1 /* $NetBSD: kern_lwp.c,v 1.141 2010/03/01 21:10:17 darran Exp $ */ 2 3 /*- 4 * Copyright (c) 2001, 2006, 2007, 2008, 2009 The NetBSD Foundation, Inc. 5 * All rights reserved. 6 * 7 * This code is derived from software contributed to The NetBSD Foundation 8 * by Nathan J. Williams, and Andrew Doran. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS 20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 29 * POSSIBILITY OF SUCH DAMAGE. 30 */ 31 32 /* 33 * Overview 34 * 35 * Lightweight processes (LWPs) are the basic unit or thread of 36 * execution within the kernel. The core state of an LWP is described 37 * by "struct lwp", also known as lwp_t. 38 * 39 * Each LWP is contained within a process (described by "struct proc"), 40 * Every process contains at least one LWP, but may contain more. The 41 * process describes attributes shared among all of its LWPs such as a 42 * private address space, global execution state (stopped, active, 43 * zombie, ...), signal disposition and so on. On a multiprocessor 44 * machine, multiple LWPs be executing concurrently in the kernel. 45 * 46 * Execution states 47 * 48 * At any given time, an LWP has overall state that is described by 49 * lwp::l_stat. The states are broken into two sets below. The first 50 * set is guaranteed to represent the absolute, current state of the 51 * LWP: 52 * 53 * LSONPROC 54 * 55 * On processor: the LWP is executing on a CPU, either in the 56 * kernel or in user space. 57 * 58 * LSRUN 59 * 60 * Runnable: the LWP is parked on a run queue, and may soon be 61 * chosen to run by an idle processor, or by a processor that 62 * has been asked to preempt a currently runnning but lower 63 * priority LWP. 64 * 65 * LSIDL 66 * 67 * Idle: the LWP has been created but has not yet executed, 68 * or it has ceased executing a unit of work and is waiting 69 * to be started again. 70 * 71 * LSSUSPENDED: 72 * 73 * Suspended: the LWP has had its execution suspended by 74 * another LWP in the same process using the _lwp_suspend() 75 * system call. User-level LWPs also enter the suspended 76 * state when the system is shutting down. 77 * 78 * The second set represent a "statement of intent" on behalf of the 79 * LWP. The LWP may in fact be executing on a processor, may be 80 * sleeping or idle. It is expected to take the necessary action to 81 * stop executing or become "running" again within a short timeframe. 82 * The LP_RUNNING flag in lwp::l_pflag indicates that an LWP is running. 83 * Importantly, it indicates that its state is tied to a CPU. 84 * 85 * LSZOMB: 86 * 87 * Dead or dying: the LWP has released most of its resources 88 * and is about to switch away into oblivion, or has already 89 * switched away. When it switches away, its few remaining 90 * resources can be collected. 91 * 92 * LSSLEEP: 93 * 94 * Sleeping: the LWP has entered itself onto a sleep queue, and 95 * has switched away or will switch away shortly to allow other 96 * LWPs to run on the CPU. 97 * 98 * LSSTOP: 99 * 100 * Stopped: the LWP has been stopped as a result of a job 101 * control signal, or as a result of the ptrace() interface. 102 * 103 * Stopped LWPs may run briefly within the kernel to handle 104 * signals that they receive, but will not return to user space 105 * until their process' state is changed away from stopped. 106 * 107 * Single LWPs within a process can not be set stopped 108 * selectively: all actions that can stop or continue LWPs 109 * occur at the process level. 110 * 111 * State transitions 112 * 113 * Note that the LSSTOP state may only be set when returning to 114 * user space in userret(), or when sleeping interruptably. The 115 * LSSUSPENDED state may only be set in userret(). Before setting 116 * those states, we try to ensure that the LWPs will release all 117 * locks that they hold, and at a minimum try to ensure that the 118 * LWP can be set runnable again by a signal. 119 * 120 * LWPs may transition states in the following ways: 121 * 122 * RUN -------> ONPROC ONPROC -----> RUN 123 * > SLEEP 124 * > STOPPED 125 * > SUSPENDED 126 * > ZOMB 127 * > IDL (special cases) 128 * 129 * STOPPED ---> RUN SUSPENDED --> RUN 130 * > SLEEP 131 * 132 * SLEEP -----> ONPROC IDL --------> RUN 133 * > RUN > SUSPENDED 134 * > STOPPED > STOPPED 135 * > ONPROC (special cases) 136 * 137 * Some state transitions are only possible with kernel threads (eg 138 * ONPROC -> IDL) and happen under tightly controlled circumstances 139 * free of unwanted side effects. 140 * 141 * Migration 142 * 143 * Migration of threads from one CPU to another could be performed 144 * internally by the scheduler via sched_takecpu() or sched_catchlwp() 145 * functions. The universal lwp_migrate() function should be used for 146 * any other cases. Subsystems in the kernel must be aware that CPU 147 * of LWP may change, while it is not locked. 148 * 149 * Locking 150 * 151 * The majority of fields in 'struct lwp' are covered by a single, 152 * general spin lock pointed to by lwp::l_mutex. The locks covering 153 * each field are documented in sys/lwp.h. 154 * 155 * State transitions must be made with the LWP's general lock held, 156 * and may cause the LWP's lock pointer to change. Manipulation of 157 * the general lock is not performed directly, but through calls to 158 * lwp_lock(), lwp_relock() and similar. 159 * 160 * States and their associated locks: 161 * 162 * LSONPROC, LSZOMB: 163 * 164 * Always covered by spc_lwplock, which protects running LWPs. 165 * This is a per-CPU lock and matches lwp::l_cpu. 166 * 167 * LSIDL, LSRUN: 168 * 169 * Always covered by spc_mutex, which protects the run queues. 170 * This is a per-CPU lock and matches lwp::l_cpu. 171 * 172 * LSSLEEP: 173 * 174 * Covered by a lock associated with the sleep queue that the 175 * LWP resides on. Matches lwp::l_sleepq::sq_mutex. 176 * 177 * LSSTOP, LSSUSPENDED: 178 * 179 * If the LWP was previously sleeping (l_wchan != NULL), then 180 * l_mutex references the sleep queue lock. If the LWP was 181 * runnable or on the CPU when halted, or has been removed from 182 * the sleep queue since halted, then the lock is spc_lwplock. 183 * 184 * The lock order is as follows: 185 * 186 * spc::spc_lwplock -> 187 * sleeptab::st_mutex -> 188 * tschain_t::tc_mutex -> 189 * spc::spc_mutex 190 * 191 * Each process has an scheduler state lock (proc::p_lock), and a 192 * number of counters on LWPs and their states: p_nzlwps, p_nrlwps, and 193 * so on. When an LWP is to be entered into or removed from one of the 194 * following states, p_lock must be held and the process wide counters 195 * adjusted: 196 * 197 * LSIDL, LSZOMB, LSSTOP, LSSUSPENDED 198 * 199 * (But not always for kernel threads. There are some special cases 200 * as mentioned above. See kern_softint.c.) 201 * 202 * Note that an LWP is considered running or likely to run soon if in 203 * one of the following states. This affects the value of p_nrlwps: 204 * 205 * LSRUN, LSONPROC, LSSLEEP 206 * 207 * p_lock does not need to be held when transitioning among these 208 * three states, hence p_lock is rarely taken for state transitions. 209 */ 210 211 #include <sys/cdefs.h> 212 __KERNEL_RCSID(0, "$NetBSD: kern_lwp.c,v 1.141 2010/03/01 21:10:17 darran Exp $"); 213 214 #include "opt_ddb.h" 215 #include "opt_lockdebug.h" 216 #include "opt_sa.h" 217 #include "opt_dtrace.h" 218 219 #define _LWP_API_PRIVATE 220 221 #include <sys/param.h> 222 #include <sys/systm.h> 223 #include <sys/cpu.h> 224 #include <sys/pool.h> 225 #include <sys/proc.h> 226 #include <sys/sa.h> 227 #include <sys/savar.h> 228 #include <sys/syscallargs.h> 229 #include <sys/syscall_stats.h> 230 #include <sys/kauth.h> 231 #include <sys/sleepq.h> 232 #include <sys/lockdebug.h> 233 #include <sys/kmem.h> 234 #include <sys/pset.h> 235 #include <sys/intr.h> 236 #include <sys/lwpctl.h> 237 #include <sys/atomic.h> 238 #include <sys/filedesc.h> 239 #include <sys/dtrace_bsd.h> 240 #include <sys/sdt.h> 241 242 #include <uvm/uvm_extern.h> 243 #include <uvm/uvm_object.h> 244 245 struct lwplist alllwp = LIST_HEAD_INITIALIZER(alllwp); 246 247 struct pool lwp_uc_pool; 248 249 static pool_cache_t lwp_cache; 250 static specificdata_domain_t lwp_specificdata_domain; 251 252 /* DTrace proc provider probes */ 253 SDT_PROBE_DEFINE(proc,,,lwp_create, 254 "struct lwp *", NULL, 255 NULL, NULL, NULL, NULL, 256 NULL, NULL, NULL, NULL); 257 SDT_PROBE_DEFINE(proc,,,lwp_start, 258 "struct lwp *", NULL, 259 NULL, NULL, NULL, NULL, 260 NULL, NULL, NULL, NULL); 261 SDT_PROBE_DEFINE(proc,,,lwp_exit, 262 "struct lwp *", NULL, 263 NULL, NULL, NULL, NULL, 264 NULL, NULL, NULL, NULL); 265 266 void 267 lwpinit(void) 268 { 269 270 pool_init(&lwp_uc_pool, sizeof(ucontext_t), 0, 0, 0, "lwpucpl", 271 &pool_allocator_nointr, IPL_NONE); 272 lwp_specificdata_domain = specificdata_domain_create(); 273 KASSERT(lwp_specificdata_domain != NULL); 274 lwp_sys_init(); 275 lwp_cache = pool_cache_init(sizeof(lwp_t), MIN_LWP_ALIGNMENT, 0, 0, 276 "lwppl", NULL, IPL_NONE, NULL, NULL, NULL); 277 } 278 279 /* 280 * Set an suspended. 281 * 282 * Must be called with p_lock held, and the LWP locked. Will unlock the 283 * LWP before return. 284 */ 285 int 286 lwp_suspend(struct lwp *curl, struct lwp *t) 287 { 288 int error; 289 290 KASSERT(mutex_owned(t->l_proc->p_lock)); 291 KASSERT(lwp_locked(t, NULL)); 292 293 KASSERT(curl != t || curl->l_stat == LSONPROC); 294 295 /* 296 * If the current LWP has been told to exit, we must not suspend anyone 297 * else or deadlock could occur. We won't return to userspace. 298 */ 299 if ((curl->l_flag & (LW_WEXIT | LW_WCORE)) != 0) { 300 lwp_unlock(t); 301 return (EDEADLK); 302 } 303 304 error = 0; 305 306 switch (t->l_stat) { 307 case LSRUN: 308 case LSONPROC: 309 t->l_flag |= LW_WSUSPEND; 310 lwp_need_userret(t); 311 lwp_unlock(t); 312 break; 313 314 case LSSLEEP: 315 t->l_flag |= LW_WSUSPEND; 316 317 /* 318 * Kick the LWP and try to get it to the kernel boundary 319 * so that it will release any locks that it holds. 320 * setrunnable() will release the lock. 321 */ 322 if ((t->l_flag & LW_SINTR) != 0) 323 setrunnable(t); 324 else 325 lwp_unlock(t); 326 break; 327 328 case LSSUSPENDED: 329 lwp_unlock(t); 330 break; 331 332 case LSSTOP: 333 t->l_flag |= LW_WSUSPEND; 334 setrunnable(t); 335 break; 336 337 case LSIDL: 338 case LSZOMB: 339 error = EINTR; /* It's what Solaris does..... */ 340 lwp_unlock(t); 341 break; 342 } 343 344 return (error); 345 } 346 347 /* 348 * Restart a suspended LWP. 349 * 350 * Must be called with p_lock held, and the LWP locked. Will unlock the 351 * LWP before return. 352 */ 353 void 354 lwp_continue(struct lwp *l) 355 { 356 357 KASSERT(mutex_owned(l->l_proc->p_lock)); 358 KASSERT(lwp_locked(l, NULL)); 359 360 /* If rebooting or not suspended, then just bail out. */ 361 if ((l->l_flag & LW_WREBOOT) != 0) { 362 lwp_unlock(l); 363 return; 364 } 365 366 l->l_flag &= ~LW_WSUSPEND; 367 368 if (l->l_stat != LSSUSPENDED) { 369 lwp_unlock(l); 370 return; 371 } 372 373 /* setrunnable() will release the lock. */ 374 setrunnable(l); 375 } 376 377 /* 378 * Wait for an LWP within the current process to exit. If 'lid' is 379 * non-zero, we are waiting for a specific LWP. 380 * 381 * Must be called with p->p_lock held. 382 */ 383 int 384 lwp_wait1(struct lwp *l, lwpid_t lid, lwpid_t *departed, int flags) 385 { 386 struct proc *p = l->l_proc; 387 struct lwp *l2; 388 int nfound, error; 389 lwpid_t curlid; 390 bool exiting; 391 392 KASSERT(mutex_owned(p->p_lock)); 393 394 p->p_nlwpwait++; 395 l->l_waitingfor = lid; 396 curlid = l->l_lid; 397 exiting = ((flags & LWPWAIT_EXITCONTROL) != 0); 398 399 for (;;) { 400 /* 401 * Avoid a race between exit1() and sigexit(): if the 402 * process is dumping core, then we need to bail out: call 403 * into lwp_userret() where we will be suspended until the 404 * deed is done. 405 */ 406 if ((p->p_sflag & PS_WCORE) != 0) { 407 mutex_exit(p->p_lock); 408 lwp_userret(l); 409 #ifdef DIAGNOSTIC 410 panic("lwp_wait1"); 411 #endif 412 /* NOTREACHED */ 413 } 414 415 /* 416 * First off, drain any detached LWP that is waiting to be 417 * reaped. 418 */ 419 while ((l2 = p->p_zomblwp) != NULL) { 420 p->p_zomblwp = NULL; 421 lwp_free(l2, false, false);/* releases proc mutex */ 422 mutex_enter(p->p_lock); 423 } 424 425 /* 426 * Now look for an LWP to collect. If the whole process is 427 * exiting, count detached LWPs as eligible to be collected, 428 * but don't drain them here. 429 */ 430 nfound = 0; 431 error = 0; 432 LIST_FOREACH(l2, &p->p_lwps, l_sibling) { 433 /* 434 * If a specific wait and the target is waiting on 435 * us, then avoid deadlock. This also traps LWPs 436 * that try to wait on themselves. 437 * 438 * Note that this does not handle more complicated 439 * cycles, like: t1 -> t2 -> t3 -> t1. The process 440 * can still be killed so it is not a major problem. 441 */ 442 if (l2->l_lid == lid && l2->l_waitingfor == curlid) { 443 error = EDEADLK; 444 break; 445 } 446 if (l2 == l) 447 continue; 448 if ((l2->l_prflag & LPR_DETACHED) != 0) { 449 nfound += exiting; 450 continue; 451 } 452 if (lid != 0) { 453 if (l2->l_lid != lid) 454 continue; 455 /* 456 * Mark this LWP as the first waiter, if there 457 * is no other. 458 */ 459 if (l2->l_waiter == 0) 460 l2->l_waiter = curlid; 461 } else if (l2->l_waiter != 0) { 462 /* 463 * It already has a waiter - so don't 464 * collect it. If the waiter doesn't 465 * grab it we'll get another chance 466 * later. 467 */ 468 nfound++; 469 continue; 470 } 471 nfound++; 472 473 /* No need to lock the LWP in order to see LSZOMB. */ 474 if (l2->l_stat != LSZOMB) 475 continue; 476 477 /* 478 * We're no longer waiting. Reset the "first waiter" 479 * pointer on the target, in case it was us. 480 */ 481 l->l_waitingfor = 0; 482 l2->l_waiter = 0; 483 p->p_nlwpwait--; 484 if (departed) 485 *departed = l2->l_lid; 486 sched_lwp_collect(l2); 487 488 /* lwp_free() releases the proc lock. */ 489 lwp_free(l2, false, false); 490 mutex_enter(p->p_lock); 491 return 0; 492 } 493 494 if (error != 0) 495 break; 496 if (nfound == 0) { 497 error = ESRCH; 498 break; 499 } 500 501 /* 502 * The kernel is careful to ensure that it can not deadlock 503 * when exiting - just keep waiting. 504 */ 505 if (exiting) { 506 KASSERT(p->p_nlwps > 1); 507 cv_wait(&p->p_lwpcv, p->p_lock); 508 continue; 509 } 510 511 /* 512 * If all other LWPs are waiting for exits or suspends 513 * and the supply of zombies and potential zombies is 514 * exhausted, then we are about to deadlock. 515 * 516 * If the process is exiting (and this LWP is not the one 517 * that is coordinating the exit) then bail out now. 518 */ 519 if ((p->p_sflag & PS_WEXIT) != 0 || 520 p->p_nrlwps + p->p_nzlwps - p->p_ndlwps <= p->p_nlwpwait) { 521 error = EDEADLK; 522 break; 523 } 524 525 /* 526 * Sit around and wait for something to happen. We'll be 527 * awoken if any of the conditions examined change: if an 528 * LWP exits, is collected, or is detached. 529 */ 530 if ((error = cv_wait_sig(&p->p_lwpcv, p->p_lock)) != 0) 531 break; 532 } 533 534 /* 535 * We didn't find any LWPs to collect, we may have received a 536 * signal, or some other condition has caused us to bail out. 537 * 538 * If waiting on a specific LWP, clear the waiters marker: some 539 * other LWP may want it. Then, kick all the remaining waiters 540 * so that they can re-check for zombies and for deadlock. 541 */ 542 if (lid != 0) { 543 LIST_FOREACH(l2, &p->p_lwps, l_sibling) { 544 if (l2->l_lid == lid) { 545 if (l2->l_waiter == curlid) 546 l2->l_waiter = 0; 547 break; 548 } 549 } 550 } 551 p->p_nlwpwait--; 552 l->l_waitingfor = 0; 553 cv_broadcast(&p->p_lwpcv); 554 555 return error; 556 } 557 558 /* 559 * Create a new LWP within process 'p2', using LWP 'l1' as a template. 560 * The new LWP is created in state LSIDL and must be set running, 561 * suspended, or stopped by the caller. 562 */ 563 int 564 lwp_create(lwp_t *l1, proc_t *p2, vaddr_t uaddr, int flags, 565 void *stack, size_t stacksize, void (*func)(void *), void *arg, 566 lwp_t **rnewlwpp, int sclass) 567 { 568 struct lwp *l2, *isfree; 569 turnstile_t *ts; 570 571 KASSERT(l1 == curlwp || l1->l_proc == &proc0); 572 573 /* 574 * First off, reap any detached LWP waiting to be collected. 575 * We can re-use its LWP structure and turnstile. 576 */ 577 isfree = NULL; 578 if (p2->p_zomblwp != NULL) { 579 mutex_enter(p2->p_lock); 580 if ((isfree = p2->p_zomblwp) != NULL) { 581 p2->p_zomblwp = NULL; 582 lwp_free(isfree, true, false);/* releases proc mutex */ 583 } else 584 mutex_exit(p2->p_lock); 585 } 586 if (isfree == NULL) { 587 l2 = pool_cache_get(lwp_cache, PR_WAITOK); 588 memset(l2, 0, sizeof(*l2)); 589 l2->l_ts = pool_cache_get(turnstile_cache, PR_WAITOK); 590 SLIST_INIT(&l2->l_pi_lenders); 591 } else { 592 l2 = isfree; 593 ts = l2->l_ts; 594 KASSERT(l2->l_inheritedprio == -1); 595 KASSERT(SLIST_EMPTY(&l2->l_pi_lenders)); 596 memset(l2, 0, sizeof(*l2)); 597 l2->l_ts = ts; 598 } 599 600 l2->l_stat = LSIDL; 601 l2->l_proc = p2; 602 l2->l_refcnt = 1; 603 l2->l_class = sclass; 604 605 /* 606 * If vfork(), we want the LWP to run fast and on the same CPU 607 * as its parent, so that it can reuse the VM context and cache 608 * footprint on the local CPU. 609 */ 610 l2->l_kpriority = ((flags & LWP_VFORK) ? true : false); 611 l2->l_kpribase = PRI_KERNEL; 612 l2->l_priority = l1->l_priority; 613 l2->l_inheritedprio = -1; 614 l2->l_flag = 0; 615 l2->l_pflag = LP_MPSAFE; 616 TAILQ_INIT(&l2->l_ld_locks); 617 618 /* 619 * If not the first LWP in the process, grab a reference to the 620 * descriptor table. 621 */ 622 l2->l_fd = p2->p_fd; 623 if (p2->p_nlwps != 0) { 624 KASSERT(l1->l_proc == p2); 625 fd_hold(l2); 626 } else { 627 KASSERT(l1->l_proc != p2); 628 } 629 630 if (p2->p_flag & PK_SYSTEM) { 631 /* Mark it as a system LWP. */ 632 l2->l_flag |= LW_SYSTEM; 633 } 634 635 kpreempt_disable(); 636 l2->l_mutex = l1->l_cpu->ci_schedstate.spc_mutex; 637 l2->l_cpu = l1->l_cpu; 638 kpreempt_enable(); 639 640 kdtrace_thread_ctor(NULL, l2); 641 lwp_initspecific(l2); 642 sched_lwp_fork(l1, l2); 643 lwp_update_creds(l2); 644 callout_init(&l2->l_timeout_ch, CALLOUT_MPSAFE); 645 callout_setfunc(&l2->l_timeout_ch, sleepq_timeout, l2); 646 cv_init(&l2->l_sigcv, "sigwait"); 647 l2->l_syncobj = &sched_syncobj; 648 649 if (rnewlwpp != NULL) 650 *rnewlwpp = l2; 651 652 uvm_lwp_setuarea(l2, uaddr); 653 uvm_lwp_fork(l1, l2, stack, stacksize, func, 654 (arg != NULL) ? arg : l2); 655 656 mutex_enter(p2->p_lock); 657 658 if ((flags & LWP_DETACHED) != 0) { 659 l2->l_prflag = LPR_DETACHED; 660 p2->p_ndlwps++; 661 } else 662 l2->l_prflag = 0; 663 664 l2->l_sigmask = l1->l_sigmask; 665 CIRCLEQ_INIT(&l2->l_sigpend.sp_info); 666 sigemptyset(&l2->l_sigpend.sp_set); 667 668 p2->p_nlwpid++; 669 if (p2->p_nlwpid == 0) 670 p2->p_nlwpid++; 671 l2->l_lid = p2->p_nlwpid; 672 LIST_INSERT_HEAD(&p2->p_lwps, l2, l_sibling); 673 p2->p_nlwps++; 674 675 if ((p2->p_flag & PK_SYSTEM) == 0) { 676 /* Inherit an affinity */ 677 if (l1->l_flag & LW_AFFINITY) { 678 /* 679 * Note that we hold the state lock while inheriting 680 * the affinity to avoid race with sched_setaffinity(). 681 */ 682 lwp_lock(l1); 683 if (l1->l_flag & LW_AFFINITY) { 684 kcpuset_use(l1->l_affinity); 685 l2->l_affinity = l1->l_affinity; 686 l2->l_flag |= LW_AFFINITY; 687 } 688 lwp_unlock(l1); 689 } 690 lwp_lock(l2); 691 /* Inherit a processor-set */ 692 l2->l_psid = l1->l_psid; 693 /* Look for a CPU to start */ 694 l2->l_cpu = sched_takecpu(l2); 695 lwp_unlock_to(l2, l2->l_cpu->ci_schedstate.spc_mutex); 696 } 697 mutex_exit(p2->p_lock); 698 699 SDT_PROBE(proc,,,lwp_create, l2, 0,0,0,0); 700 701 mutex_enter(proc_lock); 702 LIST_INSERT_HEAD(&alllwp, l2, l_list); 703 mutex_exit(proc_lock); 704 705 SYSCALL_TIME_LWP_INIT(l2); 706 707 if (p2->p_emul->e_lwp_fork) 708 (*p2->p_emul->e_lwp_fork)(l1, l2); 709 710 return (0); 711 } 712 713 /* 714 * Called by MD code when a new LWP begins execution. Must be called 715 * with the previous LWP locked (so at splsched), or if there is no 716 * previous LWP, at splsched. 717 */ 718 void 719 lwp_startup(struct lwp *prev, struct lwp *new) 720 { 721 722 SDT_PROBE(proc,,,lwp_start, new, 0,0,0,0); 723 724 KASSERT(kpreempt_disabled()); 725 if (prev != NULL) { 726 /* 727 * Normalize the count of the spin-mutexes, it was 728 * increased in mi_switch(). Unmark the state of 729 * context switch - it is finished for previous LWP. 730 */ 731 curcpu()->ci_mtx_count++; 732 membar_exit(); 733 prev->l_ctxswtch = 0; 734 } 735 KPREEMPT_DISABLE(new); 736 spl0(); 737 pmap_activate(new); 738 LOCKDEBUG_BARRIER(NULL, 0); 739 KPREEMPT_ENABLE(new); 740 if ((new->l_pflag & LP_MPSAFE) == 0) { 741 KERNEL_LOCK(1, new); 742 } 743 } 744 745 /* 746 * Exit an LWP. 747 */ 748 void 749 lwp_exit(struct lwp *l) 750 { 751 struct proc *p = l->l_proc; 752 struct lwp *l2; 753 bool current; 754 755 current = (l == curlwp); 756 757 KASSERT(current || (l->l_stat == LSIDL && l->l_target_cpu == NULL)); 758 KASSERT(p == curproc); 759 760 SDT_PROBE(proc,,,lwp_exit, l, 0,0,0,0); 761 762 /* 763 * Verify that we hold no locks other than the kernel lock. 764 */ 765 LOCKDEBUG_BARRIER(&kernel_lock, 0); 766 767 /* 768 * If we are the last live LWP in a process, we need to exit the 769 * entire process. We do so with an exit status of zero, because 770 * it's a "controlled" exit, and because that's what Solaris does. 771 * 772 * We are not quite a zombie yet, but for accounting purposes we 773 * must increment the count of zombies here. 774 * 775 * Note: the last LWP's specificdata will be deleted here. 776 */ 777 mutex_enter(p->p_lock); 778 if (p->p_nlwps - p->p_nzlwps == 1) { 779 KASSERT(current == true); 780 /* XXXSMP kernel_lock not held */ 781 exit1(l, 0); 782 /* NOTREACHED */ 783 } 784 p->p_nzlwps++; 785 mutex_exit(p->p_lock); 786 787 if (p->p_emul->e_lwp_exit) 788 (*p->p_emul->e_lwp_exit)(l); 789 790 /* Drop filedesc reference. */ 791 fd_free(); 792 793 /* Delete the specificdata while it's still safe to sleep. */ 794 specificdata_fini(lwp_specificdata_domain, &l->l_specdataref); 795 796 /* 797 * Release our cached credentials. 798 */ 799 kauth_cred_free(l->l_cred); 800 callout_destroy(&l->l_timeout_ch); 801 802 /* 803 * Remove the LWP from the global list. 804 */ 805 mutex_enter(proc_lock); 806 LIST_REMOVE(l, l_list); 807 mutex_exit(proc_lock); 808 809 /* 810 * Get rid of all references to the LWP that others (e.g. procfs) 811 * may have, and mark the LWP as a zombie. If the LWP is detached, 812 * mark it waiting for collection in the proc structure. Note that 813 * before we can do that, we need to free any other dead, deatched 814 * LWP waiting to meet its maker. 815 */ 816 mutex_enter(p->p_lock); 817 lwp_drainrefs(l); 818 819 if ((l->l_prflag & LPR_DETACHED) != 0) { 820 while ((l2 = p->p_zomblwp) != NULL) { 821 p->p_zomblwp = NULL; 822 lwp_free(l2, false, false);/* releases proc mutex */ 823 mutex_enter(p->p_lock); 824 l->l_refcnt++; 825 lwp_drainrefs(l); 826 } 827 p->p_zomblwp = l; 828 } 829 830 /* 831 * If we find a pending signal for the process and we have been 832 * asked to check for signals, then we loose: arrange to have 833 * all other LWPs in the process check for signals. 834 */ 835 if ((l->l_flag & LW_PENDSIG) != 0 && 836 firstsig(&p->p_sigpend.sp_set) != 0) { 837 LIST_FOREACH(l2, &p->p_lwps, l_sibling) { 838 lwp_lock(l2); 839 l2->l_flag |= LW_PENDSIG; 840 lwp_unlock(l2); 841 } 842 } 843 844 lwp_lock(l); 845 l->l_stat = LSZOMB; 846 if (l->l_name != NULL) 847 strcpy(l->l_name, "(zombie)"); 848 if (l->l_flag & LW_AFFINITY) { 849 l->l_flag &= ~LW_AFFINITY; 850 } else { 851 KASSERT(l->l_affinity == NULL); 852 } 853 lwp_unlock(l); 854 p->p_nrlwps--; 855 cv_broadcast(&p->p_lwpcv); 856 if (l->l_lwpctl != NULL) 857 l->l_lwpctl->lc_curcpu = LWPCTL_CPU_EXITED; 858 mutex_exit(p->p_lock); 859 860 /* Safe without lock since LWP is in zombie state */ 861 if (l->l_affinity) { 862 kcpuset_unuse(l->l_affinity, NULL); 863 l->l_affinity = NULL; 864 } 865 866 /* 867 * We can no longer block. At this point, lwp_free() may already 868 * be gunning for us. On a multi-CPU system, we may be off p_lwps. 869 * 870 * Free MD LWP resources. 871 */ 872 cpu_lwp_free(l, 0); 873 874 if (current) { 875 pmap_deactivate(l); 876 877 /* 878 * Release the kernel lock, and switch away into 879 * oblivion. 880 */ 881 #ifdef notyet 882 /* XXXSMP hold in lwp_userret() */ 883 KERNEL_UNLOCK_LAST(l); 884 #else 885 KERNEL_UNLOCK_ALL(l, NULL); 886 #endif 887 lwp_exit_switchaway(l); 888 } 889 } 890 891 /* 892 * Free a dead LWP's remaining resources. 893 * 894 * XXXLWP limits. 895 */ 896 void 897 lwp_free(struct lwp *l, bool recycle, bool last) 898 { 899 struct proc *p = l->l_proc; 900 struct rusage *ru; 901 ksiginfoq_t kq; 902 903 KASSERT(l != curlwp); 904 905 /* 906 * If this was not the last LWP in the process, then adjust 907 * counters and unlock. 908 */ 909 if (!last) { 910 /* 911 * Add the LWP's run time to the process' base value. 912 * This needs to co-incide with coming off p_lwps. 913 */ 914 bintime_add(&p->p_rtime, &l->l_rtime); 915 p->p_pctcpu += l->l_pctcpu; 916 ru = &p->p_stats->p_ru; 917 ruadd(ru, &l->l_ru); 918 ru->ru_nvcsw += (l->l_ncsw - l->l_nivcsw); 919 ru->ru_nivcsw += l->l_nivcsw; 920 LIST_REMOVE(l, l_sibling); 921 p->p_nlwps--; 922 p->p_nzlwps--; 923 if ((l->l_prflag & LPR_DETACHED) != 0) 924 p->p_ndlwps--; 925 926 /* 927 * Have any LWPs sleeping in lwp_wait() recheck for 928 * deadlock. 929 */ 930 cv_broadcast(&p->p_lwpcv); 931 mutex_exit(p->p_lock); 932 } 933 934 #ifdef MULTIPROCESSOR 935 /* 936 * In the unlikely event that the LWP is still on the CPU, 937 * then spin until it has switched away. We need to release 938 * all locks to avoid deadlock against interrupt handlers on 939 * the target CPU. 940 */ 941 if ((l->l_pflag & LP_RUNNING) != 0 || l->l_cpu->ci_curlwp == l) { 942 int count; 943 (void)count; /* XXXgcc */ 944 KERNEL_UNLOCK_ALL(curlwp, &count); 945 while ((l->l_pflag & LP_RUNNING) != 0 || 946 l->l_cpu->ci_curlwp == l) 947 SPINLOCK_BACKOFF_HOOK; 948 KERNEL_LOCK(count, curlwp); 949 } 950 #endif 951 952 /* 953 * Destroy the LWP's remaining signal information. 954 */ 955 ksiginfo_queue_init(&kq); 956 sigclear(&l->l_sigpend, NULL, &kq); 957 ksiginfo_queue_drain(&kq); 958 cv_destroy(&l->l_sigcv); 959 960 /* 961 * Free the LWP's turnstile and the LWP structure itself unless the 962 * caller wants to recycle them. Also, free the scheduler specific 963 * data. 964 * 965 * We can't return turnstile0 to the pool (it didn't come from it), 966 * so if it comes up just drop it quietly and move on. 967 * 968 * We don't recycle the VM resources at this time. 969 */ 970 if (l->l_lwpctl != NULL) 971 lwp_ctl_free(l); 972 973 if (!recycle && l->l_ts != &turnstile0) 974 pool_cache_put(turnstile_cache, l->l_ts); 975 if (l->l_name != NULL) 976 kmem_free(l->l_name, MAXCOMLEN); 977 978 cpu_lwp_free2(l); 979 uvm_lwp_exit(l); 980 981 KASSERT(SLIST_EMPTY(&l->l_pi_lenders)); 982 KASSERT(l->l_inheritedprio == -1); 983 kdtrace_thread_dtor(NULL, l); 984 if (!recycle) 985 pool_cache_put(lwp_cache, l); 986 } 987 988 /* 989 * Migrate the LWP to the another CPU. Unlocks the LWP. 990 */ 991 void 992 lwp_migrate(lwp_t *l, struct cpu_info *tci) 993 { 994 struct schedstate_percpu *tspc; 995 int lstat = l->l_stat; 996 997 KASSERT(lwp_locked(l, NULL)); 998 KASSERT(tci != NULL); 999 1000 /* If LWP is still on the CPU, it must be handled like LSONPROC */ 1001 if ((l->l_pflag & LP_RUNNING) != 0) { 1002 lstat = LSONPROC; 1003 } 1004 1005 /* 1006 * The destination CPU could be changed while previous migration 1007 * was not finished. 1008 */ 1009 if (l->l_target_cpu != NULL) { 1010 l->l_target_cpu = tci; 1011 lwp_unlock(l); 1012 return; 1013 } 1014 1015 /* Nothing to do if trying to migrate to the same CPU */ 1016 if (l->l_cpu == tci) { 1017 lwp_unlock(l); 1018 return; 1019 } 1020 1021 KASSERT(l->l_target_cpu == NULL); 1022 tspc = &tci->ci_schedstate; 1023 switch (lstat) { 1024 case LSRUN: 1025 l->l_target_cpu = tci; 1026 break; 1027 case LSIDL: 1028 l->l_cpu = tci; 1029 lwp_unlock_to(l, tspc->spc_mutex); 1030 return; 1031 case LSSLEEP: 1032 l->l_cpu = tci; 1033 break; 1034 case LSSTOP: 1035 case LSSUSPENDED: 1036 l->l_cpu = tci; 1037 if (l->l_wchan == NULL) { 1038 lwp_unlock_to(l, tspc->spc_lwplock); 1039 return; 1040 } 1041 break; 1042 case LSONPROC: 1043 l->l_target_cpu = tci; 1044 spc_lock(l->l_cpu); 1045 cpu_need_resched(l->l_cpu, RESCHED_KPREEMPT); 1046 spc_unlock(l->l_cpu); 1047 break; 1048 } 1049 lwp_unlock(l); 1050 } 1051 1052 /* 1053 * Find the LWP in the process. Arguments may be zero, in such case, 1054 * the calling process and first LWP in the list will be used. 1055 * On success - returns proc locked. 1056 */ 1057 struct lwp * 1058 lwp_find2(pid_t pid, lwpid_t lid) 1059 { 1060 proc_t *p; 1061 lwp_t *l; 1062 1063 /* Find the process */ 1064 p = (pid == 0) ? curlwp->l_proc : p_find(pid, PFIND_UNLOCK_FAIL); 1065 if (p == NULL) 1066 return NULL; 1067 mutex_enter(p->p_lock); 1068 if (pid != 0) { 1069 /* Case of p_find */ 1070 mutex_exit(proc_lock); 1071 } 1072 1073 /* Find the thread */ 1074 l = (lid == 0) ? LIST_FIRST(&p->p_lwps) : lwp_find(p, lid); 1075 if (l == NULL) { 1076 mutex_exit(p->p_lock); 1077 } 1078 1079 return l; 1080 } 1081 1082 /* 1083 * Look up a live LWP within the speicifed process, and return it locked. 1084 * 1085 * Must be called with p->p_lock held. 1086 */ 1087 struct lwp * 1088 lwp_find(struct proc *p, int id) 1089 { 1090 struct lwp *l; 1091 1092 KASSERT(mutex_owned(p->p_lock)); 1093 1094 LIST_FOREACH(l, &p->p_lwps, l_sibling) { 1095 if (l->l_lid == id) 1096 break; 1097 } 1098 1099 /* 1100 * No need to lock - all of these conditions will 1101 * be visible with the process level mutex held. 1102 */ 1103 if (l != NULL && (l->l_stat == LSIDL || l->l_stat == LSZOMB)) 1104 l = NULL; 1105 1106 return l; 1107 } 1108 1109 /* 1110 * Update an LWP's cached credentials to mirror the process' master copy. 1111 * 1112 * This happens early in the syscall path, on user trap, and on LWP 1113 * creation. A long-running LWP can also voluntarily choose to update 1114 * it's credentials by calling this routine. This may be called from 1115 * LWP_CACHE_CREDS(), which checks l->l_cred != p->p_cred beforehand. 1116 */ 1117 void 1118 lwp_update_creds(struct lwp *l) 1119 { 1120 kauth_cred_t oc; 1121 struct proc *p; 1122 1123 p = l->l_proc; 1124 oc = l->l_cred; 1125 1126 mutex_enter(p->p_lock); 1127 kauth_cred_hold(p->p_cred); 1128 l->l_cred = p->p_cred; 1129 l->l_prflag &= ~LPR_CRMOD; 1130 mutex_exit(p->p_lock); 1131 if (oc != NULL) 1132 kauth_cred_free(oc); 1133 } 1134 1135 /* 1136 * Verify that an LWP is locked, and optionally verify that the lock matches 1137 * one we specify. 1138 */ 1139 int 1140 lwp_locked(struct lwp *l, kmutex_t *mtx) 1141 { 1142 kmutex_t *cur = l->l_mutex; 1143 1144 return mutex_owned(cur) && (mtx == cur || mtx == NULL); 1145 } 1146 1147 /* 1148 * Lock an LWP. 1149 */ 1150 kmutex_t * 1151 lwp_lock_retry(struct lwp *l, kmutex_t *old) 1152 { 1153 1154 /* 1155 * XXXgcc ignoring kmutex_t * volatile on i386 1156 * 1157 * gcc version 4.1.2 20061021 prerelease (NetBSD nb1 20061021) 1158 */ 1159 #if 1 1160 while (l->l_mutex != old) { 1161 #else 1162 for (;;) { 1163 #endif 1164 mutex_spin_exit(old); 1165 old = l->l_mutex; 1166 mutex_spin_enter(old); 1167 1168 /* 1169 * mutex_enter() will have posted a read barrier. Re-test 1170 * l->l_mutex. If it has changed, we need to try again. 1171 */ 1172 #if 1 1173 } 1174 #else 1175 } while (__predict_false(l->l_mutex != old)); 1176 #endif 1177 1178 return old; 1179 } 1180 1181 /* 1182 * Lend a new mutex to an LWP. The old mutex must be held. 1183 */ 1184 void 1185 lwp_setlock(struct lwp *l, kmutex_t *new) 1186 { 1187 1188 KASSERT(mutex_owned(l->l_mutex)); 1189 1190 membar_exit(); 1191 l->l_mutex = new; 1192 } 1193 1194 /* 1195 * Lend a new mutex to an LWP, and release the old mutex. The old mutex 1196 * must be held. 1197 */ 1198 void 1199 lwp_unlock_to(struct lwp *l, kmutex_t *new) 1200 { 1201 kmutex_t *old; 1202 1203 KASSERT(mutex_owned(l->l_mutex)); 1204 1205 old = l->l_mutex; 1206 membar_exit(); 1207 l->l_mutex = new; 1208 mutex_spin_exit(old); 1209 } 1210 1211 /* 1212 * Acquire a new mutex, and donate it to an LWP. The LWP must already be 1213 * locked. 1214 */ 1215 void 1216 lwp_relock(struct lwp *l, kmutex_t *new) 1217 { 1218 kmutex_t *old; 1219 1220 KASSERT(mutex_owned(l->l_mutex)); 1221 1222 old = l->l_mutex; 1223 if (old != new) { 1224 mutex_spin_enter(new); 1225 l->l_mutex = new; 1226 mutex_spin_exit(old); 1227 } 1228 } 1229 1230 int 1231 lwp_trylock(struct lwp *l) 1232 { 1233 kmutex_t *old; 1234 1235 for (;;) { 1236 if (!mutex_tryenter(old = l->l_mutex)) 1237 return 0; 1238 if (__predict_true(l->l_mutex == old)) 1239 return 1; 1240 mutex_spin_exit(old); 1241 } 1242 } 1243 1244 void 1245 lwp_unsleep(lwp_t *l, bool cleanup) 1246 { 1247 1248 KASSERT(mutex_owned(l->l_mutex)); 1249 (*l->l_syncobj->sobj_unsleep)(l, cleanup); 1250 } 1251 1252 1253 /* 1254 * Handle exceptions for mi_userret(). Called if a member of LW_USERRET is 1255 * set. 1256 */ 1257 void 1258 lwp_userret(struct lwp *l) 1259 { 1260 struct proc *p; 1261 void (*hook)(void); 1262 int sig; 1263 1264 KASSERT(l == curlwp); 1265 KASSERT(l->l_stat == LSONPROC); 1266 p = l->l_proc; 1267 1268 #ifndef __HAVE_FAST_SOFTINTS 1269 /* Run pending soft interrupts. */ 1270 if (l->l_cpu->ci_data.cpu_softints != 0) 1271 softint_overlay(); 1272 #endif 1273 1274 #ifdef KERN_SA 1275 /* Generate UNBLOCKED upcall if needed */ 1276 if (l->l_flag & LW_SA_BLOCKING) { 1277 sa_unblock_userret(l); 1278 /* NOTREACHED */ 1279 } 1280 #endif 1281 1282 /* 1283 * It should be safe to do this read unlocked on a multiprocessor 1284 * system.. 1285 * 1286 * LW_SA_UPCALL will be handled after the while() loop, so don't 1287 * consider it now. 1288 */ 1289 while ((l->l_flag & (LW_USERRET & ~(LW_SA_UPCALL))) != 0) { 1290 /* 1291 * Process pending signals first, unless the process 1292 * is dumping core or exiting, where we will instead 1293 * enter the LW_WSUSPEND case below. 1294 */ 1295 if ((l->l_flag & (LW_PENDSIG | LW_WCORE | LW_WEXIT)) == 1296 LW_PENDSIG) { 1297 mutex_enter(p->p_lock); 1298 while ((sig = issignal(l)) != 0) 1299 postsig(sig); 1300 mutex_exit(p->p_lock); 1301 } 1302 1303 /* 1304 * Core-dump or suspend pending. 1305 * 1306 * In case of core dump, suspend ourselves, so that the 1307 * kernel stack and therefore the userland registers saved 1308 * in the trapframe are around for coredump() to write them 1309 * out. We issue a wakeup on p->p_lwpcv so that sigexit() 1310 * will write the core file out once all other LWPs are 1311 * suspended. 1312 */ 1313 if ((l->l_flag & LW_WSUSPEND) != 0) { 1314 mutex_enter(p->p_lock); 1315 p->p_nrlwps--; 1316 cv_broadcast(&p->p_lwpcv); 1317 lwp_lock(l); 1318 l->l_stat = LSSUSPENDED; 1319 lwp_unlock(l); 1320 mutex_exit(p->p_lock); 1321 lwp_lock(l); 1322 mi_switch(l); 1323 } 1324 1325 /* Process is exiting. */ 1326 if ((l->l_flag & LW_WEXIT) != 0) { 1327 lwp_exit(l); 1328 KASSERT(0); 1329 /* NOTREACHED */ 1330 } 1331 1332 /* Call userret hook; used by Linux emulation. */ 1333 if ((l->l_flag & LW_WUSERRET) != 0) { 1334 lwp_lock(l); 1335 l->l_flag &= ~LW_WUSERRET; 1336 lwp_unlock(l); 1337 hook = p->p_userret; 1338 p->p_userret = NULL; 1339 (*hook)(); 1340 } 1341 } 1342 1343 #ifdef KERN_SA 1344 /* 1345 * Timer events are handled specially. We only try once to deliver 1346 * pending timer upcalls; if if fails, we can try again on the next 1347 * loop around. If we need to re-enter lwp_userret(), MD code will 1348 * bounce us back here through the trap path after we return. 1349 */ 1350 if (p->p_timerpend) 1351 timerupcall(l); 1352 if (l->l_flag & LW_SA_UPCALL) 1353 sa_upcall_userret(l); 1354 #endif /* KERN_SA */ 1355 } 1356 1357 /* 1358 * Force an LWP to enter the kernel, to take a trip through lwp_userret(). 1359 */ 1360 void 1361 lwp_need_userret(struct lwp *l) 1362 { 1363 KASSERT(lwp_locked(l, NULL)); 1364 1365 /* 1366 * Since the tests in lwp_userret() are done unlocked, make sure 1367 * that the condition will be seen before forcing the LWP to enter 1368 * kernel mode. 1369 */ 1370 membar_producer(); 1371 cpu_signotify(l); 1372 } 1373 1374 /* 1375 * Add one reference to an LWP. This will prevent the LWP from 1376 * exiting, thus keep the lwp structure and PCB around to inspect. 1377 */ 1378 void 1379 lwp_addref(struct lwp *l) 1380 { 1381 1382 KASSERT(mutex_owned(l->l_proc->p_lock)); 1383 KASSERT(l->l_stat != LSZOMB); 1384 KASSERT(l->l_refcnt != 0); 1385 1386 l->l_refcnt++; 1387 } 1388 1389 /* 1390 * Remove one reference to an LWP. If this is the last reference, 1391 * then we must finalize the LWP's death. 1392 */ 1393 void 1394 lwp_delref(struct lwp *l) 1395 { 1396 struct proc *p = l->l_proc; 1397 1398 mutex_enter(p->p_lock); 1399 KASSERT(l->l_stat != LSZOMB); 1400 KASSERT(l->l_refcnt > 0); 1401 if (--l->l_refcnt == 0) 1402 cv_broadcast(&p->p_lwpcv); 1403 mutex_exit(p->p_lock); 1404 } 1405 1406 /* 1407 * Drain all references to the current LWP. 1408 */ 1409 void 1410 lwp_drainrefs(struct lwp *l) 1411 { 1412 struct proc *p = l->l_proc; 1413 1414 KASSERT(mutex_owned(p->p_lock)); 1415 KASSERT(l->l_refcnt != 0); 1416 1417 l->l_refcnt--; 1418 while (l->l_refcnt != 0) 1419 cv_wait(&p->p_lwpcv, p->p_lock); 1420 } 1421 1422 /* 1423 * Return true if the specified LWP is 'alive'. Only p->p_lock need 1424 * be held. 1425 */ 1426 bool 1427 lwp_alive(lwp_t *l) 1428 { 1429 1430 KASSERT(mutex_owned(l->l_proc->p_lock)); 1431 1432 switch (l->l_stat) { 1433 case LSSLEEP: 1434 case LSRUN: 1435 case LSONPROC: 1436 case LSSTOP: 1437 case LSSUSPENDED: 1438 return true; 1439 default: 1440 return false; 1441 } 1442 } 1443 1444 /* 1445 * Return first live LWP in the process. 1446 */ 1447 lwp_t * 1448 lwp_find_first(proc_t *p) 1449 { 1450 lwp_t *l; 1451 1452 KASSERT(mutex_owned(p->p_lock)); 1453 1454 LIST_FOREACH(l, &p->p_lwps, l_sibling) { 1455 if (lwp_alive(l)) { 1456 return l; 1457 } 1458 } 1459 1460 return NULL; 1461 } 1462 1463 /* 1464 * lwp_specific_key_create -- 1465 * Create a key for subsystem lwp-specific data. 1466 */ 1467 int 1468 lwp_specific_key_create(specificdata_key_t *keyp, specificdata_dtor_t dtor) 1469 { 1470 1471 return (specificdata_key_create(lwp_specificdata_domain, keyp, dtor)); 1472 } 1473 1474 /* 1475 * lwp_specific_key_delete -- 1476 * Delete a key for subsystem lwp-specific data. 1477 */ 1478 void 1479 lwp_specific_key_delete(specificdata_key_t key) 1480 { 1481 1482 specificdata_key_delete(lwp_specificdata_domain, key); 1483 } 1484 1485 /* 1486 * lwp_initspecific -- 1487 * Initialize an LWP's specificdata container. 1488 */ 1489 void 1490 lwp_initspecific(struct lwp *l) 1491 { 1492 int error; 1493 1494 error = specificdata_init(lwp_specificdata_domain, &l->l_specdataref); 1495 KASSERT(error == 0); 1496 } 1497 1498 /* 1499 * lwp_finispecific -- 1500 * Finalize an LWP's specificdata container. 1501 */ 1502 void 1503 lwp_finispecific(struct lwp *l) 1504 { 1505 1506 specificdata_fini(lwp_specificdata_domain, &l->l_specdataref); 1507 } 1508 1509 /* 1510 * lwp_getspecific -- 1511 * Return lwp-specific data corresponding to the specified key. 1512 * 1513 * Note: LWP specific data is NOT INTERLOCKED. An LWP should access 1514 * only its OWN SPECIFIC DATA. If it is necessary to access another 1515 * LWP's specifc data, care must be taken to ensure that doing so 1516 * would not cause internal data structure inconsistency (i.e. caller 1517 * can guarantee that the target LWP is not inside an lwp_getspecific() 1518 * or lwp_setspecific() call). 1519 */ 1520 void * 1521 lwp_getspecific(specificdata_key_t key) 1522 { 1523 1524 return (specificdata_getspecific_unlocked(lwp_specificdata_domain, 1525 &curlwp->l_specdataref, key)); 1526 } 1527 1528 void * 1529 _lwp_getspecific_by_lwp(struct lwp *l, specificdata_key_t key) 1530 { 1531 1532 return (specificdata_getspecific_unlocked(lwp_specificdata_domain, 1533 &l->l_specdataref, key)); 1534 } 1535 1536 /* 1537 * lwp_setspecific -- 1538 * Set lwp-specific data corresponding to the specified key. 1539 */ 1540 void 1541 lwp_setspecific(specificdata_key_t key, void *data) 1542 { 1543 1544 specificdata_setspecific(lwp_specificdata_domain, 1545 &curlwp->l_specdataref, key, data); 1546 } 1547 1548 /* 1549 * Allocate a new lwpctl structure for a user LWP. 1550 */ 1551 int 1552 lwp_ctl_alloc(vaddr_t *uaddr) 1553 { 1554 lcproc_t *lp; 1555 u_int bit, i, offset; 1556 struct uvm_object *uao; 1557 int error; 1558 lcpage_t *lcp; 1559 proc_t *p; 1560 lwp_t *l; 1561 1562 l = curlwp; 1563 p = l->l_proc; 1564 1565 if (l->l_lcpage != NULL) { 1566 lcp = l->l_lcpage; 1567 *uaddr = lcp->lcp_uaddr + (vaddr_t)l->l_lwpctl - lcp->lcp_kaddr; 1568 return (EINVAL); 1569 } 1570 1571 /* First time around, allocate header structure for the process. */ 1572 if ((lp = p->p_lwpctl) == NULL) { 1573 lp = kmem_alloc(sizeof(*lp), KM_SLEEP); 1574 mutex_init(&lp->lp_lock, MUTEX_DEFAULT, IPL_NONE); 1575 lp->lp_uao = NULL; 1576 TAILQ_INIT(&lp->lp_pages); 1577 mutex_enter(p->p_lock); 1578 if (p->p_lwpctl == NULL) { 1579 p->p_lwpctl = lp; 1580 mutex_exit(p->p_lock); 1581 } else { 1582 mutex_exit(p->p_lock); 1583 mutex_destroy(&lp->lp_lock); 1584 kmem_free(lp, sizeof(*lp)); 1585 lp = p->p_lwpctl; 1586 } 1587 } 1588 1589 /* 1590 * Set up an anonymous memory region to hold the shared pages. 1591 * Map them into the process' address space. The user vmspace 1592 * gets the first reference on the UAO. 1593 */ 1594 mutex_enter(&lp->lp_lock); 1595 if (lp->lp_uao == NULL) { 1596 lp->lp_uao = uao_create(LWPCTL_UAREA_SZ, 0); 1597 lp->lp_cur = 0; 1598 lp->lp_max = LWPCTL_UAREA_SZ; 1599 lp->lp_uva = p->p_emul->e_vm_default_addr(p, 1600 (vaddr_t)p->p_vmspace->vm_daddr, LWPCTL_UAREA_SZ); 1601 error = uvm_map(&p->p_vmspace->vm_map, &lp->lp_uva, 1602 LWPCTL_UAREA_SZ, lp->lp_uao, 0, 0, UVM_MAPFLAG(UVM_PROT_RW, 1603 UVM_PROT_RW, UVM_INH_NONE, UVM_ADV_NORMAL, 0)); 1604 if (error != 0) { 1605 uao_detach(lp->lp_uao); 1606 lp->lp_uao = NULL; 1607 mutex_exit(&lp->lp_lock); 1608 return error; 1609 } 1610 } 1611 1612 /* Get a free block and allocate for this LWP. */ 1613 TAILQ_FOREACH(lcp, &lp->lp_pages, lcp_chain) { 1614 if (lcp->lcp_nfree != 0) 1615 break; 1616 } 1617 if (lcp == NULL) { 1618 /* Nothing available - try to set up a free page. */ 1619 if (lp->lp_cur == lp->lp_max) { 1620 mutex_exit(&lp->lp_lock); 1621 return ENOMEM; 1622 } 1623 lcp = kmem_alloc(LWPCTL_LCPAGE_SZ, KM_SLEEP); 1624 if (lcp == NULL) { 1625 mutex_exit(&lp->lp_lock); 1626 return ENOMEM; 1627 } 1628 /* 1629 * Wire the next page down in kernel space. Since this 1630 * is a new mapping, we must add a reference. 1631 */ 1632 uao = lp->lp_uao; 1633 (*uao->pgops->pgo_reference)(uao); 1634 lcp->lcp_kaddr = vm_map_min(kernel_map); 1635 error = uvm_map(kernel_map, &lcp->lcp_kaddr, PAGE_SIZE, 1636 uao, lp->lp_cur, PAGE_SIZE, 1637 UVM_MAPFLAG(UVM_PROT_RW, UVM_PROT_RW, 1638 UVM_INH_NONE, UVM_ADV_RANDOM, 0)); 1639 if (error != 0) { 1640 mutex_exit(&lp->lp_lock); 1641 kmem_free(lcp, LWPCTL_LCPAGE_SZ); 1642 (*uao->pgops->pgo_detach)(uao); 1643 return error; 1644 } 1645 error = uvm_map_pageable(kernel_map, lcp->lcp_kaddr, 1646 lcp->lcp_kaddr + PAGE_SIZE, FALSE, 0); 1647 if (error != 0) { 1648 mutex_exit(&lp->lp_lock); 1649 uvm_unmap(kernel_map, lcp->lcp_kaddr, 1650 lcp->lcp_kaddr + PAGE_SIZE); 1651 kmem_free(lcp, LWPCTL_LCPAGE_SZ); 1652 return error; 1653 } 1654 /* Prepare the page descriptor and link into the list. */ 1655 lcp->lcp_uaddr = lp->lp_uva + lp->lp_cur; 1656 lp->lp_cur += PAGE_SIZE; 1657 lcp->lcp_nfree = LWPCTL_PER_PAGE; 1658 lcp->lcp_rotor = 0; 1659 memset(lcp->lcp_bitmap, 0xff, LWPCTL_BITMAP_SZ); 1660 TAILQ_INSERT_HEAD(&lp->lp_pages, lcp, lcp_chain); 1661 } 1662 for (i = lcp->lcp_rotor; lcp->lcp_bitmap[i] == 0;) { 1663 if (++i >= LWPCTL_BITMAP_ENTRIES) 1664 i = 0; 1665 } 1666 bit = ffs(lcp->lcp_bitmap[i]) - 1; 1667 lcp->lcp_bitmap[i] ^= (1 << bit); 1668 lcp->lcp_rotor = i; 1669 lcp->lcp_nfree--; 1670 l->l_lcpage = lcp; 1671 offset = (i << 5) + bit; 1672 l->l_lwpctl = (lwpctl_t *)lcp->lcp_kaddr + offset; 1673 *uaddr = lcp->lcp_uaddr + offset * sizeof(lwpctl_t); 1674 mutex_exit(&lp->lp_lock); 1675 1676 KPREEMPT_DISABLE(l); 1677 l->l_lwpctl->lc_curcpu = (int)curcpu()->ci_data.cpu_index; 1678 KPREEMPT_ENABLE(l); 1679 1680 return 0; 1681 } 1682 1683 /* 1684 * Free an lwpctl structure back to the per-process list. 1685 */ 1686 void 1687 lwp_ctl_free(lwp_t *l) 1688 { 1689 lcproc_t *lp; 1690 lcpage_t *lcp; 1691 u_int map, offset; 1692 1693 lp = l->l_proc->p_lwpctl; 1694 KASSERT(lp != NULL); 1695 1696 lcp = l->l_lcpage; 1697 offset = (u_int)((lwpctl_t *)l->l_lwpctl - (lwpctl_t *)lcp->lcp_kaddr); 1698 KASSERT(offset < LWPCTL_PER_PAGE); 1699 1700 mutex_enter(&lp->lp_lock); 1701 lcp->lcp_nfree++; 1702 map = offset >> 5; 1703 lcp->lcp_bitmap[map] |= (1 << (offset & 31)); 1704 if (lcp->lcp_bitmap[lcp->lcp_rotor] == 0) 1705 lcp->lcp_rotor = map; 1706 if (TAILQ_FIRST(&lp->lp_pages)->lcp_nfree == 0) { 1707 TAILQ_REMOVE(&lp->lp_pages, lcp, lcp_chain); 1708 TAILQ_INSERT_HEAD(&lp->lp_pages, lcp, lcp_chain); 1709 } 1710 mutex_exit(&lp->lp_lock); 1711 } 1712 1713 /* 1714 * Process is exiting; tear down lwpctl state. This can only be safely 1715 * called by the last LWP in the process. 1716 */ 1717 void 1718 lwp_ctl_exit(void) 1719 { 1720 lcpage_t *lcp, *next; 1721 lcproc_t *lp; 1722 proc_t *p; 1723 lwp_t *l; 1724 1725 l = curlwp; 1726 l->l_lwpctl = NULL; 1727 l->l_lcpage = NULL; 1728 p = l->l_proc; 1729 lp = p->p_lwpctl; 1730 1731 KASSERT(lp != NULL); 1732 KASSERT(p->p_nlwps == 1); 1733 1734 for (lcp = TAILQ_FIRST(&lp->lp_pages); lcp != NULL; lcp = next) { 1735 next = TAILQ_NEXT(lcp, lcp_chain); 1736 uvm_unmap(kernel_map, lcp->lcp_kaddr, 1737 lcp->lcp_kaddr + PAGE_SIZE); 1738 kmem_free(lcp, LWPCTL_LCPAGE_SZ); 1739 } 1740 1741 if (lp->lp_uao != NULL) { 1742 uvm_unmap(&p->p_vmspace->vm_map, lp->lp_uva, 1743 lp->lp_uva + LWPCTL_UAREA_SZ); 1744 } 1745 1746 mutex_destroy(&lp->lp_lock); 1747 kmem_free(lp, sizeof(*lp)); 1748 p->p_lwpctl = NULL; 1749 } 1750 1751 /* 1752 * Return the current LWP's "preemption counter". Used to detect 1753 * preemption across operations that can tolerate preemption without 1754 * crashing, but which may generate incorrect results if preempted. 1755 */ 1756 uint64_t 1757 lwp_pctr(void) 1758 { 1759 1760 return curlwp->l_ncsw; 1761 } 1762 1763 #if defined(DDB) 1764 void 1765 lwp_whatis(uintptr_t addr, void (*pr)(const char *, ...)) 1766 { 1767 lwp_t *l; 1768 1769 LIST_FOREACH(l, &alllwp, l_list) { 1770 uintptr_t stack = (uintptr_t)KSTACK_LOWEST_ADDR(l); 1771 1772 if (addr < stack || stack + KSTACK_SIZE <= addr) { 1773 continue; 1774 } 1775 (*pr)("%p is %p+%zu, LWP %p's stack\n", 1776 (void *)addr, (void *)stack, 1777 (size_t)(addr - stack), l); 1778 } 1779 } 1780 #endif /* defined(DDB) */ 1781