xref: /netbsd-src/sys/kern/kern_lwp.c (revision 4b71a66d0f279143147d63ebfcfd8a59499a3684)
1 /*	$NetBSD: kern_lwp.c,v 1.114 2008/05/29 22:33:27 rmind Exp $	*/
2 
3 /*-
4  * Copyright (c) 2001, 2006, 2007, 2008 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Nathan J. Williams, and Andrew Doran.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29  * POSSIBILITY OF SUCH DAMAGE.
30  */
31 
32 /*
33  * Overview
34  *
35  *	Lightweight processes (LWPs) are the basic unit or thread of
36  *	execution within the kernel.  The core state of an LWP is described
37  *	by "struct lwp", also known as lwp_t.
38  *
39  *	Each LWP is contained within a process (described by "struct proc"),
40  *	Every process contains at least one LWP, but may contain more.  The
41  *	process describes attributes shared among all of its LWPs such as a
42  *	private address space, global execution state (stopped, active,
43  *	zombie, ...), signal disposition and so on.  On a multiprocessor
44  *	machine, multiple LWPs be executing concurrently in the kernel.
45  *
46  * Execution states
47  *
48  *	At any given time, an LWP has overall state that is described by
49  *	lwp::l_stat.  The states are broken into two sets below.  The first
50  *	set is guaranteed to represent the absolute, current state of the
51  *	LWP:
52  *
53  *	LSONPROC
54  *
55  *		On processor: the LWP is executing on a CPU, either in the
56  *		kernel or in user space.
57  *
58  *	LSRUN
59  *
60  *		Runnable: the LWP is parked on a run queue, and may soon be
61  *		chosen to run by an idle processor, or by a processor that
62  *		has been asked to preempt a currently runnning but lower
63  *		priority LWP.  If the LWP is not swapped in (LW_INMEM == 0)
64  *		then the LWP is not on a run queue, but may be soon.
65  *
66  *	LSIDL
67  *
68  *		Idle: the LWP has been created but has not yet executed,
69  *		or it has ceased executing a unit of work and is waiting
70  *		to be started again.
71  *
72  *	LSSUSPENDED:
73  *
74  *		Suspended: the LWP has had its execution suspended by
75  *		another LWP in the same process using the _lwp_suspend()
76  *		system call.  User-level LWPs also enter the suspended
77  *		state when the system is shutting down.
78  *
79  *	The second set represent a "statement of intent" on behalf of the
80  *	LWP.  The LWP may in fact be executing on a processor, may be
81  *	sleeping or idle. It is expected to take the necessary action to
82  *	stop executing or become "running" again within a short timeframe.
83  *	The LW_RUNNING flag in lwp::l_flag indicates that an LWP is running.
84  *	Importantly, it indicates that its state is tied to a CPU.
85  *
86  *	LSZOMB:
87  *
88  *		Dead or dying: the LWP has released most of its resources
89  *		and is: a) about to switch away into oblivion b) has already
90  *		switched away.  When it switches away, its few remaining
91  *		resources can be collected.
92  *
93  *	LSSLEEP:
94  *
95  *		Sleeping: the LWP has entered itself onto a sleep queue, and
96  *		has switched away or will switch away shortly to allow other
97  *		LWPs to run on the CPU.
98  *
99  *	LSSTOP:
100  *
101  *		Stopped: the LWP has been stopped as a result of a job
102  *		control signal, or as a result of the ptrace() interface.
103  *
104  *		Stopped LWPs may run briefly within the kernel to handle
105  *		signals that they receive, but will not return to user space
106  *		until their process' state is changed away from stopped.
107  *
108  *		Single LWPs within a process can not be set stopped
109  *		selectively: all actions that can stop or continue LWPs
110  *		occur at the process level.
111  *
112  * State transitions
113  *
114  *	Note that the LSSTOP state may only be set when returning to
115  *	user space in userret(), or when sleeping interruptably.  The
116  *	LSSUSPENDED state may only be set in userret().  Before setting
117  *	those states, we try to ensure that the LWPs will release all
118  *	locks that they hold, and at a minimum try to ensure that the
119  *	LWP can be set runnable again by a signal.
120  *
121  *	LWPs may transition states in the following ways:
122  *
123  *	 RUN -------> ONPROC		ONPROC -----> RUN
124  *		    > STOPPED			    > SLEEP
125  *		    > SUSPENDED			    > STOPPED
126  *						    > SUSPENDED
127  *						    > ZOMB
128  *
129  *	 STOPPED ---> RUN		SUSPENDED --> RUN
130  *	            > SLEEP			    > SLEEP
131  *
132  *	 SLEEP -----> ONPROC		IDL --------> RUN
133  *		    > RUN			    > SUSPENDED
134  *		    > STOPPED			    > STOPPED
135  *		    > SUSPENDED
136  *
137  *	Other state transitions are possible with kernel threads (eg
138  *	ONPROC -> IDL), but only happen under tightly controlled
139  *	circumstances the side effects are understood.
140  *
141  * Migration
142  *
143  *	Migration of threads from one CPU to another could be performed
144  *	internally by the scheduler via sched_takecpu() or sched_catchlwp()
145  *	functions.  The universal lwp_migrate() function should be used for
146  *	any other cases.  Subsystems in the kernel must be aware that CPU
147  *	of LWP may change, while it is not locked.
148  *
149  * Locking
150  *
151  *	The majority of fields in 'struct lwp' are covered by a single,
152  *	general spin lock pointed to by lwp::l_mutex.  The locks covering
153  *	each field are documented in sys/lwp.h.
154  *
155  *	State transitions must be made with the LWP's general lock held,
156  *	and may cause the LWP's lock pointer to change. Manipulation of
157  *	the general lock is not performed directly, but through calls to
158  *	lwp_lock(), lwp_relock() and similar.
159  *
160  *	States and their associated locks:
161  *
162  *	LSONPROC, LSZOMB:
163  *
164  *		Always covered by spc_lwplock, which protects running LWPs.
165  *		This is a per-CPU lock.
166  *
167  *	LSIDL, LSRUN:
168  *
169  *		Always covered by spc_mutex, which protects the run queues.
170  *		This is a per-CPU lock.
171  *
172  *	LSSLEEP:
173  *
174  *		Covered by a lock associated with the sleep queue that the
175  *		LWP resides on.
176  *
177  *	LSSTOP, LSSUSPENDED:
178  *
179  *		If the LWP was previously sleeping (l_wchan != NULL), then
180  *		l_mutex references the sleep queue lock.  If the LWP was
181  *		runnable or on the CPU when halted, or has been removed from
182  *		the sleep queue since halted, then the lock is spc_lwplock.
183  *
184  *	The lock order is as follows:
185  *
186  *		spc::spc_lwplock ->
187  *		    sleeptab::st_mutex ->
188  *			tschain_t::tc_mutex ->
189  *			    spc::spc_mutex
190  *
191  *	Each process has an scheduler state lock (proc::p_lock), and a
192  *	number of counters on LWPs and their states: p_nzlwps, p_nrlwps, and
193  *	so on.  When an LWP is to be entered into or removed from one of the
194  *	following states, p_lock must be held and the process wide counters
195  *	adjusted:
196  *
197  *		LSIDL, LSZOMB, LSSTOP, LSSUSPENDED
198  *
199  *	Note that an LWP is considered running or likely to run soon if in
200  *	one of the following states.  This affects the value of p_nrlwps:
201  *
202  *		LSRUN, LSONPROC, LSSLEEP
203  *
204  *	p_lock does not need to be held when transitioning among these
205  *	three states.
206  */
207 
208 #include <sys/cdefs.h>
209 __KERNEL_RCSID(0, "$NetBSD: kern_lwp.c,v 1.114 2008/05/29 22:33:27 rmind Exp $");
210 
211 #include "opt_ddb.h"
212 #include "opt_lockdebug.h"
213 
214 #define _LWP_API_PRIVATE
215 
216 #include <sys/param.h>
217 #include <sys/systm.h>
218 #include <sys/cpu.h>
219 #include <sys/pool.h>
220 #include <sys/proc.h>
221 #include <sys/syscallargs.h>
222 #include <sys/syscall_stats.h>
223 #include <sys/kauth.h>
224 #include <sys/sleepq.h>
225 #include <sys/user.h>
226 #include <sys/lockdebug.h>
227 #include <sys/kmem.h>
228 #include <sys/pset.h>
229 #include <sys/intr.h>
230 #include <sys/lwpctl.h>
231 #include <sys/atomic.h>
232 
233 #include <uvm/uvm_extern.h>
234 #include <uvm/uvm_object.h>
235 
236 struct lwplist	alllwp = LIST_HEAD_INITIALIZER(alllwp);
237 
238 POOL_INIT(lwp_uc_pool, sizeof(ucontext_t), 0, 0, 0, "lwpucpl",
239     &pool_allocator_nointr, IPL_NONE);
240 
241 static pool_cache_t lwp_cache;
242 static specificdata_domain_t lwp_specificdata_domain;
243 
244 void
245 lwpinit(void)
246 {
247 
248 	lwp_specificdata_domain = specificdata_domain_create();
249 	KASSERT(lwp_specificdata_domain != NULL);
250 	lwp_sys_init();
251 	lwp_cache = pool_cache_init(sizeof(lwp_t), MIN_LWP_ALIGNMENT, 0, 0,
252 	    "lwppl", NULL, IPL_NONE, NULL, NULL, NULL);
253 }
254 
255 /*
256  * Set an suspended.
257  *
258  * Must be called with p_lock held, and the LWP locked.  Will unlock the
259  * LWP before return.
260  */
261 int
262 lwp_suspend(struct lwp *curl, struct lwp *t)
263 {
264 	int error;
265 
266 	KASSERT(mutex_owned(t->l_proc->p_lock));
267 	KASSERT(lwp_locked(t, NULL));
268 
269 	KASSERT(curl != t || curl->l_stat == LSONPROC);
270 
271 	/*
272 	 * If the current LWP has been told to exit, we must not suspend anyone
273 	 * else or deadlock could occur.  We won't return to userspace.
274 	 */
275 	if ((curl->l_flag & (LW_WEXIT | LW_WCORE)) != 0) {
276 		lwp_unlock(t);
277 		return (EDEADLK);
278 	}
279 
280 	error = 0;
281 
282 	switch (t->l_stat) {
283 	case LSRUN:
284 	case LSONPROC:
285 		t->l_flag |= LW_WSUSPEND;
286 		lwp_need_userret(t);
287 		lwp_unlock(t);
288 		break;
289 
290 	case LSSLEEP:
291 		t->l_flag |= LW_WSUSPEND;
292 
293 		/*
294 		 * Kick the LWP and try to get it to the kernel boundary
295 		 * so that it will release any locks that it holds.
296 		 * setrunnable() will release the lock.
297 		 */
298 		if ((t->l_flag & LW_SINTR) != 0)
299 			setrunnable(t);
300 		else
301 			lwp_unlock(t);
302 		break;
303 
304 	case LSSUSPENDED:
305 		lwp_unlock(t);
306 		break;
307 
308 	case LSSTOP:
309 		t->l_flag |= LW_WSUSPEND;
310 		setrunnable(t);
311 		break;
312 
313 	case LSIDL:
314 	case LSZOMB:
315 		error = EINTR; /* It's what Solaris does..... */
316 		lwp_unlock(t);
317 		break;
318 	}
319 
320 	return (error);
321 }
322 
323 /*
324  * Restart a suspended LWP.
325  *
326  * Must be called with p_lock held, and the LWP locked.  Will unlock the
327  * LWP before return.
328  */
329 void
330 lwp_continue(struct lwp *l)
331 {
332 
333 	KASSERT(mutex_owned(l->l_proc->p_lock));
334 	KASSERT(lwp_locked(l, NULL));
335 
336 	/* If rebooting or not suspended, then just bail out. */
337 	if ((l->l_flag & LW_WREBOOT) != 0) {
338 		lwp_unlock(l);
339 		return;
340 	}
341 
342 	l->l_flag &= ~LW_WSUSPEND;
343 
344 	if (l->l_stat != LSSUSPENDED) {
345 		lwp_unlock(l);
346 		return;
347 	}
348 
349 	/* setrunnable() will release the lock. */
350 	setrunnable(l);
351 }
352 
353 /*
354  * Wait for an LWP within the current process to exit.  If 'lid' is
355  * non-zero, we are waiting for a specific LWP.
356  *
357  * Must be called with p->p_lock held.
358  */
359 int
360 lwp_wait1(struct lwp *l, lwpid_t lid, lwpid_t *departed, int flags)
361 {
362 	struct proc *p = l->l_proc;
363 	struct lwp *l2;
364 	int nfound, error;
365 	lwpid_t curlid;
366 	bool exiting;
367 
368 	KASSERT(mutex_owned(p->p_lock));
369 
370 	p->p_nlwpwait++;
371 	l->l_waitingfor = lid;
372 	curlid = l->l_lid;
373 	exiting = ((flags & LWPWAIT_EXITCONTROL) != 0);
374 
375 	for (;;) {
376 		/*
377 		 * Avoid a race between exit1() and sigexit(): if the
378 		 * process is dumping core, then we need to bail out: call
379 		 * into lwp_userret() where we will be suspended until the
380 		 * deed is done.
381 		 */
382 		if ((p->p_sflag & PS_WCORE) != 0) {
383 			mutex_exit(p->p_lock);
384 			lwp_userret(l);
385 #ifdef DIAGNOSTIC
386 			panic("lwp_wait1");
387 #endif
388 			/* NOTREACHED */
389 		}
390 
391 		/*
392 		 * First off, drain any detached LWP that is waiting to be
393 		 * reaped.
394 		 */
395 		while ((l2 = p->p_zomblwp) != NULL) {
396 			p->p_zomblwp = NULL;
397 			lwp_free(l2, false, false);/* releases proc mutex */
398 			mutex_enter(p->p_lock);
399 		}
400 
401 		/*
402 		 * Now look for an LWP to collect.  If the whole process is
403 		 * exiting, count detached LWPs as eligible to be collected,
404 		 * but don't drain them here.
405 		 */
406 		nfound = 0;
407 		error = 0;
408 		LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
409 			/*
410 			 * If a specific wait and the target is waiting on
411 			 * us, then avoid deadlock.  This also traps LWPs
412 			 * that try to wait on themselves.
413 			 *
414 			 * Note that this does not handle more complicated
415 			 * cycles, like: t1 -> t2 -> t3 -> t1.  The process
416 			 * can still be killed so it is not a major problem.
417 			 */
418 			if (l2->l_lid == lid && l2->l_waitingfor == curlid) {
419 				error = EDEADLK;
420 				break;
421 			}
422 			if (l2 == l)
423 				continue;
424 			if ((l2->l_prflag & LPR_DETACHED) != 0) {
425 				nfound += exiting;
426 				continue;
427 			}
428 			if (lid != 0) {
429 				if (l2->l_lid != lid)
430 					continue;
431 				/*
432 				 * Mark this LWP as the first waiter, if there
433 				 * is no other.
434 				 */
435 				if (l2->l_waiter == 0)
436 					l2->l_waiter = curlid;
437 			} else if (l2->l_waiter != 0) {
438 				/*
439 				 * It already has a waiter - so don't
440 				 * collect it.  If the waiter doesn't
441 				 * grab it we'll get another chance
442 				 * later.
443 				 */
444 				nfound++;
445 				continue;
446 			}
447 			nfound++;
448 
449 			/* No need to lock the LWP in order to see LSZOMB. */
450 			if (l2->l_stat != LSZOMB)
451 				continue;
452 
453 			/*
454 			 * We're no longer waiting.  Reset the "first waiter"
455 			 * pointer on the target, in case it was us.
456 			 */
457 			l->l_waitingfor = 0;
458 			l2->l_waiter = 0;
459 			p->p_nlwpwait--;
460 			if (departed)
461 				*departed = l2->l_lid;
462 			sched_lwp_collect(l2);
463 
464 			/* lwp_free() releases the proc lock. */
465 			lwp_free(l2, false, false);
466 			mutex_enter(p->p_lock);
467 			return 0;
468 		}
469 
470 		if (error != 0)
471 			break;
472 		if (nfound == 0) {
473 			error = ESRCH;
474 			break;
475 		}
476 
477 		/*
478 		 * The kernel is careful to ensure that it can not deadlock
479 		 * when exiting - just keep waiting.
480 		 */
481 		if (exiting) {
482 			KASSERT(p->p_nlwps > 1);
483 			cv_wait(&p->p_lwpcv, p->p_lock);
484 			continue;
485 		}
486 
487 		/*
488 		 * If all other LWPs are waiting for exits or suspends
489 		 * and the supply of zombies and potential zombies is
490 		 * exhausted, then we are about to deadlock.
491 		 *
492 		 * If the process is exiting (and this LWP is not the one
493 		 * that is coordinating the exit) then bail out now.
494 		 */
495 		if ((p->p_sflag & PS_WEXIT) != 0 ||
496 		    p->p_nrlwps + p->p_nzlwps - p->p_ndlwps <= p->p_nlwpwait) {
497 			error = EDEADLK;
498 			break;
499 		}
500 
501 		/*
502 		 * Sit around and wait for something to happen.  We'll be
503 		 * awoken if any of the conditions examined change: if an
504 		 * LWP exits, is collected, or is detached.
505 		 */
506 		if ((error = cv_wait_sig(&p->p_lwpcv, p->p_lock)) != 0)
507 			break;
508 	}
509 
510 	/*
511 	 * We didn't find any LWPs to collect, we may have received a
512 	 * signal, or some other condition has caused us to bail out.
513 	 *
514 	 * If waiting on a specific LWP, clear the waiters marker: some
515 	 * other LWP may want it.  Then, kick all the remaining waiters
516 	 * so that they can re-check for zombies and for deadlock.
517 	 */
518 	if (lid != 0) {
519 		LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
520 			if (l2->l_lid == lid) {
521 				if (l2->l_waiter == curlid)
522 					l2->l_waiter = 0;
523 				break;
524 			}
525 		}
526 	}
527 	p->p_nlwpwait--;
528 	l->l_waitingfor = 0;
529 	cv_broadcast(&p->p_lwpcv);
530 
531 	return error;
532 }
533 
534 /*
535  * Create a new LWP within process 'p2', using LWP 'l1' as a template.
536  * The new LWP is created in state LSIDL and must be set running,
537  * suspended, or stopped by the caller.
538  */
539 int
540 lwp_create(lwp_t *l1, proc_t *p2, vaddr_t uaddr, bool inmem, int flags,
541 	   void *stack, size_t stacksize, void (*func)(void *), void *arg,
542 	   lwp_t **rnewlwpp, int sclass)
543 {
544 	struct lwp *l2, *isfree;
545 	turnstile_t *ts;
546 
547 	KASSERT(l1 == curlwp || l1->l_proc == &proc0);
548 
549 	/*
550 	 * First off, reap any detached LWP waiting to be collected.
551 	 * We can re-use its LWP structure and turnstile.
552 	 */
553 	isfree = NULL;
554 	if (p2->p_zomblwp != NULL) {
555 		mutex_enter(p2->p_lock);
556 		if ((isfree = p2->p_zomblwp) != NULL) {
557 			p2->p_zomblwp = NULL;
558 			lwp_free(isfree, true, false);/* releases proc mutex */
559 		} else
560 			mutex_exit(p2->p_lock);
561 	}
562 	if (isfree == NULL) {
563 		l2 = pool_cache_get(lwp_cache, PR_WAITOK);
564 		memset(l2, 0, sizeof(*l2));
565 		l2->l_ts = pool_cache_get(turnstile_cache, PR_WAITOK);
566 		SLIST_INIT(&l2->l_pi_lenders);
567 	} else {
568 		l2 = isfree;
569 		ts = l2->l_ts;
570 		KASSERT(l2->l_inheritedprio == -1);
571 		KASSERT(SLIST_EMPTY(&l2->l_pi_lenders));
572 		memset(l2, 0, sizeof(*l2));
573 		l2->l_ts = ts;
574 	}
575 
576 	l2->l_stat = LSIDL;
577 	l2->l_proc = p2;
578 	l2->l_refcnt = 1;
579 	l2->l_class = sclass;
580 	l2->l_kpriority = l1->l_kpriority;
581 	l2->l_kpribase = PRI_KERNEL;
582 	l2->l_priority = l1->l_priority;
583 	l2->l_inheritedprio = -1;
584 	l2->l_flag = inmem ? LW_INMEM : 0;
585 	l2->l_pflag = LP_MPSAFE;
586 	l2->l_fd = p2->p_fd;
587 	TAILQ_INIT(&l2->l_ld_locks);
588 
589 	if (p2->p_flag & PK_SYSTEM) {
590 		/* Mark it as a system LWP and not a candidate for swapping */
591 		l2->l_flag |= LW_SYSTEM;
592 	}
593 
594 	kpreempt_disable();
595 	l2->l_mutex = l1->l_cpu->ci_schedstate.spc_mutex;
596 	l2->l_cpu = l1->l_cpu;
597 	kpreempt_enable();
598 
599 	lwp_initspecific(l2);
600 	sched_lwp_fork(l1, l2);
601 	lwp_update_creds(l2);
602 	callout_init(&l2->l_timeout_ch, CALLOUT_MPSAFE);
603 	callout_setfunc(&l2->l_timeout_ch, sleepq_timeout, l2);
604 	mutex_init(&l2->l_swaplock, MUTEX_DEFAULT, IPL_NONE);
605 	cv_init(&l2->l_sigcv, "sigwait");
606 	l2->l_syncobj = &sched_syncobj;
607 
608 	if (rnewlwpp != NULL)
609 		*rnewlwpp = l2;
610 
611 	l2->l_addr = UAREA_TO_USER(uaddr);
612 	uvm_lwp_fork(l1, l2, stack, stacksize, func,
613 	    (arg != NULL) ? arg : l2);
614 
615 	mutex_enter(p2->p_lock);
616 
617 	if ((flags & LWP_DETACHED) != 0) {
618 		l2->l_prflag = LPR_DETACHED;
619 		p2->p_ndlwps++;
620 	} else
621 		l2->l_prflag = 0;
622 
623 	l2->l_sigmask = l1->l_sigmask;
624 	CIRCLEQ_INIT(&l2->l_sigpend.sp_info);
625 	sigemptyset(&l2->l_sigpend.sp_set);
626 
627 	p2->p_nlwpid++;
628 	if (p2->p_nlwpid == 0)
629 		p2->p_nlwpid++;
630 	l2->l_lid = p2->p_nlwpid;
631 	LIST_INSERT_HEAD(&p2->p_lwps, l2, l_sibling);
632 	p2->p_nlwps++;
633 
634 	mutex_exit(p2->p_lock);
635 
636 	mutex_enter(proc_lock);
637 	LIST_INSERT_HEAD(&alllwp, l2, l_list);
638 	mutex_exit(proc_lock);
639 
640 	if ((p2->p_flag & PK_SYSTEM) == 0) {
641 		/* Locking is needed, since LWP is in the list of all LWPs */
642 		lwp_lock(l2);
643 		/* Inherit a processor-set */
644 		l2->l_psid = l1->l_psid;
645 		/* Inherit an affinity */
646 		memcpy(&l2->l_affinity, &l1->l_affinity, sizeof(cpuset_t));
647 		/* Look for a CPU to start */
648 		l2->l_cpu = sched_takecpu(l2);
649 		lwp_unlock_to(l2, l2->l_cpu->ci_schedstate.spc_mutex);
650 	}
651 
652 	SYSCALL_TIME_LWP_INIT(l2);
653 
654 	if (p2->p_emul->e_lwp_fork)
655 		(*p2->p_emul->e_lwp_fork)(l1, l2);
656 
657 	return (0);
658 }
659 
660 /*
661  * Called by MD code when a new LWP begins execution.  Must be called
662  * with the previous LWP locked (so at splsched), or if there is no
663  * previous LWP, at splsched.
664  */
665 void
666 lwp_startup(struct lwp *prev, struct lwp *new)
667 {
668 
669 	KASSERT(kpreempt_disabled());
670 	if (prev != NULL) {
671 		/*
672 		 * Normalize the count of the spin-mutexes, it was
673 		 * increased in mi_switch().  Unmark the state of
674 		 * context switch - it is finished for previous LWP.
675 		 */
676 		curcpu()->ci_mtx_count++;
677 		membar_exit();
678 		prev->l_ctxswtch = 0;
679 	}
680 	KPREEMPT_DISABLE(new);
681 	spl0();
682 	pmap_activate(new);
683 	LOCKDEBUG_BARRIER(NULL, 0);
684 	KPREEMPT_ENABLE(new);
685 	if ((new->l_pflag & LP_MPSAFE) == 0) {
686 		KERNEL_LOCK(1, new);
687 	}
688 }
689 
690 /*
691  * Exit an LWP.
692  */
693 void
694 lwp_exit(struct lwp *l)
695 {
696 	struct proc *p = l->l_proc;
697 	struct lwp *l2;
698 	bool current;
699 
700 	current = (l == curlwp);
701 
702 	KASSERT(current || (l->l_stat == LSIDL && l->l_target_cpu == NULL));
703 
704 	/*
705 	 * Verify that we hold no locks other than the kernel lock.
706 	 */
707 	LOCKDEBUG_BARRIER(&kernel_lock, 0);
708 
709 	/*
710 	 * If we are the last live LWP in a process, we need to exit the
711 	 * entire process.  We do so with an exit status of zero, because
712 	 * it's a "controlled" exit, and because that's what Solaris does.
713 	 *
714 	 * We are not quite a zombie yet, but for accounting purposes we
715 	 * must increment the count of zombies here.
716 	 *
717 	 * Note: the last LWP's specificdata will be deleted here.
718 	 */
719 	mutex_enter(p->p_lock);
720 	if (p->p_nlwps - p->p_nzlwps == 1) {
721 		KASSERT(current == true);
722 		/* XXXSMP kernel_lock not held */
723 		exit1(l, 0);
724 		/* NOTREACHED */
725 	}
726 	p->p_nzlwps++;
727 	mutex_exit(p->p_lock);
728 
729 	if (p->p_emul->e_lwp_exit)
730 		(*p->p_emul->e_lwp_exit)(l);
731 
732 	/* Delete the specificdata while it's still safe to sleep. */
733 	specificdata_fini(lwp_specificdata_domain, &l->l_specdataref);
734 
735 	/*
736 	 * Release our cached credentials.
737 	 */
738 	kauth_cred_free(l->l_cred);
739 	callout_destroy(&l->l_timeout_ch);
740 
741 	/*
742 	 * While we can still block, mark the LWP as unswappable to
743 	 * prevent conflicts with the with the swapper.
744 	 */
745 	if (current)
746 		uvm_lwp_hold(l);
747 
748 	/*
749 	 * Remove the LWP from the global list.
750 	 */
751 	mutex_enter(proc_lock);
752 	LIST_REMOVE(l, l_list);
753 	mutex_exit(proc_lock);
754 
755 	/*
756 	 * Get rid of all references to the LWP that others (e.g. procfs)
757 	 * may have, and mark the LWP as a zombie.  If the LWP is detached,
758 	 * mark it waiting for collection in the proc structure.  Note that
759 	 * before we can do that, we need to free any other dead, deatched
760 	 * LWP waiting to meet its maker.
761 	 */
762 	mutex_enter(p->p_lock);
763 	lwp_drainrefs(l);
764 
765 	if ((l->l_prflag & LPR_DETACHED) != 0) {
766 		while ((l2 = p->p_zomblwp) != NULL) {
767 			p->p_zomblwp = NULL;
768 			lwp_free(l2, false, false);/* releases proc mutex */
769 			mutex_enter(p->p_lock);
770 			l->l_refcnt++;
771 			lwp_drainrefs(l);
772 		}
773 		p->p_zomblwp = l;
774 	}
775 
776 	/*
777 	 * If we find a pending signal for the process and we have been
778 	 * asked to check for signals, then we loose: arrange to have
779 	 * all other LWPs in the process check for signals.
780 	 */
781 	if ((l->l_flag & LW_PENDSIG) != 0 &&
782 	    firstsig(&p->p_sigpend.sp_set) != 0) {
783 		LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
784 			lwp_lock(l2);
785 			l2->l_flag |= LW_PENDSIG;
786 			lwp_unlock(l2);
787 		}
788 	}
789 
790 	lwp_lock(l);
791 	l->l_stat = LSZOMB;
792 	if (l->l_name != NULL)
793 		strcpy(l->l_name, "(zombie)");
794 	lwp_unlock(l);
795 	p->p_nrlwps--;
796 	cv_broadcast(&p->p_lwpcv);
797 	if (l->l_lwpctl != NULL)
798 		l->l_lwpctl->lc_curcpu = LWPCTL_CPU_EXITED;
799 	mutex_exit(p->p_lock);
800 
801 	/*
802 	 * We can no longer block.  At this point, lwp_free() may already
803 	 * be gunning for us.  On a multi-CPU system, we may be off p_lwps.
804 	 *
805 	 * Free MD LWP resources.
806 	 */
807 #ifndef __NO_CPU_LWP_FREE
808 	cpu_lwp_free(l, 0);
809 #endif
810 
811 	if (current) {
812 		pmap_deactivate(l);
813 
814 		/*
815 		 * Release the kernel lock, and switch away into
816 		 * oblivion.
817 		 */
818 #ifdef notyet
819 		/* XXXSMP hold in lwp_userret() */
820 		KERNEL_UNLOCK_LAST(l);
821 #else
822 		KERNEL_UNLOCK_ALL(l, NULL);
823 #endif
824 		lwp_exit_switchaway(l);
825 	}
826 }
827 
828 /*
829  * Free a dead LWP's remaining resources.
830  *
831  * XXXLWP limits.
832  */
833 void
834 lwp_free(struct lwp *l, bool recycle, bool last)
835 {
836 	struct proc *p = l->l_proc;
837 	struct rusage *ru;
838 	ksiginfoq_t kq;
839 
840 	KASSERT(l != curlwp);
841 
842 	/*
843 	 * If this was not the last LWP in the process, then adjust
844 	 * counters and unlock.
845 	 */
846 	if (!last) {
847 		/*
848 		 * Add the LWP's run time to the process' base value.
849 		 * This needs to co-incide with coming off p_lwps.
850 		 */
851 		bintime_add(&p->p_rtime, &l->l_rtime);
852 		p->p_pctcpu += l->l_pctcpu;
853 		ru = &p->p_stats->p_ru;
854 		ruadd(ru, &l->l_ru);
855 		ru->ru_nvcsw += (l->l_ncsw - l->l_nivcsw);
856 		ru->ru_nivcsw += l->l_nivcsw;
857 		LIST_REMOVE(l, l_sibling);
858 		p->p_nlwps--;
859 		p->p_nzlwps--;
860 		if ((l->l_prflag & LPR_DETACHED) != 0)
861 			p->p_ndlwps--;
862 
863 		/*
864 		 * Have any LWPs sleeping in lwp_wait() recheck for
865 		 * deadlock.
866 		 */
867 		cv_broadcast(&p->p_lwpcv);
868 		mutex_exit(p->p_lock);
869 	}
870 
871 #ifdef MULTIPROCESSOR
872 	/*
873 	 * In the unlikely event that the LWP is still on the CPU,
874 	 * then spin until it has switched away.  We need to release
875 	 * all locks to avoid deadlock against interrupt handlers on
876 	 * the target CPU.
877 	 */
878 	if ((l->l_flag & LW_RUNNING) != 0 || l->l_cpu->ci_curlwp == l) {
879 		int count;
880 		(void)count; /* XXXgcc */
881 		KERNEL_UNLOCK_ALL(curlwp, &count);
882 		while ((l->l_flag & LW_RUNNING) != 0 ||
883 		    l->l_cpu->ci_curlwp == l)
884 			SPINLOCK_BACKOFF_HOOK;
885 		KERNEL_LOCK(count, curlwp);
886 	}
887 #endif
888 
889 	/*
890 	 * Destroy the LWP's remaining signal information.
891 	 */
892 	ksiginfo_queue_init(&kq);
893 	sigclear(&l->l_sigpend, NULL, &kq);
894 	ksiginfo_queue_drain(&kq);
895 	cv_destroy(&l->l_sigcv);
896 	mutex_destroy(&l->l_swaplock);
897 
898 	/*
899 	 * Free the LWP's turnstile and the LWP structure itself unless the
900 	 * caller wants to recycle them.  Also, free the scheduler specific
901 	 * data.
902 	 *
903 	 * We can't return turnstile0 to the pool (it didn't come from it),
904 	 * so if it comes up just drop it quietly and move on.
905 	 *
906 	 * We don't recycle the VM resources at this time.
907 	 */
908 	if (l->l_lwpctl != NULL)
909 		lwp_ctl_free(l);
910 	sched_lwp_exit(l);
911 
912 	if (!recycle && l->l_ts != &turnstile0)
913 		pool_cache_put(turnstile_cache, l->l_ts);
914 	if (l->l_name != NULL)
915 		kmem_free(l->l_name, MAXCOMLEN);
916 #ifndef __NO_CPU_LWP_FREE
917 	cpu_lwp_free2(l);
918 #endif
919 	KASSERT((l->l_flag & LW_INMEM) != 0);
920 	uvm_lwp_exit(l);
921 	KASSERT(SLIST_EMPTY(&l->l_pi_lenders));
922 	KASSERT(l->l_inheritedprio == -1);
923 	if (!recycle)
924 		pool_cache_put(lwp_cache, l);
925 }
926 
927 /*
928  * Pick a LWP to represent the process for those operations which
929  * want information about a "process" that is actually associated
930  * with a LWP.
931  *
932  * If 'locking' is false, no locking or lock checks are performed.
933  * This is intended for use by DDB.
934  *
935  * We don't bother locking the LWP here, since code that uses this
936  * interface is broken by design and an exact match is not required.
937  */
938 struct lwp *
939 proc_representative_lwp(struct proc *p, int *nrlwps, int locking)
940 {
941 	struct lwp *l, *onproc, *running, *sleeping, *stopped, *suspended;
942 	struct lwp *signalled;
943 	int cnt;
944 
945 	if (locking) {
946 		KASSERT(mutex_owned(p->p_lock));
947 	}
948 
949 	/* Trivial case: only one LWP */
950 	if (p->p_nlwps == 1) {
951 		l = LIST_FIRST(&p->p_lwps);
952 		if (nrlwps)
953 			*nrlwps = (l->l_stat == LSONPROC || l->l_stat == LSRUN);
954 		return l;
955 	}
956 
957 	cnt = 0;
958 	switch (p->p_stat) {
959 	case SSTOP:
960 	case SACTIVE:
961 		/* Pick the most live LWP */
962 		onproc = running = sleeping = stopped = suspended = NULL;
963 		signalled = NULL;
964 		LIST_FOREACH(l, &p->p_lwps, l_sibling) {
965 			if ((l->l_flag & LW_IDLE) != 0) {
966 				continue;
967 			}
968 			if (l->l_lid == p->p_sigctx.ps_lwp)
969 				signalled = l;
970 			switch (l->l_stat) {
971 			case LSONPROC:
972 				onproc = l;
973 				cnt++;
974 				break;
975 			case LSRUN:
976 				running = l;
977 				cnt++;
978 				break;
979 			case LSSLEEP:
980 				sleeping = l;
981 				break;
982 			case LSSTOP:
983 				stopped = l;
984 				break;
985 			case LSSUSPENDED:
986 				suspended = l;
987 				break;
988 			}
989 		}
990 		if (nrlwps)
991 			*nrlwps = cnt;
992 		if (signalled)
993 			l = signalled;
994 		else if (onproc)
995 			l = onproc;
996 		else if (running)
997 			l = running;
998 		else if (sleeping)
999 			l = sleeping;
1000 		else if (stopped)
1001 			l = stopped;
1002 		else if (suspended)
1003 			l = suspended;
1004 		else
1005 			break;
1006 		return l;
1007 #ifdef DIAGNOSTIC
1008 	case SIDL:
1009 	case SZOMB:
1010 	case SDYING:
1011 	case SDEAD:
1012 		if (locking)
1013 			mutex_exit(p->p_lock);
1014 		/* We have more than one LWP and we're in SIDL?
1015 		 * How'd that happen?
1016 		 */
1017 		panic("Too many LWPs in idle/dying process %d (%s) stat = %d",
1018 		    p->p_pid, p->p_comm, p->p_stat);
1019 		break;
1020 	default:
1021 		if (locking)
1022 			mutex_exit(p->p_lock);
1023 		panic("Process %d (%s) in unknown state %d",
1024 		    p->p_pid, p->p_comm, p->p_stat);
1025 #endif
1026 	}
1027 
1028 	if (locking)
1029 		mutex_exit(p->p_lock);
1030 	panic("proc_representative_lwp: couldn't find a lwp for process"
1031 		" %d (%s)", p->p_pid, p->p_comm);
1032 	/* NOTREACHED */
1033 	return NULL;
1034 }
1035 
1036 /*
1037  * Migrate the LWP to the another CPU.  Unlocks the LWP.
1038  */
1039 void
1040 lwp_migrate(lwp_t *l, struct cpu_info *tci)
1041 {
1042 	struct schedstate_percpu *tspc;
1043 	KASSERT(lwp_locked(l, NULL));
1044 	KASSERT(tci != NULL);
1045 
1046 	/*
1047 	 * If LWP is still on the CPU, it must be handled like on LSONPROC.
1048 	 * The destination CPU could be changed while previous migration
1049 	 * was not finished.
1050 	 */
1051 	if ((l->l_flag & LW_RUNNING) != 0 || l->l_target_cpu != NULL) {
1052 		l->l_target_cpu = tci;
1053 		lwp_unlock(l);
1054 		return;
1055 	}
1056 
1057 	/* Nothing to do if trying to migrate to the same CPU */
1058 	if (l->l_cpu == tci) {
1059 		lwp_unlock(l);
1060 		return;
1061 	}
1062 
1063 	KASSERT(l->l_target_cpu == NULL);
1064 	tspc = &tci->ci_schedstate;
1065 	switch (l->l_stat) {
1066 	case LSRUN:
1067 		if (l->l_flag & LW_INMEM) {
1068 			l->l_target_cpu = tci;
1069 			lwp_unlock(l);
1070 			return;
1071 		}
1072 	case LSIDL:
1073 		l->l_cpu = tci;
1074 		lwp_unlock_to(l, tspc->spc_mutex);
1075 		return;
1076 	case LSSLEEP:
1077 		l->l_cpu = tci;
1078 		break;
1079 	case LSSTOP:
1080 	case LSSUSPENDED:
1081 		l->l_cpu = tci;
1082 		if (l->l_wchan == NULL) {
1083 			lwp_unlock_to(l, tspc->spc_lwplock);
1084 			return;
1085 		}
1086 		break;
1087 	case LSONPROC:
1088 		l->l_target_cpu = tci;
1089 		spc_lock(l->l_cpu);
1090 		cpu_need_resched(l->l_cpu, RESCHED_KPREEMPT);
1091 		spc_unlock(l->l_cpu);
1092 		break;
1093 	}
1094 	lwp_unlock(l);
1095 }
1096 
1097 /*
1098  * Find the LWP in the process.  Arguments may be zero, in such case,
1099  * the calling process and first LWP in the list will be used.
1100  * On success - returns proc locked.
1101  */
1102 struct lwp *
1103 lwp_find2(pid_t pid, lwpid_t lid)
1104 {
1105 	proc_t *p;
1106 	lwp_t *l;
1107 
1108 	/* Find the process */
1109 	p = (pid == 0) ? curlwp->l_proc : p_find(pid, PFIND_UNLOCK_FAIL);
1110 	if (p == NULL)
1111 		return NULL;
1112 	mutex_enter(p->p_lock);
1113 	if (pid != 0) {
1114 		/* Case of p_find */
1115 		mutex_exit(proc_lock);
1116 	}
1117 
1118 	/* Find the thread */
1119 	l = (lid == 0) ? LIST_FIRST(&p->p_lwps) : lwp_find(p, lid);
1120 	if (l == NULL) {
1121 		mutex_exit(p->p_lock);
1122 	}
1123 
1124 	return l;
1125 }
1126 
1127 /*
1128  * Look up a live LWP within the speicifed process, and return it locked.
1129  *
1130  * Must be called with p->p_lock held.
1131  */
1132 struct lwp *
1133 lwp_find(struct proc *p, int id)
1134 {
1135 	struct lwp *l;
1136 
1137 	KASSERT(mutex_owned(p->p_lock));
1138 
1139 	LIST_FOREACH(l, &p->p_lwps, l_sibling) {
1140 		if (l->l_lid == id)
1141 			break;
1142 	}
1143 
1144 	/*
1145 	 * No need to lock - all of these conditions will
1146 	 * be visible with the process level mutex held.
1147 	 */
1148 	if (l != NULL && (l->l_stat == LSIDL || l->l_stat == LSZOMB))
1149 		l = NULL;
1150 
1151 	return l;
1152 }
1153 
1154 /*
1155  * Update an LWP's cached credentials to mirror the process' master copy.
1156  *
1157  * This happens early in the syscall path, on user trap, and on LWP
1158  * creation.  A long-running LWP can also voluntarily choose to update
1159  * it's credentials by calling this routine.  This may be called from
1160  * LWP_CACHE_CREDS(), which checks l->l_cred != p->p_cred beforehand.
1161  */
1162 void
1163 lwp_update_creds(struct lwp *l)
1164 {
1165 	kauth_cred_t oc;
1166 	struct proc *p;
1167 
1168 	p = l->l_proc;
1169 	oc = l->l_cred;
1170 
1171 	mutex_enter(p->p_lock);
1172 	kauth_cred_hold(p->p_cred);
1173 	l->l_cred = p->p_cred;
1174 	l->l_prflag &= ~LPR_CRMOD;
1175 	mutex_exit(p->p_lock);
1176 	if (oc != NULL)
1177 		kauth_cred_free(oc);
1178 }
1179 
1180 /*
1181  * Verify that an LWP is locked, and optionally verify that the lock matches
1182  * one we specify.
1183  */
1184 int
1185 lwp_locked(struct lwp *l, kmutex_t *mtx)
1186 {
1187 	kmutex_t *cur = l->l_mutex;
1188 
1189 	return mutex_owned(cur) && (mtx == cur || mtx == NULL);
1190 }
1191 
1192 /*
1193  * Lock an LWP.
1194  */
1195 void
1196 lwp_lock_retry(struct lwp *l, kmutex_t *old)
1197 {
1198 
1199 	/*
1200 	 * XXXgcc ignoring kmutex_t * volatile on i386
1201 	 *
1202 	 * gcc version 4.1.2 20061021 prerelease (NetBSD nb1 20061021)
1203 	 */
1204 #if 1
1205 	while (l->l_mutex != old) {
1206 #else
1207 	for (;;) {
1208 #endif
1209 		mutex_spin_exit(old);
1210 		old = l->l_mutex;
1211 		mutex_spin_enter(old);
1212 
1213 		/*
1214 		 * mutex_enter() will have posted a read barrier.  Re-test
1215 		 * l->l_mutex.  If it has changed, we need to try again.
1216 		 */
1217 #if 1
1218 	}
1219 #else
1220 	} while (__predict_false(l->l_mutex != old));
1221 #endif
1222 }
1223 
1224 /*
1225  * Lend a new mutex to an LWP.  The old mutex must be held.
1226  */
1227 void
1228 lwp_setlock(struct lwp *l, kmutex_t *new)
1229 {
1230 
1231 	KASSERT(mutex_owned(l->l_mutex));
1232 
1233 	membar_exit();
1234 	l->l_mutex = new;
1235 }
1236 
1237 /*
1238  * Lend a new mutex to an LWP, and release the old mutex.  The old mutex
1239  * must be held.
1240  */
1241 void
1242 lwp_unlock_to(struct lwp *l, kmutex_t *new)
1243 {
1244 	kmutex_t *old;
1245 
1246 	KASSERT(mutex_owned(l->l_mutex));
1247 
1248 	old = l->l_mutex;
1249 	membar_exit();
1250 	l->l_mutex = new;
1251 	mutex_spin_exit(old);
1252 }
1253 
1254 /*
1255  * Acquire a new mutex, and donate it to an LWP.  The LWP must already be
1256  * locked.
1257  */
1258 void
1259 lwp_relock(struct lwp *l, kmutex_t *new)
1260 {
1261 	kmutex_t *old;
1262 
1263 	KASSERT(mutex_owned(l->l_mutex));
1264 
1265 	old = l->l_mutex;
1266 	if (old != new) {
1267 		mutex_spin_enter(new);
1268 		l->l_mutex = new;
1269 		mutex_spin_exit(old);
1270 	}
1271 }
1272 
1273 int
1274 lwp_trylock(struct lwp *l)
1275 {
1276 	kmutex_t *old;
1277 
1278 	for (;;) {
1279 		if (!mutex_tryenter(old = l->l_mutex))
1280 			return 0;
1281 		if (__predict_true(l->l_mutex == old))
1282 			return 1;
1283 		mutex_spin_exit(old);
1284 	}
1285 }
1286 
1287 u_int
1288 lwp_unsleep(lwp_t *l, bool cleanup)
1289 {
1290 
1291 	KASSERT(mutex_owned(l->l_mutex));
1292 
1293 	return (*l->l_syncobj->sobj_unsleep)(l, cleanup);
1294 }
1295 
1296 
1297 /*
1298  * Handle exceptions for mi_userret().  Called if a member of LW_USERRET is
1299  * set.
1300  */
1301 void
1302 lwp_userret(struct lwp *l)
1303 {
1304 	struct proc *p;
1305 	void (*hook)(void);
1306 	int sig;
1307 
1308 	KASSERT(l == curlwp);
1309 	KASSERT(l->l_stat == LSONPROC);
1310 	p = l->l_proc;
1311 
1312 #ifndef __HAVE_FAST_SOFTINTS
1313 	/* Run pending soft interrupts. */
1314 	if (l->l_cpu->ci_data.cpu_softints != 0)
1315 		softint_overlay();
1316 #endif
1317 
1318 	/*
1319 	 * It should be safe to do this read unlocked on a multiprocessor
1320 	 * system..
1321 	 */
1322 	while ((l->l_flag & LW_USERRET) != 0) {
1323 		/*
1324 		 * Process pending signals first, unless the process
1325 		 * is dumping core or exiting, where we will instead
1326 		 * enter the LW_WSUSPEND case below.
1327 		 */
1328 		if ((l->l_flag & (LW_PENDSIG | LW_WCORE | LW_WEXIT)) ==
1329 		    LW_PENDSIG) {
1330 			mutex_enter(p->p_lock);
1331 			while ((sig = issignal(l)) != 0)
1332 				postsig(sig);
1333 			mutex_exit(p->p_lock);
1334 		}
1335 
1336 		/*
1337 		 * Core-dump or suspend pending.
1338 		 *
1339 		 * In case of core dump, suspend ourselves, so that the
1340 		 * kernel stack and therefore the userland registers saved
1341 		 * in the trapframe are around for coredump() to write them
1342 		 * out.  We issue a wakeup on p->p_lwpcv so that sigexit()
1343 		 * will write the core file out once all other LWPs are
1344 		 * suspended.
1345 		 */
1346 		if ((l->l_flag & LW_WSUSPEND) != 0) {
1347 			mutex_enter(p->p_lock);
1348 			p->p_nrlwps--;
1349 			cv_broadcast(&p->p_lwpcv);
1350 			lwp_lock(l);
1351 			l->l_stat = LSSUSPENDED;
1352 			lwp_unlock(l);
1353 			mutex_exit(p->p_lock);
1354 			lwp_lock(l);
1355 			mi_switch(l);
1356 		}
1357 
1358 		/* Process is exiting. */
1359 		if ((l->l_flag & LW_WEXIT) != 0) {
1360 			lwp_exit(l);
1361 			KASSERT(0);
1362 			/* NOTREACHED */
1363 		}
1364 
1365 		/* Call userret hook; used by Linux emulation. */
1366 		if ((l->l_flag & LW_WUSERRET) != 0) {
1367 			lwp_lock(l);
1368 			l->l_flag &= ~LW_WUSERRET;
1369 			lwp_unlock(l);
1370 			hook = p->p_userret;
1371 			p->p_userret = NULL;
1372 			(*hook)();
1373 		}
1374 	}
1375 }
1376 
1377 /*
1378  * Force an LWP to enter the kernel, to take a trip through lwp_userret().
1379  */
1380 void
1381 lwp_need_userret(struct lwp *l)
1382 {
1383 	KASSERT(lwp_locked(l, NULL));
1384 
1385 	/*
1386 	 * Since the tests in lwp_userret() are done unlocked, make sure
1387 	 * that the condition will be seen before forcing the LWP to enter
1388 	 * kernel mode.
1389 	 */
1390 	membar_producer();
1391 	cpu_signotify(l);
1392 }
1393 
1394 /*
1395  * Add one reference to an LWP.  This will prevent the LWP from
1396  * exiting, thus keep the lwp structure and PCB around to inspect.
1397  */
1398 void
1399 lwp_addref(struct lwp *l)
1400 {
1401 
1402 	KASSERT(mutex_owned(l->l_proc->p_lock));
1403 	KASSERT(l->l_stat != LSZOMB);
1404 	KASSERT(l->l_refcnt != 0);
1405 
1406 	l->l_refcnt++;
1407 }
1408 
1409 /*
1410  * Remove one reference to an LWP.  If this is the last reference,
1411  * then we must finalize the LWP's death.
1412  */
1413 void
1414 lwp_delref(struct lwp *l)
1415 {
1416 	struct proc *p = l->l_proc;
1417 
1418 	mutex_enter(p->p_lock);
1419 	KASSERT(l->l_stat != LSZOMB);
1420 	KASSERT(l->l_refcnt > 0);
1421 	if (--l->l_refcnt == 0)
1422 		cv_broadcast(&p->p_lwpcv);
1423 	mutex_exit(p->p_lock);
1424 }
1425 
1426 /*
1427  * Drain all references to the current LWP.
1428  */
1429 void
1430 lwp_drainrefs(struct lwp *l)
1431 {
1432 	struct proc *p = l->l_proc;
1433 
1434 	KASSERT(mutex_owned(p->p_lock));
1435 	KASSERT(l->l_refcnt != 0);
1436 
1437 	l->l_refcnt--;
1438 	while (l->l_refcnt != 0)
1439 		cv_wait(&p->p_lwpcv, p->p_lock);
1440 }
1441 
1442 /*
1443  * lwp_specific_key_create --
1444  *	Create a key for subsystem lwp-specific data.
1445  */
1446 int
1447 lwp_specific_key_create(specificdata_key_t *keyp, specificdata_dtor_t dtor)
1448 {
1449 
1450 	return (specificdata_key_create(lwp_specificdata_domain, keyp, dtor));
1451 }
1452 
1453 /*
1454  * lwp_specific_key_delete --
1455  *	Delete a key for subsystem lwp-specific data.
1456  */
1457 void
1458 lwp_specific_key_delete(specificdata_key_t key)
1459 {
1460 
1461 	specificdata_key_delete(lwp_specificdata_domain, key);
1462 }
1463 
1464 /*
1465  * lwp_initspecific --
1466  *	Initialize an LWP's specificdata container.
1467  */
1468 void
1469 lwp_initspecific(struct lwp *l)
1470 {
1471 	int error;
1472 
1473 	error = specificdata_init(lwp_specificdata_domain, &l->l_specdataref);
1474 	KASSERT(error == 0);
1475 }
1476 
1477 /*
1478  * lwp_finispecific --
1479  *	Finalize an LWP's specificdata container.
1480  */
1481 void
1482 lwp_finispecific(struct lwp *l)
1483 {
1484 
1485 	specificdata_fini(lwp_specificdata_domain, &l->l_specdataref);
1486 }
1487 
1488 /*
1489  * lwp_getspecific --
1490  *	Return lwp-specific data corresponding to the specified key.
1491  *
1492  *	Note: LWP specific data is NOT INTERLOCKED.  An LWP should access
1493  *	only its OWN SPECIFIC DATA.  If it is necessary to access another
1494  *	LWP's specifc data, care must be taken to ensure that doing so
1495  *	would not cause internal data structure inconsistency (i.e. caller
1496  *	can guarantee that the target LWP is not inside an lwp_getspecific()
1497  *	or lwp_setspecific() call).
1498  */
1499 void *
1500 lwp_getspecific(specificdata_key_t key)
1501 {
1502 
1503 	return (specificdata_getspecific_unlocked(lwp_specificdata_domain,
1504 						  &curlwp->l_specdataref, key));
1505 }
1506 
1507 void *
1508 _lwp_getspecific_by_lwp(struct lwp *l, specificdata_key_t key)
1509 {
1510 
1511 	return (specificdata_getspecific_unlocked(lwp_specificdata_domain,
1512 						  &l->l_specdataref, key));
1513 }
1514 
1515 /*
1516  * lwp_setspecific --
1517  *	Set lwp-specific data corresponding to the specified key.
1518  */
1519 void
1520 lwp_setspecific(specificdata_key_t key, void *data)
1521 {
1522 
1523 	specificdata_setspecific(lwp_specificdata_domain,
1524 				 &curlwp->l_specdataref, key, data);
1525 }
1526 
1527 /*
1528  * Allocate a new lwpctl structure for a user LWP.
1529  */
1530 int
1531 lwp_ctl_alloc(vaddr_t *uaddr)
1532 {
1533 	lcproc_t *lp;
1534 	u_int bit, i, offset;
1535 	struct uvm_object *uao;
1536 	int error;
1537 	lcpage_t *lcp;
1538 	proc_t *p;
1539 	lwp_t *l;
1540 
1541 	l = curlwp;
1542 	p = l->l_proc;
1543 
1544 	if (l->l_lcpage != NULL) {
1545 		lcp = l->l_lcpage;
1546 		*uaddr = lcp->lcp_uaddr + (vaddr_t)l->l_lwpctl - lcp->lcp_kaddr;
1547 		return (EINVAL);
1548 	}
1549 
1550 	/* First time around, allocate header structure for the process. */
1551 	if ((lp = p->p_lwpctl) == NULL) {
1552 		lp = kmem_alloc(sizeof(*lp), KM_SLEEP);
1553 		mutex_init(&lp->lp_lock, MUTEX_DEFAULT, IPL_NONE);
1554 		lp->lp_uao = NULL;
1555 		TAILQ_INIT(&lp->lp_pages);
1556 		mutex_enter(p->p_lock);
1557 		if (p->p_lwpctl == NULL) {
1558 			p->p_lwpctl = lp;
1559 			mutex_exit(p->p_lock);
1560 		} else {
1561 			mutex_exit(p->p_lock);
1562 			mutex_destroy(&lp->lp_lock);
1563 			kmem_free(lp, sizeof(*lp));
1564 			lp = p->p_lwpctl;
1565 		}
1566 	}
1567 
1568  	/*
1569  	 * Set up an anonymous memory region to hold the shared pages.
1570  	 * Map them into the process' address space.  The user vmspace
1571  	 * gets the first reference on the UAO.
1572  	 */
1573 	mutex_enter(&lp->lp_lock);
1574 	if (lp->lp_uao == NULL) {
1575 		lp->lp_uao = uao_create(LWPCTL_UAREA_SZ, 0);
1576 		lp->lp_cur = 0;
1577 		lp->lp_max = LWPCTL_UAREA_SZ;
1578 		lp->lp_uva = p->p_emul->e_vm_default_addr(p,
1579 		     (vaddr_t)p->p_vmspace->vm_daddr, LWPCTL_UAREA_SZ);
1580 		error = uvm_map(&p->p_vmspace->vm_map, &lp->lp_uva,
1581 		    LWPCTL_UAREA_SZ, lp->lp_uao, 0, 0, UVM_MAPFLAG(UVM_PROT_RW,
1582 		    UVM_PROT_RW, UVM_INH_NONE, UVM_ADV_NORMAL, 0));
1583 		if (error != 0) {
1584 			uao_detach(lp->lp_uao);
1585 			lp->lp_uao = NULL;
1586 			mutex_exit(&lp->lp_lock);
1587 			return error;
1588 		}
1589 	}
1590 
1591 	/* Get a free block and allocate for this LWP. */
1592 	TAILQ_FOREACH(lcp, &lp->lp_pages, lcp_chain) {
1593 		if (lcp->lcp_nfree != 0)
1594 			break;
1595 	}
1596 	if (lcp == NULL) {
1597 		/* Nothing available - try to set up a free page. */
1598 		if (lp->lp_cur == lp->lp_max) {
1599 			mutex_exit(&lp->lp_lock);
1600 			return ENOMEM;
1601 		}
1602 		lcp = kmem_alloc(LWPCTL_LCPAGE_SZ, KM_SLEEP);
1603 		if (lcp == NULL) {
1604 			mutex_exit(&lp->lp_lock);
1605 			return ENOMEM;
1606 		}
1607 		/*
1608 		 * Wire the next page down in kernel space.  Since this
1609 		 * is a new mapping, we must add a reference.
1610 		 */
1611 		uao = lp->lp_uao;
1612 		(*uao->pgops->pgo_reference)(uao);
1613 		lcp->lcp_kaddr = vm_map_min(kernel_map);
1614 		error = uvm_map(kernel_map, &lcp->lcp_kaddr, PAGE_SIZE,
1615 		    uao, lp->lp_cur, PAGE_SIZE,
1616 		    UVM_MAPFLAG(UVM_PROT_RW, UVM_PROT_RW,
1617 		    UVM_INH_NONE, UVM_ADV_RANDOM, 0));
1618 		if (error != 0) {
1619 			mutex_exit(&lp->lp_lock);
1620 			kmem_free(lcp, LWPCTL_LCPAGE_SZ);
1621 			(*uao->pgops->pgo_detach)(uao);
1622 			return error;
1623 		}
1624 		error = uvm_map_pageable(kernel_map, lcp->lcp_kaddr,
1625 		    lcp->lcp_kaddr + PAGE_SIZE, FALSE, 0);
1626 		if (error != 0) {
1627 			mutex_exit(&lp->lp_lock);
1628 			uvm_unmap(kernel_map, lcp->lcp_kaddr,
1629 			    lcp->lcp_kaddr + PAGE_SIZE);
1630 			kmem_free(lcp, LWPCTL_LCPAGE_SZ);
1631 			return error;
1632 		}
1633 		/* Prepare the page descriptor and link into the list. */
1634 		lcp->lcp_uaddr = lp->lp_uva + lp->lp_cur;
1635 		lp->lp_cur += PAGE_SIZE;
1636 		lcp->lcp_nfree = LWPCTL_PER_PAGE;
1637 		lcp->lcp_rotor = 0;
1638 		memset(lcp->lcp_bitmap, 0xff, LWPCTL_BITMAP_SZ);
1639 		TAILQ_INSERT_HEAD(&lp->lp_pages, lcp, lcp_chain);
1640 	}
1641 	for (i = lcp->lcp_rotor; lcp->lcp_bitmap[i] == 0;) {
1642 		if (++i >= LWPCTL_BITMAP_ENTRIES)
1643 			i = 0;
1644 	}
1645 	bit = ffs(lcp->lcp_bitmap[i]) - 1;
1646 	lcp->lcp_bitmap[i] ^= (1 << bit);
1647 	lcp->lcp_rotor = i;
1648 	lcp->lcp_nfree--;
1649 	l->l_lcpage = lcp;
1650 	offset = (i << 5) + bit;
1651 	l->l_lwpctl = (lwpctl_t *)lcp->lcp_kaddr + offset;
1652 	*uaddr = lcp->lcp_uaddr + offset * sizeof(lwpctl_t);
1653 	mutex_exit(&lp->lp_lock);
1654 
1655 	KPREEMPT_DISABLE(l);
1656 	l->l_lwpctl->lc_curcpu = (int)curcpu()->ci_data.cpu_index;
1657 	KPREEMPT_ENABLE(l);
1658 
1659 	return 0;
1660 }
1661 
1662 /*
1663  * Free an lwpctl structure back to the per-process list.
1664  */
1665 void
1666 lwp_ctl_free(lwp_t *l)
1667 {
1668 	lcproc_t *lp;
1669 	lcpage_t *lcp;
1670 	u_int map, offset;
1671 
1672 	lp = l->l_proc->p_lwpctl;
1673 	KASSERT(lp != NULL);
1674 
1675 	lcp = l->l_lcpage;
1676 	offset = (u_int)((lwpctl_t *)l->l_lwpctl - (lwpctl_t *)lcp->lcp_kaddr);
1677 	KASSERT(offset < LWPCTL_PER_PAGE);
1678 
1679 	mutex_enter(&lp->lp_lock);
1680 	lcp->lcp_nfree++;
1681 	map = offset >> 5;
1682 	lcp->lcp_bitmap[map] |= (1 << (offset & 31));
1683 	if (lcp->lcp_bitmap[lcp->lcp_rotor] == 0)
1684 		lcp->lcp_rotor = map;
1685 	if (TAILQ_FIRST(&lp->lp_pages)->lcp_nfree == 0) {
1686 		TAILQ_REMOVE(&lp->lp_pages, lcp, lcp_chain);
1687 		TAILQ_INSERT_HEAD(&lp->lp_pages, lcp, lcp_chain);
1688 	}
1689 	mutex_exit(&lp->lp_lock);
1690 }
1691 
1692 /*
1693  * Process is exiting; tear down lwpctl state.  This can only be safely
1694  * called by the last LWP in the process.
1695  */
1696 void
1697 lwp_ctl_exit(void)
1698 {
1699 	lcpage_t *lcp, *next;
1700 	lcproc_t *lp;
1701 	proc_t *p;
1702 	lwp_t *l;
1703 
1704 	l = curlwp;
1705 	l->l_lwpctl = NULL;
1706 	l->l_lcpage = NULL;
1707 	p = l->l_proc;
1708 	lp = p->p_lwpctl;
1709 
1710 	KASSERT(lp != NULL);
1711 	KASSERT(p->p_nlwps == 1);
1712 
1713 	for (lcp = TAILQ_FIRST(&lp->lp_pages); lcp != NULL; lcp = next) {
1714 		next = TAILQ_NEXT(lcp, lcp_chain);
1715 		uvm_unmap(kernel_map, lcp->lcp_kaddr,
1716 		    lcp->lcp_kaddr + PAGE_SIZE);
1717 		kmem_free(lcp, LWPCTL_LCPAGE_SZ);
1718 	}
1719 
1720 	if (lp->lp_uao != NULL) {
1721 		uvm_unmap(&p->p_vmspace->vm_map, lp->lp_uva,
1722 		    lp->lp_uva + LWPCTL_UAREA_SZ);
1723 	}
1724 
1725 	mutex_destroy(&lp->lp_lock);
1726 	kmem_free(lp, sizeof(*lp));
1727 	p->p_lwpctl = NULL;
1728 }
1729 
1730 #if defined(DDB)
1731 void
1732 lwp_whatis(uintptr_t addr, void (*pr)(const char *, ...))
1733 {
1734 	lwp_t *l;
1735 
1736 	LIST_FOREACH(l, &alllwp, l_list) {
1737 		uintptr_t stack = (uintptr_t)KSTACK_LOWEST_ADDR(l);
1738 
1739 		if (addr < stack || stack + KSTACK_SIZE <= addr) {
1740 			continue;
1741 		}
1742 		(*pr)("%p is %p+%zu, LWP %p's stack\n",
1743 		    (void *)addr, (void *)stack,
1744 		    (size_t)(addr - stack), l);
1745 	}
1746 }
1747 #endif /* defined(DDB) */
1748