold(p->p_cred); 1533 l->l_cred = p->p_cred; 1534 l->l_prflag &= ~LPR_CRMOD; 1535 mutex_exit(p->p_lock); 1536 if (oc != NULL) 1537 kauth_cred_free(oc); 1538 } 1539 1540 /* 1541 * Verify that an LWP is locked, and optionally verify that the lock matches 1542 * one we specify. 1543 */ 1544 int 1545 lwp_locked(struct lwp *l, kmutex_t *mtx) 1546 { 1547 kmutex_t *cur = l->l_mutex; 1548 1549 return mutex_owned(cur) && (mtx == cur || mtx == NULL); 1550 } 1551 1552 /* 1553 * Lend a new mutex to an LWP. The old mutex must be held. 1554 */ 1555 kmutex_t * 1556 lwp_setlock(struct lwp *l, kmutex_t *mtx) 1557 { 1558 kmutex_t *oldmtx = l->l_mutex; 1559 1560 KASSERT(mutex_owned(oldmtx)); 1561 1562 membar_exit(); 1563 l->l_mutex = mtx; 1564 return oldmtx; 1565 } 1566 1567 /* 1568 * Lend a new mutex to an LWP, and release the old mutex. The old mutex 1569 * must be held. 1570 */ 1571 void 1572 lwp_unlock_to(struct lwp *l, kmutex_t *mtx) 1573 { 1574 kmutex_t *old; 1575 1576 KASSERT(lwp_locked(l, NULL)); 1577 1578 old = l->l_mutex; 1579 membar_exit(); 1580 l->l_mutex = mtx; 1581 mutex_spin_exit(old); 1582 } 1583 1584 int 1585 lwp_trylock(struct lwp *l) 1586 { 1587 kmutex_t *old; 1588 1589 for (;;) { 1590 if (!mutex_tryenter(old = l->l_mutex)) 1591 return 0; 1592 if (__predict_true(l->l_mutex == old)) 1593 return 1; 1594 mutex_spin_exit(old); 1595 } 1596 } 1597 1598 void 1599 lwp_unsleep(lwp_t *l, bool unlock) 1600 { 1601 1602 KASSERT(mutex_owned(l->l_mutex)); 1603 (*l->l_syncobj->sobj_unsleep)(l, unlock); 1604 } 1605 1606 /* 1607 * Handle exceptions for mi_userret(). Called if a member of LW_USERRET is 1608 * set. 1609 */ 1610 void 1611 lwp_userret(struct lwp *l) 1612 { 1613 struct proc *p; 1614 int sig; 1615 1616 KASSERT(l == curlwp); 1617 KASSERT(l->l_stat == LSONPROC); 1618 p = l->l_proc; 1619 1620 /* 1621 * It is safe to do this read unlocked on a MP system.. 1622 */ 1623 while ((l->l_flag & LW_USERRET) != 0) { 1624 /* 1625 * Process pending signals first, unless the process 1626 * is dumping core or exiting, where we will instead 1627 * enter the LW_WSUSPEND case below. 1628 */ 1629 if ((l->l_flag & (LW_PENDSIG | LW_WCORE | LW_WEXIT)) == 1630 LW_PENDSIG) { 1631 mutex_enter(p->p_lock); 1632 while ((sig = issignal(l)) != 0) 1633 postsig(sig); 1634 mutex_exit(p->p_lock); 1635 } 1636 1637 /* 1638 * Core-dump or suspend pending. 1639 * 1640 * In case of core dump, suspend ourselves, so that the kernel 1641 * stack and therefore the userland registers saved in the 1642 * trapframe are around for coredump() to write them out. 1643 * We also need to save any PCU resources that we have so that 1644 * they accessible for coredump(). We issue a wakeup on 1645 * p->p_lwpcv so that sigexit() will write the core file out 1646 * once all other LWPs are suspended. 1647 */ 1648 if ((l->l_flag & LW_WSUSPEND) != 0) { 1649 pcu_save_all(l); 1650 mutex_enter(p->p_lock); 1651 p->p_nrlwps--; 1652 cv_broadcast(&p->p_lwpcv); 1653 lwp_lock(l); 1654 l->l_stat = LSSUSPENDED; 1655 lwp_unlock(l); 1656 mutex_exit(p->p_lock); 1657 lwp_lock(l); 1658 spc_lock(l->l_cpu); 1659 mi_switch(l); 1660 } 1661 1662 /* Process is exiting. */ 1663 if ((l->l_flag & LW_WEXIT) != 0) { 1664 lwp_exit(l); 1665 KASSERT(0); 1666 /* NOTREACHED */ 1667 } 1668 1669 /* update lwpctl processor (for vfork child_return) */ 1670 if (l->l_flag & LW_LWPCTL) { 1671 lwp_lock(l); 1672 KASSERT(kpreempt_disabled()); 1673 l->l_lwpctl->lc_curcpu = (int)cpu_index(l->l_cpu); 1674 l->l_lwpctl->lc_pctr++; 1675 l->l_flag &= ~LW_LWPCTL; 1676 lwp_unlock(l); 1677 } 1678 } 1679 } 1680 1681 /* 1682 * Force an LWP to enter the kernel, to take a trip through lwp_userret(). 1683 */ 1684 void 1685 lwp_need_userret(struct lwp *l) 1686 { 1687 1688 KASSERT(!cpu_intr_p()); 1689 KASSERT(lwp_locked(l, NULL)); 1690 1691 /* 1692 * If the LWP is in any state other than LSONPROC, we know that it 1693 * is executing in-kernel and will hit userret() on the way out. 1694 * 1695 * If the LWP is curlwp, then we know we'll be back out to userspace 1696 * soon (can't be called from a hardware interrupt here). 1697 * 1698 * Otherwise, we can't be sure what the LWP is doing, so first make 1699 * sure the update to l_flag will be globally visible, and then 1700 * force the LWP to take a trip through trap() where it will do 1701 * userret(). 1702 */ 1703 if (l->l_stat == LSONPROC && l != curlwp) { 1704 membar_producer(); 1705 cpu_signotify(l); 1706 } 1707 } 1708 1709 /* 1710 * Add one reference to an LWP. This will prevent the LWP from 1711 * exiting, thus keep the lwp structure and PCB around to inspect. 1712 */ 1713 void 1714 lwp_addref(struct lwp *l) 1715 { 1716 KASSERT(mutex_owned(l->l_proc->p_lock)); 1717 KASSERT(l->l_stat != LSZOMB); 1718 l->l_refcnt++; 1719 } 1720 1721 /* 1722 * Remove one reference to an LWP. If this is the last reference, 1723 * then we must finalize the LWP's death. 1724 */ 1725 void 1726 lwp_delref(struct lwp *l) 1727 { 1728 struct proc *p = l->l_proc; 1729 1730 mutex_enter(p->p_lock); 1731 lwp_delref2(l); 1732 mutex_exit(p->p_lock); 1733 } 1734 1735 /* 1736 * Remove one reference to an LWP. If this is the last reference, 1737 * then we must finalize the LWP's death. The proc mutex is held 1738 * on entry. 1739 */ 1740 void 1741 lwp_delref2(struct lwp *l) 1742 { 1743 struct proc *p = l->l_proc; 1744 1745 KASSERT(mutex_owned(p->p_lock)); 1746 KASSERT(l->l_stat != LSZOMB); 1747 KASSERT(l->l_refcnt > 0); 1748 1749 if (--l->l_refcnt == 0) 1750 cv_broadcast(&p->p_lwpcv); 1751 } 1752 1753 /* 1754 * Drain all references to the current LWP. Returns true if 1755 * we blocked. 1756 */ 1757 bool 1758 lwp_drainrefs(struct lwp *l) 1759 { 1760 struct proc *p = l->l_proc; 1761 bool rv = false; 1762 1763 KASSERT(mutex_owned(p->p_lock)); 1764 1765 l->l_prflag |= LPR_DRAINING; 1766 1767 while (l->l_refcnt > 0) { 1768 rv = true; 1769 cv_wait(&p->p_lwpcv, p->p_lock); 1770 } 1771 return rv; 1772 } 1773 1774 /* 1775 * Return true if the specified LWP is 'alive'. Only p->p_lock need 1776 * be held. 1777 */ 1778 bool 1779 lwp_alive(lwp_t *l) 1780 { 1781 1782 KASSERT(mutex_owned(l->l_proc->p_lock)); 1783 1784 switch (l->l_stat) { 1785 case LSSLEEP: 1786 case LSRUN: 1787 case LSONPROC: 1788 case LSSTOP: 1789 case LSSUSPENDED: 1790 return true; 1791 default: 1792 return false; 1793 } 1794 } 1795 1796 /* 1797 * Return first live LWP in the process. 1798 */ 1799 lwp_t * 1800 lwp_find_first(proc_t *p) 1801 { 1802 lwp_t *l; 1803 1804 KASSERT(mutex_owned(p->p_lock)); 1805 1806 LIST_FOREACH(l, &p->p_lwps, l_sibling) { 1807 if (lwp_alive(l)) { 1808 return l; 1809 } 1810 } 1811 1812 return NULL; 1813 } 1814 1815 /* 1816 * Allocate a new lwpctl structure for a user LWP. 1817 */ 1818 int 1819 lwp_ctl_alloc(vaddr_t *uaddr) 1820 { 1821 lcproc_t *lp; 1822 u_int bit, i, offset; 1823 struct uvm_object *uao; 1824 int error; 1825 lcpage_t *lcp; 1826 proc_t *p; 1827 lwp_t *l; 1828 1829 l = curlwp; 1830 p = l->l_proc; 1831 1832 /* don't allow a vforked process to create lwp ctls */ 1833 if (p->p_lflag & PL_PPWAIT) 1834 return EBUSY; 1835 1836 if (l->l_lcpage != NULL) { 1837 lcp = l->l_lcpage; 1838 *uaddr = lcp->lcp_uaddr + (vaddr_t)l->l_lwpctl - lcp->lcp_kaddr; 1839 return 0; 1840 } 1841 1842 /* First time around, allocate header structure for the process. */ 1843 if ((lp = p->p_lwpctl) == NULL) { 1844 lp = kmem_alloc(sizeof(*lp), KM_SLEEP); 1845 mutex_init(&lp->lp_lock, MUTEX_DEFAULT, IPL_NONE); 1846 lp->lp_uao = NULL; 1847 TAILQ_INIT(&lp->lp_pages); 1848 mutex_enter(p->p_lock); 1849 if (p->p_lwpctl == NULL) { 1850 p->p_lwpctl = lp; 1851 mutex_exit(p->p_lock); 1852 } else { 1853 mutex_exit(p->p_lock); 1854 mutex_destroy(&lp->lp_lock); 1855 kmem_free(lp, sizeof(*lp)); 1856 lp = p->p_lwpctl; 1857 } 1858 } 1859 1860 /* 1861 * Set up an anonymous memory region to hold the shared pages. 1862 * Map them into the process' address space. The user vmspace 1863 * gets the first reference on the UAO. 1864 */ 1865 mutex_enter(&lp->lp_lock); 1866 if (lp->lp_uao == NULL) { 1867 lp->lp_uao = uao_create(LWPCTL_UAREA_SZ, 0); 1868 lp->lp_cur = 0; 1869 lp->lp_max = LWPCTL_UAREA_SZ; 1870 lp->lp_uva = p->p_emul->e_vm_default_addr(p, 1871 (vaddr_t)p->p_vmspace->vm_daddr, LWPCTL_UAREA_SZ, 1872 p->p_vmspace->vm_map.flags & VM_MAP_TOPDOWN); 1873 error = uvm_map(&p->p_vmspace->vm_map, &lp->lp_uva, 1874 LWPCTL_UAREA_SZ, lp->lp_uao, 0, 0, UVM_MAPFLAG(UVM_PROT_RW, 1875 UVM_PROT_RW, UVM_INH_NONE, UVM_ADV_NORMAL, 0)); 1876 if (error != 0) { 1877 uao_detach(lp->lp_uao); 1878 lp->lp_uao = NULL; 1879 mutex_exit(&lp->lp_lock); 1880 return error; 1881 } 1882 } 1883 1884 /* Get a free block and allocate for this LWP. */ 1885 TAILQ_FOREACH(lcp, &lp->lp_pages, lcp_chain) { 1886 if (lcp->lcp_nfree != 0) 1887 break; 1888 } 1889 if (lcp == NULL) { 1890 /* Nothing available - try to set up a free page. */ 1891 if (lp->lp_cur == lp->lp_max) { 1892 mutex_exit(&lp->lp_lock); 1893 return ENOMEM; 1894 } 1895 lcp = kmem_alloc(LWPCTL_LCPAGE_SZ, KM_SLEEP); 1896 1897 /* 1898 * Wire the next page down in kernel space. Since this 1899 * is a new mapping, we must add a reference. 1900 */ 1901 uao = lp->lp_uao; 1902 (*uao->pgops->pgo_reference)(uao); 1903 lcp->lcp_kaddr = vm_map_min(kernel_map); 1904 error = uvm_map(kernel_map, &lcp->lcp_kaddr, PAGE_SIZE, 1905 uao, lp->lp_cur, PAGE_SIZE, 1906 UVM_MAPFLAG(UVM_PROT_RW, UVM_PROT_RW, 1907 UVM_INH_NONE, UVM_ADV_RANDOM, 0)); 1908 if (error != 0) { 1909 mutex_exit(&lp->lp_lock); 1910 kmem_free(lcp, LWPCTL_LCPAGE_SZ); 1911 (*uao->pgops->pgo_detach)(uao); 1912 return error; 1913 } 1914 error = uvm_map_pageable(kernel_map, lcp->lcp_kaddr, 1915 lcp->lcp_kaddr + PAGE_SIZE, FALSE, 0); 1916 if (error != 0) { 1917 mutex_exit(&lp->lp_lock); 1918 uvm_unmap(kernel_map, lcp->lcp_kaddr, 1919 lcp->lcp_kaddr + PAGE_SIZE); 1920 kmem_free(lcp, LWPCTL_LCPAGE_SZ); 1921 return error; 1922 } 1923 /* Prepare the page descriptor and link into the list. */ 1924 lcp->lcp_uaddr = lp->lp_uva + lp->lp_cur; 1925 lp->lp_cur += PAGE_SIZE; 1926 lcp->lcp_nfree = LWPCTL_PER_PAGE; 1927 lcp->lcp_rotor = 0; 1928 memset(lcp->lcp_bitmap, 0xff, LWPCTL_BITMAP_SZ); 1929 TAILQ_INSERT_HEAD(&lp->lp_pages, lcp, lcp_chain); 1930 } 1931 for (i = lcp->lcp_rotor; lcp->lcp_bitmap[i] == 0;) { 1932 if (++i >= LWPCTL_BITMAP_ENTRIES) 1933 i = 0; 1934 } 1935 bit = ffs(lcp->lcp_bitmap[i]) - 1; 1936 lcp->lcp_bitmap[i] ^= (1U << bit); 1937 lcp->lcp_rotor = i; 1938 lcp->lcp_nfree--; 1939 l->l_lcpage = lcp; 1940 offset = (i << 5) + bit; 1941 l->l_lwpctl = (lwpctl_t *)lcp->lcp_kaddr + offset; 1942 *uaddr = lcp->lcp_uaddr + offset * sizeof(lwpctl_t); 1943 mutex_exit(&lp->lp_lock); 1944 1945 KPREEMPT_DISABLE(l); 1946 l->l_lwpctl->lc_curcpu = (int)cpu_index(curcpu()); 1947 KPREEMPT_ENABLE(l); 1948 1949 return 0; 1950 } 1951 1952 /* 1953 * Free an lwpctl structure back to the per-process list. 1954 */ 1955 void 1956 lwp_ctl_free(lwp_t *l) 1957 { 1958 struct proc *p = l->l_proc; 1959 lcproc_t *lp; 1960 lcpage_t *lcp; 1961 u_int map, offset; 1962 1963 /* don't free a lwp context we borrowed for vfork */ 1964 if (p->p_lflag & PL_PPWAIT) { 1965 l->l_lwpctl = NULL; 1966 return; 1967 } 1968 1969 lp = p->p_lwpctl; 1970 KASSERT(lp != NULL); 1971 1972 lcp = l->l_lcpage; 1973 offset = (u_int)((lwpctl_t *)l->l_lwpctl - (lwpctl_t *)lcp->lcp_kaddr); 1974 KASSERT(offset < LWPCTL_PER_PAGE); 1975 1976 mutex_enter(&lp->lp_lock); 1977 lcp->lcp_nfree++; 1978 map = offset >> 5; 1979 lcp->lcp_bitmap[map] |= (1U << (offset & 31)); 1980 if (lcp->lcp_bitmap[lcp->lcp_rotor] == 0) 1981 lcp->lcp_rotor = map; 1982 if (TAILQ_FIRST(&lp->lp_pages)->lcp_nfree == 0) { 1983 TAILQ_REMOVE(&lp->lp_pages, lcp, lcp_chain); 1984 TAILQ_INSERT_HEAD(&lp->lp_pages, lcp, lcp_chain); 1985 } 1986 mutex_exit(&lp->lp_lock); 1987 } 1988 1989 /* 1990 * Process is exiting; tear down lwpctl state. This can only be safely 1991 * called by the last LWP in the process. 1992 */ 1993 void 1994 lwp_ctl_exit(void) 1995 { 1996 lcpage_t *lcp, *next; 1997 lcproc_t *lp; 1998 proc_t *p; 1999 lwp_t *l; 2000 2001 l = curlwp; 2002 l->l_lwpctl = NULL; 2003 l->l_lcpage = NULL; 2004 p = l->l_proc; 2005 lp = p->p_lwpctl; 2006 2007 KASSERT(lp != NULL); 2008 KASSERT(p->p_nlwps == 1); 2009 2010 for (lcp = TAILQ_FIRST(&lp->lp_pages); lcp != NULL; lcp = next) { 2011 next = TAILQ_NEXT(lcp, lcp_chain); 2012 uvm_unmap(kernel_map, lcp->lcp_kaddr, 2013 lcp->lcp_kaddr + PAGE_SIZE); 2014 kmem_free(lcp, LWPCTL_LCPAGE_SZ); 2015 } 2016 2017 if (lp->lp_uao != NULL) { 2018 uvm_unmap(&p->p_vmspace->vm_map, lp->lp_uva, 2019 lp->lp_uva + LWPCTL_UAREA_SZ); 2020 } 2021 2022 mutex_destroy(&lp->lp_lock); 2023 kmem_free(lp, sizeof(*lp)); 2024 p->p_lwpctl = NULL; 2025 } 2026 2027 /* 2028 * Return the current LWP's "preemption counter". Used to detect 2029 * preemption across operations that can tolerate preemption without 2030 * crashing, but which may generate incorrect results if preempted. 2031 */ 2032 uint64_t 2033 lwp_pctr(void) 2034 { 2035 2036 return curlwp->l_ncsw; 2037 } 2038 2039 /* 2040 * Set an LWP's private data pointer. 2041 */ 2042 int 2043 lwp_setprivate(struct lwp *l, void *ptr) 2044 { 2045 int error = 0; 2046 2047 l->l_private = ptr; 2048 #ifdef __HAVE_CPU_LWP_SETPRIVATE 2049 error = cpu_lwp_setprivate(l, ptr); 2050 #endif 2051 return error; 2052 } 2053 2054 /* 2055 * Perform any thread-related cleanup on LWP exit. 2056 * N.B. l->l_proc->p_lock must be HELD on entry but will 2057 * be released before returning! 2058 */ 2059 void 2060 lwp_thread_cleanup(struct lwp *l) 2061 { 2062 2063 KASSERT(mutex_owned(l->l_proc->p_lock)); 2064 mutex_exit(l->l_proc->p_lock); 2065 2066 /* 2067 * If the LWP has robust futexes, release them all 2068 * now. 2069 */ 2070 if (__predict_false(l->l_robust_head != 0)) { 2071 futex_release_all_lwp(l); 2072 } 2073 } 2074 2075 #if defined(DDB) 2076 #include <machine/pcb.h> 2077 2078 void 2079 lwp_whatis(uintptr_t addr, void (*pr)(const char *, ...)) 2080 { 2081 lwp_t *l; 2082 2083 LIST_FOREACH(l, &alllwp, l_list) { 2084 uintptr_t stack = (uintptr_t)KSTACK_LOWEST_ADDR(l); 2085 2086 if (addr < stack || stack + KSTACK_SIZE <= addr) { 2087 continue; 2088 } 2089 (*pr)("%p is %p+%zu, LWP %p's stack\n", 2090 (void *)addr, (void *)stack, 2091 (size_t)(addr - stack), l); 2092 } 2093 } 2094 #endif /* defined(DDB) */ 2095