1 /* $NetBSD: kern_lwp.c,v 1.114 2008/05/29 22:33:27 rmind Exp $ */ 2 3 /*- 4 * Copyright (c) 2001, 2006, 2007, 2008 The NetBSD Foundation, Inc. 5 * All rights reserved. 6 * 7 * This code is derived from software contributed to The NetBSD Foundation 8 * by Nathan J. Williams, and Andrew Doran. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS 20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 29 * POSSIBILITY OF SUCH DAMAGE. 30 */ 31 32 /* 33 * Overview 34 * 35 * Lightweight processes (LWPs) are the basic unit or thread of 36 * execution within the kernel. The core state of an LWP is described 37 * by "struct lwp", also known as lwp_t. 38 * 39 * Each LWP is contained within a process (described by "struct proc"), 40 * Every process contains at least one LWP, but may contain more. The 41 * process describes attributes shared among all of its LWPs such as a 42 * private address space, global execution state (stopped, active, 43 * zombie, ...), signal disposition and so on. On a multiprocessor 44 * machine, multiple LWPs be executing concurrently in the kernel. 45 * 46 * Execution states 47 * 48 * At any given time, an LWP has overall state that is described by 49 * lwp::l_stat. The states are broken into two sets below. The first 50 * set is guaranteed to represent the absolute, current state of the 51 * LWP: 52 * 53 * LSONPROC 54 * 55 * On processor: the LWP is executing on a CPU, either in the 56 * kernel or in user space. 57 * 58 * LSRUN 59 * 60 * Runnable: the LWP is parked on a run queue, and may soon be 61 * chosen to run by an idle processor, or by a processor that 62 * has been asked to preempt a currently runnning but lower 63 * priority LWP. If the LWP is not swapped in (LW_INMEM == 0) 64 * then the LWP is not on a run queue, but may be soon. 65 * 66 * LSIDL 67 * 68 * Idle: the LWP has been created but has not yet executed, 69 * or it has ceased executing a unit of work and is waiting 70 * to be started again. 71 * 72 * LSSUSPENDED: 73 * 74 * Suspended: the LWP has had its execution suspended by 75 * another LWP in the same process using the _lwp_suspend() 76 * system call. User-level LWPs also enter the suspended 77 * state when the system is shutting down. 78 * 79 * The second set represent a "statement of intent" on behalf of the 80 * LWP. The LWP may in fact be executing on a processor, may be 81 * sleeping or idle. It is expected to take the necessary action to 82 * stop executing or become "running" again within a short timeframe. 83 * The LW_RUNNING flag in lwp::l_flag indicates that an LWP is running. 84 * Importantly, it indicates that its state is tied to a CPU. 85 * 86 * LSZOMB: 87 * 88 * Dead or dying: the LWP has released most of its resources 89 * and is: a) about to switch away into oblivion b) has already 90 * switched away. When it switches away, its few remaining 91 * resources can be collected. 92 * 93 * LSSLEEP: 94 * 95 * Sleeping: the LWP has entered itself onto a sleep queue, and 96 * has switched away or will switch away shortly to allow other 97 * LWPs to run on the CPU. 98 * 99 * LSSTOP: 100 * 101 * Stopped: the LWP has been stopped as a result of a job 102 * control signal, or as a result of the ptrace() interface. 103 * 104 * Stopped LWPs may run briefly within the kernel to handle 105 * signals that they receive, but will not return to user space 106 * until their process' state is changed away from stopped. 107 * 108 * Single LWPs within a process can not be set stopped 109 * selectively: all actions that can stop or continue LWPs 110 * occur at the process level. 111 * 112 * State transitions 113 * 114 * Note that the LSSTOP state may only be set when returning to 115 * user space in userret(), or when sleeping interruptably. The 116 * LSSUSPENDED state may only be set in userret(). Before setting 117 * those states, we try to ensure that the LWPs will release all 118 * locks that they hold, and at a minimum try to ensure that the 119 * LWP can be set runnable again by a signal. 120 * 121 * LWPs may transition states in the following ways: 122 * 123 * RUN -------> ONPROC ONPROC -----> RUN 124 * > STOPPED > SLEEP 125 * > SUSPENDED > STOPPED 126 * > SUSPENDED 127 * > ZOMB 128 * 129 * STOPPED ---> RUN SUSPENDED --> RUN 130 * > SLEEP > SLEEP 131 * 132 * SLEEP -----> ONPROC IDL --------> RUN 133 * > RUN > SUSPENDED 134 * > STOPPED > STOPPED 135 * > SUSPENDED 136 * 137 * Other state transitions are possible with kernel threads (eg 138 * ONPROC -> IDL), but only happen under tightly controlled 139 * circumstances the side effects are understood. 140 * 141 * Migration 142 * 143 * Migration of threads from one CPU to another could be performed 144 * internally by the scheduler via sched_takecpu() or sched_catchlwp() 145 * functions. The universal lwp_migrate() function should be used for 146 * any other cases. Subsystems in the kernel must be aware that CPU 147 * of LWP may change, while it is not locked. 148 * 149 * Locking 150 * 151 * The majority of fields in 'struct lwp' are covered by a single, 152 * general spin lock pointed to by lwp::l_mutex. The locks covering 153 * each field are documented in sys/lwp.h. 154 * 155 * State transitions must be made with the LWP's general lock held, 156 * and may cause the LWP's lock pointer to change. Manipulation of 157 * the general lock is not performed directly, but through calls to 158 * lwp_lock(), lwp_relock() and similar. 159 * 160 * States and their associated locks: 161 * 162 * LSONPROC, LSZOMB: 163 * 164 * Always covered by spc_lwplock, which protects running LWPs. 165 * This is a per-CPU lock. 166 * 167 * LSIDL, LSRUN: 168 * 169 * Always covered by spc_mutex, which protects the run queues. 170 * This is a per-CPU lock. 171 * 172 * LSSLEEP: 173 * 174 * Covered by a lock associated with the sleep queue that the 175 * LWP resides on. 176 * 177 * LSSTOP, LSSUSPENDED: 178 * 179 * If the LWP was previously sleeping (l_wchan != NULL), then 180 * l_mutex references the sleep queue lock. If the LWP was 181 * runnable or on the CPU when halted, or has been removed from 182 * the sleep queue since halted, then the lock is spc_lwplock. 183 * 184 * The lock order is as follows: 185 * 186 * spc::spc_lwplock -> 187 * sleeptab::st_mutex -> 188 * tschain_t::tc_mutex -> 189 * spc::spc_mutex 190 * 191 * Each process has an scheduler state lock (proc::p_lock), and a 192 * number of counters on LWPs and their states: p_nzlwps, p_nrlwps, and 193 * so on. When an LWP is to be entered into or removed from one of the 194 * following states, p_lock must be held and the process wide counters 195 * adjusted: 196 * 197 * LSIDL, LSZOMB, LSSTOP, LSSUSPENDED 198 * 199 * Note that an LWP is considered running or likely to run soon if in 200 * one of the following states. This affects the value of p_nrlwps: 201 * 202 * LSRUN, LSONPROC, LSSLEEP 203 * 204 * p_lock does not need to be held when transitioning among these 205 * three states. 206 */ 207 208 #include <sys/cdefs.h> 209 __KERNEL_RCSID(0, "$NetBSD: kern_lwp.c,v 1.114 2008/05/29 22:33:27 rmind Exp $"); 210 211 #include "opt_ddb.h" 212 #include "opt_lockdebug.h" 213 214 #define _LWP_API_PRIVATE 215 216 #include <sys/param.h> 217 #include <sys/systm.h> 218 #include <sys/cpu.h> 219 #include <sys/pool.h> 220 #include <sys/proc.h> 221 #include <sys/syscallargs.h> 222 #include <sys/syscall_stats.h> 223 #include <sys/kauth.h> 224 #include <sys/sleepq.h> 225 #include <sys/user.h> 226 #include <sys/lockdebug.h> 227 #include <sys/kmem.h> 228 #include <sys/pset.h> 229 #include <sys/intr.h> 230 #include <sys/lwpctl.h> 231 #include <sys/atomic.h> 232 233 #include <uvm/uvm_extern.h> 234 #include <uvm/uvm_object.h> 235 236 struct lwplist alllwp = LIST_HEAD_INITIALIZER(alllwp); 237 238 POOL_INIT(lwp_uc_pool, sizeof(ucontext_t), 0, 0, 0, "lwpucpl", 239 &pool_allocator_nointr, IPL_NONE); 240 241 static pool_cache_t lwp_cache; 242 static specificdata_domain_t lwp_specificdata_domain; 243 244 void 245 lwpinit(void) 246 { 247 248 lwp_specificdata_domain = specificdata_domain_create(); 249 KASSERT(lwp_specificdata_domain != NULL); 250 lwp_sys_init(); 251 lwp_cache = pool_cache_init(sizeof(lwp_t), MIN_LWP_ALIGNMENT, 0, 0, 252 "lwppl", NULL, IPL_NONE, NULL, NULL, NULL); 253 } 254 255 /* 256 * Set an suspended. 257 * 258 * Must be called with p_lock held, and the LWP locked. Will unlock the 259 * LWP before return. 260 */ 261 int 262 lwp_suspend(struct lwp *curl, struct lwp *t) 263 { 264 int error; 265 266 KASSERT(mutex_owned(t->l_proc->p_lock)); 267 KASSERT(lwp_locked(t, NULL)); 268 269 KASSERT(curl != t || curl->l_stat == LSONPROC); 270 271 /* 272 * If the current LWP has been told to exit, we must not suspend anyone 273 * else or deadlock could occur. We won't return to userspace. 274 */ 275 if ((curl->l_flag & (LW_WEXIT | LW_WCORE)) != 0) { 276 lwp_unlock(t); 277 return (EDEADLK); 278 } 279 280 error = 0; 281 282 switch (t->l_stat) { 283 case LSRUN: 284 case LSONPROC: 285 t->l_flag |= LW_WSUSPEND; 286 lwp_need_userret(t); 287 lwp_unlock(t); 288 break; 289 290 case LSSLEEP: 291 t->l_flag |= LW_WSUSPEND; 292 293 /* 294 * Kick the LWP and try to get it to the kernel boundary 295 * so that it will release any locks that it holds. 296 * setrunnable() will release the lock. 297 */ 298 if ((t->l_flag & LW_SINTR) != 0) 299 setrunnable(t); 300 else 301 lwp_unlock(t); 302 break; 303 304 case LSSUSPENDED: 305 lwp_unlock(t); 306 break; 307 308 case LSSTOP: 309 t->l_flag |= LW_WSUSPEND; 310 setrunnable(t); 311 break; 312 313 case LSIDL: 314 case LSZOMB: 315 error = EINTR; /* It's what Solaris does..... */ 316 lwp_unlock(t); 317 break; 318 } 319 320 return (error); 321 } 322 323 /* 324 * Restart a suspended LWP. 325 * 326 * Must be called with p_lock held, and the LWP locked. Will unlock the 327 * LWP before return. 328 */ 329 void 330 lwp_continue(struct lwp *l) 331 { 332 333 KASSERT(mutex_owned(l->l_proc->p_lock)); 334 KASSERT(lwp_locked(l, NULL)); 335 336 /* If rebooting or not suspended, then just bail out. */ 337 if ((l->l_flag & LW_WREBOOT) != 0) { 338 lwp_unlock(l); 339 return; 340 } 341 342 l->l_flag &= ~LW_WSUSPEND; 343 344 if (l->l_stat != LSSUSPENDED) { 345 lwp_unlock(l); 346 return; 347 } 348 349 /* setrunnable() will release the lock. */ 350 setrunnable(l); 351 } 352 353 /* 354 * Wait for an LWP within the current process to exit. If 'lid' is 355 * non-zero, we are waiting for a specific LWP. 356 * 357 * Must be called with p->p_lock held. 358 */ 359 int 360 lwp_wait1(struct lwp *l, lwpid_t lid, lwpid_t *departed, int flags) 361 { 362 struct proc *p = l->l_proc; 363 struct lwp *l2; 364 int nfound, error; 365 lwpid_t curlid; 366 bool exiting; 367 368 KASSERT(mutex_owned(p->p_lock)); 369 370 p->p_nlwpwait++; 371 l->l_waitingfor = lid; 372 curlid = l->l_lid; 373 exiting = ((flags & LWPWAIT_EXITCONTROL) != 0); 374 375 for (;;) { 376 /* 377 * Avoid a race between exit1() and sigexit(): if the 378 * process is dumping core, then we need to bail out: call 379 * into lwp_userret() where we will be suspended until the 380 * deed is done. 381 */ 382 if ((p->p_sflag & PS_WCORE) != 0) { 383 mutex_exit(p->p_lock); 384 lwp_userret(l); 385 #ifdef DIAGNOSTIC 386 panic("lwp_wait1"); 387 #endif 388 /* NOTREACHED */ 389 } 390 391 /* 392 * First off, drain any detached LWP that is waiting to be 393 * reaped. 394 */ 395 while ((l2 = p->p_zomblwp) != NULL) { 396 p->p_zomblwp = NULL; 397 lwp_free(l2, false, false);/* releases proc mutex */ 398 mutex_enter(p->p_lock); 399 } 400 401 /* 402 * Now look for an LWP to collect. If the whole process is 403 * exiting, count detached LWPs as eligible to be collected, 404 * but don't drain them here. 405 */ 406 nfound = 0; 407 error = 0; 408 LIST_FOREACH(l2, &p->p_lwps, l_sibling) { 409 /* 410 * If a specific wait and the target is waiting on 411 * us, then avoid deadlock. This also traps LWPs 412 * that try to wait on themselves. 413 * 414 * Note that this does not handle more complicated 415 * cycles, like: t1 -> t2 -> t3 -> t1. The process 416 * can still be killed so it is not a major problem. 417 */ 418 if (l2->l_lid == lid && l2->l_waitingfor == curlid) { 419 error = EDEADLK; 420 break; 421 } 422 if (l2 == l) 423 continue; 424 if ((l2->l_prflag & LPR_DETACHED) != 0) { 425 nfound += exiting; 426 continue; 427 } 428 if (lid != 0) { 429 if (l2->l_lid != lid) 430 continue; 431 /* 432 * Mark this LWP as the first waiter, if there 433 * is no other. 434 */ 435 if (l2->l_waiter == 0) 436 l2->l_waiter = curlid; 437 } else if (l2->l_waiter != 0) { 438 /* 439 * It already has a waiter - so don't 440 * collect it. If the waiter doesn't 441 * grab it we'll get another chance 442 * later. 443 */ 444 nfound++; 445 continue; 446 } 447 nfound++; 448 449 /* No need to lock the LWP in order to see LSZOMB. */ 450 if (l2->l_stat != LSZOMB) 451 continue; 452 453 /* 454 * We're no longer waiting. Reset the "first waiter" 455 * pointer on the target, in case it was us. 456 */ 457 l->l_waitingfor = 0; 458 l2->l_waiter = 0; 459 p->p_nlwpwait--; 460 if (departed) 461 *departed = l2->l_lid; 462 sched_lwp_collect(l2); 463 464 /* lwp_free() releases the proc lock. */ 465 lwp_free(l2, false, false); 466 mutex_enter(p->p_lock); 467 return 0; 468 } 469 470 if (error != 0) 471 break; 472 if (nfound == 0) { 473 error = ESRCH; 474 break; 475 } 476 477 /* 478 * The kernel is careful to ensure that it can not deadlock 479 * when exiting - just keep waiting. 480 */ 481 if (exiting) { 482 KASSERT(p->p_nlwps > 1); 483 cv_wait(&p->p_lwpcv, p->p_lock); 484 continue; 485 } 486 487 /* 488 * If all other LWPs are waiting for exits or suspends 489 * and the supply of zombies and potential zombies is 490 * exhausted, then we are about to deadlock. 491 * 492 * If the process is exiting (and this LWP is not the one 493 * that is coordinating the exit) then bail out now. 494 */ 495 if ((p->p_sflag & PS_WEXIT) != 0 || 496 p->p_nrlwps + p->p_nzlwps - p->p_ndlwps <= p->p_nlwpwait) { 497 error = EDEADLK; 498 break; 499 } 500 501 /* 502 * Sit around and wait for something to happen. We'll be 503 * awoken if any of the conditions examined change: if an 504 * LWP exits, is collected, or is detached. 505 */ 506 if ((error = cv_wait_sig(&p->p_lwpcv, p->p_lock)) != 0) 507 break; 508 } 509 510 /* 511 * We didn't find any LWPs to collect, we may have received a 512 * signal, or some other condition has caused us to bail out. 513 * 514 * If waiting on a specific LWP, clear the waiters marker: some 515 * other LWP may want it. Then, kick all the remaining waiters 516 * so that they can re-check for zombies and for deadlock. 517 */ 518 if (lid != 0) { 519 LIST_FOREACH(l2, &p->p_lwps, l_sibling) { 520 if (l2->l_lid == lid) { 521 if (l2->l_waiter == curlid) 522 l2->l_waiter = 0; 523 break; 524 } 525 } 526 } 527 p->p_nlwpwait--; 528 l->l_waitingfor = 0; 529 cv_broadcast(&p->p_lwpcv); 530 531 return error; 532 } 533 534 /* 535 * Create a new LWP within process 'p2', using LWP 'l1' as a template. 536 * The new LWP is created in state LSIDL and must be set running, 537 * suspended, or stopped by the caller. 538 */ 539 int 540 lwp_create(lwp_t *l1, proc_t *p2, vaddr_t uaddr, bool inmem, int flags, 541 void *stack, size_t stacksize, void (*func)(void *), void *arg, 542 lwp_t **rnewlwpp, int sclass) 543 { 544 struct lwp *l2, *isfree; 545 turnstile_t *ts; 546 547 KASSERT(l1 == curlwp || l1->l_proc == &proc0); 548 549 /* 550 * First off, reap any detached LWP waiting to be collected. 551 * We can re-use its LWP structure and turnstile. 552 */ 553 isfree = NULL; 554 if (p2->p_zomblwp != NULL) { 555 mutex_enter(p2->p_lock); 556 if ((isfree = p2->p_zomblwp) != NULL) { 557 p2->p_zomblwp = NULL; 558 lwp_free(isfree, true, false);/* releases proc mutex */ 559 } else 560 mutex_exit(p2->p_lock); 561 } 562 if (isfree == NULL) { 563 l2 = pool_cache_get(lwp_cache, PR_WAITOK); 564 memset(l2, 0, sizeof(*l2)); 565 l2->l_ts = pool_cache_get(turnstile_cache, PR_WAITOK); 566 SLIST_INIT(&l2->l_pi_lenders); 567 } else { 568 l2 = isfree; 569 ts = l2->l_ts; 570 KASSERT(l2->l_inheritedprio == -1); 571 KASSERT(SLIST_EMPTY(&l2->l_pi_lenders)); 572 memset(l2, 0, sizeof(*l2)); 573 l2->l_ts = ts; 574 } 575 576 l2->l_stat = LSIDL; 577 l2->l_proc = p2; 578 l2->l_refcnt = 1; 579 l2->l_class = sclass; 580 l2->l_kpriority = l1->l_kpriority; 581 l2->l_kpribase = PRI_KERNEL; 582 l2->l_priority = l1->l_priority; 583 l2->l_inheritedprio = -1; 584 l2->l_flag = inmem ? LW_INMEM : 0; 585 l2->l_pflag = LP_MPSAFE; 586 l2->l_fd = p2->p_fd; 587 TAILQ_INIT(&l2->l_ld_locks); 588 589 if (p2->p_flag & PK_SYSTEM) { 590 /* Mark it as a system LWP and not a candidate for swapping */ 591 l2->l_flag |= LW_SYSTEM; 592 } 593 594 kpreempt_disable(); 595 l2->l_mutex = l1->l_cpu->ci_schedstate.spc_mutex; 596 l2->l_cpu = l1->l_cpu; 597 kpreempt_enable(); 598 599 lwp_initspecific(l2); 600 sched_lwp_fork(l1, l2); 601 lwp_update_creds(l2); 602 callout_init(&l2->l_timeout_ch, CALLOUT_MPSAFE); 603 callout_setfunc(&l2->l_timeout_ch, sleepq_timeout, l2); 604 mutex_init(&l2->l_swaplock, MUTEX_DEFAULT, IPL_NONE); 605 cv_init(&l2->l_sigcv, "sigwait"); 606 l2->l_syncobj = &sched_syncobj; 607 608 if (rnewlwpp != NULL) 609 *rnewlwpp = l2; 610 611 l2->l_addr = UAREA_TO_USER(uaddr); 612 uvm_lwp_fork(l1, l2, stack, stacksize, func, 613 (arg != NULL) ? arg : l2); 614 615 mutex_enter(p2->p_lock); 616 617 if ((flags & LWP_DETACHED) != 0) { 618 l2->l_prflag = LPR_DETACHED; 619 p2->p_ndlwps++; 620 } else 621 l2->l_prflag = 0; 622 623 l2->l_sigmask = l1->l_sigmask; 624 CIRCLEQ_INIT(&l2->l_sigpend.sp_info); 625 sigemptyset(&l2->l_sigpend.sp_set); 626 627 p2->p_nlwpid++; 628 if (p2->p_nlwpid == 0) 629 p2->p_nlwpid++; 630 l2->l_lid = p2->p_nlwpid; 631 LIST_INSERT_HEAD(&p2->p_lwps, l2, l_sibling); 632 p2->p_nlwps++; 633 634 mutex_exit(p2->p_lock); 635 636 mutex_enter(proc_lock); 637 LIST_INSERT_HEAD(&alllwp, l2, l_list); 638 mutex_exit(proc_lock); 639 640 if ((p2->p_flag & PK_SYSTEM) == 0) { 641 /* Locking is needed, since LWP is in the list of all LWPs */ 642 lwp_lock(l2); 643 /* Inherit a processor-set */ 644 l2->l_psid = l1->l_psid; 645 /* Inherit an affinity */ 646 memcpy(&l2->l_affinity, &l1->l_affinity, sizeof(cpuset_t)); 647 /* Look for a CPU to start */ 648 l2->l_cpu = sched_takecpu(l2); 649 lwp_unlock_to(l2, l2->l_cpu->ci_schedstate.spc_mutex); 650 } 651 652 SYSCALL_TIME_LWP_INIT(l2); 653 654 if (p2->p_emul->e_lwp_fork) 655 (*p2->p_emul->e_lwp_fork)(l1, l2); 656 657 return (0); 658 } 659 660 /* 661 * Called by MD code when a new LWP begins execution. Must be called 662 * with the previous LWP locked (so at splsched), or if there is no 663 * previous LWP, at splsched. 664 */ 665 void 666 lwp_startup(struct lwp *prev, struct lwp *new) 667 { 668 669 KASSERT(kpreempt_disabled()); 670 if (prev != NULL) { 671 /* 672 * Normalize the count of the spin-mutexes, it was 673 * increased in mi_switch(). Unmark the state of 674 * context switch - it is finished for previous LWP. 675 */ 676 curcpu()->ci_mtx_count++; 677 membar_exit(); 678 prev->l_ctxswtch = 0; 679 } 680 KPREEMPT_DISABLE(new); 681 spl0(); 682 pmap_activate(new); 683 LOCKDEBUG_BARRIER(NULL, 0); 684 KPREEMPT_ENABLE(new); 685 if ((new->l_pflag & LP_MPSAFE) == 0) { 686 KERNEL_LOCK(1, new); 687 } 688 } 689 690 /* 691 * Exit an LWP. 692 */ 693 void 694 lwp_exit(struct lwp *l) 695 { 696 struct proc *p = l->l_proc; 697 struct lwp *l2; 698 bool current; 699 700 current = (l == curlwp); 701 702 KASSERT(current || (l->l_stat == LSIDL && l->l_target_cpu == NULL)); 703 704 /* 705 * Verify that we hold no locks other than the kernel lock. 706 */ 707 LOCKDEBUG_BARRIER(&kernel_lock, 0); 708 709 /* 710 * If we are the last live LWP in a process, we need to exit the 711 * entire process. We do so with an exit status of zero, because 712 * it's a "controlled" exit, and because that's what Solaris does. 713 * 714 * We are not quite a zombie yet, but for accounting purposes we 715 * must increment the count of zombies here. 716 * 717 * Note: the last LWP's specificdata will be deleted here. 718 */ 719 mutex_enter(p->p_lock); 720 if (p->p_nlwps - p->p_nzlwps == 1) { 721 KASSERT(current == true); 722 /* XXXSMP kernel_lock not held */ 723 exit1(l, 0); 724 /* NOTREACHED */ 725 } 726 p->p_nzlwps++; 727 mutex_exit(p->p_lock); 728 729 if (p->p_emul->e_lwp_exit) 730 (*p->p_emul->e_lwp_exit)(l); 731 732 /* Delete the specificdata while it's still safe to sleep. */ 733 specificdata_fini(lwp_specificdata_domain, &l->l_specdataref); 734 735 /* 736 * Release our cached credentials. 737 */ 738 kauth_cred_free(l->l_cred); 739 callout_destroy(&l->l_timeout_ch); 740 741 /* 742 * While we can still block, mark the LWP as unswappable to 743 * prevent conflicts with the with the swapper. 744 */ 745 if (current) 746 uvm_lwp_hold(l); 747 748 /* 749 * Remove the LWP from the global list. 750 */ 751 mutex_enter(proc_lock); 752 LIST_REMOVE(l, l_list); 753 mutex_exit(proc_lock); 754 755 /* 756 * Get rid of all references to the LWP that others (e.g. procfs) 757 * may have, and mark the LWP as a zombie. If the LWP is detached, 758 * mark it waiting for collection in the proc structure. Note that 759 * before we can do that, we need to free any other dead, deatched 760 * LWP waiting to meet its maker. 761 */ 762 mutex_enter(p->p_lock); 763 lwp_drainrefs(l); 764 765 if ((l->l_prflag & LPR_DETACHED) != 0) { 766 while ((l2 = p->p_zomblwp) != NULL) { 767 p->p_zomblwp = NULL; 768 lwp_free(l2, false, false);/* releases proc mutex */ 769 mutex_enter(p->p_lock); 770 l->l_refcnt++; 771 lwp_drainrefs(l); 772 } 773 p->p_zomblwp = l; 774 } 775 776 /* 777 * If we find a pending signal for the process and we have been 778 * asked to check for signals, then we loose: arrange to have 779 * all other LWPs in the process check for signals. 780 */ 781 if ((l->l_flag & LW_PENDSIG) != 0 && 782 firstsig(&p->p_sigpend.sp_set) != 0) { 783 LIST_FOREACH(l2, &p->p_lwps, l_sibling) { 784 lwp_lock(l2); 785 l2->l_flag |= LW_PENDSIG; 786 lwp_unlock(l2); 787 } 788 } 789 790 lwp_lock(l); 791 l->l_stat = LSZOMB; 792 if (l->l_name != NULL) 793 strcpy(l->l_name, "(zombie)"); 794 lwp_unlock(l); 795 p->p_nrlwps--; 796 cv_broadcast(&p->p_lwpcv); 797 if (l->l_lwpctl != NULL) 798 l->l_lwpctl->lc_curcpu = LWPCTL_CPU_EXITED; 799 mutex_exit(p->p_lock); 800 801 /* 802 * We can no longer block. At this point, lwp_free() may already 803 * be gunning for us. On a multi-CPU system, we may be off p_lwps. 804 * 805 * Free MD LWP resources. 806 */ 807 #ifndef __NO_CPU_LWP_FREE 808 cpu_lwp_free(l, 0); 809 #endif 810 811 if (current) { 812 pmap_deactivate(l); 813 814 /* 815 * Release the kernel lock, and switch away into 816 * oblivion. 817 */ 818 #ifdef notyet 819 /* XXXSMP hold in lwp_userret() */ 820 KERNEL_UNLOCK_LAST(l); 821 #else 822 KERNEL_UNLOCK_ALL(l, NULL); 823 #endif 824 lwp_exit_switchaway(l); 825 } 826 } 827 828 /* 829 * Free a dead LWP's remaining resources. 830 * 831 * XXXLWP limits. 832 */ 833 void 834 lwp_free(struct lwp *l, bool recycle, bool last) 835 { 836 struct proc *p = l->l_proc; 837 struct rusage *ru; 838 ksiginfoq_t kq; 839 840 KASSERT(l != curlwp); 841 842 /* 843 * If this was not the last LWP in the process, then adjust 844 * counters and unlock. 845 */ 846 if (!last) { 847 /* 848 * Add the LWP's run time to the process' base value. 849 * This needs to co-incide with coming off p_lwps. 850 */ 851 bintime_add(&p->p_rtime, &l->l_rtime); 852 p->p_pctcpu += l->l_pctcpu; 853 ru = &p->p_stats->p_ru; 854 ruadd(ru, &l->l_ru); 855 ru->ru_nvcsw += (l->l_ncsw - l->l_nivcsw); 856 ru->ru_nivcsw += l->l_nivcsw; 857 LIST_REMOVE(l, l_sibling); 858 p->p_nlwps--; 859 p->p_nzlwps--; 860 if ((l->l_prflag & LPR_DETACHED) != 0) 861 p->p_ndlwps--; 862 863 /* 864 * Have any LWPs sleeping in lwp_wait() recheck for 865 * deadlock. 866 */ 867 cv_broadcast(&p->p_lwpcv); 868 mutex_exit(p->p_lock); 869 } 870 871 #ifdef MULTIPROCESSOR 872 /* 873 * In the unlikely event that the LWP is still on the CPU, 874 * then spin until it has switched away. We need to release 875 * all locks to avoid deadlock against interrupt handlers on 876 * the target CPU. 877 */ 878 if ((l->l_flag & LW_RUNNING) != 0 || l->l_cpu->ci_curlwp == l) { 879 int count; 880 (void)count; /* XXXgcc */ 881 KERNEL_UNLOCK_ALL(curlwp, &count); 882 while ((l->l_flag & LW_RUNNING) != 0 || 883 l->l_cpu->ci_curlwp == l) 884 SPINLOCK_BACKOFF_HOOK; 885 KERNEL_LOCK(count, curlwp); 886 } 887 #endif 888 889 /* 890 * Destroy the LWP's remaining signal information. 891 */ 892 ksiginfo_queue_init(&kq); 893 sigclear(&l->l_sigpend, NULL, &kq); 894 ksiginfo_queue_drain(&kq); 895 cv_destroy(&l->l_sigcv); 896 mutex_destroy(&l->l_swaplock); 897 898 /* 899 * Free the LWP's turnstile and the LWP structure itself unless the 900 * caller wants to recycle them. Also, free the scheduler specific 901 * data. 902 * 903 * We can't return turnstile0 to the pool (it didn't come from it), 904 * so if it comes up just drop it quietly and move on. 905 * 906 * We don't recycle the VM resources at this time. 907 */ 908 if (l->l_lwpctl != NULL) 909 lwp_ctl_free(l); 910 sched_lwp_exit(l); 911 912 if (!recycle && l->l_ts != &turnstile0) 913 pool_cache_put(turnstile_cache, l->l_ts); 914 if (l->l_name != NULL) 915 kmem_free(l->l_name, MAXCOMLEN); 916 #ifndef __NO_CPU_LWP_FREE 917 cpu_lwp_free2(l); 918 #endif 919 KASSERT((l->l_flag & LW_INMEM) != 0); 920 uvm_lwp_exit(l); 921 KASSERT(SLIST_EMPTY(&l->l_pi_lenders)); 922 KASSERT(l->l_inheritedprio == -1); 923 if (!recycle) 924 pool_cache_put(lwp_cache, l); 925 } 926 927 /* 928 * Pick a LWP to represent the process for those operations which 929 * want information about a "process" that is actually associated 930 * with a LWP. 931 * 932 * If 'locking' is false, no locking or lock checks are performed. 933 * This is intended for use by DDB. 934 * 935 * We don't bother locking the LWP here, since code that uses this 936 * interface is broken by design and an exact match is not required. 937 */ 938 struct lwp * 939 proc_representative_lwp(struct proc *p, int *nrlwps, int locking) 940 { 941 struct lwp *l, *onproc, *running, *sleeping, *stopped, *suspended; 942 struct lwp *signalled; 943 int cnt; 944 945 if (locking) { 946 KASSERT(mutex_owned(p->p_lock)); 947 } 948 949 /* Trivial case: only one LWP */ 950 if (p->p_nlwps == 1) { 951 l = LIST_FIRST(&p->p_lwps); 952 if (nrlwps) 953 *nrlwps = (l->l_stat == LSONPROC || l->l_stat == LSRUN); 954 return l; 955 } 956 957 cnt = 0; 958 switch (p->p_stat) { 959 case SSTOP: 960 case SACTIVE: 961 /* Pick the most live LWP */ 962 onproc = running = sleeping = stopped = suspended = NULL; 963 signalled = NULL; 964 LIST_FOREACH(l, &p->p_lwps, l_sibling) { 965 if ((l->l_flag & LW_IDLE) != 0) { 966 continue; 967 } 968 if (l->l_lid == p->p_sigctx.ps_lwp) 969 signalled = l; 970 switch (l->l_stat) { 971 case LSONPROC: 972 onproc = l; 973 cnt++; 974 break; 975 case LSRUN: 976 running = l; 977 cnt++; 978 break; 979 case LSSLEEP: 980 sleeping = l; 981 break; 982 case LSSTOP: 983 stopped = l; 984 break; 985 case LSSUSPENDED: 986 suspended = l; 987 break; 988 } 989 } 990 if (nrlwps) 991 *nrlwps = cnt; 992 if (signalled) 993 l = signalled; 994 else if (onproc) 995 l = onproc; 996 else if (running) 997 l = running; 998 else if (sleeping) 999 l = sleeping; 1000 else if (stopped) 1001 l = stopped; 1002 else if (suspended) 1003 l = suspended; 1004 else 1005 break; 1006 return l; 1007 #ifdef DIAGNOSTIC 1008 case SIDL: 1009 case SZOMB: 1010 case SDYING: 1011 case SDEAD: 1012 if (locking) 1013 mutex_exit(p->p_lock); 1014 /* We have more than one LWP and we're in SIDL? 1015 * How'd that happen? 1016 */ 1017 panic("Too many LWPs in idle/dying process %d (%s) stat = %d", 1018 p->p_pid, p->p_comm, p->p_stat); 1019 break; 1020 default: 1021 if (locking) 1022 mutex_exit(p->p_lock); 1023 panic("Process %d (%s) in unknown state %d", 1024 p->p_pid, p->p_comm, p->p_stat); 1025 #endif 1026 } 1027 1028 if (locking) 1029 mutex_exit(p->p_lock); 1030 panic("proc_representative_lwp: couldn't find a lwp for process" 1031 " %d (%s)", p->p_pid, p->p_comm); 1032 /* NOTREACHED */ 1033 return NULL; 1034 } 1035 1036 /* 1037 * Migrate the LWP to the another CPU. Unlocks the LWP. 1038 */ 1039 void 1040 lwp_migrate(lwp_t *l, struct cpu_info *tci) 1041 { 1042 struct schedstate_percpu *tspc; 1043 KASSERT(lwp_locked(l, NULL)); 1044 KASSERT(tci != NULL); 1045 1046 /* 1047 * If LWP is still on the CPU, it must be handled like on LSONPROC. 1048 * The destination CPU could be changed while previous migration 1049 * was not finished. 1050 */ 1051 if ((l->l_flag & LW_RUNNING) != 0 || l->l_target_cpu != NULL) { 1052 l->l_target_cpu = tci; 1053 lwp_unlock(l); 1054 return; 1055 } 1056 1057 /* Nothing to do if trying to migrate to the same CPU */ 1058 if (l->l_cpu == tci) { 1059 lwp_unlock(l); 1060 return; 1061 } 1062 1063 KASSERT(l->l_target_cpu == NULL); 1064 tspc = &tci->ci_schedstate; 1065 switch (l->l_stat) { 1066 case LSRUN: 1067 if (l->l_flag & LW_INMEM) { 1068 l->l_target_cpu = tci; 1069 lwp_unlock(l); 1070 return; 1071 } 1072 case LSIDL: 1073 l->l_cpu = tci; 1074 lwp_unlock_to(l, tspc->spc_mutex); 1075 return; 1076 case LSSLEEP: 1077 l->l_cpu = tci; 1078 break; 1079 case LSSTOP: 1080 case LSSUSPENDED: 1081 l->l_cpu = tci; 1082 if (l->l_wchan == NULL) { 1083 lwp_unlock_to(l, tspc->spc_lwplock); 1084 return; 1085 } 1086 break; 1087 case LSONPROC: 1088 l->l_target_cpu = tci; 1089 spc_lock(l->l_cpu); 1090 cpu_need_resched(l->l_cpu, RESCHED_KPREEMPT); 1091 spc_unlock(l->l_cpu); 1092 break; 1093 } 1094 lwp_unlock(l); 1095 } 1096 1097 /* 1098 * Find the LWP in the process. Arguments may be zero, in such case, 1099 * the calling process and first LWP in the list will be used. 1100 * On success - returns proc locked. 1101 */ 1102 struct lwp * 1103 lwp_find2(pid_t pid, lwpid_t lid) 1104 { 1105 proc_t *p; 1106 lwp_t *l; 1107 1108 /* Find the process */ 1109 p = (pid == 0) ? curlwp->l_proc : p_find(pid, PFIND_UNLOCK_FAIL); 1110 if (p == NULL) 1111 return NULL; 1112 mutex_enter(p->p_lock); 1113 if (pid != 0) { 1114 /* Case of p_find */ 1115 mutex_exit(proc_lock); 1116 } 1117 1118 /* Find the thread */ 1119 l = (lid == 0) ? LIST_FIRST(&p->p_lwps) : lwp_find(p, lid); 1120 if (l == NULL) { 1121 mutex_exit(p->p_lock); 1122 } 1123 1124 return l; 1125 } 1126 1127 /* 1128 * Look up a live LWP within the speicifed process, and return it locked. 1129 * 1130 * Must be called with p->p_lock held. 1131 */ 1132 struct lwp * 1133 lwp_find(struct proc *p, int id) 1134 { 1135 struct lwp *l; 1136 1137 KASSERT(mutex_owned(p->p_lock)); 1138 1139 LIST_FOREACH(l, &p->p_lwps, l_sibling) { 1140 if (l->l_lid == id) 1141 break; 1142 } 1143 1144 /* 1145 * No need to lock - all of these conditions will 1146 * be visible with the process level mutex held. 1147 */ 1148 if (l != NULL && (l->l_stat == LSIDL || l->l_stat == LSZOMB)) 1149 l = NULL; 1150 1151 return l; 1152 } 1153 1154 /* 1155 * Update an LWP's cached credentials to mirror the process' master copy. 1156 * 1157 * This happens early in the syscall path, on user trap, and on LWP 1158 * creation. A long-running LWP can also voluntarily choose to update 1159 * it's credentials by calling this routine. This may be called from 1160 * LWP_CACHE_CREDS(), which checks l->l_cred != p->p_cred beforehand. 1161 */ 1162 void 1163 lwp_update_creds(struct lwp *l) 1164 { 1165 kauth_cred_t oc; 1166 struct proc *p; 1167 1168 p = l->l_proc; 1169 oc = l->l_cred; 1170 1171 mutex_enter(p->p_lock); 1172 kauth_cred_hold(p->p_cred); 1173 l->l_cred = p->p_cred; 1174 l->l_prflag &= ~LPR_CRMOD; 1175 mutex_exit(p->p_lock); 1176 if (oc != NULL) 1177 kauth_cred_free(oc); 1178 } 1179 1180 /* 1181 * Verify that an LWP is locked, and optionally verify that the lock matches 1182 * one we specify. 1183 */ 1184 int 1185 lwp_locked(struct lwp *l, kmutex_t *mtx) 1186 { 1187 kmutex_t *cur = l->l_mutex; 1188 1189 return mutex_owned(cur) && (mtx == cur || mtx == NULL); 1190 } 1191 1192 /* 1193 * Lock an LWP. 1194 */ 1195 void 1196 lwp_lock_retry(struct lwp *l, kmutex_t *old) 1197 { 1198 1199 /* 1200 * XXXgcc ignoring kmutex_t * volatile on i386 1201 * 1202 * gcc version 4.1.2 20061021 prerelease (NetBSD nb1 20061021) 1203 */ 1204 #if 1 1205 while (l->l_mutex != old) { 1206 #else 1207 for (;;) { 1208 #endif 1209 mutex_spin_exit(old); 1210 old = l->l_mutex; 1211 mutex_spin_enter(old); 1212 1213 /* 1214 * mutex_enter() will have posted a read barrier. Re-test 1215 * l->l_mutex. If it has changed, we need to try again. 1216 */ 1217 #if 1 1218 } 1219 #else 1220 } while (__predict_false(l->l_mutex != old)); 1221 #endif 1222 } 1223 1224 /* 1225 * Lend a new mutex to an LWP. The old mutex must be held. 1226 */ 1227 void 1228 lwp_setlock(struct lwp *l, kmutex_t *new) 1229 { 1230 1231 KASSERT(mutex_owned(l->l_mutex)); 1232 1233 membar_exit(); 1234 l->l_mutex = new; 1235 } 1236 1237 /* 1238 * Lend a new mutex to an LWP, and release the old mutex. The old mutex 1239 * must be held. 1240 */ 1241 void 1242 lwp_unlock_to(struct lwp *l, kmutex_t *new) 1243 { 1244 kmutex_t *old; 1245 1246 KASSERT(mutex_owned(l->l_mutex)); 1247 1248 old = l->l_mutex; 1249 membar_exit(); 1250 l->l_mutex = new; 1251 mutex_spin_exit(old); 1252 } 1253 1254 /* 1255 * Acquire a new mutex, and donate it to an LWP. The LWP must already be 1256 * locked. 1257 */ 1258 void 1259 lwp_relock(struct lwp *l, kmutex_t *new) 1260 { 1261 kmutex_t *old; 1262 1263 KASSERT(mutex_owned(l->l_mutex)); 1264 1265 old = l->l_mutex; 1266 if (old != new) { 1267 mutex_spin_enter(new); 1268 l->l_mutex = new; 1269 mutex_spin_exit(old); 1270 } 1271 } 1272 1273 int 1274 lwp_trylock(struct lwp *l) 1275 { 1276 kmutex_t *old; 1277 1278 for (;;) { 1279 if (!mutex_tryenter(old = l->l_mutex)) 1280 return 0; 1281 if (__predict_true(l->l_mutex == old)) 1282 return 1; 1283 mutex_spin_exit(old); 1284 } 1285 } 1286 1287 u_int 1288 lwp_unsleep(lwp_t *l, bool cleanup) 1289 { 1290 1291 KASSERT(mutex_owned(l->l_mutex)); 1292 1293 return (*l->l_syncobj->sobj_unsleep)(l, cleanup); 1294 } 1295 1296 1297 /* 1298 * Handle exceptions for mi_userret(). Called if a member of LW_USERRET is 1299 * set. 1300 */ 1301 void 1302 lwp_userret(struct lwp *l) 1303 { 1304 struct proc *p; 1305 void (*hook)(void); 1306 int sig; 1307 1308 KASSERT(l == curlwp); 1309 KASSERT(l->l_stat == LSONPROC); 1310 p = l->l_proc; 1311 1312 #ifndef __HAVE_FAST_SOFTINTS 1313 /* Run pending soft interrupts. */ 1314 if (l->l_cpu->ci_data.cpu_softints != 0) 1315 softint_overlay(); 1316 #endif 1317 1318 /* 1319 * It should be safe to do this read unlocked on a multiprocessor 1320 * system.. 1321 */ 1322 while ((l->l_flag & LW_USERRET) != 0) { 1323 /* 1324 * Process pending signals first, unless the process 1325 * is dumping core or exiting, where we will instead 1326 * enter the LW_WSUSPEND case below. 1327 */ 1328 if ((l->l_flag & (LW_PENDSIG | LW_WCORE | LW_WEXIT)) == 1329 LW_PENDSIG) { 1330 mutex_enter(p->p_lock); 1331 while ((sig = issignal(l)) != 0) 1332 postsig(sig); 1333 mutex_exit(p->p_lock); 1334 } 1335 1336 /* 1337 * Core-dump or suspend pending. 1338 * 1339 * In case of core dump, suspend ourselves, so that the 1340 * kernel stack and therefore the userland registers saved 1341 * in the trapframe are around for coredump() to write them 1342 * out. We issue a wakeup on p->p_lwpcv so that sigexit() 1343 * will write the core file out once all other LWPs are 1344 * suspended. 1345 */ 1346 if ((l->l_flag & LW_WSUSPEND) != 0) { 1347 mutex_enter(p->p_lock); 1348 p->p_nrlwps--; 1349 cv_broadcast(&p->p_lwpcv); 1350 lwp_lock(l); 1351 l->l_stat = LSSUSPENDED; 1352 lwp_unlock(l); 1353 mutex_exit(p->p_lock); 1354 lwp_lock(l); 1355 mi_switch(l); 1356 } 1357 1358 /* Process is exiting. */ 1359 if ((l->l_flag & LW_WEXIT) != 0) { 1360 lwp_exit(l); 1361 KASSERT(0); 1362 /* NOTREACHED */ 1363 } 1364 1365 /* Call userret hook; used by Linux emulation. */ 1366 if ((l->l_flag & LW_WUSERRET) != 0) { 1367 lwp_lock(l); 1368 l->l_flag &= ~LW_WUSERRET; 1369 lwp_unlock(l); 1370 hook = p->p_userret; 1371 p->p_userret = NULL; 1372 (*hook)(); 1373 } 1374 } 1375 } 1376 1377 /* 1378 * Force an LWP to enter the kernel, to take a trip through lwp_userret(). 1379 */ 1380 void 1381 lwp_need_userret(struct lwp *l) 1382 { 1383 KASSERT(lwp_locked(l, NULL)); 1384 1385 /* 1386 * Since the tests in lwp_userret() are done unlocked, make sure 1387 * that the condition will be seen before forcing the LWP to enter 1388 * kernel mode. 1389 */ 1390 membar_producer(); 1391 cpu_signotify(l); 1392 } 1393 1394 /* 1395 * Add one reference to an LWP. This will prevent the LWP from 1396 * exiting, thus keep the lwp structure and PCB around to inspect. 1397 */ 1398 void 1399 lwp_addref(struct lwp *l) 1400 { 1401 1402 KASSERT(mutex_owned(l->l_proc->p_lock)); 1403 KASSERT(l->l_stat != LSZOMB); 1404 KASSERT(l->l_refcnt != 0); 1405 1406 l->l_refcnt++; 1407 } 1408 1409 /* 1410 * Remove one reference to an LWP. If this is the last reference, 1411 * then we must finalize the LWP's death. 1412 */ 1413 void 1414 lwp_delref(struct lwp *l) 1415 { 1416 struct proc *p = l->l_proc; 1417 1418 mutex_enter(p->p_lock); 1419 KASSERT(l->l_stat != LSZOMB); 1420 KASSERT(l->l_refcnt > 0); 1421 if (--l->l_refcnt == 0) 1422 cv_broadcast(&p->p_lwpcv); 1423 mutex_exit(p->p_lock); 1424 } 1425 1426 /* 1427 * Drain all references to the current LWP. 1428 */ 1429 void 1430 lwp_drainrefs(struct lwp *l) 1431 { 1432 struct proc *p = l->l_proc; 1433 1434 KASSERT(mutex_owned(p->p_lock)); 1435 KASSERT(l->l_refcnt != 0); 1436 1437 l->l_refcnt--; 1438 while (l->l_refcnt != 0) 1439 cv_wait(&p->p_lwpcv, p->p_lock); 1440 } 1441 1442 /* 1443 * lwp_specific_key_create -- 1444 * Create a key for subsystem lwp-specific data. 1445 */ 1446 int 1447 lwp_specific_key_create(specificdata_key_t *keyp, specificdata_dtor_t dtor) 1448 { 1449 1450 return (specificdata_key_create(lwp_specificdata_domain, keyp, dtor)); 1451 } 1452 1453 /* 1454 * lwp_specific_key_delete -- 1455 * Delete a key for subsystem lwp-specific data. 1456 */ 1457 void 1458 lwp_specific_key_delete(specificdata_key_t key) 1459 { 1460 1461 specificdata_key_delete(lwp_specificdata_domain, key); 1462 } 1463 1464 /* 1465 * lwp_initspecific -- 1466 * Initialize an LWP's specificdata container. 1467 */ 1468 void 1469 lwp_initspecific(struct lwp *l) 1470 { 1471 int error; 1472 1473 error = specificdata_init(lwp_specificdata_domain, &l->l_specdataref); 1474 KASSERT(error == 0); 1475 } 1476 1477 /* 1478 * lwp_finispecific -- 1479 * Finalize an LWP's specificdata container. 1480 */ 1481 void 1482 lwp_finispecific(struct lwp *l) 1483 { 1484 1485 specificdata_fini(lwp_specificdata_domain, &l->l_specdataref); 1486 } 1487 1488 /* 1489 * lwp_getspecific -- 1490 * Return lwp-specific data corresponding to the specified key. 1491 * 1492 * Note: LWP specific data is NOT INTERLOCKED. An LWP should access 1493 * only its OWN SPECIFIC DATA. If it is necessary to access another 1494 * LWP's specifc data, care must be taken to ensure that doing so 1495 * would not cause internal data structure inconsistency (i.e. caller 1496 * can guarantee that the target LWP is not inside an lwp_getspecific() 1497 * or lwp_setspecific() call). 1498 */ 1499 void * 1500 lwp_getspecific(specificdata_key_t key) 1501 { 1502 1503 return (specificdata_getspecific_unlocked(lwp_specificdata_domain, 1504 &curlwp->l_specdataref, key)); 1505 } 1506 1507 void * 1508 _lwp_getspecific_by_lwp(struct lwp *l, specificdata_key_t key) 1509 { 1510 1511 return (specificdata_getspecific_unlocked(lwp_specificdata_domain, 1512 &l->l_specdataref, key)); 1513 } 1514 1515 /* 1516 * lwp_setspecific -- 1517 * Set lwp-specific data corresponding to the specified key. 1518 */ 1519 void 1520 lwp_setspecific(specificdata_key_t key, void *data) 1521 { 1522 1523 specificdata_setspecific(lwp_specificdata_domain, 1524 &curlwp->l_specdataref, key, data); 1525 } 1526 1527 /* 1528 * Allocate a new lwpctl structure for a user LWP. 1529 */ 1530 int 1531 lwp_ctl_alloc(vaddr_t *uaddr) 1532 { 1533 lcproc_t *lp; 1534 u_int bit, i, offset; 1535 struct uvm_object *uao; 1536 int error; 1537 lcpage_t *lcp; 1538 proc_t *p; 1539 lwp_t *l; 1540 1541 l = curlwp; 1542 p = l->l_proc; 1543 1544 if (l->l_lcpage != NULL) { 1545 lcp = l->l_lcpage; 1546 *uaddr = lcp->lcp_uaddr + (vaddr_t)l->l_lwpctl - lcp->lcp_kaddr; 1547 return (EINVAL); 1548 } 1549 1550 /* First time around, allocate header structure for the process. */ 1551 if ((lp = p->p_lwpctl) == NULL) { 1552 lp = kmem_alloc(sizeof(*lp), KM_SLEEP); 1553 mutex_init(&lp->lp_lock, MUTEX_DEFAULT, IPL_NONE); 1554 lp->lp_uao = NULL; 1555 TAILQ_INIT(&lp->lp_pages); 1556 mutex_enter(p->p_lock); 1557 if (p->p_lwpctl == NULL) { 1558 p->p_lwpctl = lp; 1559 mutex_exit(p->p_lock); 1560 } else { 1561 mutex_exit(p->p_lock); 1562 mutex_destroy(&lp->lp_lock); 1563 kmem_free(lp, sizeof(*lp)); 1564 lp = p->p_lwpctl; 1565 } 1566 } 1567 1568 /* 1569 * Set up an anonymous memory region to hold the shared pages. 1570 * Map them into the process' address space. The user vmspace 1571 * gets the first reference on the UAO. 1572 */ 1573 mutex_enter(&lp->lp_lock); 1574 if (lp->lp_uao == NULL) { 1575 lp->lp_uao = uao_create(LWPCTL_UAREA_SZ, 0); 1576 lp->lp_cur = 0; 1577 lp->lp_max = LWPCTL_UAREA_SZ; 1578 lp->lp_uva = p->p_emul->e_vm_default_addr(p, 1579 (vaddr_t)p->p_vmspace->vm_daddr, LWPCTL_UAREA_SZ); 1580 error = uvm_map(&p->p_vmspace->vm_map, &lp->lp_uva, 1581 LWPCTL_UAREA_SZ, lp->lp_uao, 0, 0, UVM_MAPFLAG(UVM_PROT_RW, 1582 UVM_PROT_RW, UVM_INH_NONE, UVM_ADV_NORMAL, 0)); 1583 if (error != 0) { 1584 uao_detach(lp->lp_uao); 1585 lp->lp_uao = NULL; 1586 mutex_exit(&lp->lp_lock); 1587 return error; 1588 } 1589 } 1590 1591 /* Get a free block and allocate for this LWP. */ 1592 TAILQ_FOREACH(lcp, &lp->lp_pages, lcp_chain) { 1593 if (lcp->lcp_nfree != 0) 1594 break; 1595 } 1596 if (lcp == NULL) { 1597 /* Nothing available - try to set up a free page. */ 1598 if (lp->lp_cur == lp->lp_max) { 1599 mutex_exit(&lp->lp_lock); 1600 return ENOMEM; 1601 } 1602 lcp = kmem_alloc(LWPCTL_LCPAGE_SZ, KM_SLEEP); 1603 if (lcp == NULL) { 1604 mutex_exit(&lp->lp_lock); 1605 return ENOMEM; 1606 } 1607 /* 1608 * Wire the next page down in kernel space. Since this 1609 * is a new mapping, we must add a reference. 1610 */ 1611 uao = lp->lp_uao; 1612 (*uao->pgops->pgo_reference)(uao); 1613 lcp->lcp_kaddr = vm_map_min(kernel_map); 1614 error = uvm_map(kernel_map, &lcp->lcp_kaddr, PAGE_SIZE, 1615 uao, lp->lp_cur, PAGE_SIZE, 1616 UVM_MAPFLAG(UVM_PROT_RW, UVM_PROT_RW, 1617 UVM_INH_NONE, UVM_ADV_RANDOM, 0)); 1618 if (error != 0) { 1619 mutex_exit(&lp->lp_lock); 1620 kmem_free(lcp, LWPCTL_LCPAGE_SZ); 1621 (*uao->pgops->pgo_detach)(uao); 1622 return error; 1623 } 1624 error = uvm_map_pageable(kernel_map, lcp->lcp_kaddr, 1625 lcp->lcp_kaddr + PAGE_SIZE, FALSE, 0); 1626 if (error != 0) { 1627 mutex_exit(&lp->lp_lock); 1628 uvm_unmap(kernel_map, lcp->lcp_kaddr, 1629 lcp->lcp_kaddr + PAGE_SIZE); 1630 kmem_free(lcp, LWPCTL_LCPAGE_SZ); 1631 return error; 1632 } 1633 /* Prepare the page descriptor and link into the list. */ 1634 lcp->lcp_uaddr = lp->lp_uva + lp->lp_cur; 1635 lp->lp_cur += PAGE_SIZE; 1636 lcp->lcp_nfree = LWPCTL_PER_PAGE; 1637 lcp->lcp_rotor = 0; 1638 memset(lcp->lcp_bitmap, 0xff, LWPCTL_BITMAP_SZ); 1639 TAILQ_INSERT_HEAD(&lp->lp_pages, lcp, lcp_chain); 1640 } 1641 for (i = lcp->lcp_rotor; lcp->lcp_bitmap[i] == 0;) { 1642 if (++i >= LWPCTL_BITMAP_ENTRIES) 1643 i = 0; 1644 } 1645 bit = ffs(lcp->lcp_bitmap[i]) - 1; 1646 lcp->lcp_bitmap[i] ^= (1 << bit); 1647 lcp->lcp_rotor = i; 1648 lcp->lcp_nfree--; 1649 l->l_lcpage = lcp; 1650 offset = (i << 5) + bit; 1651 l->l_lwpctl = (lwpctl_t *)lcp->lcp_kaddr + offset; 1652 *uaddr = lcp->lcp_uaddr + offset * sizeof(lwpctl_t); 1653 mutex_exit(&lp->lp_lock); 1654 1655 KPREEMPT_DISABLE(l); 1656 l->l_lwpctl->lc_curcpu = (int)curcpu()->ci_data.cpu_index; 1657 KPREEMPT_ENABLE(l); 1658 1659 return 0; 1660 } 1661 1662 /* 1663 * Free an lwpctl structure back to the per-process list. 1664 */ 1665 void 1666 lwp_ctl_free(lwp_t *l) 1667 { 1668 lcproc_t *lp; 1669 lcpage_t *lcp; 1670 u_int map, offset; 1671 1672 lp = l->l_proc->p_lwpctl; 1673 KASSERT(lp != NULL); 1674 1675 lcp = l->l_lcpage; 1676 offset = (u_int)((lwpctl_t *)l->l_lwpctl - (lwpctl_t *)lcp->lcp_kaddr); 1677 KASSERT(offset < LWPCTL_PER_PAGE); 1678 1679 mutex_enter(&lp->lp_lock); 1680 lcp->lcp_nfree++; 1681 map = offset >> 5; 1682 lcp->lcp_bitmap[map] |= (1 << (offset & 31)); 1683 if (lcp->lcp_bitmap[lcp->lcp_rotor] == 0) 1684 lcp->lcp_rotor = map; 1685 if (TAILQ_FIRST(&lp->lp_pages)->lcp_nfree == 0) { 1686 TAILQ_REMOVE(&lp->lp_pages, lcp, lcp_chain); 1687 TAILQ_INSERT_HEAD(&lp->lp_pages, lcp, lcp_chain); 1688 } 1689 mutex_exit(&lp->lp_lock); 1690 } 1691 1692 /* 1693 * Process is exiting; tear down lwpctl state. This can only be safely 1694 * called by the last LWP in the process. 1695 */ 1696 void 1697 lwp_ctl_exit(void) 1698 { 1699 lcpage_t *lcp, *next; 1700 lcproc_t *lp; 1701 proc_t *p; 1702 lwp_t *l; 1703 1704 l = curlwp; 1705 l->l_lwpctl = NULL; 1706 l->l_lcpage = NULL; 1707 p = l->l_proc; 1708 lp = p->p_lwpctl; 1709 1710 KASSERT(lp != NULL); 1711 KASSERT(p->p_nlwps == 1); 1712 1713 for (lcp = TAILQ_FIRST(&lp->lp_pages); lcp != NULL; lcp = next) { 1714 next = TAILQ_NEXT(lcp, lcp_chain); 1715 uvm_unmap(kernel_map, lcp->lcp_kaddr, 1716 lcp->lcp_kaddr + PAGE_SIZE); 1717 kmem_free(lcp, LWPCTL_LCPAGE_SZ); 1718 } 1719 1720 if (lp->lp_uao != NULL) { 1721 uvm_unmap(&p->p_vmspace->vm_map, lp->lp_uva, 1722 lp->lp_uva + LWPCTL_UAREA_SZ); 1723 } 1724 1725 mutex_destroy(&lp->lp_lock); 1726 kmem_free(lp, sizeof(*lp)); 1727 p->p_lwpctl = NULL; 1728 } 1729 1730 #if defined(DDB) 1731 void 1732 lwp_whatis(uintptr_t addr, void (*pr)(const char *, ...)) 1733 { 1734 lwp_t *l; 1735 1736 LIST_FOREACH(l, &alllwp, l_list) { 1737 uintptr_t stack = (uintptr_t)KSTACK_LOWEST_ADDR(l); 1738 1739 if (addr < stack || stack + KSTACK_SIZE <= addr) { 1740 continue; 1741 } 1742 (*pr)("%p is %p+%zu, LWP %p's stack\n", 1743 (void *)addr, (void *)stack, 1744 (size_t)(addr - stack), l); 1745 } 1746 } 1747 #endif /* defined(DDB) */ 1748