xref: /netbsd-src/sys/kern/kern_lwp.c (revision 4817a0b0b8fe9612e8ebe21a9bf2d97b95038a97)
1 /*	$NetBSD: kern_lwp.c,v 1.152 2010/12/18 01:36:19 rmind Exp $	*/
2 
3 /*-
4  * Copyright (c) 2001, 2006, 2007, 2008, 2009 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Nathan J. Williams, and Andrew Doran.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29  * POSSIBILITY OF SUCH DAMAGE.
30  */
31 
32 /*
33  * Overview
34  *
35  *	Lightweight processes (LWPs) are the basic unit or thread of
36  *	execution within the kernel.  The core state of an LWP is described
37  *	by "struct lwp", also known as lwp_t.
38  *
39  *	Each LWP is contained within a process (described by "struct proc"),
40  *	Every process contains at least one LWP, but may contain more.  The
41  *	process describes attributes shared among all of its LWPs such as a
42  *	private address space, global execution state (stopped, active,
43  *	zombie, ...), signal disposition and so on.  On a multiprocessor
44  *	machine, multiple LWPs be executing concurrently in the kernel.
45  *
46  * Execution states
47  *
48  *	At any given time, an LWP has overall state that is described by
49  *	lwp::l_stat.  The states are broken into two sets below.  The first
50  *	set is guaranteed to represent the absolute, current state of the
51  *	LWP:
52  *
53  *	LSONPROC
54  *
55  *		On processor: the LWP is executing on a CPU, either in the
56  *		kernel or in user space.
57  *
58  *	LSRUN
59  *
60  *		Runnable: the LWP is parked on a run queue, and may soon be
61  *		chosen to run by an idle processor, or by a processor that
62  *		has been asked to preempt a currently runnning but lower
63  *		priority LWP.
64  *
65  *	LSIDL
66  *
67  *		Idle: the LWP has been created but has not yet executed,
68  *		or it has ceased executing a unit of work and is waiting
69  *		to be started again.
70  *
71  *	LSSUSPENDED:
72  *
73  *		Suspended: the LWP has had its execution suspended by
74  *		another LWP in the same process using the _lwp_suspend()
75  *		system call.  User-level LWPs also enter the suspended
76  *		state when the system is shutting down.
77  *
78  *	The second set represent a "statement of intent" on behalf of the
79  *	LWP.  The LWP may in fact be executing on a processor, may be
80  *	sleeping or idle. It is expected to take the necessary action to
81  *	stop executing or become "running" again within a short timeframe.
82  *	The LP_RUNNING flag in lwp::l_pflag indicates that an LWP is running.
83  *	Importantly, it indicates that its state is tied to a CPU.
84  *
85  *	LSZOMB:
86  *
87  *		Dead or dying: the LWP has released most of its resources
88  *		and is about to switch away into oblivion, or has already
89  *		switched away.  When it switches away, its few remaining
90  *		resources can be collected.
91  *
92  *	LSSLEEP:
93  *
94  *		Sleeping: the LWP has entered itself onto a sleep queue, and
95  *		has switched away or will switch away shortly to allow other
96  *		LWPs to run on the CPU.
97  *
98  *	LSSTOP:
99  *
100  *		Stopped: the LWP has been stopped as a result of a job
101  *		control signal, or as a result of the ptrace() interface.
102  *
103  *		Stopped LWPs may run briefly within the kernel to handle
104  *		signals that they receive, but will not return to user space
105  *		until their process' state is changed away from stopped.
106  *
107  *		Single LWPs within a process can not be set stopped
108  *		selectively: all actions that can stop or continue LWPs
109  *		occur at the process level.
110  *
111  * State transitions
112  *
113  *	Note that the LSSTOP state may only be set when returning to
114  *	user space in userret(), or when sleeping interruptably.  The
115  *	LSSUSPENDED state may only be set in userret().  Before setting
116  *	those states, we try to ensure that the LWPs will release all
117  *	locks that they hold, and at a minimum try to ensure that the
118  *	LWP can be set runnable again by a signal.
119  *
120  *	LWPs may transition states in the following ways:
121  *
122  *	 RUN -------> ONPROC		ONPROC -----> RUN
123  *		    				    > SLEEP
124  *		    				    > STOPPED
125  *						    > SUSPENDED
126  *						    > ZOMB
127  *						    > IDL (special cases)
128  *
129  *	 STOPPED ---> RUN		SUSPENDED --> RUN
130  *	            > SLEEP
131  *
132  *	 SLEEP -----> ONPROC		IDL --------> RUN
133  *		    > RUN			    > SUSPENDED
134  *		    > STOPPED			    > STOPPED
135  *						    > ONPROC (special cases)
136  *
137  *	Some state transitions are only possible with kernel threads (eg
138  *	ONPROC -> IDL) and happen under tightly controlled circumstances
139  *	free of unwanted side effects.
140  *
141  * Migration
142  *
143  *	Migration of threads from one CPU to another could be performed
144  *	internally by the scheduler via sched_takecpu() or sched_catchlwp()
145  *	functions.  The universal lwp_migrate() function should be used for
146  *	any other cases.  Subsystems in the kernel must be aware that CPU
147  *	of LWP may change, while it is not locked.
148  *
149  * Locking
150  *
151  *	The majority of fields in 'struct lwp' are covered by a single,
152  *	general spin lock pointed to by lwp::l_mutex.  The locks covering
153  *	each field are documented in sys/lwp.h.
154  *
155  *	State transitions must be made with the LWP's general lock held,
156  *	and may cause the LWP's lock pointer to change.  Manipulation of
157  *	the general lock is not performed directly, but through calls to
158  *	lwp_lock(), lwp_unlock() and others.  It should be noted that the
159  *	adaptive locks are not allowed to be released while the LWP's lock
160  *	is being held (unlike for other spin-locks).
161  *
162  *	States and their associated locks:
163  *
164  *	LSONPROC, LSZOMB:
165  *
166  *		Always covered by spc_lwplock, which protects running LWPs.
167  *		This is a per-CPU lock and matches lwp::l_cpu.
168  *
169  *	LSIDL, LSRUN:
170  *
171  *		Always covered by spc_mutex, which protects the run queues.
172  *		This is a per-CPU lock and matches lwp::l_cpu.
173  *
174  *	LSSLEEP:
175  *
176  *		Covered by a lock associated with the sleep queue that the
177  *		LWP resides on.  Matches lwp::l_sleepq::sq_mutex.
178  *
179  *	LSSTOP, LSSUSPENDED:
180  *
181  *		If the LWP was previously sleeping (l_wchan != NULL), then
182  *		l_mutex references the sleep queue lock.  If the LWP was
183  *		runnable or on the CPU when halted, or has been removed from
184  *		the sleep queue since halted, then the lock is spc_lwplock.
185  *
186  *	The lock order is as follows:
187  *
188  *		spc::spc_lwplock ->
189  *		    sleeptab::st_mutex ->
190  *			tschain_t::tc_mutex ->
191  *			    spc::spc_mutex
192  *
193  *	Each process has an scheduler state lock (proc::p_lock), and a
194  *	number of counters on LWPs and their states: p_nzlwps, p_nrlwps, and
195  *	so on.  When an LWP is to be entered into or removed from one of the
196  *	following states, p_lock must be held and the process wide counters
197  *	adjusted:
198  *
199  *		LSIDL, LSZOMB, LSSTOP, LSSUSPENDED
200  *
201  *	(But not always for kernel threads.  There are some special cases
202  *	as mentioned above.  See kern_softint.c.)
203  *
204  *	Note that an LWP is considered running or likely to run soon if in
205  *	one of the following states.  This affects the value of p_nrlwps:
206  *
207  *		LSRUN, LSONPROC, LSSLEEP
208  *
209  *	p_lock does not need to be held when transitioning among these
210  *	three states, hence p_lock is rarely taken for state transitions.
211  */
212 
213 #include <sys/cdefs.h>
214 __KERNEL_RCSID(0, "$NetBSD: kern_lwp.c,v 1.152 2010/12/18 01:36:19 rmind Exp $");
215 
216 #include "opt_ddb.h"
217 #include "opt_lockdebug.h"
218 #include "opt_sa.h"
219 #include "opt_dtrace.h"
220 
221 #define _LWP_API_PRIVATE
222 
223 #include <sys/param.h>
224 #include <sys/systm.h>
225 #include <sys/cpu.h>
226 #include <sys/pool.h>
227 #include <sys/proc.h>
228 #include <sys/sa.h>
229 #include <sys/savar.h>
230 #include <sys/syscallargs.h>
231 #include <sys/syscall_stats.h>
232 #include <sys/kauth.h>
233 #include <sys/sleepq.h>
234 #include <sys/lockdebug.h>
235 #include <sys/kmem.h>
236 #include <sys/pset.h>
237 #include <sys/intr.h>
238 #include <sys/lwpctl.h>
239 #include <sys/atomic.h>
240 #include <sys/filedesc.h>
241 #include <sys/dtrace_bsd.h>
242 #include <sys/sdt.h>
243 
244 #include <uvm/uvm_extern.h>
245 #include <uvm/uvm_object.h>
246 
247 static pool_cache_t	lwp_cache	__read_mostly;
248 struct lwplist		alllwp		__cacheline_aligned;
249 
250 /* DTrace proc provider probes */
251 SDT_PROBE_DEFINE(proc,,,lwp_create,
252 	"struct lwp *", NULL,
253 	NULL, NULL, NULL, NULL,
254 	NULL, NULL, NULL, NULL);
255 SDT_PROBE_DEFINE(proc,,,lwp_start,
256 	"struct lwp *", NULL,
257 	NULL, NULL, NULL, NULL,
258 	NULL, NULL, NULL, NULL);
259 SDT_PROBE_DEFINE(proc,,,lwp_exit,
260 	"struct lwp *", NULL,
261 	NULL, NULL, NULL, NULL,
262 	NULL, NULL, NULL, NULL);
263 
264 struct turnstile turnstile0;
265 struct lwp lwp0 __aligned(MIN_LWP_ALIGNMENT) = {
266 #ifdef LWP0_CPU_INFO
267 	.l_cpu = LWP0_CPU_INFO,
268 #endif
269 	.l_proc = &proc0,
270 	.l_lid = 1,
271 	.l_flag = LW_SYSTEM,
272 	.l_stat = LSONPROC,
273 	.l_ts = &turnstile0,
274 	.l_syncobj = &sched_syncobj,
275 	.l_refcnt = 1,
276 	.l_priority = PRI_USER + NPRI_USER - 1,
277 	.l_inheritedprio = -1,
278 	.l_class = SCHED_OTHER,
279 	.l_psid = PS_NONE,
280 	.l_pi_lenders = SLIST_HEAD_INITIALIZER(&lwp0.l_pi_lenders),
281 	.l_name = __UNCONST("swapper"),
282 	.l_fd = &filedesc0,
283 };
284 
285 void
286 lwpinit(void)
287 {
288 
289 	LIST_INIT(&alllwp);
290 	lwpinit_specificdata();
291 	lwp_sys_init();
292 	lwp_cache = pool_cache_init(sizeof(lwp_t), MIN_LWP_ALIGNMENT, 0, 0,
293 	    "lwppl", NULL, IPL_NONE, NULL, NULL, NULL);
294 }
295 
296 void
297 lwp0_init(void)
298 {
299 	struct lwp *l = &lwp0;
300 
301 	KASSERT((void *)uvm_lwp_getuarea(l) != NULL);
302 	KASSERT(l->l_lid == proc0.p_nlwpid);
303 
304 	LIST_INSERT_HEAD(&alllwp, l, l_list);
305 
306 	callout_init(&l->l_timeout_ch, CALLOUT_MPSAFE);
307 	callout_setfunc(&l->l_timeout_ch, sleepq_timeout, l);
308 	cv_init(&l->l_sigcv, "sigwait");
309 
310 	kauth_cred_hold(proc0.p_cred);
311 	l->l_cred = proc0.p_cred;
312 
313 	lwp_initspecific(l);
314 
315 	SYSCALL_TIME_LWP_INIT(l);
316 }
317 
318 /*
319  * Set an suspended.
320  *
321  * Must be called with p_lock held, and the LWP locked.  Will unlock the
322  * LWP before return.
323  */
324 int
325 lwp_suspend(struct lwp *curl, struct lwp *t)
326 {
327 	int error;
328 
329 	KASSERT(mutex_owned(t->l_proc->p_lock));
330 	KASSERT(lwp_locked(t, NULL));
331 
332 	KASSERT(curl != t || curl->l_stat == LSONPROC);
333 
334 	/*
335 	 * If the current LWP has been told to exit, we must not suspend anyone
336 	 * else or deadlock could occur.  We won't return to userspace.
337 	 */
338 	if ((curl->l_flag & (LW_WEXIT | LW_WCORE)) != 0) {
339 		lwp_unlock(t);
340 		return (EDEADLK);
341 	}
342 
343 	error = 0;
344 
345 	switch (t->l_stat) {
346 	case LSRUN:
347 	case LSONPROC:
348 		t->l_flag |= LW_WSUSPEND;
349 		lwp_need_userret(t);
350 		lwp_unlock(t);
351 		break;
352 
353 	case LSSLEEP:
354 		t->l_flag |= LW_WSUSPEND;
355 
356 		/*
357 		 * Kick the LWP and try to get it to the kernel boundary
358 		 * so that it will release any locks that it holds.
359 		 * setrunnable() will release the lock.
360 		 */
361 		if ((t->l_flag & LW_SINTR) != 0)
362 			setrunnable(t);
363 		else
364 			lwp_unlock(t);
365 		break;
366 
367 	case LSSUSPENDED:
368 		lwp_unlock(t);
369 		break;
370 
371 	case LSSTOP:
372 		t->l_flag |= LW_WSUSPEND;
373 		setrunnable(t);
374 		break;
375 
376 	case LSIDL:
377 	case LSZOMB:
378 		error = EINTR; /* It's what Solaris does..... */
379 		lwp_unlock(t);
380 		break;
381 	}
382 
383 	return (error);
384 }
385 
386 /*
387  * Restart a suspended LWP.
388  *
389  * Must be called with p_lock held, and the LWP locked.  Will unlock the
390  * LWP before return.
391  */
392 void
393 lwp_continue(struct lwp *l)
394 {
395 
396 	KASSERT(mutex_owned(l->l_proc->p_lock));
397 	KASSERT(lwp_locked(l, NULL));
398 
399 	/* If rebooting or not suspended, then just bail out. */
400 	if ((l->l_flag & LW_WREBOOT) != 0) {
401 		lwp_unlock(l);
402 		return;
403 	}
404 
405 	l->l_flag &= ~LW_WSUSPEND;
406 
407 	if (l->l_stat != LSSUSPENDED) {
408 		lwp_unlock(l);
409 		return;
410 	}
411 
412 	/* setrunnable() will release the lock. */
413 	setrunnable(l);
414 }
415 
416 /*
417  * Restart a stopped LWP.
418  *
419  * Must be called with p_lock held, and the LWP NOT locked.  Will unlock the
420  * LWP before return.
421  */
422 void
423 lwp_unstop(struct lwp *l)
424 {
425 	struct proc *p = l->l_proc;
426 
427 	KASSERT(mutex_owned(proc_lock));
428 	KASSERT(mutex_owned(p->p_lock));
429 
430 	lwp_lock(l);
431 
432 	/* If not stopped, then just bail out. */
433 	if (l->l_stat != LSSTOP) {
434 		lwp_unlock(l);
435 		return;
436 	}
437 
438 	p->p_stat = SACTIVE;
439 	p->p_sflag &= ~PS_STOPPING;
440 
441 	if (!p->p_waited)
442 		p->p_pptr->p_nstopchild--;
443 
444 	if (l->l_wchan == NULL) {
445 		/* setrunnable() will release the lock. */
446 		setrunnable(l);
447 	} else {
448 		l->l_stat = LSSLEEP;
449 		p->p_nrlwps++;
450 		lwp_unlock(l);
451 	}
452 }
453 
454 /*
455  * Wait for an LWP within the current process to exit.  If 'lid' is
456  * non-zero, we are waiting for a specific LWP.
457  *
458  * Must be called with p->p_lock held.
459  */
460 int
461 lwp_wait1(struct lwp *l, lwpid_t lid, lwpid_t *departed, int flags)
462 {
463 	struct proc *p = l->l_proc;
464 	struct lwp *l2;
465 	int nfound, error;
466 	lwpid_t curlid;
467 	bool exiting;
468 
469 	KASSERT(mutex_owned(p->p_lock));
470 
471 	p->p_nlwpwait++;
472 	l->l_waitingfor = lid;
473 	curlid = l->l_lid;
474 	exiting = ((flags & LWPWAIT_EXITCONTROL) != 0);
475 
476 	for (;;) {
477 		/*
478 		 * Avoid a race between exit1() and sigexit(): if the
479 		 * process is dumping core, then we need to bail out: call
480 		 * into lwp_userret() where we will be suspended until the
481 		 * deed is done.
482 		 */
483 		if ((p->p_sflag & PS_WCORE) != 0) {
484 			mutex_exit(p->p_lock);
485 			lwp_userret(l);
486 #ifdef DIAGNOSTIC
487 			panic("lwp_wait1");
488 #endif
489 			/* NOTREACHED */
490 		}
491 
492 		/*
493 		 * First off, drain any detached LWP that is waiting to be
494 		 * reaped.
495 		 */
496 		while ((l2 = p->p_zomblwp) != NULL) {
497 			p->p_zomblwp = NULL;
498 			lwp_free(l2, false, false);/* releases proc mutex */
499 			mutex_enter(p->p_lock);
500 		}
501 
502 		/*
503 		 * Now look for an LWP to collect.  If the whole process is
504 		 * exiting, count detached LWPs as eligible to be collected,
505 		 * but don't drain them here.
506 		 */
507 		nfound = 0;
508 		error = 0;
509 		LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
510 			/*
511 			 * If a specific wait and the target is waiting on
512 			 * us, then avoid deadlock.  This also traps LWPs
513 			 * that try to wait on themselves.
514 			 *
515 			 * Note that this does not handle more complicated
516 			 * cycles, like: t1 -> t2 -> t3 -> t1.  The process
517 			 * can still be killed so it is not a major problem.
518 			 */
519 			if (l2->l_lid == lid && l2->l_waitingfor == curlid) {
520 				error = EDEADLK;
521 				break;
522 			}
523 			if (l2 == l)
524 				continue;
525 			if ((l2->l_prflag & LPR_DETACHED) != 0) {
526 				nfound += exiting;
527 				continue;
528 			}
529 			if (lid != 0) {
530 				if (l2->l_lid != lid)
531 					continue;
532 				/*
533 				 * Mark this LWP as the first waiter, if there
534 				 * is no other.
535 				 */
536 				if (l2->l_waiter == 0)
537 					l2->l_waiter = curlid;
538 			} else if (l2->l_waiter != 0) {
539 				/*
540 				 * It already has a waiter - so don't
541 				 * collect it.  If the waiter doesn't
542 				 * grab it we'll get another chance
543 				 * later.
544 				 */
545 				nfound++;
546 				continue;
547 			}
548 			nfound++;
549 
550 			/* No need to lock the LWP in order to see LSZOMB. */
551 			if (l2->l_stat != LSZOMB)
552 				continue;
553 
554 			/*
555 			 * We're no longer waiting.  Reset the "first waiter"
556 			 * pointer on the target, in case it was us.
557 			 */
558 			l->l_waitingfor = 0;
559 			l2->l_waiter = 0;
560 			p->p_nlwpwait--;
561 			if (departed)
562 				*departed = l2->l_lid;
563 			sched_lwp_collect(l2);
564 
565 			/* lwp_free() releases the proc lock. */
566 			lwp_free(l2, false, false);
567 			mutex_enter(p->p_lock);
568 			return 0;
569 		}
570 
571 		if (error != 0)
572 			break;
573 		if (nfound == 0) {
574 			error = ESRCH;
575 			break;
576 		}
577 
578 		/*
579 		 * The kernel is careful to ensure that it can not deadlock
580 		 * when exiting - just keep waiting.
581 		 */
582 		if (exiting) {
583 			KASSERT(p->p_nlwps > 1);
584 			cv_wait(&p->p_lwpcv, p->p_lock);
585 			continue;
586 		}
587 
588 		/*
589 		 * If all other LWPs are waiting for exits or suspends
590 		 * and the supply of zombies and potential zombies is
591 		 * exhausted, then we are about to deadlock.
592 		 *
593 		 * If the process is exiting (and this LWP is not the one
594 		 * that is coordinating the exit) then bail out now.
595 		 */
596 		if ((p->p_sflag & PS_WEXIT) != 0 ||
597 		    p->p_nrlwps + p->p_nzlwps - p->p_ndlwps <= p->p_nlwpwait) {
598 			error = EDEADLK;
599 			break;
600 		}
601 
602 		/*
603 		 * Sit around and wait for something to happen.  We'll be
604 		 * awoken if any of the conditions examined change: if an
605 		 * LWP exits, is collected, or is detached.
606 		 */
607 		if ((error = cv_wait_sig(&p->p_lwpcv, p->p_lock)) != 0)
608 			break;
609 	}
610 
611 	/*
612 	 * We didn't find any LWPs to collect, we may have received a
613 	 * signal, or some other condition has caused us to bail out.
614 	 *
615 	 * If waiting on a specific LWP, clear the waiters marker: some
616 	 * other LWP may want it.  Then, kick all the remaining waiters
617 	 * so that they can re-check for zombies and for deadlock.
618 	 */
619 	if (lid != 0) {
620 		LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
621 			if (l2->l_lid == lid) {
622 				if (l2->l_waiter == curlid)
623 					l2->l_waiter = 0;
624 				break;
625 			}
626 		}
627 	}
628 	p->p_nlwpwait--;
629 	l->l_waitingfor = 0;
630 	cv_broadcast(&p->p_lwpcv);
631 
632 	return error;
633 }
634 
635 /*
636  * Create a new LWP within process 'p2', using LWP 'l1' as a template.
637  * The new LWP is created in state LSIDL and must be set running,
638  * suspended, or stopped by the caller.
639  */
640 int
641 lwp_create(lwp_t *l1, proc_t *p2, vaddr_t uaddr, int flags,
642 	   void *stack, size_t stacksize, void (*func)(void *), void *arg,
643 	   lwp_t **rnewlwpp, int sclass)
644 {
645 	struct lwp *l2, *isfree;
646 	turnstile_t *ts;
647 	lwpid_t lid;
648 
649 	KASSERT(l1 == curlwp || l1->l_proc == &proc0);
650 
651 	/*
652 	 * First off, reap any detached LWP waiting to be collected.
653 	 * We can re-use its LWP structure and turnstile.
654 	 */
655 	isfree = NULL;
656 	if (p2->p_zomblwp != NULL) {
657 		mutex_enter(p2->p_lock);
658 		if ((isfree = p2->p_zomblwp) != NULL) {
659 			p2->p_zomblwp = NULL;
660 			lwp_free(isfree, true, false);/* releases proc mutex */
661 		} else
662 			mutex_exit(p2->p_lock);
663 	}
664 	if (isfree == NULL) {
665 		l2 = pool_cache_get(lwp_cache, PR_WAITOK);
666 		memset(l2, 0, sizeof(*l2));
667 		l2->l_ts = pool_cache_get(turnstile_cache, PR_WAITOK);
668 		SLIST_INIT(&l2->l_pi_lenders);
669 	} else {
670 		l2 = isfree;
671 		ts = l2->l_ts;
672 		KASSERT(l2->l_inheritedprio == -1);
673 		KASSERT(SLIST_EMPTY(&l2->l_pi_lenders));
674 		memset(l2, 0, sizeof(*l2));
675 		l2->l_ts = ts;
676 	}
677 
678 	l2->l_stat = LSIDL;
679 	l2->l_proc = p2;
680 	l2->l_refcnt = 1;
681 	l2->l_class = sclass;
682 
683 	/*
684 	 * If vfork(), we want the LWP to run fast and on the same CPU
685 	 * as its parent, so that it can reuse the VM context and cache
686 	 * footprint on the local CPU.
687 	 */
688 	l2->l_kpriority = ((flags & LWP_VFORK) ? true : false);
689 	l2->l_kpribase = PRI_KERNEL;
690 	l2->l_priority = l1->l_priority;
691 	l2->l_inheritedprio = -1;
692 	l2->l_flag = 0;
693 	l2->l_pflag = LP_MPSAFE;
694 	TAILQ_INIT(&l2->l_ld_locks);
695 
696 	/*
697 	 * If not the first LWP in the process, grab a reference to the
698 	 * descriptor table.
699 	 */
700 	l2->l_fd = p2->p_fd;
701 	if (p2->p_nlwps != 0) {
702 		KASSERT(l1->l_proc == p2);
703 		fd_hold(l2);
704 	} else {
705 		KASSERT(l1->l_proc != p2);
706 	}
707 
708 	if (p2->p_flag & PK_SYSTEM) {
709 		/* Mark it as a system LWP. */
710 		l2->l_flag |= LW_SYSTEM;
711 	}
712 
713 	kpreempt_disable();
714 	l2->l_mutex = l1->l_cpu->ci_schedstate.spc_mutex;
715 	l2->l_cpu = l1->l_cpu;
716 	kpreempt_enable();
717 
718 	kdtrace_thread_ctor(NULL, l2);
719 	lwp_initspecific(l2);
720 	sched_lwp_fork(l1, l2);
721 	lwp_update_creds(l2);
722 	callout_init(&l2->l_timeout_ch, CALLOUT_MPSAFE);
723 	callout_setfunc(&l2->l_timeout_ch, sleepq_timeout, l2);
724 	cv_init(&l2->l_sigcv, "sigwait");
725 	l2->l_syncobj = &sched_syncobj;
726 
727 	if (rnewlwpp != NULL)
728 		*rnewlwpp = l2;
729 
730 	uvm_lwp_setuarea(l2, uaddr);
731 	uvm_lwp_fork(l1, l2, stack, stacksize, func,
732 	    (arg != NULL) ? arg : l2);
733 
734 	if ((flags & LWP_PIDLID) != 0) {
735 		lid = proc_alloc_pid(p2);
736 		l2->l_pflag |= LP_PIDLID;
737 	} else {
738 		lid = 0;
739 	}
740 
741 	mutex_enter(p2->p_lock);
742 
743 	if ((flags & LWP_DETACHED) != 0) {
744 		l2->l_prflag = LPR_DETACHED;
745 		p2->p_ndlwps++;
746 	} else
747 		l2->l_prflag = 0;
748 
749 	l2->l_sigmask = l1->l_sigmask;
750 	CIRCLEQ_INIT(&l2->l_sigpend.sp_info);
751 	sigemptyset(&l2->l_sigpend.sp_set);
752 
753 	if (lid == 0) {
754 		p2->p_nlwpid++;
755 		if (p2->p_nlwpid == 0)
756 			p2->p_nlwpid++;
757 		lid = p2->p_nlwpid;
758 	}
759 	l2->l_lid = lid;
760 	LIST_INSERT_HEAD(&p2->p_lwps, l2, l_sibling);
761 	p2->p_nlwps++;
762 	p2->p_nrlwps++;
763 
764 	if ((p2->p_flag & PK_SYSTEM) == 0) {
765 		/* Inherit an affinity */
766 		if (l1->l_flag & LW_AFFINITY) {
767 			/*
768 			 * Note that we hold the state lock while inheriting
769 			 * the affinity to avoid race with sched_setaffinity().
770 			 */
771 			lwp_lock(l1);
772 			if (l1->l_flag & LW_AFFINITY) {
773 				kcpuset_use(l1->l_affinity);
774 				l2->l_affinity = l1->l_affinity;
775 				l2->l_flag |= LW_AFFINITY;
776 			}
777 			lwp_unlock(l1);
778 		}
779 		lwp_lock(l2);
780 		/* Inherit a processor-set */
781 		l2->l_psid = l1->l_psid;
782 		/* Look for a CPU to start */
783 		l2->l_cpu = sched_takecpu(l2);
784 		lwp_unlock_to(l2, l2->l_cpu->ci_schedstate.spc_mutex);
785 	}
786 	mutex_exit(p2->p_lock);
787 
788 	SDT_PROBE(proc,,,lwp_create, l2, 0,0,0,0);
789 
790 	mutex_enter(proc_lock);
791 	LIST_INSERT_HEAD(&alllwp, l2, l_list);
792 	mutex_exit(proc_lock);
793 
794 	SYSCALL_TIME_LWP_INIT(l2);
795 
796 	if (p2->p_emul->e_lwp_fork)
797 		(*p2->p_emul->e_lwp_fork)(l1, l2);
798 
799 	return (0);
800 }
801 
802 /*
803  * Called by MD code when a new LWP begins execution.  Must be called
804  * with the previous LWP locked (so at splsched), or if there is no
805  * previous LWP, at splsched.
806  */
807 void
808 lwp_startup(struct lwp *prev, struct lwp *new)
809 {
810 
811 	SDT_PROBE(proc,,,lwp_start, new, 0,0,0,0);
812 
813 	KASSERT(kpreempt_disabled());
814 	if (prev != NULL) {
815 		/*
816 		 * Normalize the count of the spin-mutexes, it was
817 		 * increased in mi_switch().  Unmark the state of
818 		 * context switch - it is finished for previous LWP.
819 		 */
820 		curcpu()->ci_mtx_count++;
821 		membar_exit();
822 		prev->l_ctxswtch = 0;
823 	}
824 	KPREEMPT_DISABLE(new);
825 	spl0();
826 	pmap_activate(new);
827 	LOCKDEBUG_BARRIER(NULL, 0);
828 	KPREEMPT_ENABLE(new);
829 	if ((new->l_pflag & LP_MPSAFE) == 0) {
830 		KERNEL_LOCK(1, new);
831 	}
832 }
833 
834 /*
835  * Exit an LWP.
836  */
837 void
838 lwp_exit(struct lwp *l)
839 {
840 	struct proc *p = l->l_proc;
841 	struct lwp *l2;
842 	bool current;
843 
844 	current = (l == curlwp);
845 
846 	KASSERT(current || (l->l_stat == LSIDL && l->l_target_cpu == NULL));
847 	KASSERT(p == curproc);
848 
849 	SDT_PROBE(proc,,,lwp_exit, l, 0,0,0,0);
850 
851 	/*
852 	 * Verify that we hold no locks other than the kernel lock.
853 	 */
854 	LOCKDEBUG_BARRIER(&kernel_lock, 0);
855 
856 	/*
857 	 * If we are the last live LWP in a process, we need to exit the
858 	 * entire process.  We do so with an exit status of zero, because
859 	 * it's a "controlled" exit, and because that's what Solaris does.
860 	 *
861 	 * We are not quite a zombie yet, but for accounting purposes we
862 	 * must increment the count of zombies here.
863 	 *
864 	 * Note: the last LWP's specificdata will be deleted here.
865 	 */
866 	mutex_enter(p->p_lock);
867 	if (p->p_nlwps - p->p_nzlwps == 1) {
868 		KASSERT(current == true);
869 		/* XXXSMP kernel_lock not held */
870 		exit1(l, 0);
871 		/* NOTREACHED */
872 	}
873 	p->p_nzlwps++;
874 	mutex_exit(p->p_lock);
875 
876 	if (p->p_emul->e_lwp_exit)
877 		(*p->p_emul->e_lwp_exit)(l);
878 
879 	/* Drop filedesc reference. */
880 	fd_free();
881 
882 	/* Delete the specificdata while it's still safe to sleep. */
883 	lwp_finispecific(l);
884 
885 	/*
886 	 * Release our cached credentials.
887 	 */
888 	kauth_cred_free(l->l_cred);
889 	callout_destroy(&l->l_timeout_ch);
890 
891 	/*
892 	 * Remove the LWP from the global list.
893 	 * Free its LID from the PID namespace if needed.
894 	 */
895 	mutex_enter(proc_lock);
896 	LIST_REMOVE(l, l_list);
897 	if ((l->l_pflag & LP_PIDLID) != 0 && l->l_lid != p->p_pid) {
898 		proc_free_pid(l->l_lid);
899 	}
900 	mutex_exit(proc_lock);
901 
902 	/*
903 	 * Get rid of all references to the LWP that others (e.g. procfs)
904 	 * may have, and mark the LWP as a zombie.  If the LWP is detached,
905 	 * mark it waiting for collection in the proc structure.  Note that
906 	 * before we can do that, we need to free any other dead, deatched
907 	 * LWP waiting to meet its maker.
908 	 */
909 	mutex_enter(p->p_lock);
910 	lwp_drainrefs(l);
911 
912 	if ((l->l_prflag & LPR_DETACHED) != 0) {
913 		while ((l2 = p->p_zomblwp) != NULL) {
914 			p->p_zomblwp = NULL;
915 			lwp_free(l2, false, false);/* releases proc mutex */
916 			mutex_enter(p->p_lock);
917 			l->l_refcnt++;
918 			lwp_drainrefs(l);
919 		}
920 		p->p_zomblwp = l;
921 	}
922 
923 	/*
924 	 * If we find a pending signal for the process and we have been
925 	 * asked to check for signals, then we lose: arrange to have
926 	 * all other LWPs in the process check for signals.
927 	 */
928 	if ((l->l_flag & LW_PENDSIG) != 0 &&
929 	    firstsig(&p->p_sigpend.sp_set) != 0) {
930 		LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
931 			lwp_lock(l2);
932 			l2->l_flag |= LW_PENDSIG;
933 			lwp_unlock(l2);
934 		}
935 	}
936 
937 	lwp_lock(l);
938 	l->l_stat = LSZOMB;
939 	if (l->l_name != NULL)
940 		strcpy(l->l_name, "(zombie)");
941 	if (l->l_flag & LW_AFFINITY) {
942 		l->l_flag &= ~LW_AFFINITY;
943 	} else {
944 		KASSERT(l->l_affinity == NULL);
945 	}
946 	lwp_unlock(l);
947 	p->p_nrlwps--;
948 	cv_broadcast(&p->p_lwpcv);
949 	if (l->l_lwpctl != NULL)
950 		l->l_lwpctl->lc_curcpu = LWPCTL_CPU_EXITED;
951 	mutex_exit(p->p_lock);
952 
953 	/* Safe without lock since LWP is in zombie state */
954 	if (l->l_affinity) {
955 		kcpuset_unuse(l->l_affinity, NULL);
956 		l->l_affinity = NULL;
957 	}
958 
959 	/*
960 	 * We can no longer block.  At this point, lwp_free() may already
961 	 * be gunning for us.  On a multi-CPU system, we may be off p_lwps.
962 	 *
963 	 * Free MD LWP resources.
964 	 */
965 	cpu_lwp_free(l, 0);
966 
967 	if (current) {
968 		pmap_deactivate(l);
969 
970 		/*
971 		 * Release the kernel lock, and switch away into
972 		 * oblivion.
973 		 */
974 #ifdef notyet
975 		/* XXXSMP hold in lwp_userret() */
976 		KERNEL_UNLOCK_LAST(l);
977 #else
978 		KERNEL_UNLOCK_ALL(l, NULL);
979 #endif
980 		lwp_exit_switchaway(l);
981 	}
982 }
983 
984 /*
985  * Free a dead LWP's remaining resources.
986  *
987  * XXXLWP limits.
988  */
989 void
990 lwp_free(struct lwp *l, bool recycle, bool last)
991 {
992 	struct proc *p = l->l_proc;
993 	struct rusage *ru;
994 	ksiginfoq_t kq;
995 
996 	KASSERT(l != curlwp);
997 
998 	/*
999 	 * If this was not the last LWP in the process, then adjust
1000 	 * counters and unlock.
1001 	 */
1002 	if (!last) {
1003 		/*
1004 		 * Add the LWP's run time to the process' base value.
1005 		 * This needs to co-incide with coming off p_lwps.
1006 		 */
1007 		bintime_add(&p->p_rtime, &l->l_rtime);
1008 		p->p_pctcpu += l->l_pctcpu;
1009 		ru = &p->p_stats->p_ru;
1010 		ruadd(ru, &l->l_ru);
1011 		ru->ru_nvcsw += (l->l_ncsw - l->l_nivcsw);
1012 		ru->ru_nivcsw += l->l_nivcsw;
1013 		LIST_REMOVE(l, l_sibling);
1014 		p->p_nlwps--;
1015 		p->p_nzlwps--;
1016 		if ((l->l_prflag & LPR_DETACHED) != 0)
1017 			p->p_ndlwps--;
1018 
1019 		/*
1020 		 * Have any LWPs sleeping in lwp_wait() recheck for
1021 		 * deadlock.
1022 		 */
1023 		cv_broadcast(&p->p_lwpcv);
1024 		mutex_exit(p->p_lock);
1025 	}
1026 
1027 #ifdef MULTIPROCESSOR
1028 	/*
1029 	 * In the unlikely event that the LWP is still on the CPU,
1030 	 * then spin until it has switched away.  We need to release
1031 	 * all locks to avoid deadlock against interrupt handlers on
1032 	 * the target CPU.
1033 	 */
1034 	if ((l->l_pflag & LP_RUNNING) != 0 || l->l_cpu->ci_curlwp == l) {
1035 		int count;
1036 		(void)count; /* XXXgcc */
1037 		KERNEL_UNLOCK_ALL(curlwp, &count);
1038 		while ((l->l_pflag & LP_RUNNING) != 0 ||
1039 		    l->l_cpu->ci_curlwp == l)
1040 			SPINLOCK_BACKOFF_HOOK;
1041 		KERNEL_LOCK(count, curlwp);
1042 	}
1043 #endif
1044 
1045 	/*
1046 	 * Destroy the LWP's remaining signal information.
1047 	 */
1048 	ksiginfo_queue_init(&kq);
1049 	sigclear(&l->l_sigpend, NULL, &kq);
1050 	ksiginfo_queue_drain(&kq);
1051 	cv_destroy(&l->l_sigcv);
1052 
1053 	/*
1054 	 * Free the LWP's turnstile and the LWP structure itself unless the
1055 	 * caller wants to recycle them.  Also, free the scheduler specific
1056 	 * data.
1057 	 *
1058 	 * We can't return turnstile0 to the pool (it didn't come from it),
1059 	 * so if it comes up just drop it quietly and move on.
1060 	 *
1061 	 * We don't recycle the VM resources at this time.
1062 	 */
1063 	if (l->l_lwpctl != NULL)
1064 		lwp_ctl_free(l);
1065 
1066 	if (!recycle && l->l_ts != &turnstile0)
1067 		pool_cache_put(turnstile_cache, l->l_ts);
1068 	if (l->l_name != NULL)
1069 		kmem_free(l->l_name, MAXCOMLEN);
1070 
1071 	cpu_lwp_free2(l);
1072 	uvm_lwp_exit(l);
1073 
1074 	KASSERT(SLIST_EMPTY(&l->l_pi_lenders));
1075 	KASSERT(l->l_inheritedprio == -1);
1076 	kdtrace_thread_dtor(NULL, l);
1077 	if (!recycle)
1078 		pool_cache_put(lwp_cache, l);
1079 }
1080 
1081 /*
1082  * Migrate the LWP to the another CPU.  Unlocks the LWP.
1083  */
1084 void
1085 lwp_migrate(lwp_t *l, struct cpu_info *tci)
1086 {
1087 	struct schedstate_percpu *tspc;
1088 	int lstat = l->l_stat;
1089 
1090 	KASSERT(lwp_locked(l, NULL));
1091 	KASSERT(tci != NULL);
1092 
1093 	/* If LWP is still on the CPU, it must be handled like LSONPROC */
1094 	if ((l->l_pflag & LP_RUNNING) != 0) {
1095 		lstat = LSONPROC;
1096 	}
1097 
1098 	/*
1099 	 * The destination CPU could be changed while previous migration
1100 	 * was not finished.
1101 	 */
1102 	if (l->l_target_cpu != NULL) {
1103 		l->l_target_cpu = tci;
1104 		lwp_unlock(l);
1105 		return;
1106 	}
1107 
1108 	/* Nothing to do if trying to migrate to the same CPU */
1109 	if (l->l_cpu == tci) {
1110 		lwp_unlock(l);
1111 		return;
1112 	}
1113 
1114 	KASSERT(l->l_target_cpu == NULL);
1115 	tspc = &tci->ci_schedstate;
1116 	switch (lstat) {
1117 	case LSRUN:
1118 		l->l_target_cpu = tci;
1119 		break;
1120 	case LSIDL:
1121 		l->l_cpu = tci;
1122 		lwp_unlock_to(l, tspc->spc_mutex);
1123 		return;
1124 	case LSSLEEP:
1125 		l->l_cpu = tci;
1126 		break;
1127 	case LSSTOP:
1128 	case LSSUSPENDED:
1129 		l->l_cpu = tci;
1130 		if (l->l_wchan == NULL) {
1131 			lwp_unlock_to(l, tspc->spc_lwplock);
1132 			return;
1133 		}
1134 		break;
1135 	case LSONPROC:
1136 		l->l_target_cpu = tci;
1137 		spc_lock(l->l_cpu);
1138 		cpu_need_resched(l->l_cpu, RESCHED_KPREEMPT);
1139 		spc_unlock(l->l_cpu);
1140 		break;
1141 	}
1142 	lwp_unlock(l);
1143 }
1144 
1145 /*
1146  * Find the LWP in the process.  Arguments may be zero, in such case,
1147  * the calling process and first LWP in the list will be used.
1148  * On success - returns proc locked.
1149  */
1150 struct lwp *
1151 lwp_find2(pid_t pid, lwpid_t lid)
1152 {
1153 	proc_t *p;
1154 	lwp_t *l;
1155 
1156 	/* Find the process. */
1157 	if (pid != 0) {
1158 		mutex_enter(proc_lock);
1159 		p = proc_find(pid);
1160 		if (p == NULL) {
1161 			mutex_exit(proc_lock);
1162 			return NULL;
1163 		}
1164 		mutex_enter(p->p_lock);
1165 		mutex_exit(proc_lock);
1166 	} else {
1167 		p = curlwp->l_proc;
1168 		mutex_enter(p->p_lock);
1169 	}
1170 	/* Find the thread. */
1171 	if (lid != 0) {
1172 		l = lwp_find(p, lid);
1173 	} else {
1174 		l = LIST_FIRST(&p->p_lwps);
1175 	}
1176 	if (l == NULL) {
1177 		mutex_exit(p->p_lock);
1178 	}
1179 	return l;
1180 }
1181 
1182 /*
1183  * Look up a live LWP within the specified process, and return it locked.
1184  *
1185  * Must be called with p->p_lock held.
1186  */
1187 struct lwp *
1188 lwp_find(struct proc *p, lwpid_t id)
1189 {
1190 	struct lwp *l;
1191 
1192 	KASSERT(mutex_owned(p->p_lock));
1193 
1194 	LIST_FOREACH(l, &p->p_lwps, l_sibling) {
1195 		if (l->l_lid == id)
1196 			break;
1197 	}
1198 
1199 	/*
1200 	 * No need to lock - all of these conditions will
1201 	 * be visible with the process level mutex held.
1202 	 */
1203 	if (l != NULL && (l->l_stat == LSIDL || l->l_stat == LSZOMB))
1204 		l = NULL;
1205 
1206 	return l;
1207 }
1208 
1209 /*
1210  * Update an LWP's cached credentials to mirror the process' master copy.
1211  *
1212  * This happens early in the syscall path, on user trap, and on LWP
1213  * creation.  A long-running LWP can also voluntarily choose to update
1214  * it's credentials by calling this routine.  This may be called from
1215  * LWP_CACHE_CREDS(), which checks l->l_cred != p->p_cred beforehand.
1216  */
1217 void
1218 lwp_update_creds(struct lwp *l)
1219 {
1220 	kauth_cred_t oc;
1221 	struct proc *p;
1222 
1223 	p = l->l_proc;
1224 	oc = l->l_cred;
1225 
1226 	mutex_enter(p->p_lock);
1227 	kauth_cred_hold(p->p_cred);
1228 	l->l_cred = p->p_cred;
1229 	l->l_prflag &= ~LPR_CRMOD;
1230 	mutex_exit(p->p_lock);
1231 	if (oc != NULL)
1232 		kauth_cred_free(oc);
1233 }
1234 
1235 /*
1236  * Verify that an LWP is locked, and optionally verify that the lock matches
1237  * one we specify.
1238  */
1239 int
1240 lwp_locked(struct lwp *l, kmutex_t *mtx)
1241 {
1242 	kmutex_t *cur = l->l_mutex;
1243 
1244 	return mutex_owned(cur) && (mtx == cur || mtx == NULL);
1245 }
1246 
1247 /*
1248  * Lend a new mutex to an LWP.  The old mutex must be held.
1249  */
1250 void
1251 lwp_setlock(struct lwp *l, kmutex_t *new)
1252 {
1253 
1254 	KASSERT(mutex_owned(l->l_mutex));
1255 
1256 	membar_exit();
1257 	l->l_mutex = new;
1258 }
1259 
1260 /*
1261  * Lend a new mutex to an LWP, and release the old mutex.  The old mutex
1262  * must be held.
1263  */
1264 void
1265 lwp_unlock_to(struct lwp *l, kmutex_t *new)
1266 {
1267 	kmutex_t *old;
1268 
1269 	KASSERT(lwp_locked(l, NULL));
1270 
1271 	old = l->l_mutex;
1272 	membar_exit();
1273 	l->l_mutex = new;
1274 	mutex_spin_exit(old);
1275 }
1276 
1277 int
1278 lwp_trylock(struct lwp *l)
1279 {
1280 	kmutex_t *old;
1281 
1282 	for (;;) {
1283 		if (!mutex_tryenter(old = l->l_mutex))
1284 			return 0;
1285 		if (__predict_true(l->l_mutex == old))
1286 			return 1;
1287 		mutex_spin_exit(old);
1288 	}
1289 }
1290 
1291 void
1292 lwp_unsleep(lwp_t *l, bool cleanup)
1293 {
1294 
1295 	KASSERT(mutex_owned(l->l_mutex));
1296 	(*l->l_syncobj->sobj_unsleep)(l, cleanup);
1297 }
1298 
1299 /*
1300  * Handle exceptions for mi_userret().  Called if a member of LW_USERRET is
1301  * set.
1302  */
1303 void
1304 lwp_userret(struct lwp *l)
1305 {
1306 	struct proc *p;
1307 	int sig;
1308 
1309 	KASSERT(l == curlwp);
1310 	KASSERT(l->l_stat == LSONPROC);
1311 	p = l->l_proc;
1312 
1313 #ifndef __HAVE_FAST_SOFTINTS
1314 	/* Run pending soft interrupts. */
1315 	if (l->l_cpu->ci_data.cpu_softints != 0)
1316 		softint_overlay();
1317 #endif
1318 
1319 #ifdef KERN_SA
1320 	/* Generate UNBLOCKED upcall if needed */
1321 	if (l->l_flag & LW_SA_BLOCKING) {
1322 		sa_unblock_userret(l);
1323 		/* NOTREACHED */
1324 	}
1325 #endif
1326 
1327 	/*
1328 	 * It should be safe to do this read unlocked on a multiprocessor
1329 	 * system..
1330 	 *
1331 	 * LW_SA_UPCALL will be handled after the while() loop, so don't
1332 	 * consider it now.
1333 	 */
1334 	while ((l->l_flag & (LW_USERRET & ~(LW_SA_UPCALL))) != 0) {
1335 		/*
1336 		 * Process pending signals first, unless the process
1337 		 * is dumping core or exiting, where we will instead
1338 		 * enter the LW_WSUSPEND case below.
1339 		 */
1340 		if ((l->l_flag & (LW_PENDSIG | LW_WCORE | LW_WEXIT)) ==
1341 		    LW_PENDSIG) {
1342 			mutex_enter(p->p_lock);
1343 			while ((sig = issignal(l)) != 0)
1344 				postsig(sig);
1345 			mutex_exit(p->p_lock);
1346 		}
1347 
1348 		/*
1349 		 * Core-dump or suspend pending.
1350 		 *
1351 		 * In case of core dump, suspend ourselves, so that the
1352 		 * kernel stack and therefore the userland registers saved
1353 		 * in the trapframe are around for coredump() to write them
1354 		 * out.  We issue a wakeup on p->p_lwpcv so that sigexit()
1355 		 * will write the core file out once all other LWPs are
1356 		 * suspended.
1357 		 */
1358 		if ((l->l_flag & LW_WSUSPEND) != 0) {
1359 			mutex_enter(p->p_lock);
1360 			p->p_nrlwps--;
1361 			cv_broadcast(&p->p_lwpcv);
1362 			lwp_lock(l);
1363 			l->l_stat = LSSUSPENDED;
1364 			lwp_unlock(l);
1365 			mutex_exit(p->p_lock);
1366 			lwp_lock(l);
1367 			mi_switch(l);
1368 		}
1369 
1370 		/* Process is exiting. */
1371 		if ((l->l_flag & LW_WEXIT) != 0) {
1372 			lwp_exit(l);
1373 			KASSERT(0);
1374 			/* NOTREACHED */
1375 		}
1376 	}
1377 
1378 #ifdef KERN_SA
1379 	/*
1380 	 * Timer events are handled specially.  We only try once to deliver
1381 	 * pending timer upcalls; if if fails, we can try again on the next
1382 	 * loop around.  If we need to re-enter lwp_userret(), MD code will
1383 	 * bounce us back here through the trap path after we return.
1384 	 */
1385 	if (p->p_timerpend)
1386 		timerupcall(l);
1387 	if (l->l_flag & LW_SA_UPCALL)
1388 		sa_upcall_userret(l);
1389 #endif /* KERN_SA */
1390 }
1391 
1392 /*
1393  * Force an LWP to enter the kernel, to take a trip through lwp_userret().
1394  */
1395 void
1396 lwp_need_userret(struct lwp *l)
1397 {
1398 	KASSERT(lwp_locked(l, NULL));
1399 
1400 	/*
1401 	 * Since the tests in lwp_userret() are done unlocked, make sure
1402 	 * that the condition will be seen before forcing the LWP to enter
1403 	 * kernel mode.
1404 	 */
1405 	membar_producer();
1406 	cpu_signotify(l);
1407 }
1408 
1409 /*
1410  * Add one reference to an LWP.  This will prevent the LWP from
1411  * exiting, thus keep the lwp structure and PCB around to inspect.
1412  */
1413 void
1414 lwp_addref(struct lwp *l)
1415 {
1416 
1417 	KASSERT(mutex_owned(l->l_proc->p_lock));
1418 	KASSERT(l->l_stat != LSZOMB);
1419 	KASSERT(l->l_refcnt != 0);
1420 
1421 	l->l_refcnt++;
1422 }
1423 
1424 /*
1425  * Remove one reference to an LWP.  If this is the last reference,
1426  * then we must finalize the LWP's death.
1427  */
1428 void
1429 lwp_delref(struct lwp *l)
1430 {
1431 	struct proc *p = l->l_proc;
1432 
1433 	mutex_enter(p->p_lock);
1434 	lwp_delref2(l);
1435 	mutex_exit(p->p_lock);
1436 }
1437 
1438 /*
1439  * Remove one reference to an LWP.  If this is the last reference,
1440  * then we must finalize the LWP's death.  The proc mutex is held
1441  * on entry.
1442  */
1443 void
1444 lwp_delref2(struct lwp *l)
1445 {
1446 	struct proc *p = l->l_proc;
1447 
1448 	KASSERT(mutex_owned(p->p_lock));
1449 	KASSERT(l->l_stat != LSZOMB);
1450 	KASSERT(l->l_refcnt > 0);
1451 	if (--l->l_refcnt == 0)
1452 		cv_broadcast(&p->p_lwpcv);
1453 }
1454 
1455 /*
1456  * Drain all references to the current LWP.
1457  */
1458 void
1459 lwp_drainrefs(struct lwp *l)
1460 {
1461 	struct proc *p = l->l_proc;
1462 
1463 	KASSERT(mutex_owned(p->p_lock));
1464 	KASSERT(l->l_refcnt != 0);
1465 
1466 	l->l_refcnt--;
1467 	while (l->l_refcnt != 0)
1468 		cv_wait(&p->p_lwpcv, p->p_lock);
1469 }
1470 
1471 /*
1472  * Return true if the specified LWP is 'alive'.  Only p->p_lock need
1473  * be held.
1474  */
1475 bool
1476 lwp_alive(lwp_t *l)
1477 {
1478 
1479 	KASSERT(mutex_owned(l->l_proc->p_lock));
1480 
1481 	switch (l->l_stat) {
1482 	case LSSLEEP:
1483 	case LSRUN:
1484 	case LSONPROC:
1485 	case LSSTOP:
1486 	case LSSUSPENDED:
1487 		return true;
1488 	default:
1489 		return false;
1490 	}
1491 }
1492 
1493 /*
1494  * Return first live LWP in the process.
1495  */
1496 lwp_t *
1497 lwp_find_first(proc_t *p)
1498 {
1499 	lwp_t *l;
1500 
1501 	KASSERT(mutex_owned(p->p_lock));
1502 
1503 	LIST_FOREACH(l, &p->p_lwps, l_sibling) {
1504 		if (lwp_alive(l)) {
1505 			return l;
1506 		}
1507 	}
1508 
1509 	return NULL;
1510 }
1511 
1512 /*
1513  * Allocate a new lwpctl structure for a user LWP.
1514  */
1515 int
1516 lwp_ctl_alloc(vaddr_t *uaddr)
1517 {
1518 	lcproc_t *lp;
1519 	u_int bit, i, offset;
1520 	struct uvm_object *uao;
1521 	int error;
1522 	lcpage_t *lcp;
1523 	proc_t *p;
1524 	lwp_t *l;
1525 
1526 	l = curlwp;
1527 	p = l->l_proc;
1528 
1529 	if (l->l_lcpage != NULL) {
1530 		lcp = l->l_lcpage;
1531 		*uaddr = lcp->lcp_uaddr + (vaddr_t)l->l_lwpctl - lcp->lcp_kaddr;
1532 		return 0;
1533 	}
1534 
1535 	/* First time around, allocate header structure for the process. */
1536 	if ((lp = p->p_lwpctl) == NULL) {
1537 		lp = kmem_alloc(sizeof(*lp), KM_SLEEP);
1538 		mutex_init(&lp->lp_lock, MUTEX_DEFAULT, IPL_NONE);
1539 		lp->lp_uao = NULL;
1540 		TAILQ_INIT(&lp->lp_pages);
1541 		mutex_enter(p->p_lock);
1542 		if (p->p_lwpctl == NULL) {
1543 			p->p_lwpctl = lp;
1544 			mutex_exit(p->p_lock);
1545 		} else {
1546 			mutex_exit(p->p_lock);
1547 			mutex_destroy(&lp->lp_lock);
1548 			kmem_free(lp, sizeof(*lp));
1549 			lp = p->p_lwpctl;
1550 		}
1551 	}
1552 
1553  	/*
1554  	 * Set up an anonymous memory region to hold the shared pages.
1555  	 * Map them into the process' address space.  The user vmspace
1556  	 * gets the first reference on the UAO.
1557  	 */
1558 	mutex_enter(&lp->lp_lock);
1559 	if (lp->lp_uao == NULL) {
1560 		lp->lp_uao = uao_create(LWPCTL_UAREA_SZ, 0);
1561 		lp->lp_cur = 0;
1562 		lp->lp_max = LWPCTL_UAREA_SZ;
1563 		lp->lp_uva = p->p_emul->e_vm_default_addr(p,
1564 		     (vaddr_t)p->p_vmspace->vm_daddr, LWPCTL_UAREA_SZ);
1565 		error = uvm_map(&p->p_vmspace->vm_map, &lp->lp_uva,
1566 		    LWPCTL_UAREA_SZ, lp->lp_uao, 0, 0, UVM_MAPFLAG(UVM_PROT_RW,
1567 		    UVM_PROT_RW, UVM_INH_NONE, UVM_ADV_NORMAL, 0));
1568 		if (error != 0) {
1569 			uao_detach(lp->lp_uao);
1570 			lp->lp_uao = NULL;
1571 			mutex_exit(&lp->lp_lock);
1572 			return error;
1573 		}
1574 	}
1575 
1576 	/* Get a free block and allocate for this LWP. */
1577 	TAILQ_FOREACH(lcp, &lp->lp_pages, lcp_chain) {
1578 		if (lcp->lcp_nfree != 0)
1579 			break;
1580 	}
1581 	if (lcp == NULL) {
1582 		/* Nothing available - try to set up a free page. */
1583 		if (lp->lp_cur == lp->lp_max) {
1584 			mutex_exit(&lp->lp_lock);
1585 			return ENOMEM;
1586 		}
1587 		lcp = kmem_alloc(LWPCTL_LCPAGE_SZ, KM_SLEEP);
1588 		if (lcp == NULL) {
1589 			mutex_exit(&lp->lp_lock);
1590 			return ENOMEM;
1591 		}
1592 		/*
1593 		 * Wire the next page down in kernel space.  Since this
1594 		 * is a new mapping, we must add a reference.
1595 		 */
1596 		uao = lp->lp_uao;
1597 		(*uao->pgops->pgo_reference)(uao);
1598 		lcp->lcp_kaddr = vm_map_min(kernel_map);
1599 		error = uvm_map(kernel_map, &lcp->lcp_kaddr, PAGE_SIZE,
1600 		    uao, lp->lp_cur, PAGE_SIZE,
1601 		    UVM_MAPFLAG(UVM_PROT_RW, UVM_PROT_RW,
1602 		    UVM_INH_NONE, UVM_ADV_RANDOM, 0));
1603 		if (error != 0) {
1604 			mutex_exit(&lp->lp_lock);
1605 			kmem_free(lcp, LWPCTL_LCPAGE_SZ);
1606 			(*uao->pgops->pgo_detach)(uao);
1607 			return error;
1608 		}
1609 		error = uvm_map_pageable(kernel_map, lcp->lcp_kaddr,
1610 		    lcp->lcp_kaddr + PAGE_SIZE, FALSE, 0);
1611 		if (error != 0) {
1612 			mutex_exit(&lp->lp_lock);
1613 			uvm_unmap(kernel_map, lcp->lcp_kaddr,
1614 			    lcp->lcp_kaddr + PAGE_SIZE);
1615 			kmem_free(lcp, LWPCTL_LCPAGE_SZ);
1616 			return error;
1617 		}
1618 		/* Prepare the page descriptor and link into the list. */
1619 		lcp->lcp_uaddr = lp->lp_uva + lp->lp_cur;
1620 		lp->lp_cur += PAGE_SIZE;
1621 		lcp->lcp_nfree = LWPCTL_PER_PAGE;
1622 		lcp->lcp_rotor = 0;
1623 		memset(lcp->lcp_bitmap, 0xff, LWPCTL_BITMAP_SZ);
1624 		TAILQ_INSERT_HEAD(&lp->lp_pages, lcp, lcp_chain);
1625 	}
1626 	for (i = lcp->lcp_rotor; lcp->lcp_bitmap[i] == 0;) {
1627 		if (++i >= LWPCTL_BITMAP_ENTRIES)
1628 			i = 0;
1629 	}
1630 	bit = ffs(lcp->lcp_bitmap[i]) - 1;
1631 	lcp->lcp_bitmap[i] ^= (1 << bit);
1632 	lcp->lcp_rotor = i;
1633 	lcp->lcp_nfree--;
1634 	l->l_lcpage = lcp;
1635 	offset = (i << 5) + bit;
1636 	l->l_lwpctl = (lwpctl_t *)lcp->lcp_kaddr + offset;
1637 	*uaddr = lcp->lcp_uaddr + offset * sizeof(lwpctl_t);
1638 	mutex_exit(&lp->lp_lock);
1639 
1640 	KPREEMPT_DISABLE(l);
1641 	l->l_lwpctl->lc_curcpu = (int)curcpu()->ci_data.cpu_index;
1642 	KPREEMPT_ENABLE(l);
1643 
1644 	return 0;
1645 }
1646 
1647 /*
1648  * Free an lwpctl structure back to the per-process list.
1649  */
1650 void
1651 lwp_ctl_free(lwp_t *l)
1652 {
1653 	lcproc_t *lp;
1654 	lcpage_t *lcp;
1655 	u_int map, offset;
1656 
1657 	lp = l->l_proc->p_lwpctl;
1658 	KASSERT(lp != NULL);
1659 
1660 	lcp = l->l_lcpage;
1661 	offset = (u_int)((lwpctl_t *)l->l_lwpctl - (lwpctl_t *)lcp->lcp_kaddr);
1662 	KASSERT(offset < LWPCTL_PER_PAGE);
1663 
1664 	mutex_enter(&lp->lp_lock);
1665 	lcp->lcp_nfree++;
1666 	map = offset >> 5;
1667 	lcp->lcp_bitmap[map] |= (1 << (offset & 31));
1668 	if (lcp->lcp_bitmap[lcp->lcp_rotor] == 0)
1669 		lcp->lcp_rotor = map;
1670 	if (TAILQ_FIRST(&lp->lp_pages)->lcp_nfree == 0) {
1671 		TAILQ_REMOVE(&lp->lp_pages, lcp, lcp_chain);
1672 		TAILQ_INSERT_HEAD(&lp->lp_pages, lcp, lcp_chain);
1673 	}
1674 	mutex_exit(&lp->lp_lock);
1675 }
1676 
1677 /*
1678  * Process is exiting; tear down lwpctl state.  This can only be safely
1679  * called by the last LWP in the process.
1680  */
1681 void
1682 lwp_ctl_exit(void)
1683 {
1684 	lcpage_t *lcp, *next;
1685 	lcproc_t *lp;
1686 	proc_t *p;
1687 	lwp_t *l;
1688 
1689 	l = curlwp;
1690 	l->l_lwpctl = NULL;
1691 	l->l_lcpage = NULL;
1692 	p = l->l_proc;
1693 	lp = p->p_lwpctl;
1694 
1695 	KASSERT(lp != NULL);
1696 	KASSERT(p->p_nlwps == 1);
1697 
1698 	for (lcp = TAILQ_FIRST(&lp->lp_pages); lcp != NULL; lcp = next) {
1699 		next = TAILQ_NEXT(lcp, lcp_chain);
1700 		uvm_unmap(kernel_map, lcp->lcp_kaddr,
1701 		    lcp->lcp_kaddr + PAGE_SIZE);
1702 		kmem_free(lcp, LWPCTL_LCPAGE_SZ);
1703 	}
1704 
1705 	if (lp->lp_uao != NULL) {
1706 		uvm_unmap(&p->p_vmspace->vm_map, lp->lp_uva,
1707 		    lp->lp_uva + LWPCTL_UAREA_SZ);
1708 	}
1709 
1710 	mutex_destroy(&lp->lp_lock);
1711 	kmem_free(lp, sizeof(*lp));
1712 	p->p_lwpctl = NULL;
1713 }
1714 
1715 /*
1716  * Return the current LWP's "preemption counter".  Used to detect
1717  * preemption across operations that can tolerate preemption without
1718  * crashing, but which may generate incorrect results if preempted.
1719  */
1720 uint64_t
1721 lwp_pctr(void)
1722 {
1723 
1724 	return curlwp->l_ncsw;
1725 }
1726 
1727 /*
1728  * Set an LWP's private data pointer.
1729  */
1730 int
1731 lwp_setprivate(struct lwp *l, void *ptr)
1732 {
1733 	int error = 0;
1734 
1735 	l->l_private = ptr;
1736 #ifdef __HAVE_CPU_LWP_SETPRIVATE
1737 	error = cpu_lwp_setprivate(l, ptr);
1738 #endif
1739 	return error;
1740 }
1741 
1742 #if defined(DDB)
1743 void
1744 lwp_whatis(uintptr_t addr, void (*pr)(const char *, ...))
1745 {
1746 	lwp_t *l;
1747 
1748 	LIST_FOREACH(l, &alllwp, l_list) {
1749 		uintptr_t stack = (uintptr_t)KSTACK_LOWEST_ADDR(l);
1750 
1751 		if (addr < stack || stack + KSTACK_SIZE <= addr) {
1752 			continue;
1753 		}
1754 		(*pr)("%p is %p+%zu, LWP %p's stack\n",
1755 		    (void *)addr, (void *)stack,
1756 		    (size_t)(addr - stack), l);
1757 	}
1758 }
1759 #endif /* defined(DDB) */
1760