xref: /netbsd-src/sys/kern/kern_lwp.c (revision 4e6df137e8e14049b5a701d249962c480449c141)
1 /*	$NetBSD: kern_lwp.c,v 1.141 2010/03/01 21:10:17 darran Exp $	*/
2 
3 /*-
4  * Copyright (c) 2001, 2006, 2007, 2008, 2009 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Nathan J. Williams, and Andrew Doran.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29  * POSSIBILITY OF SUCH DAMAGE.
30  */
31 
32 /*
33  * Overview
34  *
35  *	Lightweight processes (LWPs) are the basic unit or thread of
36  *	execution within the kernel.  The core state of an LWP is described
37  *	by "struct lwp", also known as lwp_t.
38  *
39  *	Each LWP is contained within a process (described by "struct proc"),
40  *	Every process contains at least one LWP, but may contain more.  The
41  *	process describes attributes shared among all of its LWPs such as a
42  *	private address space, global execution state (stopped, active,
43  *	zombie, ...), signal disposition and so on.  On a multiprocessor
44  *	machine, multiple LWPs be executing concurrently in the kernel.
45  *
46  * Execution states
47  *
48  *	At any given time, an LWP has overall state that is described by
49  *	lwp::l_stat.  The states are broken into two sets below.  The first
50  *	set is guaranteed to represent the absolute, current state of the
51  *	LWP:
52  *
53  *	LSONPROC
54  *
55  *		On processor: the LWP is executing on a CPU, either in the
56  *		kernel or in user space.
57  *
58  *	LSRUN
59  *
60  *		Runnable: the LWP is parked on a run queue, and may soon be
61  *		chosen to run by an idle processor, or by a processor that
62  *		has been asked to preempt a currently runnning but lower
63  *		priority LWP.
64  *
65  *	LSIDL
66  *
67  *		Idle: the LWP has been created but has not yet executed,
68  *		or it has ceased executing a unit of work and is waiting
69  *		to be started again.
70  *
71  *	LSSUSPENDED:
72  *
73  *		Suspended: the LWP has had its execution suspended by
74  *		another LWP in the same process using the _lwp_suspend()
75  *		system call.  User-level LWPs also enter the suspended
76  *		state when the system is shutting down.
77  *
78  *	The second set represent a "statement of intent" on behalf of the
79  *	LWP.  The LWP may in fact be executing on a processor, may be
80  *	sleeping or idle. It is expected to take the necessary action to
81  *	stop executing or become "running" again within a short timeframe.
82  *	The LP_RUNNING flag in lwp::l_pflag indicates that an LWP is running.
83  *	Importantly, it indicates that its state is tied to a CPU.
84  *
85  *	LSZOMB:
86  *
87  *		Dead or dying: the LWP has released most of its resources
88  *		and is about to switch away into oblivion, or has already
89  *		switched away.  When it switches away, its few remaining
90  *		resources can be collected.
91  *
92  *	LSSLEEP:
93  *
94  *		Sleeping: the LWP has entered itself onto a sleep queue, and
95  *		has switched away or will switch away shortly to allow other
96  *		LWPs to run on the CPU.
97  *
98  *	LSSTOP:
99  *
100  *		Stopped: the LWP has been stopped as a result of a job
101  *		control signal, or as a result of the ptrace() interface.
102  *
103  *		Stopped LWPs may run briefly within the kernel to handle
104  *		signals that they receive, but will not return to user space
105  *		until their process' state is changed away from stopped.
106  *
107  *		Single LWPs within a process can not be set stopped
108  *		selectively: all actions that can stop or continue LWPs
109  *		occur at the process level.
110  *
111  * State transitions
112  *
113  *	Note that the LSSTOP state may only be set when returning to
114  *	user space in userret(), or when sleeping interruptably.  The
115  *	LSSUSPENDED state may only be set in userret().  Before setting
116  *	those states, we try to ensure that the LWPs will release all
117  *	locks that they hold, and at a minimum try to ensure that the
118  *	LWP can be set runnable again by a signal.
119  *
120  *	LWPs may transition states in the following ways:
121  *
122  *	 RUN -------> ONPROC		ONPROC -----> RUN
123  *		    				    > SLEEP
124  *		    				    > STOPPED
125  *						    > SUSPENDED
126  *						    > ZOMB
127  *						    > IDL (special cases)
128  *
129  *	 STOPPED ---> RUN		SUSPENDED --> RUN
130  *	            > SLEEP
131  *
132  *	 SLEEP -----> ONPROC		IDL --------> RUN
133  *		    > RUN			    > SUSPENDED
134  *		    > STOPPED			    > STOPPED
135  *						    > ONPROC (special cases)
136  *
137  *	Some state transitions are only possible with kernel threads (eg
138  *	ONPROC -> IDL) and happen under tightly controlled circumstances
139  *	free of unwanted side effects.
140  *
141  * Migration
142  *
143  *	Migration of threads from one CPU to another could be performed
144  *	internally by the scheduler via sched_takecpu() or sched_catchlwp()
145  *	functions.  The universal lwp_migrate() function should be used for
146  *	any other cases.  Subsystems in the kernel must be aware that CPU
147  *	of LWP may change, while it is not locked.
148  *
149  * Locking
150  *
151  *	The majority of fields in 'struct lwp' are covered by a single,
152  *	general spin lock pointed to by lwp::l_mutex.  The locks covering
153  *	each field are documented in sys/lwp.h.
154  *
155  *	State transitions must be made with the LWP's general lock held,
156  *	and may cause the LWP's lock pointer to change. Manipulation of
157  *	the general lock is not performed directly, but through calls to
158  *	lwp_lock(), lwp_relock() and similar.
159  *
160  *	States and their associated locks:
161  *
162  *	LSONPROC, LSZOMB:
163  *
164  *		Always covered by spc_lwplock, which protects running LWPs.
165  *		This is a per-CPU lock and matches lwp::l_cpu.
166  *
167  *	LSIDL, LSRUN:
168  *
169  *		Always covered by spc_mutex, which protects the run queues.
170  *		This is a per-CPU lock and matches lwp::l_cpu.
171  *
172  *	LSSLEEP:
173  *
174  *		Covered by a lock associated with the sleep queue that the
175  *		LWP resides on.  Matches lwp::l_sleepq::sq_mutex.
176  *
177  *	LSSTOP, LSSUSPENDED:
178  *
179  *		If the LWP was previously sleeping (l_wchan != NULL), then
180  *		l_mutex references the sleep queue lock.  If the LWP was
181  *		runnable or on the CPU when halted, or has been removed from
182  *		the sleep queue since halted, then the lock is spc_lwplock.
183  *
184  *	The lock order is as follows:
185  *
186  *		spc::spc_lwplock ->
187  *		    sleeptab::st_mutex ->
188  *			tschain_t::tc_mutex ->
189  *			    spc::spc_mutex
190  *
191  *	Each process has an scheduler state lock (proc::p_lock), and a
192  *	number of counters on LWPs and their states: p_nzlwps, p_nrlwps, and
193  *	so on.  When an LWP is to be entered into or removed from one of the
194  *	following states, p_lock must be held and the process wide counters
195  *	adjusted:
196  *
197  *		LSIDL, LSZOMB, LSSTOP, LSSUSPENDED
198  *
199  *	(But not always for kernel threads.  There are some special cases
200  *	as mentioned above.  See kern_softint.c.)
201  *
202  *	Note that an LWP is considered running or likely to run soon if in
203  *	one of the following states.  This affects the value of p_nrlwps:
204  *
205  *		LSRUN, LSONPROC, LSSLEEP
206  *
207  *	p_lock does not need to be held when transitioning among these
208  *	three states, hence p_lock is rarely taken for state transitions.
209  */
210 
211 #include <sys/cdefs.h>
212 __KERNEL_RCSID(0, "$NetBSD: kern_lwp.c,v 1.141 2010/03/01 21:10:17 darran Exp $");
213 
214 #include "opt_ddb.h"
215 #include "opt_lockdebug.h"
216 #include "opt_sa.h"
217 #include "opt_dtrace.h"
218 
219 #define _LWP_API_PRIVATE
220 
221 #include <sys/param.h>
222 #include <sys/systm.h>
223 #include <sys/cpu.h>
224 #include <sys/pool.h>
225 #include <sys/proc.h>
226 #include <sys/sa.h>
227 #include <sys/savar.h>
228 #include <sys/syscallargs.h>
229 #include <sys/syscall_stats.h>
230 #include <sys/kauth.h>
231 #include <sys/sleepq.h>
232 #include <sys/lockdebug.h>
233 #include <sys/kmem.h>
234 #include <sys/pset.h>
235 #include <sys/intr.h>
236 #include <sys/lwpctl.h>
237 #include <sys/atomic.h>
238 #include <sys/filedesc.h>
239 #include <sys/dtrace_bsd.h>
240 #include <sys/sdt.h>
241 
242 #include <uvm/uvm_extern.h>
243 #include <uvm/uvm_object.h>
244 
245 struct lwplist	alllwp = LIST_HEAD_INITIALIZER(alllwp);
246 
247 struct pool lwp_uc_pool;
248 
249 static pool_cache_t lwp_cache;
250 static specificdata_domain_t lwp_specificdata_domain;
251 
252 /* DTrace proc provider probes */
253 SDT_PROBE_DEFINE(proc,,,lwp_create,
254 	"struct lwp *", NULL,
255 	NULL, NULL, NULL, NULL,
256 	NULL, NULL, NULL, NULL);
257 SDT_PROBE_DEFINE(proc,,,lwp_start,
258 	"struct lwp *", NULL,
259 	NULL, NULL, NULL, NULL,
260 	NULL, NULL, NULL, NULL);
261 SDT_PROBE_DEFINE(proc,,,lwp_exit,
262 	"struct lwp *", NULL,
263 	NULL, NULL, NULL, NULL,
264 	NULL, NULL, NULL, NULL);
265 
266 void
267 lwpinit(void)
268 {
269 
270 	pool_init(&lwp_uc_pool, sizeof(ucontext_t), 0, 0, 0, "lwpucpl",
271 	    &pool_allocator_nointr, IPL_NONE);
272 	lwp_specificdata_domain = specificdata_domain_create();
273 	KASSERT(lwp_specificdata_domain != NULL);
274 	lwp_sys_init();
275 	lwp_cache = pool_cache_init(sizeof(lwp_t), MIN_LWP_ALIGNMENT, 0, 0,
276 	    "lwppl", NULL, IPL_NONE, NULL, NULL, NULL);
277 }
278 
279 /*
280  * Set an suspended.
281  *
282  * Must be called with p_lock held, and the LWP locked.  Will unlock the
283  * LWP before return.
284  */
285 int
286 lwp_suspend(struct lwp *curl, struct lwp *t)
287 {
288 	int error;
289 
290 	KASSERT(mutex_owned(t->l_proc->p_lock));
291 	KASSERT(lwp_locked(t, NULL));
292 
293 	KASSERT(curl != t || curl->l_stat == LSONPROC);
294 
295 	/*
296 	 * If the current LWP has been told to exit, we must not suspend anyone
297 	 * else or deadlock could occur.  We won't return to userspace.
298 	 */
299 	if ((curl->l_flag & (LW_WEXIT | LW_WCORE)) != 0) {
300 		lwp_unlock(t);
301 		return (EDEADLK);
302 	}
303 
304 	error = 0;
305 
306 	switch (t->l_stat) {
307 	case LSRUN:
308 	case LSONPROC:
309 		t->l_flag |= LW_WSUSPEND;
310 		lwp_need_userret(t);
311 		lwp_unlock(t);
312 		break;
313 
314 	case LSSLEEP:
315 		t->l_flag |= LW_WSUSPEND;
316 
317 		/*
318 		 * Kick the LWP and try to get it to the kernel boundary
319 		 * so that it will release any locks that it holds.
320 		 * setrunnable() will release the lock.
321 		 */
322 		if ((t->l_flag & LW_SINTR) != 0)
323 			setrunnable(t);
324 		else
325 			lwp_unlock(t);
326 		break;
327 
328 	case LSSUSPENDED:
329 		lwp_unlock(t);
330 		break;
331 
332 	case LSSTOP:
333 		t->l_flag |= LW_WSUSPEND;
334 		setrunnable(t);
335 		break;
336 
337 	case LSIDL:
338 	case LSZOMB:
339 		error = EINTR; /* It's what Solaris does..... */
340 		lwp_unlock(t);
341 		break;
342 	}
343 
344 	return (error);
345 }
346 
347 /*
348  * Restart a suspended LWP.
349  *
350  * Must be called with p_lock held, and the LWP locked.  Will unlock the
351  * LWP before return.
352  */
353 void
354 lwp_continue(struct lwp *l)
355 {
356 
357 	KASSERT(mutex_owned(l->l_proc->p_lock));
358 	KASSERT(lwp_locked(l, NULL));
359 
360 	/* If rebooting or not suspended, then just bail out. */
361 	if ((l->l_flag & LW_WREBOOT) != 0) {
362 		lwp_unlock(l);
363 		return;
364 	}
365 
366 	l->l_flag &= ~LW_WSUSPEND;
367 
368 	if (l->l_stat != LSSUSPENDED) {
369 		lwp_unlock(l);
370 		return;
371 	}
372 
373 	/* setrunnable() will release the lock. */
374 	setrunnable(l);
375 }
376 
377 /*
378  * Wait for an LWP within the current process to exit.  If 'lid' is
379  * non-zero, we are waiting for a specific LWP.
380  *
381  * Must be called with p->p_lock held.
382  */
383 int
384 lwp_wait1(struct lwp *l, lwpid_t lid, lwpid_t *departed, int flags)
385 {
386 	struct proc *p = l->l_proc;
387 	struct lwp *l2;
388 	int nfound, error;
389 	lwpid_t curlid;
390 	bool exiting;
391 
392 	KASSERT(mutex_owned(p->p_lock));
393 
394 	p->p_nlwpwait++;
395 	l->l_waitingfor = lid;
396 	curlid = l->l_lid;
397 	exiting = ((flags & LWPWAIT_EXITCONTROL) != 0);
398 
399 	for (;;) {
400 		/*
401 		 * Avoid a race between exit1() and sigexit(): if the
402 		 * process is dumping core, then we need to bail out: call
403 		 * into lwp_userret() where we will be suspended until the
404 		 * deed is done.
405 		 */
406 		if ((p->p_sflag & PS_WCORE) != 0) {
407 			mutex_exit(p->p_lock);
408 			lwp_userret(l);
409 #ifdef DIAGNOSTIC
410 			panic("lwp_wait1");
411 #endif
412 			/* NOTREACHED */
413 		}
414 
415 		/*
416 		 * First off, drain any detached LWP that is waiting to be
417 		 * reaped.
418 		 */
419 		while ((l2 = p->p_zomblwp) != NULL) {
420 			p->p_zomblwp = NULL;
421 			lwp_free(l2, false, false);/* releases proc mutex */
422 			mutex_enter(p->p_lock);
423 		}
424 
425 		/*
426 		 * Now look for an LWP to collect.  If the whole process is
427 		 * exiting, count detached LWPs as eligible to be collected,
428 		 * but don't drain them here.
429 		 */
430 		nfound = 0;
431 		error = 0;
432 		LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
433 			/*
434 			 * If a specific wait and the target is waiting on
435 			 * us, then avoid deadlock.  This also traps LWPs
436 			 * that try to wait on themselves.
437 			 *
438 			 * Note that this does not handle more complicated
439 			 * cycles, like: t1 -> t2 -> t3 -> t1.  The process
440 			 * can still be killed so it is not a major problem.
441 			 */
442 			if (l2->l_lid == lid && l2->l_waitingfor == curlid) {
443 				error = EDEADLK;
444 				break;
445 			}
446 			if (l2 == l)
447 				continue;
448 			if ((l2->l_prflag & LPR_DETACHED) != 0) {
449 				nfound += exiting;
450 				continue;
451 			}
452 			if (lid != 0) {
453 				if (l2->l_lid != lid)
454 					continue;
455 				/*
456 				 * Mark this LWP as the first waiter, if there
457 				 * is no other.
458 				 */
459 				if (l2->l_waiter == 0)
460 					l2->l_waiter = curlid;
461 			} else if (l2->l_waiter != 0) {
462 				/*
463 				 * It already has a waiter - so don't
464 				 * collect it.  If the waiter doesn't
465 				 * grab it we'll get another chance
466 				 * later.
467 				 */
468 				nfound++;
469 				continue;
470 			}
471 			nfound++;
472 
473 			/* No need to lock the LWP in order to see LSZOMB. */
474 			if (l2->l_stat != LSZOMB)
475 				continue;
476 
477 			/*
478 			 * We're no longer waiting.  Reset the "first waiter"
479 			 * pointer on the target, in case it was us.
480 			 */
481 			l->l_waitingfor = 0;
482 			l2->l_waiter = 0;
483 			p->p_nlwpwait--;
484 			if (departed)
485 				*departed = l2->l_lid;
486 			sched_lwp_collect(l2);
487 
488 			/* lwp_free() releases the proc lock. */
489 			lwp_free(l2, false, false);
490 			mutex_enter(p->p_lock);
491 			return 0;
492 		}
493 
494 		if (error != 0)
495 			break;
496 		if (nfound == 0) {
497 			error = ESRCH;
498 			break;
499 		}
500 
501 		/*
502 		 * The kernel is careful to ensure that it can not deadlock
503 		 * when exiting - just keep waiting.
504 		 */
505 		if (exiting) {
506 			KASSERT(p->p_nlwps > 1);
507 			cv_wait(&p->p_lwpcv, p->p_lock);
508 			continue;
509 		}
510 
511 		/*
512 		 * If all other LWPs are waiting for exits or suspends
513 		 * and the supply of zombies and potential zombies is
514 		 * exhausted, then we are about to deadlock.
515 		 *
516 		 * If the process is exiting (and this LWP is not the one
517 		 * that is coordinating the exit) then bail out now.
518 		 */
519 		if ((p->p_sflag & PS_WEXIT) != 0 ||
520 		    p->p_nrlwps + p->p_nzlwps - p->p_ndlwps <= p->p_nlwpwait) {
521 			error = EDEADLK;
522 			break;
523 		}
524 
525 		/*
526 		 * Sit around and wait for something to happen.  We'll be
527 		 * awoken if any of the conditions examined change: if an
528 		 * LWP exits, is collected, or is detached.
529 		 */
530 		if ((error = cv_wait_sig(&p->p_lwpcv, p->p_lock)) != 0)
531 			break;
532 	}
533 
534 	/*
535 	 * We didn't find any LWPs to collect, we may have received a
536 	 * signal, or some other condition has caused us to bail out.
537 	 *
538 	 * If waiting on a specific LWP, clear the waiters marker: some
539 	 * other LWP may want it.  Then, kick all the remaining waiters
540 	 * so that they can re-check for zombies and for deadlock.
541 	 */
542 	if (lid != 0) {
543 		LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
544 			if (l2->l_lid == lid) {
545 				if (l2->l_waiter == curlid)
546 					l2->l_waiter = 0;
547 				break;
548 			}
549 		}
550 	}
551 	p->p_nlwpwait--;
552 	l->l_waitingfor = 0;
553 	cv_broadcast(&p->p_lwpcv);
554 
555 	return error;
556 }
557 
558 /*
559  * Create a new LWP within process 'p2', using LWP 'l1' as a template.
560  * The new LWP is created in state LSIDL and must be set running,
561  * suspended, or stopped by the caller.
562  */
563 int
564 lwp_create(lwp_t *l1, proc_t *p2, vaddr_t uaddr, int flags,
565 	   void *stack, size_t stacksize, void (*func)(void *), void *arg,
566 	   lwp_t **rnewlwpp, int sclass)
567 {
568 	struct lwp *l2, *isfree;
569 	turnstile_t *ts;
570 
571 	KASSERT(l1 == curlwp || l1->l_proc == &proc0);
572 
573 	/*
574 	 * First off, reap any detached LWP waiting to be collected.
575 	 * We can re-use its LWP structure and turnstile.
576 	 */
577 	isfree = NULL;
578 	if (p2->p_zomblwp != NULL) {
579 		mutex_enter(p2->p_lock);
580 		if ((isfree = p2->p_zomblwp) != NULL) {
581 			p2->p_zomblwp = NULL;
582 			lwp_free(isfree, true, false);/* releases proc mutex */
583 		} else
584 			mutex_exit(p2->p_lock);
585 	}
586 	if (isfree == NULL) {
587 		l2 = pool_cache_get(lwp_cache, PR_WAITOK);
588 		memset(l2, 0, sizeof(*l2));
589 		l2->l_ts = pool_cache_get(turnstile_cache, PR_WAITOK);
590 		SLIST_INIT(&l2->l_pi_lenders);
591 	} else {
592 		l2 = isfree;
593 		ts = l2->l_ts;
594 		KASSERT(l2->l_inheritedprio == -1);
595 		KASSERT(SLIST_EMPTY(&l2->l_pi_lenders));
596 		memset(l2, 0, sizeof(*l2));
597 		l2->l_ts = ts;
598 	}
599 
600 	l2->l_stat = LSIDL;
601 	l2->l_proc = p2;
602 	l2->l_refcnt = 1;
603 	l2->l_class = sclass;
604 
605 	/*
606 	 * If vfork(), we want the LWP to run fast and on the same CPU
607 	 * as its parent, so that it can reuse the VM context and cache
608 	 * footprint on the local CPU.
609 	 */
610 	l2->l_kpriority = ((flags & LWP_VFORK) ? true : false);
611 	l2->l_kpribase = PRI_KERNEL;
612 	l2->l_priority = l1->l_priority;
613 	l2->l_inheritedprio = -1;
614 	l2->l_flag = 0;
615 	l2->l_pflag = LP_MPSAFE;
616 	TAILQ_INIT(&l2->l_ld_locks);
617 
618 	/*
619 	 * If not the first LWP in the process, grab a reference to the
620 	 * descriptor table.
621 	 */
622 	l2->l_fd = p2->p_fd;
623 	if (p2->p_nlwps != 0) {
624 		KASSERT(l1->l_proc == p2);
625 		fd_hold(l2);
626 	} else {
627 		KASSERT(l1->l_proc != p2);
628 	}
629 
630 	if (p2->p_flag & PK_SYSTEM) {
631 		/* Mark it as a system LWP. */
632 		l2->l_flag |= LW_SYSTEM;
633 	}
634 
635 	kpreempt_disable();
636 	l2->l_mutex = l1->l_cpu->ci_schedstate.spc_mutex;
637 	l2->l_cpu = l1->l_cpu;
638 	kpreempt_enable();
639 
640 	kdtrace_thread_ctor(NULL, l2);
641 	lwp_initspecific(l2);
642 	sched_lwp_fork(l1, l2);
643 	lwp_update_creds(l2);
644 	callout_init(&l2->l_timeout_ch, CALLOUT_MPSAFE);
645 	callout_setfunc(&l2->l_timeout_ch, sleepq_timeout, l2);
646 	cv_init(&l2->l_sigcv, "sigwait");
647 	l2->l_syncobj = &sched_syncobj;
648 
649 	if (rnewlwpp != NULL)
650 		*rnewlwpp = l2;
651 
652 	uvm_lwp_setuarea(l2, uaddr);
653 	uvm_lwp_fork(l1, l2, stack, stacksize, func,
654 	    (arg != NULL) ? arg : l2);
655 
656 	mutex_enter(p2->p_lock);
657 
658 	if ((flags & LWP_DETACHED) != 0) {
659 		l2->l_prflag = LPR_DETACHED;
660 		p2->p_ndlwps++;
661 	} else
662 		l2->l_prflag = 0;
663 
664 	l2->l_sigmask = l1->l_sigmask;
665 	CIRCLEQ_INIT(&l2->l_sigpend.sp_info);
666 	sigemptyset(&l2->l_sigpend.sp_set);
667 
668 	p2->p_nlwpid++;
669 	if (p2->p_nlwpid == 0)
670 		p2->p_nlwpid++;
671 	l2->l_lid = p2->p_nlwpid;
672 	LIST_INSERT_HEAD(&p2->p_lwps, l2, l_sibling);
673 	p2->p_nlwps++;
674 
675 	if ((p2->p_flag & PK_SYSTEM) == 0) {
676 		/* Inherit an affinity */
677 		if (l1->l_flag & LW_AFFINITY) {
678 			/*
679 			 * Note that we hold the state lock while inheriting
680 			 * the affinity to avoid race with sched_setaffinity().
681 			 */
682 			lwp_lock(l1);
683 			if (l1->l_flag & LW_AFFINITY) {
684 				kcpuset_use(l1->l_affinity);
685 				l2->l_affinity = l1->l_affinity;
686 				l2->l_flag |= LW_AFFINITY;
687 			}
688 			lwp_unlock(l1);
689 		}
690 		lwp_lock(l2);
691 		/* Inherit a processor-set */
692 		l2->l_psid = l1->l_psid;
693 		/* Look for a CPU to start */
694 		l2->l_cpu = sched_takecpu(l2);
695 		lwp_unlock_to(l2, l2->l_cpu->ci_schedstate.spc_mutex);
696 	}
697 	mutex_exit(p2->p_lock);
698 
699 	SDT_PROBE(proc,,,lwp_create, l2, 0,0,0,0);
700 
701 	mutex_enter(proc_lock);
702 	LIST_INSERT_HEAD(&alllwp, l2, l_list);
703 	mutex_exit(proc_lock);
704 
705 	SYSCALL_TIME_LWP_INIT(l2);
706 
707 	if (p2->p_emul->e_lwp_fork)
708 		(*p2->p_emul->e_lwp_fork)(l1, l2);
709 
710 	return (0);
711 }
712 
713 /*
714  * Called by MD code when a new LWP begins execution.  Must be called
715  * with the previous LWP locked (so at splsched), or if there is no
716  * previous LWP, at splsched.
717  */
718 void
719 lwp_startup(struct lwp *prev, struct lwp *new)
720 {
721 
722 	SDT_PROBE(proc,,,lwp_start, new, 0,0,0,0);
723 
724 	KASSERT(kpreempt_disabled());
725 	if (prev != NULL) {
726 		/*
727 		 * Normalize the count of the spin-mutexes, it was
728 		 * increased in mi_switch().  Unmark the state of
729 		 * context switch - it is finished for previous LWP.
730 		 */
731 		curcpu()->ci_mtx_count++;
732 		membar_exit();
733 		prev->l_ctxswtch = 0;
734 	}
735 	KPREEMPT_DISABLE(new);
736 	spl0();
737 	pmap_activate(new);
738 	LOCKDEBUG_BARRIER(NULL, 0);
739 	KPREEMPT_ENABLE(new);
740 	if ((new->l_pflag & LP_MPSAFE) == 0) {
741 		KERNEL_LOCK(1, new);
742 	}
743 }
744 
745 /*
746  * Exit an LWP.
747  */
748 void
749 lwp_exit(struct lwp *l)
750 {
751 	struct proc *p = l->l_proc;
752 	struct lwp *l2;
753 	bool current;
754 
755 	current = (l == curlwp);
756 
757 	KASSERT(current || (l->l_stat == LSIDL && l->l_target_cpu == NULL));
758 	KASSERT(p == curproc);
759 
760 	SDT_PROBE(proc,,,lwp_exit, l, 0,0,0,0);
761 
762 	/*
763 	 * Verify that we hold no locks other than the kernel lock.
764 	 */
765 	LOCKDEBUG_BARRIER(&kernel_lock, 0);
766 
767 	/*
768 	 * If we are the last live LWP in a process, we need to exit the
769 	 * entire process.  We do so with an exit status of zero, because
770 	 * it's a "controlled" exit, and because that's what Solaris does.
771 	 *
772 	 * We are not quite a zombie yet, but for accounting purposes we
773 	 * must increment the count of zombies here.
774 	 *
775 	 * Note: the last LWP's specificdata will be deleted here.
776 	 */
777 	mutex_enter(p->p_lock);
778 	if (p->p_nlwps - p->p_nzlwps == 1) {
779 		KASSERT(current == true);
780 		/* XXXSMP kernel_lock not held */
781 		exit1(l, 0);
782 		/* NOTREACHED */
783 	}
784 	p->p_nzlwps++;
785 	mutex_exit(p->p_lock);
786 
787 	if (p->p_emul->e_lwp_exit)
788 		(*p->p_emul->e_lwp_exit)(l);
789 
790 	/* Drop filedesc reference. */
791 	fd_free();
792 
793 	/* Delete the specificdata while it's still safe to sleep. */
794 	specificdata_fini(lwp_specificdata_domain, &l->l_specdataref);
795 
796 	/*
797 	 * Release our cached credentials.
798 	 */
799 	kauth_cred_free(l->l_cred);
800 	callout_destroy(&l->l_timeout_ch);
801 
802 	/*
803 	 * Remove the LWP from the global list.
804 	 */
805 	mutex_enter(proc_lock);
806 	LIST_REMOVE(l, l_list);
807 	mutex_exit(proc_lock);
808 
809 	/*
810 	 * Get rid of all references to the LWP that others (e.g. procfs)
811 	 * may have, and mark the LWP as a zombie.  If the LWP is detached,
812 	 * mark it waiting for collection in the proc structure.  Note that
813 	 * before we can do that, we need to free any other dead, deatched
814 	 * LWP waiting to meet its maker.
815 	 */
816 	mutex_enter(p->p_lock);
817 	lwp_drainrefs(l);
818 
819 	if ((l->l_prflag & LPR_DETACHED) != 0) {
820 		while ((l2 = p->p_zomblwp) != NULL) {
821 			p->p_zomblwp = NULL;
822 			lwp_free(l2, false, false);/* releases proc mutex */
823 			mutex_enter(p->p_lock);
824 			l->l_refcnt++;
825 			lwp_drainrefs(l);
826 		}
827 		p->p_zomblwp = l;
828 	}
829 
830 	/*
831 	 * If we find a pending signal for the process and we have been
832 	 * asked to check for signals, then we loose: arrange to have
833 	 * all other LWPs in the process check for signals.
834 	 */
835 	if ((l->l_flag & LW_PENDSIG) != 0 &&
836 	    firstsig(&p->p_sigpend.sp_set) != 0) {
837 		LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
838 			lwp_lock(l2);
839 			l2->l_flag |= LW_PENDSIG;
840 			lwp_unlock(l2);
841 		}
842 	}
843 
844 	lwp_lock(l);
845 	l->l_stat = LSZOMB;
846 	if (l->l_name != NULL)
847 		strcpy(l->l_name, "(zombie)");
848 	if (l->l_flag & LW_AFFINITY) {
849 		l->l_flag &= ~LW_AFFINITY;
850 	} else {
851 		KASSERT(l->l_affinity == NULL);
852 	}
853 	lwp_unlock(l);
854 	p->p_nrlwps--;
855 	cv_broadcast(&p->p_lwpcv);
856 	if (l->l_lwpctl != NULL)
857 		l->l_lwpctl->lc_curcpu = LWPCTL_CPU_EXITED;
858 	mutex_exit(p->p_lock);
859 
860 	/* Safe without lock since LWP is in zombie state */
861 	if (l->l_affinity) {
862 		kcpuset_unuse(l->l_affinity, NULL);
863 		l->l_affinity = NULL;
864 	}
865 
866 	/*
867 	 * We can no longer block.  At this point, lwp_free() may already
868 	 * be gunning for us.  On a multi-CPU system, we may be off p_lwps.
869 	 *
870 	 * Free MD LWP resources.
871 	 */
872 	cpu_lwp_free(l, 0);
873 
874 	if (current) {
875 		pmap_deactivate(l);
876 
877 		/*
878 		 * Release the kernel lock, and switch away into
879 		 * oblivion.
880 		 */
881 #ifdef notyet
882 		/* XXXSMP hold in lwp_userret() */
883 		KERNEL_UNLOCK_LAST(l);
884 #else
885 		KERNEL_UNLOCK_ALL(l, NULL);
886 #endif
887 		lwp_exit_switchaway(l);
888 	}
889 }
890 
891 /*
892  * Free a dead LWP's remaining resources.
893  *
894  * XXXLWP limits.
895  */
896 void
897 lwp_free(struct lwp *l, bool recycle, bool last)
898 {
899 	struct proc *p = l->l_proc;
900 	struct rusage *ru;
901 	ksiginfoq_t kq;
902 
903 	KASSERT(l != curlwp);
904 
905 	/*
906 	 * If this was not the last LWP in the process, then adjust
907 	 * counters and unlock.
908 	 */
909 	if (!last) {
910 		/*
911 		 * Add the LWP's run time to the process' base value.
912 		 * This needs to co-incide with coming off p_lwps.
913 		 */
914 		bintime_add(&p->p_rtime, &l->l_rtime);
915 		p->p_pctcpu += l->l_pctcpu;
916 		ru = &p->p_stats->p_ru;
917 		ruadd(ru, &l->l_ru);
918 		ru->ru_nvcsw += (l->l_ncsw - l->l_nivcsw);
919 		ru->ru_nivcsw += l->l_nivcsw;
920 		LIST_REMOVE(l, l_sibling);
921 		p->p_nlwps--;
922 		p->p_nzlwps--;
923 		if ((l->l_prflag & LPR_DETACHED) != 0)
924 			p->p_ndlwps--;
925 
926 		/*
927 		 * Have any LWPs sleeping in lwp_wait() recheck for
928 		 * deadlock.
929 		 */
930 		cv_broadcast(&p->p_lwpcv);
931 		mutex_exit(p->p_lock);
932 	}
933 
934 #ifdef MULTIPROCESSOR
935 	/*
936 	 * In the unlikely event that the LWP is still on the CPU,
937 	 * then spin until it has switched away.  We need to release
938 	 * all locks to avoid deadlock against interrupt handlers on
939 	 * the target CPU.
940 	 */
941 	if ((l->l_pflag & LP_RUNNING) != 0 || l->l_cpu->ci_curlwp == l) {
942 		int count;
943 		(void)count; /* XXXgcc */
944 		KERNEL_UNLOCK_ALL(curlwp, &count);
945 		while ((l->l_pflag & LP_RUNNING) != 0 ||
946 		    l->l_cpu->ci_curlwp == l)
947 			SPINLOCK_BACKOFF_HOOK;
948 		KERNEL_LOCK(count, curlwp);
949 	}
950 #endif
951 
952 	/*
953 	 * Destroy the LWP's remaining signal information.
954 	 */
955 	ksiginfo_queue_init(&kq);
956 	sigclear(&l->l_sigpend, NULL, &kq);
957 	ksiginfo_queue_drain(&kq);
958 	cv_destroy(&l->l_sigcv);
959 
960 	/*
961 	 * Free the LWP's turnstile and the LWP structure itself unless the
962 	 * caller wants to recycle them.  Also, free the scheduler specific
963 	 * data.
964 	 *
965 	 * We can't return turnstile0 to the pool (it didn't come from it),
966 	 * so if it comes up just drop it quietly and move on.
967 	 *
968 	 * We don't recycle the VM resources at this time.
969 	 */
970 	if (l->l_lwpctl != NULL)
971 		lwp_ctl_free(l);
972 
973 	if (!recycle && l->l_ts != &turnstile0)
974 		pool_cache_put(turnstile_cache, l->l_ts);
975 	if (l->l_name != NULL)
976 		kmem_free(l->l_name, MAXCOMLEN);
977 
978 	cpu_lwp_free2(l);
979 	uvm_lwp_exit(l);
980 
981 	KASSERT(SLIST_EMPTY(&l->l_pi_lenders));
982 	KASSERT(l->l_inheritedprio == -1);
983 	kdtrace_thread_dtor(NULL, l);
984 	if (!recycle)
985 		pool_cache_put(lwp_cache, l);
986 }
987 
988 /*
989  * Migrate the LWP to the another CPU.  Unlocks the LWP.
990  */
991 void
992 lwp_migrate(lwp_t *l, struct cpu_info *tci)
993 {
994 	struct schedstate_percpu *tspc;
995 	int lstat = l->l_stat;
996 
997 	KASSERT(lwp_locked(l, NULL));
998 	KASSERT(tci != NULL);
999 
1000 	/* If LWP is still on the CPU, it must be handled like LSONPROC */
1001 	if ((l->l_pflag & LP_RUNNING) != 0) {
1002 		lstat = LSONPROC;
1003 	}
1004 
1005 	/*
1006 	 * The destination CPU could be changed while previous migration
1007 	 * was not finished.
1008 	 */
1009 	if (l->l_target_cpu != NULL) {
1010 		l->l_target_cpu = tci;
1011 		lwp_unlock(l);
1012 		return;
1013 	}
1014 
1015 	/* Nothing to do if trying to migrate to the same CPU */
1016 	if (l->l_cpu == tci) {
1017 		lwp_unlock(l);
1018 		return;
1019 	}
1020 
1021 	KASSERT(l->l_target_cpu == NULL);
1022 	tspc = &tci->ci_schedstate;
1023 	switch (lstat) {
1024 	case LSRUN:
1025 		l->l_target_cpu = tci;
1026 		break;
1027 	case LSIDL:
1028 		l->l_cpu = tci;
1029 		lwp_unlock_to(l, tspc->spc_mutex);
1030 		return;
1031 	case LSSLEEP:
1032 		l->l_cpu = tci;
1033 		break;
1034 	case LSSTOP:
1035 	case LSSUSPENDED:
1036 		l->l_cpu = tci;
1037 		if (l->l_wchan == NULL) {
1038 			lwp_unlock_to(l, tspc->spc_lwplock);
1039 			return;
1040 		}
1041 		break;
1042 	case LSONPROC:
1043 		l->l_target_cpu = tci;
1044 		spc_lock(l->l_cpu);
1045 		cpu_need_resched(l->l_cpu, RESCHED_KPREEMPT);
1046 		spc_unlock(l->l_cpu);
1047 		break;
1048 	}
1049 	lwp_unlock(l);
1050 }
1051 
1052 /*
1053  * Find the LWP in the process.  Arguments may be zero, in such case,
1054  * the calling process and first LWP in the list will be used.
1055  * On success - returns proc locked.
1056  */
1057 struct lwp *
1058 lwp_find2(pid_t pid, lwpid_t lid)
1059 {
1060 	proc_t *p;
1061 	lwp_t *l;
1062 
1063 	/* Find the process */
1064 	p = (pid == 0) ? curlwp->l_proc : p_find(pid, PFIND_UNLOCK_FAIL);
1065 	if (p == NULL)
1066 		return NULL;
1067 	mutex_enter(p->p_lock);
1068 	if (pid != 0) {
1069 		/* Case of p_find */
1070 		mutex_exit(proc_lock);
1071 	}
1072 
1073 	/* Find the thread */
1074 	l = (lid == 0) ? LIST_FIRST(&p->p_lwps) : lwp_find(p, lid);
1075 	if (l == NULL) {
1076 		mutex_exit(p->p_lock);
1077 	}
1078 
1079 	return l;
1080 }
1081 
1082 /*
1083  * Look up a live LWP within the speicifed process, and return it locked.
1084  *
1085  * Must be called with p->p_lock held.
1086  */
1087 struct lwp *
1088 lwp_find(struct proc *p, int id)
1089 {
1090 	struct lwp *l;
1091 
1092 	KASSERT(mutex_owned(p->p_lock));
1093 
1094 	LIST_FOREACH(l, &p->p_lwps, l_sibling) {
1095 		if (l->l_lid == id)
1096 			break;
1097 	}
1098 
1099 	/*
1100 	 * No need to lock - all of these conditions will
1101 	 * be visible with the process level mutex held.
1102 	 */
1103 	if (l != NULL && (l->l_stat == LSIDL || l->l_stat == LSZOMB))
1104 		l = NULL;
1105 
1106 	return l;
1107 }
1108 
1109 /*
1110  * Update an LWP's cached credentials to mirror the process' master copy.
1111  *
1112  * This happens early in the syscall path, on user trap, and on LWP
1113  * creation.  A long-running LWP can also voluntarily choose to update
1114  * it's credentials by calling this routine.  This may be called from
1115  * LWP_CACHE_CREDS(), which checks l->l_cred != p->p_cred beforehand.
1116  */
1117 void
1118 lwp_update_creds(struct lwp *l)
1119 {
1120 	kauth_cred_t oc;
1121 	struct proc *p;
1122 
1123 	p = l->l_proc;
1124 	oc = l->l_cred;
1125 
1126 	mutex_enter(p->p_lock);
1127 	kauth_cred_hold(p->p_cred);
1128 	l->l_cred = p->p_cred;
1129 	l->l_prflag &= ~LPR_CRMOD;
1130 	mutex_exit(p->p_lock);
1131 	if (oc != NULL)
1132 		kauth_cred_free(oc);
1133 }
1134 
1135 /*
1136  * Verify that an LWP is locked, and optionally verify that the lock matches
1137  * one we specify.
1138  */
1139 int
1140 lwp_locked(struct lwp *l, kmutex_t *mtx)
1141 {
1142 	kmutex_t *cur = l->l_mutex;
1143 
1144 	return mutex_owned(cur) && (mtx == cur || mtx == NULL);
1145 }
1146 
1147 /*
1148  * Lock an LWP.
1149  */
1150 kmutex_t *
1151 lwp_lock_retry(struct lwp *l, kmutex_t *old)
1152 {
1153 
1154 	/*
1155 	 * XXXgcc ignoring kmutex_t * volatile on i386
1156 	 *
1157 	 * gcc version 4.1.2 20061021 prerelease (NetBSD nb1 20061021)
1158 	 */
1159 #if 1
1160 	while (l->l_mutex != old) {
1161 #else
1162 	for (;;) {
1163 #endif
1164 		mutex_spin_exit(old);
1165 		old = l->l_mutex;
1166 		mutex_spin_enter(old);
1167 
1168 		/*
1169 		 * mutex_enter() will have posted a read barrier.  Re-test
1170 		 * l->l_mutex.  If it has changed, we need to try again.
1171 		 */
1172 #if 1
1173 	}
1174 #else
1175 	} while (__predict_false(l->l_mutex != old));
1176 #endif
1177 
1178 	return old;
1179 }
1180 
1181 /*
1182  * Lend a new mutex to an LWP.  The old mutex must be held.
1183  */
1184 void
1185 lwp_setlock(struct lwp *l, kmutex_t *new)
1186 {
1187 
1188 	KASSERT(mutex_owned(l->l_mutex));
1189 
1190 	membar_exit();
1191 	l->l_mutex = new;
1192 }
1193 
1194 /*
1195  * Lend a new mutex to an LWP, and release the old mutex.  The old mutex
1196  * must be held.
1197  */
1198 void
1199 lwp_unlock_to(struct lwp *l, kmutex_t *new)
1200 {
1201 	kmutex_t *old;
1202 
1203 	KASSERT(mutex_owned(l->l_mutex));
1204 
1205 	old = l->l_mutex;
1206 	membar_exit();
1207 	l->l_mutex = new;
1208 	mutex_spin_exit(old);
1209 }
1210 
1211 /*
1212  * Acquire a new mutex, and donate it to an LWP.  The LWP must already be
1213  * locked.
1214  */
1215 void
1216 lwp_relock(struct lwp *l, kmutex_t *new)
1217 {
1218 	kmutex_t *old;
1219 
1220 	KASSERT(mutex_owned(l->l_mutex));
1221 
1222 	old = l->l_mutex;
1223 	if (old != new) {
1224 		mutex_spin_enter(new);
1225 		l->l_mutex = new;
1226 		mutex_spin_exit(old);
1227 	}
1228 }
1229 
1230 int
1231 lwp_trylock(struct lwp *l)
1232 {
1233 	kmutex_t *old;
1234 
1235 	for (;;) {
1236 		if (!mutex_tryenter(old = l->l_mutex))
1237 			return 0;
1238 		if (__predict_true(l->l_mutex == old))
1239 			return 1;
1240 		mutex_spin_exit(old);
1241 	}
1242 }
1243 
1244 void
1245 lwp_unsleep(lwp_t *l, bool cleanup)
1246 {
1247 
1248 	KASSERT(mutex_owned(l->l_mutex));
1249 	(*l->l_syncobj->sobj_unsleep)(l, cleanup);
1250 }
1251 
1252 
1253 /*
1254  * Handle exceptions for mi_userret().  Called if a member of LW_USERRET is
1255  * set.
1256  */
1257 void
1258 lwp_userret(struct lwp *l)
1259 {
1260 	struct proc *p;
1261 	void (*hook)(void);
1262 	int sig;
1263 
1264 	KASSERT(l == curlwp);
1265 	KASSERT(l->l_stat == LSONPROC);
1266 	p = l->l_proc;
1267 
1268 #ifndef __HAVE_FAST_SOFTINTS
1269 	/* Run pending soft interrupts. */
1270 	if (l->l_cpu->ci_data.cpu_softints != 0)
1271 		softint_overlay();
1272 #endif
1273 
1274 #ifdef KERN_SA
1275 	/* Generate UNBLOCKED upcall if needed */
1276 	if (l->l_flag & LW_SA_BLOCKING) {
1277 		sa_unblock_userret(l);
1278 		/* NOTREACHED */
1279 	}
1280 #endif
1281 
1282 	/*
1283 	 * It should be safe to do this read unlocked on a multiprocessor
1284 	 * system..
1285 	 *
1286 	 * LW_SA_UPCALL will be handled after the while() loop, so don't
1287 	 * consider it now.
1288 	 */
1289 	while ((l->l_flag & (LW_USERRET & ~(LW_SA_UPCALL))) != 0) {
1290 		/*
1291 		 * Process pending signals first, unless the process
1292 		 * is dumping core or exiting, where we will instead
1293 		 * enter the LW_WSUSPEND case below.
1294 		 */
1295 		if ((l->l_flag & (LW_PENDSIG | LW_WCORE | LW_WEXIT)) ==
1296 		    LW_PENDSIG) {
1297 			mutex_enter(p->p_lock);
1298 			while ((sig = issignal(l)) != 0)
1299 				postsig(sig);
1300 			mutex_exit(p->p_lock);
1301 		}
1302 
1303 		/*
1304 		 * Core-dump or suspend pending.
1305 		 *
1306 		 * In case of core dump, suspend ourselves, so that the
1307 		 * kernel stack and therefore the userland registers saved
1308 		 * in the trapframe are around for coredump() to write them
1309 		 * out.  We issue a wakeup on p->p_lwpcv so that sigexit()
1310 		 * will write the core file out once all other LWPs are
1311 		 * suspended.
1312 		 */
1313 		if ((l->l_flag & LW_WSUSPEND) != 0) {
1314 			mutex_enter(p->p_lock);
1315 			p->p_nrlwps--;
1316 			cv_broadcast(&p->p_lwpcv);
1317 			lwp_lock(l);
1318 			l->l_stat = LSSUSPENDED;
1319 			lwp_unlock(l);
1320 			mutex_exit(p->p_lock);
1321 			lwp_lock(l);
1322 			mi_switch(l);
1323 		}
1324 
1325 		/* Process is exiting. */
1326 		if ((l->l_flag & LW_WEXIT) != 0) {
1327 			lwp_exit(l);
1328 			KASSERT(0);
1329 			/* NOTREACHED */
1330 		}
1331 
1332 		/* Call userret hook; used by Linux emulation. */
1333 		if ((l->l_flag & LW_WUSERRET) != 0) {
1334 			lwp_lock(l);
1335 			l->l_flag &= ~LW_WUSERRET;
1336 			lwp_unlock(l);
1337 			hook = p->p_userret;
1338 			p->p_userret = NULL;
1339 			(*hook)();
1340 		}
1341 	}
1342 
1343 #ifdef KERN_SA
1344 	/*
1345 	 * Timer events are handled specially.  We only try once to deliver
1346 	 * pending timer upcalls; if if fails, we can try again on the next
1347 	 * loop around.  If we need to re-enter lwp_userret(), MD code will
1348 	 * bounce us back here through the trap path after we return.
1349 	 */
1350 	if (p->p_timerpend)
1351 		timerupcall(l);
1352 	if (l->l_flag & LW_SA_UPCALL)
1353 		sa_upcall_userret(l);
1354 #endif /* KERN_SA */
1355 }
1356 
1357 /*
1358  * Force an LWP to enter the kernel, to take a trip through lwp_userret().
1359  */
1360 void
1361 lwp_need_userret(struct lwp *l)
1362 {
1363 	KASSERT(lwp_locked(l, NULL));
1364 
1365 	/*
1366 	 * Since the tests in lwp_userret() are done unlocked, make sure
1367 	 * that the condition will be seen before forcing the LWP to enter
1368 	 * kernel mode.
1369 	 */
1370 	membar_producer();
1371 	cpu_signotify(l);
1372 }
1373 
1374 /*
1375  * Add one reference to an LWP.  This will prevent the LWP from
1376  * exiting, thus keep the lwp structure and PCB around to inspect.
1377  */
1378 void
1379 lwp_addref(struct lwp *l)
1380 {
1381 
1382 	KASSERT(mutex_owned(l->l_proc->p_lock));
1383 	KASSERT(l->l_stat != LSZOMB);
1384 	KASSERT(l->l_refcnt != 0);
1385 
1386 	l->l_refcnt++;
1387 }
1388 
1389 /*
1390  * Remove one reference to an LWP.  If this is the last reference,
1391  * then we must finalize the LWP's death.
1392  */
1393 void
1394 lwp_delref(struct lwp *l)
1395 {
1396 	struct proc *p = l->l_proc;
1397 
1398 	mutex_enter(p->p_lock);
1399 	KASSERT(l->l_stat != LSZOMB);
1400 	KASSERT(l->l_refcnt > 0);
1401 	if (--l->l_refcnt == 0)
1402 		cv_broadcast(&p->p_lwpcv);
1403 	mutex_exit(p->p_lock);
1404 }
1405 
1406 /*
1407  * Drain all references to the current LWP.
1408  */
1409 void
1410 lwp_drainrefs(struct lwp *l)
1411 {
1412 	struct proc *p = l->l_proc;
1413 
1414 	KASSERT(mutex_owned(p->p_lock));
1415 	KASSERT(l->l_refcnt != 0);
1416 
1417 	l->l_refcnt--;
1418 	while (l->l_refcnt != 0)
1419 		cv_wait(&p->p_lwpcv, p->p_lock);
1420 }
1421 
1422 /*
1423  * Return true if the specified LWP is 'alive'.  Only p->p_lock need
1424  * be held.
1425  */
1426 bool
1427 lwp_alive(lwp_t *l)
1428 {
1429 
1430 	KASSERT(mutex_owned(l->l_proc->p_lock));
1431 
1432 	switch (l->l_stat) {
1433 	case LSSLEEP:
1434 	case LSRUN:
1435 	case LSONPROC:
1436 	case LSSTOP:
1437 	case LSSUSPENDED:
1438 		return true;
1439 	default:
1440 		return false;
1441 	}
1442 }
1443 
1444 /*
1445  * Return first live LWP in the process.
1446  */
1447 lwp_t *
1448 lwp_find_first(proc_t *p)
1449 {
1450 	lwp_t *l;
1451 
1452 	KASSERT(mutex_owned(p->p_lock));
1453 
1454 	LIST_FOREACH(l, &p->p_lwps, l_sibling) {
1455 		if (lwp_alive(l)) {
1456 			return l;
1457 		}
1458 	}
1459 
1460 	return NULL;
1461 }
1462 
1463 /*
1464  * lwp_specific_key_create --
1465  *	Create a key for subsystem lwp-specific data.
1466  */
1467 int
1468 lwp_specific_key_create(specificdata_key_t *keyp, specificdata_dtor_t dtor)
1469 {
1470 
1471 	return (specificdata_key_create(lwp_specificdata_domain, keyp, dtor));
1472 }
1473 
1474 /*
1475  * lwp_specific_key_delete --
1476  *	Delete a key for subsystem lwp-specific data.
1477  */
1478 void
1479 lwp_specific_key_delete(specificdata_key_t key)
1480 {
1481 
1482 	specificdata_key_delete(lwp_specificdata_domain, key);
1483 }
1484 
1485 /*
1486  * lwp_initspecific --
1487  *	Initialize an LWP's specificdata container.
1488  */
1489 void
1490 lwp_initspecific(struct lwp *l)
1491 {
1492 	int error;
1493 
1494 	error = specificdata_init(lwp_specificdata_domain, &l->l_specdataref);
1495 	KASSERT(error == 0);
1496 }
1497 
1498 /*
1499  * lwp_finispecific --
1500  *	Finalize an LWP's specificdata container.
1501  */
1502 void
1503 lwp_finispecific(struct lwp *l)
1504 {
1505 
1506 	specificdata_fini(lwp_specificdata_domain, &l->l_specdataref);
1507 }
1508 
1509 /*
1510  * lwp_getspecific --
1511  *	Return lwp-specific data corresponding to the specified key.
1512  *
1513  *	Note: LWP specific data is NOT INTERLOCKED.  An LWP should access
1514  *	only its OWN SPECIFIC DATA.  If it is necessary to access another
1515  *	LWP's specifc data, care must be taken to ensure that doing so
1516  *	would not cause internal data structure inconsistency (i.e. caller
1517  *	can guarantee that the target LWP is not inside an lwp_getspecific()
1518  *	or lwp_setspecific() call).
1519  */
1520 void *
1521 lwp_getspecific(specificdata_key_t key)
1522 {
1523 
1524 	return (specificdata_getspecific_unlocked(lwp_specificdata_domain,
1525 						  &curlwp->l_specdataref, key));
1526 }
1527 
1528 void *
1529 _lwp_getspecific_by_lwp(struct lwp *l, specificdata_key_t key)
1530 {
1531 
1532 	return (specificdata_getspecific_unlocked(lwp_specificdata_domain,
1533 						  &l->l_specdataref, key));
1534 }
1535 
1536 /*
1537  * lwp_setspecific --
1538  *	Set lwp-specific data corresponding to the specified key.
1539  */
1540 void
1541 lwp_setspecific(specificdata_key_t key, void *data)
1542 {
1543 
1544 	specificdata_setspecific(lwp_specificdata_domain,
1545 				 &curlwp->l_specdataref, key, data);
1546 }
1547 
1548 /*
1549  * Allocate a new lwpctl structure for a user LWP.
1550  */
1551 int
1552 lwp_ctl_alloc(vaddr_t *uaddr)
1553 {
1554 	lcproc_t *lp;
1555 	u_int bit, i, offset;
1556 	struct uvm_object *uao;
1557 	int error;
1558 	lcpage_t *lcp;
1559 	proc_t *p;
1560 	lwp_t *l;
1561 
1562 	l = curlwp;
1563 	p = l->l_proc;
1564 
1565 	if (l->l_lcpage != NULL) {
1566 		lcp = l->l_lcpage;
1567 		*uaddr = lcp->lcp_uaddr + (vaddr_t)l->l_lwpctl - lcp->lcp_kaddr;
1568 		return (EINVAL);
1569 	}
1570 
1571 	/* First time around, allocate header structure for the process. */
1572 	if ((lp = p->p_lwpctl) == NULL) {
1573 		lp = kmem_alloc(sizeof(*lp), KM_SLEEP);
1574 		mutex_init(&lp->lp_lock, MUTEX_DEFAULT, IPL_NONE);
1575 		lp->lp_uao = NULL;
1576 		TAILQ_INIT(&lp->lp_pages);
1577 		mutex_enter(p->p_lock);
1578 		if (p->p_lwpctl == NULL) {
1579 			p->p_lwpctl = lp;
1580 			mutex_exit(p->p_lock);
1581 		} else {
1582 			mutex_exit(p->p_lock);
1583 			mutex_destroy(&lp->lp_lock);
1584 			kmem_free(lp, sizeof(*lp));
1585 			lp = p->p_lwpctl;
1586 		}
1587 	}
1588 
1589  	/*
1590  	 * Set up an anonymous memory region to hold the shared pages.
1591  	 * Map them into the process' address space.  The user vmspace
1592  	 * gets the first reference on the UAO.
1593  	 */
1594 	mutex_enter(&lp->lp_lock);
1595 	if (lp->lp_uao == NULL) {
1596 		lp->lp_uao = uao_create(LWPCTL_UAREA_SZ, 0);
1597 		lp->lp_cur = 0;
1598 		lp->lp_max = LWPCTL_UAREA_SZ;
1599 		lp->lp_uva = p->p_emul->e_vm_default_addr(p,
1600 		     (vaddr_t)p->p_vmspace->vm_daddr, LWPCTL_UAREA_SZ);
1601 		error = uvm_map(&p->p_vmspace->vm_map, &lp->lp_uva,
1602 		    LWPCTL_UAREA_SZ, lp->lp_uao, 0, 0, UVM_MAPFLAG(UVM_PROT_RW,
1603 		    UVM_PROT_RW, UVM_INH_NONE, UVM_ADV_NORMAL, 0));
1604 		if (error != 0) {
1605 			uao_detach(lp->lp_uao);
1606 			lp->lp_uao = NULL;
1607 			mutex_exit(&lp->lp_lock);
1608 			return error;
1609 		}
1610 	}
1611 
1612 	/* Get a free block and allocate for this LWP. */
1613 	TAILQ_FOREACH(lcp, &lp->lp_pages, lcp_chain) {
1614 		if (lcp->lcp_nfree != 0)
1615 			break;
1616 	}
1617 	if (lcp == NULL) {
1618 		/* Nothing available - try to set up a free page. */
1619 		if (lp->lp_cur == lp->lp_max) {
1620 			mutex_exit(&lp->lp_lock);
1621 			return ENOMEM;
1622 		}
1623 		lcp = kmem_alloc(LWPCTL_LCPAGE_SZ, KM_SLEEP);
1624 		if (lcp == NULL) {
1625 			mutex_exit(&lp->lp_lock);
1626 			return ENOMEM;
1627 		}
1628 		/*
1629 		 * Wire the next page down in kernel space.  Since this
1630 		 * is a new mapping, we must add a reference.
1631 		 */
1632 		uao = lp->lp_uao;
1633 		(*uao->pgops->pgo_reference)(uao);
1634 		lcp->lcp_kaddr = vm_map_min(kernel_map);
1635 		error = uvm_map(kernel_map, &lcp->lcp_kaddr, PAGE_SIZE,
1636 		    uao, lp->lp_cur, PAGE_SIZE,
1637 		    UVM_MAPFLAG(UVM_PROT_RW, UVM_PROT_RW,
1638 		    UVM_INH_NONE, UVM_ADV_RANDOM, 0));
1639 		if (error != 0) {
1640 			mutex_exit(&lp->lp_lock);
1641 			kmem_free(lcp, LWPCTL_LCPAGE_SZ);
1642 			(*uao->pgops->pgo_detach)(uao);
1643 			return error;
1644 		}
1645 		error = uvm_map_pageable(kernel_map, lcp->lcp_kaddr,
1646 		    lcp->lcp_kaddr + PAGE_SIZE, FALSE, 0);
1647 		if (error != 0) {
1648 			mutex_exit(&lp->lp_lock);
1649 			uvm_unmap(kernel_map, lcp->lcp_kaddr,
1650 			    lcp->lcp_kaddr + PAGE_SIZE);
1651 			kmem_free(lcp, LWPCTL_LCPAGE_SZ);
1652 			return error;
1653 		}
1654 		/* Prepare the page descriptor and link into the list. */
1655 		lcp->lcp_uaddr = lp->lp_uva + lp->lp_cur;
1656 		lp->lp_cur += PAGE_SIZE;
1657 		lcp->lcp_nfree = LWPCTL_PER_PAGE;
1658 		lcp->lcp_rotor = 0;
1659 		memset(lcp->lcp_bitmap, 0xff, LWPCTL_BITMAP_SZ);
1660 		TAILQ_INSERT_HEAD(&lp->lp_pages, lcp, lcp_chain);
1661 	}
1662 	for (i = lcp->lcp_rotor; lcp->lcp_bitmap[i] == 0;) {
1663 		if (++i >= LWPCTL_BITMAP_ENTRIES)
1664 			i = 0;
1665 	}
1666 	bit = ffs(lcp->lcp_bitmap[i]) - 1;
1667 	lcp->lcp_bitmap[i] ^= (1 << bit);
1668 	lcp->lcp_rotor = i;
1669 	lcp->lcp_nfree--;
1670 	l->l_lcpage = lcp;
1671 	offset = (i << 5) + bit;
1672 	l->l_lwpctl = (lwpctl_t *)lcp->lcp_kaddr + offset;
1673 	*uaddr = lcp->lcp_uaddr + offset * sizeof(lwpctl_t);
1674 	mutex_exit(&lp->lp_lock);
1675 
1676 	KPREEMPT_DISABLE(l);
1677 	l->l_lwpctl->lc_curcpu = (int)curcpu()->ci_data.cpu_index;
1678 	KPREEMPT_ENABLE(l);
1679 
1680 	return 0;
1681 }
1682 
1683 /*
1684  * Free an lwpctl structure back to the per-process list.
1685  */
1686 void
1687 lwp_ctl_free(lwp_t *l)
1688 {
1689 	lcproc_t *lp;
1690 	lcpage_t *lcp;
1691 	u_int map, offset;
1692 
1693 	lp = l->l_proc->p_lwpctl;
1694 	KASSERT(lp != NULL);
1695 
1696 	lcp = l->l_lcpage;
1697 	offset = (u_int)((lwpctl_t *)l->l_lwpctl - (lwpctl_t *)lcp->lcp_kaddr);
1698 	KASSERT(offset < LWPCTL_PER_PAGE);
1699 
1700 	mutex_enter(&lp->lp_lock);
1701 	lcp->lcp_nfree++;
1702 	map = offset >> 5;
1703 	lcp->lcp_bitmap[map] |= (1 << (offset & 31));
1704 	if (lcp->lcp_bitmap[lcp->lcp_rotor] == 0)
1705 		lcp->lcp_rotor = map;
1706 	if (TAILQ_FIRST(&lp->lp_pages)->lcp_nfree == 0) {
1707 		TAILQ_REMOVE(&lp->lp_pages, lcp, lcp_chain);
1708 		TAILQ_INSERT_HEAD(&lp->lp_pages, lcp, lcp_chain);
1709 	}
1710 	mutex_exit(&lp->lp_lock);
1711 }
1712 
1713 /*
1714  * Process is exiting; tear down lwpctl state.  This can only be safely
1715  * called by the last LWP in the process.
1716  */
1717 void
1718 lwp_ctl_exit(void)
1719 {
1720 	lcpage_t *lcp, *next;
1721 	lcproc_t *lp;
1722 	proc_t *p;
1723 	lwp_t *l;
1724 
1725 	l = curlwp;
1726 	l->l_lwpctl = NULL;
1727 	l->l_lcpage = NULL;
1728 	p = l->l_proc;
1729 	lp = p->p_lwpctl;
1730 
1731 	KASSERT(lp != NULL);
1732 	KASSERT(p->p_nlwps == 1);
1733 
1734 	for (lcp = TAILQ_FIRST(&lp->lp_pages); lcp != NULL; lcp = next) {
1735 		next = TAILQ_NEXT(lcp, lcp_chain);
1736 		uvm_unmap(kernel_map, lcp->lcp_kaddr,
1737 		    lcp->lcp_kaddr + PAGE_SIZE);
1738 		kmem_free(lcp, LWPCTL_LCPAGE_SZ);
1739 	}
1740 
1741 	if (lp->lp_uao != NULL) {
1742 		uvm_unmap(&p->p_vmspace->vm_map, lp->lp_uva,
1743 		    lp->lp_uva + LWPCTL_UAREA_SZ);
1744 	}
1745 
1746 	mutex_destroy(&lp->lp_lock);
1747 	kmem_free(lp, sizeof(*lp));
1748 	p->p_lwpctl = NULL;
1749 }
1750 
1751 /*
1752  * Return the current LWP's "preemption counter".  Used to detect
1753  * preemption across operations that can tolerate preemption without
1754  * crashing, but which may generate incorrect results if preempted.
1755  */
1756 uint64_t
1757 lwp_pctr(void)
1758 {
1759 
1760 	return curlwp->l_ncsw;
1761 }
1762 
1763 #if defined(DDB)
1764 void
1765 lwp_whatis(uintptr_t addr, void (*pr)(const char *, ...))
1766 {
1767 	lwp_t *l;
1768 
1769 	LIST_FOREACH(l, &alllwp, l_list) {
1770 		uintptr_t stack = (uintptr_t)KSTACK_LOWEST_ADDR(l);
1771 
1772 		if (addr < stack || stack + KSTACK_SIZE <= addr) {
1773 			continue;
1774 		}
1775 		(*pr)("%p is %p+%zu, LWP %p's stack\n",
1776 		    (void *)addr, (void *)stack,
1777 		    (size_t)(addr - stack), l);
1778 	}
1779 }
1780 #endif /* defined(DDB) */
1781