1 /* $NetBSD: kern_lwp.c,v 1.152 2010/12/18 01:36:19 rmind Exp $ */ 2 3 /*- 4 * Copyright (c) 2001, 2006, 2007, 2008, 2009 The NetBSD Foundation, Inc. 5 * All rights reserved. 6 * 7 * This code is derived from software contributed to The NetBSD Foundation 8 * by Nathan J. Williams, and Andrew Doran. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS 20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 29 * POSSIBILITY OF SUCH DAMAGE. 30 */ 31 32 /* 33 * Overview 34 * 35 * Lightweight processes (LWPs) are the basic unit or thread of 36 * execution within the kernel. The core state of an LWP is described 37 * by "struct lwp", also known as lwp_t. 38 * 39 * Each LWP is contained within a process (described by "struct proc"), 40 * Every process contains at least one LWP, but may contain more. The 41 * process describes attributes shared among all of its LWPs such as a 42 * private address space, global execution state (stopped, active, 43 * zombie, ...), signal disposition and so on. On a multiprocessor 44 * machine, multiple LWPs be executing concurrently in the kernel. 45 * 46 * Execution states 47 * 48 * At any given time, an LWP has overall state that is described by 49 * lwp::l_stat. The states are broken into two sets below. The first 50 * set is guaranteed to represent the absolute, current state of the 51 * LWP: 52 * 53 * LSONPROC 54 * 55 * On processor: the LWP is executing on a CPU, either in the 56 * kernel or in user space. 57 * 58 * LSRUN 59 * 60 * Runnable: the LWP is parked on a run queue, and may soon be 61 * chosen to run by an idle processor, or by a processor that 62 * has been asked to preempt a currently runnning but lower 63 * priority LWP. 64 * 65 * LSIDL 66 * 67 * Idle: the LWP has been created but has not yet executed, 68 * or it has ceased executing a unit of work and is waiting 69 * to be started again. 70 * 71 * LSSUSPENDED: 72 * 73 * Suspended: the LWP has had its execution suspended by 74 * another LWP in the same process using the _lwp_suspend() 75 * system call. User-level LWPs also enter the suspended 76 * state when the system is shutting down. 77 * 78 * The second set represent a "statement of intent" on behalf of the 79 * LWP. The LWP may in fact be executing on a processor, may be 80 * sleeping or idle. It is expected to take the necessary action to 81 * stop executing or become "running" again within a short timeframe. 82 * The LP_RUNNING flag in lwp::l_pflag indicates that an LWP is running. 83 * Importantly, it indicates that its state is tied to a CPU. 84 * 85 * LSZOMB: 86 * 87 * Dead or dying: the LWP has released most of its resources 88 * and is about to switch away into oblivion, or has already 89 * switched away. When it switches away, its few remaining 90 * resources can be collected. 91 * 92 * LSSLEEP: 93 * 94 * Sleeping: the LWP has entered itself onto a sleep queue, and 95 * has switched away or will switch away shortly to allow other 96 * LWPs to run on the CPU. 97 * 98 * LSSTOP: 99 * 100 * Stopped: the LWP has been stopped as a result of a job 101 * control signal, or as a result of the ptrace() interface. 102 * 103 * Stopped LWPs may run briefly within the kernel to handle 104 * signals that they receive, but will not return to user space 105 * until their process' state is changed away from stopped. 106 * 107 * Single LWPs within a process can not be set stopped 108 * selectively: all actions that can stop or continue LWPs 109 * occur at the process level. 110 * 111 * State transitions 112 * 113 * Note that the LSSTOP state may only be set when returning to 114 * user space in userret(), or when sleeping interruptably. The 115 * LSSUSPENDED state may only be set in userret(). Before setting 116 * those states, we try to ensure that the LWPs will release all 117 * locks that they hold, and at a minimum try to ensure that the 118 * LWP can be set runnable again by a signal. 119 * 120 * LWPs may transition states in the following ways: 121 * 122 * RUN -------> ONPROC ONPROC -----> RUN 123 * > SLEEP 124 * > STOPPED 125 * > SUSPENDED 126 * > ZOMB 127 * > IDL (special cases) 128 * 129 * STOPPED ---> RUN SUSPENDED --> RUN 130 * > SLEEP 131 * 132 * SLEEP -----> ONPROC IDL --------> RUN 133 * > RUN > SUSPENDED 134 * > STOPPED > STOPPED 135 * > ONPROC (special cases) 136 * 137 * Some state transitions are only possible with kernel threads (eg 138 * ONPROC -> IDL) and happen under tightly controlled circumstances 139 * free of unwanted side effects. 140 * 141 * Migration 142 * 143 * Migration of threads from one CPU to another could be performed 144 * internally by the scheduler via sched_takecpu() or sched_catchlwp() 145 * functions. The universal lwp_migrate() function should be used for 146 * any other cases. Subsystems in the kernel must be aware that CPU 147 * of LWP may change, while it is not locked. 148 * 149 * Locking 150 * 151 * The majority of fields in 'struct lwp' are covered by a single, 152 * general spin lock pointed to by lwp::l_mutex. The locks covering 153 * each field are documented in sys/lwp.h. 154 * 155 * State transitions must be made with the LWP's general lock held, 156 * and may cause the LWP's lock pointer to change. Manipulation of 157 * the general lock is not performed directly, but through calls to 158 * lwp_lock(), lwp_unlock() and others. It should be noted that the 159 * adaptive locks are not allowed to be released while the LWP's lock 160 * is being held (unlike for other spin-locks). 161 * 162 * States and their associated locks: 163 * 164 * LSONPROC, LSZOMB: 165 * 166 * Always covered by spc_lwplock, which protects running LWPs. 167 * This is a per-CPU lock and matches lwp::l_cpu. 168 * 169 * LSIDL, LSRUN: 170 * 171 * Always covered by spc_mutex, which protects the run queues. 172 * This is a per-CPU lock and matches lwp::l_cpu. 173 * 174 * LSSLEEP: 175 * 176 * Covered by a lock associated with the sleep queue that the 177 * LWP resides on. Matches lwp::l_sleepq::sq_mutex. 178 * 179 * LSSTOP, LSSUSPENDED: 180 * 181 * If the LWP was previously sleeping (l_wchan != NULL), then 182 * l_mutex references the sleep queue lock. If the LWP was 183 * runnable or on the CPU when halted, or has been removed from 184 * the sleep queue since halted, then the lock is spc_lwplock. 185 * 186 * The lock order is as follows: 187 * 188 * spc::spc_lwplock -> 189 * sleeptab::st_mutex -> 190 * tschain_t::tc_mutex -> 191 * spc::spc_mutex 192 * 193 * Each process has an scheduler state lock (proc::p_lock), and a 194 * number of counters on LWPs and their states: p_nzlwps, p_nrlwps, and 195 * so on. When an LWP is to be entered into or removed from one of the 196 * following states, p_lock must be held and the process wide counters 197 * adjusted: 198 * 199 * LSIDL, LSZOMB, LSSTOP, LSSUSPENDED 200 * 201 * (But not always for kernel threads. There are some special cases 202 * as mentioned above. See kern_softint.c.) 203 * 204 * Note that an LWP is considered running or likely to run soon if in 205 * one of the following states. This affects the value of p_nrlwps: 206 * 207 * LSRUN, LSONPROC, LSSLEEP 208 * 209 * p_lock does not need to be held when transitioning among these 210 * three states, hence p_lock is rarely taken for state transitions. 211 */ 212 213 #include <sys/cdefs.h> 214 __KERNEL_RCSID(0, "$NetBSD: kern_lwp.c,v 1.152 2010/12/18 01:36:19 rmind Exp $"); 215 216 #include "opt_ddb.h" 217 #include "opt_lockdebug.h" 218 #include "opt_sa.h" 219 #include "opt_dtrace.h" 220 221 #define _LWP_API_PRIVATE 222 223 #include <sys/param.h> 224 #include <sys/systm.h> 225 #include <sys/cpu.h> 226 #include <sys/pool.h> 227 #include <sys/proc.h> 228 #include <sys/sa.h> 229 #include <sys/savar.h> 230 #include <sys/syscallargs.h> 231 #include <sys/syscall_stats.h> 232 #include <sys/kauth.h> 233 #include <sys/sleepq.h> 234 #include <sys/lockdebug.h> 235 #include <sys/kmem.h> 236 #include <sys/pset.h> 237 #include <sys/intr.h> 238 #include <sys/lwpctl.h> 239 #include <sys/atomic.h> 240 #include <sys/filedesc.h> 241 #include <sys/dtrace_bsd.h> 242 #include <sys/sdt.h> 243 244 #include <uvm/uvm_extern.h> 245 #include <uvm/uvm_object.h> 246 247 static pool_cache_t lwp_cache __read_mostly; 248 struct lwplist alllwp __cacheline_aligned; 249 250 /* DTrace proc provider probes */ 251 SDT_PROBE_DEFINE(proc,,,lwp_create, 252 "struct lwp *", NULL, 253 NULL, NULL, NULL, NULL, 254 NULL, NULL, NULL, NULL); 255 SDT_PROBE_DEFINE(proc,,,lwp_start, 256 "struct lwp *", NULL, 257 NULL, NULL, NULL, NULL, 258 NULL, NULL, NULL, NULL); 259 SDT_PROBE_DEFINE(proc,,,lwp_exit, 260 "struct lwp *", NULL, 261 NULL, NULL, NULL, NULL, 262 NULL, NULL, NULL, NULL); 263 264 struct turnstile turnstile0; 265 struct lwp lwp0 __aligned(MIN_LWP_ALIGNMENT) = { 266 #ifdef LWP0_CPU_INFO 267 .l_cpu = LWP0_CPU_INFO, 268 #endif 269 .l_proc = &proc0, 270 .l_lid = 1, 271 .l_flag = LW_SYSTEM, 272 .l_stat = LSONPROC, 273 .l_ts = &turnstile0, 274 .l_syncobj = &sched_syncobj, 275 .l_refcnt = 1, 276 .l_priority = PRI_USER + NPRI_USER - 1, 277 .l_inheritedprio = -1, 278 .l_class = SCHED_OTHER, 279 .l_psid = PS_NONE, 280 .l_pi_lenders = SLIST_HEAD_INITIALIZER(&lwp0.l_pi_lenders), 281 .l_name = __UNCONST("swapper"), 282 .l_fd = &filedesc0, 283 }; 284 285 void 286 lwpinit(void) 287 { 288 289 LIST_INIT(&alllwp); 290 lwpinit_specificdata(); 291 lwp_sys_init(); 292 lwp_cache = pool_cache_init(sizeof(lwp_t), MIN_LWP_ALIGNMENT, 0, 0, 293 "lwppl", NULL, IPL_NONE, NULL, NULL, NULL); 294 } 295 296 void 297 lwp0_init(void) 298 { 299 struct lwp *l = &lwp0; 300 301 KASSERT((void *)uvm_lwp_getuarea(l) != NULL); 302 KASSERT(l->l_lid == proc0.p_nlwpid); 303 304 LIST_INSERT_HEAD(&alllwp, l, l_list); 305 306 callout_init(&l->l_timeout_ch, CALLOUT_MPSAFE); 307 callout_setfunc(&l->l_timeout_ch, sleepq_timeout, l); 308 cv_init(&l->l_sigcv, "sigwait"); 309 310 kauth_cred_hold(proc0.p_cred); 311 l->l_cred = proc0.p_cred; 312 313 lwp_initspecific(l); 314 315 SYSCALL_TIME_LWP_INIT(l); 316 } 317 318 /* 319 * Set an suspended. 320 * 321 * Must be called with p_lock held, and the LWP locked. Will unlock the 322 * LWP before return. 323 */ 324 int 325 lwp_suspend(struct lwp *curl, struct lwp *t) 326 { 327 int error; 328 329 KASSERT(mutex_owned(t->l_proc->p_lock)); 330 KASSERT(lwp_locked(t, NULL)); 331 332 KASSERT(curl != t || curl->l_stat == LSONPROC); 333 334 /* 335 * If the current LWP has been told to exit, we must not suspend anyone 336 * else or deadlock could occur. We won't return to userspace. 337 */ 338 if ((curl->l_flag & (LW_WEXIT | LW_WCORE)) != 0) { 339 lwp_unlock(t); 340 return (EDEADLK); 341 } 342 343 error = 0; 344 345 switch (t->l_stat) { 346 case LSRUN: 347 case LSONPROC: 348 t->l_flag |= LW_WSUSPEND; 349 lwp_need_userret(t); 350 lwp_unlock(t); 351 break; 352 353 case LSSLEEP: 354 t->l_flag |= LW_WSUSPEND; 355 356 /* 357 * Kick the LWP and try to get it to the kernel boundary 358 * so that it will release any locks that it holds. 359 * setrunnable() will release the lock. 360 */ 361 if ((t->l_flag & LW_SINTR) != 0) 362 setrunnable(t); 363 else 364 lwp_unlock(t); 365 break; 366 367 case LSSUSPENDED: 368 lwp_unlock(t); 369 break; 370 371 case LSSTOP: 372 t->l_flag |= LW_WSUSPEND; 373 setrunnable(t); 374 break; 375 376 case LSIDL: 377 case LSZOMB: 378 error = EINTR; /* It's what Solaris does..... */ 379 lwp_unlock(t); 380 break; 381 } 382 383 return (error); 384 } 385 386 /* 387 * Restart a suspended LWP. 388 * 389 * Must be called with p_lock held, and the LWP locked. Will unlock the 390 * LWP before return. 391 */ 392 void 393 lwp_continue(struct lwp *l) 394 { 395 396 KASSERT(mutex_owned(l->l_proc->p_lock)); 397 KASSERT(lwp_locked(l, NULL)); 398 399 /* If rebooting or not suspended, then just bail out. */ 400 if ((l->l_flag & LW_WREBOOT) != 0) { 401 lwp_unlock(l); 402 return; 403 } 404 405 l->l_flag &= ~LW_WSUSPEND; 406 407 if (l->l_stat != LSSUSPENDED) { 408 lwp_unlock(l); 409 return; 410 } 411 412 /* setrunnable() will release the lock. */ 413 setrunnable(l); 414 } 415 416 /* 417 * Restart a stopped LWP. 418 * 419 * Must be called with p_lock held, and the LWP NOT locked. Will unlock the 420 * LWP before return. 421 */ 422 void 423 lwp_unstop(struct lwp *l) 424 { 425 struct proc *p = l->l_proc; 426 427 KASSERT(mutex_owned(proc_lock)); 428 KASSERT(mutex_owned(p->p_lock)); 429 430 lwp_lock(l); 431 432 /* If not stopped, then just bail out. */ 433 if (l->l_stat != LSSTOP) { 434 lwp_unlock(l); 435 return; 436 } 437 438 p->p_stat = SACTIVE; 439 p->p_sflag &= ~PS_STOPPING; 440 441 if (!p->p_waited) 442 p->p_pptr->p_nstopchild--; 443 444 if (l->l_wchan == NULL) { 445 /* setrunnable() will release the lock. */ 446 setrunnable(l); 447 } else { 448 l->l_stat = LSSLEEP; 449 p->p_nrlwps++; 450 lwp_unlock(l); 451 } 452 } 453 454 /* 455 * Wait for an LWP within the current process to exit. If 'lid' is 456 * non-zero, we are waiting for a specific LWP. 457 * 458 * Must be called with p->p_lock held. 459 */ 460 int 461 lwp_wait1(struct lwp *l, lwpid_t lid, lwpid_t *departed, int flags) 462 { 463 struct proc *p = l->l_proc; 464 struct lwp *l2; 465 int nfound, error; 466 lwpid_t curlid; 467 bool exiting; 468 469 KASSERT(mutex_owned(p->p_lock)); 470 471 p->p_nlwpwait++; 472 l->l_waitingfor = lid; 473 curlid = l->l_lid; 474 exiting = ((flags & LWPWAIT_EXITCONTROL) != 0); 475 476 for (;;) { 477 /* 478 * Avoid a race between exit1() and sigexit(): if the 479 * process is dumping core, then we need to bail out: call 480 * into lwp_userret() where we will be suspended until the 481 * deed is done. 482 */ 483 if ((p->p_sflag & PS_WCORE) != 0) { 484 mutex_exit(p->p_lock); 485 lwp_userret(l); 486 #ifdef DIAGNOSTIC 487 panic("lwp_wait1"); 488 #endif 489 /* NOTREACHED */ 490 } 491 492 /* 493 * First off, drain any detached LWP that is waiting to be 494 * reaped. 495 */ 496 while ((l2 = p->p_zomblwp) != NULL) { 497 p->p_zomblwp = NULL; 498 lwp_free(l2, false, false);/* releases proc mutex */ 499 mutex_enter(p->p_lock); 500 } 501 502 /* 503 * Now look for an LWP to collect. If the whole process is 504 * exiting, count detached LWPs as eligible to be collected, 505 * but don't drain them here. 506 */ 507 nfound = 0; 508 error = 0; 509 LIST_FOREACH(l2, &p->p_lwps, l_sibling) { 510 /* 511 * If a specific wait and the target is waiting on 512 * us, then avoid deadlock. This also traps LWPs 513 * that try to wait on themselves. 514 * 515 * Note that this does not handle more complicated 516 * cycles, like: t1 -> t2 -> t3 -> t1. The process 517 * can still be killed so it is not a major problem. 518 */ 519 if (l2->l_lid == lid && l2->l_waitingfor == curlid) { 520 error = EDEADLK; 521 break; 522 } 523 if (l2 == l) 524 continue; 525 if ((l2->l_prflag & LPR_DETACHED) != 0) { 526 nfound += exiting; 527 continue; 528 } 529 if (lid != 0) { 530 if (l2->l_lid != lid) 531 continue; 532 /* 533 * Mark this LWP as the first waiter, if there 534 * is no other. 535 */ 536 if (l2->l_waiter == 0) 537 l2->l_waiter = curlid; 538 } else if (l2->l_waiter != 0) { 539 /* 540 * It already has a waiter - so don't 541 * collect it. If the waiter doesn't 542 * grab it we'll get another chance 543 * later. 544 */ 545 nfound++; 546 continue; 547 } 548 nfound++; 549 550 /* No need to lock the LWP in order to see LSZOMB. */ 551 if (l2->l_stat != LSZOMB) 552 continue; 553 554 /* 555 * We're no longer waiting. Reset the "first waiter" 556 * pointer on the target, in case it was us. 557 */ 558 l->l_waitingfor = 0; 559 l2->l_waiter = 0; 560 p->p_nlwpwait--; 561 if (departed) 562 *departed = l2->l_lid; 563 sched_lwp_collect(l2); 564 565 /* lwp_free() releases the proc lock. */ 566 lwp_free(l2, false, false); 567 mutex_enter(p->p_lock); 568 return 0; 569 } 570 571 if (error != 0) 572 break; 573 if (nfound == 0) { 574 error = ESRCH; 575 break; 576 } 577 578 /* 579 * The kernel is careful to ensure that it can not deadlock 580 * when exiting - just keep waiting. 581 */ 582 if (exiting) { 583 KASSERT(p->p_nlwps > 1); 584 cv_wait(&p->p_lwpcv, p->p_lock); 585 continue; 586 } 587 588 /* 589 * If all other LWPs are waiting for exits or suspends 590 * and the supply of zombies and potential zombies is 591 * exhausted, then we are about to deadlock. 592 * 593 * If the process is exiting (and this LWP is not the one 594 * that is coordinating the exit) then bail out now. 595 */ 596 if ((p->p_sflag & PS_WEXIT) != 0 || 597 p->p_nrlwps + p->p_nzlwps - p->p_ndlwps <= p->p_nlwpwait) { 598 error = EDEADLK; 599 break; 600 } 601 602 /* 603 * Sit around and wait for something to happen. We'll be 604 * awoken if any of the conditions examined change: if an 605 * LWP exits, is collected, or is detached. 606 */ 607 if ((error = cv_wait_sig(&p->p_lwpcv, p->p_lock)) != 0) 608 break; 609 } 610 611 /* 612 * We didn't find any LWPs to collect, we may have received a 613 * signal, or some other condition has caused us to bail out. 614 * 615 * If waiting on a specific LWP, clear the waiters marker: some 616 * other LWP may want it. Then, kick all the remaining waiters 617 * so that they can re-check for zombies and for deadlock. 618 */ 619 if (lid != 0) { 620 LIST_FOREACH(l2, &p->p_lwps, l_sibling) { 621 if (l2->l_lid == lid) { 622 if (l2->l_waiter == curlid) 623 l2->l_waiter = 0; 624 break; 625 } 626 } 627 } 628 p->p_nlwpwait--; 629 l->l_waitingfor = 0; 630 cv_broadcast(&p->p_lwpcv); 631 632 return error; 633 } 634 635 /* 636 * Create a new LWP within process 'p2', using LWP 'l1' as a template. 637 * The new LWP is created in state LSIDL and must be set running, 638 * suspended, or stopped by the caller. 639 */ 640 int 641 lwp_create(lwp_t *l1, proc_t *p2, vaddr_t uaddr, int flags, 642 void *stack, size_t stacksize, void (*func)(void *), void *arg, 643 lwp_t **rnewlwpp, int sclass) 644 { 645 struct lwp *l2, *isfree; 646 turnstile_t *ts; 647 lwpid_t lid; 648 649 KASSERT(l1 == curlwp || l1->l_proc == &proc0); 650 651 /* 652 * First off, reap any detached LWP waiting to be collected. 653 * We can re-use its LWP structure and turnstile. 654 */ 655 isfree = NULL; 656 if (p2->p_zomblwp != NULL) { 657 mutex_enter(p2->p_lock); 658 if ((isfree = p2->p_zomblwp) != NULL) { 659 p2->p_zomblwp = NULL; 660 lwp_free(isfree, true, false);/* releases proc mutex */ 661 } else 662 mutex_exit(p2->p_lock); 663 } 664 if (isfree == NULL) { 665 l2 = pool_cache_get(lwp_cache, PR_WAITOK); 666 memset(l2, 0, sizeof(*l2)); 667 l2->l_ts = pool_cache_get(turnstile_cache, PR_WAITOK); 668 SLIST_INIT(&l2->l_pi_lenders); 669 } else { 670 l2 = isfree; 671 ts = l2->l_ts; 672 KASSERT(l2->l_inheritedprio == -1); 673 KASSERT(SLIST_EMPTY(&l2->l_pi_lenders)); 674 memset(l2, 0, sizeof(*l2)); 675 l2->l_ts = ts; 676 } 677 678 l2->l_stat = LSIDL; 679 l2->l_proc = p2; 680 l2->l_refcnt = 1; 681 l2->l_class = sclass; 682 683 /* 684 * If vfork(), we want the LWP to run fast and on the same CPU 685 * as its parent, so that it can reuse the VM context and cache 686 * footprint on the local CPU. 687 */ 688 l2->l_kpriority = ((flags & LWP_VFORK) ? true : false); 689 l2->l_kpribase = PRI_KERNEL; 690 l2->l_priority = l1->l_priority; 691 l2->l_inheritedprio = -1; 692 l2->l_flag = 0; 693 l2->l_pflag = LP_MPSAFE; 694 TAILQ_INIT(&l2->l_ld_locks); 695 696 /* 697 * If not the first LWP in the process, grab a reference to the 698 * descriptor table. 699 */ 700 l2->l_fd = p2->p_fd; 701 if (p2->p_nlwps != 0) { 702 KASSERT(l1->l_proc == p2); 703 fd_hold(l2); 704 } else { 705 KASSERT(l1->l_proc != p2); 706 } 707 708 if (p2->p_flag & PK_SYSTEM) { 709 /* Mark it as a system LWP. */ 710 l2->l_flag |= LW_SYSTEM; 711 } 712 713 kpreempt_disable(); 714 l2->l_mutex = l1->l_cpu->ci_schedstate.spc_mutex; 715 l2->l_cpu = l1->l_cpu; 716 kpreempt_enable(); 717 718 kdtrace_thread_ctor(NULL, l2); 719 lwp_initspecific(l2); 720 sched_lwp_fork(l1, l2); 721 lwp_update_creds(l2); 722 callout_init(&l2->l_timeout_ch, CALLOUT_MPSAFE); 723 callout_setfunc(&l2->l_timeout_ch, sleepq_timeout, l2); 724 cv_init(&l2->l_sigcv, "sigwait"); 725 l2->l_syncobj = &sched_syncobj; 726 727 if (rnewlwpp != NULL) 728 *rnewlwpp = l2; 729 730 uvm_lwp_setuarea(l2, uaddr); 731 uvm_lwp_fork(l1, l2, stack, stacksize, func, 732 (arg != NULL) ? arg : l2); 733 734 if ((flags & LWP_PIDLID) != 0) { 735 lid = proc_alloc_pid(p2); 736 l2->l_pflag |= LP_PIDLID; 737 } else { 738 lid = 0; 739 } 740 741 mutex_enter(p2->p_lock); 742 743 if ((flags & LWP_DETACHED) != 0) { 744 l2->l_prflag = LPR_DETACHED; 745 p2->p_ndlwps++; 746 } else 747 l2->l_prflag = 0; 748 749 l2->l_sigmask = l1->l_sigmask; 750 CIRCLEQ_INIT(&l2->l_sigpend.sp_info); 751 sigemptyset(&l2->l_sigpend.sp_set); 752 753 if (lid == 0) { 754 p2->p_nlwpid++; 755 if (p2->p_nlwpid == 0) 756 p2->p_nlwpid++; 757 lid = p2->p_nlwpid; 758 } 759 l2->l_lid = lid; 760 LIST_INSERT_HEAD(&p2->p_lwps, l2, l_sibling); 761 p2->p_nlwps++; 762 p2->p_nrlwps++; 763 764 if ((p2->p_flag & PK_SYSTEM) == 0) { 765 /* Inherit an affinity */ 766 if (l1->l_flag & LW_AFFINITY) { 767 /* 768 * Note that we hold the state lock while inheriting 769 * the affinity to avoid race with sched_setaffinity(). 770 */ 771 lwp_lock(l1); 772 if (l1->l_flag & LW_AFFINITY) { 773 kcpuset_use(l1->l_affinity); 774 l2->l_affinity = l1->l_affinity; 775 l2->l_flag |= LW_AFFINITY; 776 } 777 lwp_unlock(l1); 778 } 779 lwp_lock(l2); 780 /* Inherit a processor-set */ 781 l2->l_psid = l1->l_psid; 782 /* Look for a CPU to start */ 783 l2->l_cpu = sched_takecpu(l2); 784 lwp_unlock_to(l2, l2->l_cpu->ci_schedstate.spc_mutex); 785 } 786 mutex_exit(p2->p_lock); 787 788 SDT_PROBE(proc,,,lwp_create, l2, 0,0,0,0); 789 790 mutex_enter(proc_lock); 791 LIST_INSERT_HEAD(&alllwp, l2, l_list); 792 mutex_exit(proc_lock); 793 794 SYSCALL_TIME_LWP_INIT(l2); 795 796 if (p2->p_emul->e_lwp_fork) 797 (*p2->p_emul->e_lwp_fork)(l1, l2); 798 799 return (0); 800 } 801 802 /* 803 * Called by MD code when a new LWP begins execution. Must be called 804 * with the previous LWP locked (so at splsched), or if there is no 805 * previous LWP, at splsched. 806 */ 807 void 808 lwp_startup(struct lwp *prev, struct lwp *new) 809 { 810 811 SDT_PROBE(proc,,,lwp_start, new, 0,0,0,0); 812 813 KASSERT(kpreempt_disabled()); 814 if (prev != NULL) { 815 /* 816 * Normalize the count of the spin-mutexes, it was 817 * increased in mi_switch(). Unmark the state of 818 * context switch - it is finished for previous LWP. 819 */ 820 curcpu()->ci_mtx_count++; 821 membar_exit(); 822 prev->l_ctxswtch = 0; 823 } 824 KPREEMPT_DISABLE(new); 825 spl0(); 826 pmap_activate(new); 827 LOCKDEBUG_BARRIER(NULL, 0); 828 KPREEMPT_ENABLE(new); 829 if ((new->l_pflag & LP_MPSAFE) == 0) { 830 KERNEL_LOCK(1, new); 831 } 832 } 833 834 /* 835 * Exit an LWP. 836 */ 837 void 838 lwp_exit(struct lwp *l) 839 { 840 struct proc *p = l->l_proc; 841 struct lwp *l2; 842 bool current; 843 844 current = (l == curlwp); 845 846 KASSERT(current || (l->l_stat == LSIDL && l->l_target_cpu == NULL)); 847 KASSERT(p == curproc); 848 849 SDT_PROBE(proc,,,lwp_exit, l, 0,0,0,0); 850 851 /* 852 * Verify that we hold no locks other than the kernel lock. 853 */ 854 LOCKDEBUG_BARRIER(&kernel_lock, 0); 855 856 /* 857 * If we are the last live LWP in a process, we need to exit the 858 * entire process. We do so with an exit status of zero, because 859 * it's a "controlled" exit, and because that's what Solaris does. 860 * 861 * We are not quite a zombie yet, but for accounting purposes we 862 * must increment the count of zombies here. 863 * 864 * Note: the last LWP's specificdata will be deleted here. 865 */ 866 mutex_enter(p->p_lock); 867 if (p->p_nlwps - p->p_nzlwps == 1) { 868 KASSERT(current == true); 869 /* XXXSMP kernel_lock not held */ 870 exit1(l, 0); 871 /* NOTREACHED */ 872 } 873 p->p_nzlwps++; 874 mutex_exit(p->p_lock); 875 876 if (p->p_emul->e_lwp_exit) 877 (*p->p_emul->e_lwp_exit)(l); 878 879 /* Drop filedesc reference. */ 880 fd_free(); 881 882 /* Delete the specificdata while it's still safe to sleep. */ 883 lwp_finispecific(l); 884 885 /* 886 * Release our cached credentials. 887 */ 888 kauth_cred_free(l->l_cred); 889 callout_destroy(&l->l_timeout_ch); 890 891 /* 892 * Remove the LWP from the global list. 893 * Free its LID from the PID namespace if needed. 894 */ 895 mutex_enter(proc_lock); 896 LIST_REMOVE(l, l_list); 897 if ((l->l_pflag & LP_PIDLID) != 0 && l->l_lid != p->p_pid) { 898 proc_free_pid(l->l_lid); 899 } 900 mutex_exit(proc_lock); 901 902 /* 903 * Get rid of all references to the LWP that others (e.g. procfs) 904 * may have, and mark the LWP as a zombie. If the LWP is detached, 905 * mark it waiting for collection in the proc structure. Note that 906 * before we can do that, we need to free any other dead, deatched 907 * LWP waiting to meet its maker. 908 */ 909 mutex_enter(p->p_lock); 910 lwp_drainrefs(l); 911 912 if ((l->l_prflag & LPR_DETACHED) != 0) { 913 while ((l2 = p->p_zomblwp) != NULL) { 914 p->p_zomblwp = NULL; 915 lwp_free(l2, false, false);/* releases proc mutex */ 916 mutex_enter(p->p_lock); 917 l->l_refcnt++; 918 lwp_drainrefs(l); 919 } 920 p->p_zomblwp = l; 921 } 922 923 /* 924 * If we find a pending signal for the process and we have been 925 * asked to check for signals, then we lose: arrange to have 926 * all other LWPs in the process check for signals. 927 */ 928 if ((l->l_flag & LW_PENDSIG) != 0 && 929 firstsig(&p->p_sigpend.sp_set) != 0) { 930 LIST_FOREACH(l2, &p->p_lwps, l_sibling) { 931 lwp_lock(l2); 932 l2->l_flag |= LW_PENDSIG; 933 lwp_unlock(l2); 934 } 935 } 936 937 lwp_lock(l); 938 l->l_stat = LSZOMB; 939 if (l->l_name != NULL) 940 strcpy(l->l_name, "(zombie)"); 941 if (l->l_flag & LW_AFFINITY) { 942 l->l_flag &= ~LW_AFFINITY; 943 } else { 944 KASSERT(l->l_affinity == NULL); 945 } 946 lwp_unlock(l); 947 p->p_nrlwps--; 948 cv_broadcast(&p->p_lwpcv); 949 if (l->l_lwpctl != NULL) 950 l->l_lwpctl->lc_curcpu = LWPCTL_CPU_EXITED; 951 mutex_exit(p->p_lock); 952 953 /* Safe without lock since LWP is in zombie state */ 954 if (l->l_affinity) { 955 kcpuset_unuse(l->l_affinity, NULL); 956 l->l_affinity = NULL; 957 } 958 959 /* 960 * We can no longer block. At this point, lwp_free() may already 961 * be gunning for us. On a multi-CPU system, we may be off p_lwps. 962 * 963 * Free MD LWP resources. 964 */ 965 cpu_lwp_free(l, 0); 966 967 if (current) { 968 pmap_deactivate(l); 969 970 /* 971 * Release the kernel lock, and switch away into 972 * oblivion. 973 */ 974 #ifdef notyet 975 /* XXXSMP hold in lwp_userret() */ 976 KERNEL_UNLOCK_LAST(l); 977 #else 978 KERNEL_UNLOCK_ALL(l, NULL); 979 #endif 980 lwp_exit_switchaway(l); 981 } 982 } 983 984 /* 985 * Free a dead LWP's remaining resources. 986 * 987 * XXXLWP limits. 988 */ 989 void 990 lwp_free(struct lwp *l, bool recycle, bool last) 991 { 992 struct proc *p = l->l_proc; 993 struct rusage *ru; 994 ksiginfoq_t kq; 995 996 KASSERT(l != curlwp); 997 998 /* 999 * If this was not the last LWP in the process, then adjust 1000 * counters and unlock. 1001 */ 1002 if (!last) { 1003 /* 1004 * Add the LWP's run time to the process' base value. 1005 * This needs to co-incide with coming off p_lwps. 1006 */ 1007 bintime_add(&p->p_rtime, &l->l_rtime); 1008 p->p_pctcpu += l->l_pctcpu; 1009 ru = &p->p_stats->p_ru; 1010 ruadd(ru, &l->l_ru); 1011 ru->ru_nvcsw += (l->l_ncsw - l->l_nivcsw); 1012 ru->ru_nivcsw += l->l_nivcsw; 1013 LIST_REMOVE(l, l_sibling); 1014 p->p_nlwps--; 1015 p->p_nzlwps--; 1016 if ((l->l_prflag & LPR_DETACHED) != 0) 1017 p->p_ndlwps--; 1018 1019 /* 1020 * Have any LWPs sleeping in lwp_wait() recheck for 1021 * deadlock. 1022 */ 1023 cv_broadcast(&p->p_lwpcv); 1024 mutex_exit(p->p_lock); 1025 } 1026 1027 #ifdef MULTIPROCESSOR 1028 /* 1029 * In the unlikely event that the LWP is still on the CPU, 1030 * then spin until it has switched away. We need to release 1031 * all locks to avoid deadlock against interrupt handlers on 1032 * the target CPU. 1033 */ 1034 if ((l->l_pflag & LP_RUNNING) != 0 || l->l_cpu->ci_curlwp == l) { 1035 int count; 1036 (void)count; /* XXXgcc */ 1037 KERNEL_UNLOCK_ALL(curlwp, &count); 1038 while ((l->l_pflag & LP_RUNNING) != 0 || 1039 l->l_cpu->ci_curlwp == l) 1040 SPINLOCK_BACKOFF_HOOK; 1041 KERNEL_LOCK(count, curlwp); 1042 } 1043 #endif 1044 1045 /* 1046 * Destroy the LWP's remaining signal information. 1047 */ 1048 ksiginfo_queue_init(&kq); 1049 sigclear(&l->l_sigpend, NULL, &kq); 1050 ksiginfo_queue_drain(&kq); 1051 cv_destroy(&l->l_sigcv); 1052 1053 /* 1054 * Free the LWP's turnstile and the LWP structure itself unless the 1055 * caller wants to recycle them. Also, free the scheduler specific 1056 * data. 1057 * 1058 * We can't return turnstile0 to the pool (it didn't come from it), 1059 * so if it comes up just drop it quietly and move on. 1060 * 1061 * We don't recycle the VM resources at this time. 1062 */ 1063 if (l->l_lwpctl != NULL) 1064 lwp_ctl_free(l); 1065 1066 if (!recycle && l->l_ts != &turnstile0) 1067 pool_cache_put(turnstile_cache, l->l_ts); 1068 if (l->l_name != NULL) 1069 kmem_free(l->l_name, MAXCOMLEN); 1070 1071 cpu_lwp_free2(l); 1072 uvm_lwp_exit(l); 1073 1074 KASSERT(SLIST_EMPTY(&l->l_pi_lenders)); 1075 KASSERT(l->l_inheritedprio == -1); 1076 kdtrace_thread_dtor(NULL, l); 1077 if (!recycle) 1078 pool_cache_put(lwp_cache, l); 1079 } 1080 1081 /* 1082 * Migrate the LWP to the another CPU. Unlocks the LWP. 1083 */ 1084 void 1085 lwp_migrate(lwp_t *l, struct cpu_info *tci) 1086 { 1087 struct schedstate_percpu *tspc; 1088 int lstat = l->l_stat; 1089 1090 KASSERT(lwp_locked(l, NULL)); 1091 KASSERT(tci != NULL); 1092 1093 /* If LWP is still on the CPU, it must be handled like LSONPROC */ 1094 if ((l->l_pflag & LP_RUNNING) != 0) { 1095 lstat = LSONPROC; 1096 } 1097 1098 /* 1099 * The destination CPU could be changed while previous migration 1100 * was not finished. 1101 */ 1102 if (l->l_target_cpu != NULL) { 1103 l->l_target_cpu = tci; 1104 lwp_unlock(l); 1105 return; 1106 } 1107 1108 /* Nothing to do if trying to migrate to the same CPU */ 1109 if (l->l_cpu == tci) { 1110 lwp_unlock(l); 1111 return; 1112 } 1113 1114 KASSERT(l->l_target_cpu == NULL); 1115 tspc = &tci->ci_schedstate; 1116 switch (lstat) { 1117 case LSRUN: 1118 l->l_target_cpu = tci; 1119 break; 1120 case LSIDL: 1121 l->l_cpu = tci; 1122 lwp_unlock_to(l, tspc->spc_mutex); 1123 return; 1124 case LSSLEEP: 1125 l->l_cpu = tci; 1126 break; 1127 case LSSTOP: 1128 case LSSUSPENDED: 1129 l->l_cpu = tci; 1130 if (l->l_wchan == NULL) { 1131 lwp_unlock_to(l, tspc->spc_lwplock); 1132 return; 1133 } 1134 break; 1135 case LSONPROC: 1136 l->l_target_cpu = tci; 1137 spc_lock(l->l_cpu); 1138 cpu_need_resched(l->l_cpu, RESCHED_KPREEMPT); 1139 spc_unlock(l->l_cpu); 1140 break; 1141 } 1142 lwp_unlock(l); 1143 } 1144 1145 /* 1146 * Find the LWP in the process. Arguments may be zero, in such case, 1147 * the calling process and first LWP in the list will be used. 1148 * On success - returns proc locked. 1149 */ 1150 struct lwp * 1151 lwp_find2(pid_t pid, lwpid_t lid) 1152 { 1153 proc_t *p; 1154 lwp_t *l; 1155 1156 /* Find the process. */ 1157 if (pid != 0) { 1158 mutex_enter(proc_lock); 1159 p = proc_find(pid); 1160 if (p == NULL) { 1161 mutex_exit(proc_lock); 1162 return NULL; 1163 } 1164 mutex_enter(p->p_lock); 1165 mutex_exit(proc_lock); 1166 } else { 1167 p = curlwp->l_proc; 1168 mutex_enter(p->p_lock); 1169 } 1170 /* Find the thread. */ 1171 if (lid != 0) { 1172 l = lwp_find(p, lid); 1173 } else { 1174 l = LIST_FIRST(&p->p_lwps); 1175 } 1176 if (l == NULL) { 1177 mutex_exit(p->p_lock); 1178 } 1179 return l; 1180 } 1181 1182 /* 1183 * Look up a live LWP within the specified process, and return it locked. 1184 * 1185 * Must be called with p->p_lock held. 1186 */ 1187 struct lwp * 1188 lwp_find(struct proc *p, lwpid_t id) 1189 { 1190 struct lwp *l; 1191 1192 KASSERT(mutex_owned(p->p_lock)); 1193 1194 LIST_FOREACH(l, &p->p_lwps, l_sibling) { 1195 if (l->l_lid == id) 1196 break; 1197 } 1198 1199 /* 1200 * No need to lock - all of these conditions will 1201 * be visible with the process level mutex held. 1202 */ 1203 if (l != NULL && (l->l_stat == LSIDL || l->l_stat == LSZOMB)) 1204 l = NULL; 1205 1206 return l; 1207 } 1208 1209 /* 1210 * Update an LWP's cached credentials to mirror the process' master copy. 1211 * 1212 * This happens early in the syscall path, on user trap, and on LWP 1213 * creation. A long-running LWP can also voluntarily choose to update 1214 * it's credentials by calling this routine. This may be called from 1215 * LWP_CACHE_CREDS(), which checks l->l_cred != p->p_cred beforehand. 1216 */ 1217 void 1218 lwp_update_creds(struct lwp *l) 1219 { 1220 kauth_cred_t oc; 1221 struct proc *p; 1222 1223 p = l->l_proc; 1224 oc = l->l_cred; 1225 1226 mutex_enter(p->p_lock); 1227 kauth_cred_hold(p->p_cred); 1228 l->l_cred = p->p_cred; 1229 l->l_prflag &= ~LPR_CRMOD; 1230 mutex_exit(p->p_lock); 1231 if (oc != NULL) 1232 kauth_cred_free(oc); 1233 } 1234 1235 /* 1236 * Verify that an LWP is locked, and optionally verify that the lock matches 1237 * one we specify. 1238 */ 1239 int 1240 lwp_locked(struct lwp *l, kmutex_t *mtx) 1241 { 1242 kmutex_t *cur = l->l_mutex; 1243 1244 return mutex_owned(cur) && (mtx == cur || mtx == NULL); 1245 } 1246 1247 /* 1248 * Lend a new mutex to an LWP. The old mutex must be held. 1249 */ 1250 void 1251 lwp_setlock(struct lwp *l, kmutex_t *new) 1252 { 1253 1254 KASSERT(mutex_owned(l->l_mutex)); 1255 1256 membar_exit(); 1257 l->l_mutex = new; 1258 } 1259 1260 /* 1261 * Lend a new mutex to an LWP, and release the old mutex. The old mutex 1262 * must be held. 1263 */ 1264 void 1265 lwp_unlock_to(struct lwp *l, kmutex_t *new) 1266 { 1267 kmutex_t *old; 1268 1269 KASSERT(lwp_locked(l, NULL)); 1270 1271 old = l->l_mutex; 1272 membar_exit(); 1273 l->l_mutex = new; 1274 mutex_spin_exit(old); 1275 } 1276 1277 int 1278 lwp_trylock(struct lwp *l) 1279 { 1280 kmutex_t *old; 1281 1282 for (;;) { 1283 if (!mutex_tryenter(old = l->l_mutex)) 1284 return 0; 1285 if (__predict_true(l->l_mutex == old)) 1286 return 1; 1287 mutex_spin_exit(old); 1288 } 1289 } 1290 1291 void 1292 lwp_unsleep(lwp_t *l, bool cleanup) 1293 { 1294 1295 KASSERT(mutex_owned(l->l_mutex)); 1296 (*l->l_syncobj->sobj_unsleep)(l, cleanup); 1297 } 1298 1299 /* 1300 * Handle exceptions for mi_userret(). Called if a member of LW_USERRET is 1301 * set. 1302 */ 1303 void 1304 lwp_userret(struct lwp *l) 1305 { 1306 struct proc *p; 1307 int sig; 1308 1309 KASSERT(l == curlwp); 1310 KASSERT(l->l_stat == LSONPROC); 1311 p = l->l_proc; 1312 1313 #ifndef __HAVE_FAST_SOFTINTS 1314 /* Run pending soft interrupts. */ 1315 if (l->l_cpu->ci_data.cpu_softints != 0) 1316 softint_overlay(); 1317 #endif 1318 1319 #ifdef KERN_SA 1320 /* Generate UNBLOCKED upcall if needed */ 1321 if (l->l_flag & LW_SA_BLOCKING) { 1322 sa_unblock_userret(l); 1323 /* NOTREACHED */ 1324 } 1325 #endif 1326 1327 /* 1328 * It should be safe to do this read unlocked on a multiprocessor 1329 * system.. 1330 * 1331 * LW_SA_UPCALL will be handled after the while() loop, so don't 1332 * consider it now. 1333 */ 1334 while ((l->l_flag & (LW_USERRET & ~(LW_SA_UPCALL))) != 0) { 1335 /* 1336 * Process pending signals first, unless the process 1337 * is dumping core or exiting, where we will instead 1338 * enter the LW_WSUSPEND case below. 1339 */ 1340 if ((l->l_flag & (LW_PENDSIG | LW_WCORE | LW_WEXIT)) == 1341 LW_PENDSIG) { 1342 mutex_enter(p->p_lock); 1343 while ((sig = issignal(l)) != 0) 1344 postsig(sig); 1345 mutex_exit(p->p_lock); 1346 } 1347 1348 /* 1349 * Core-dump or suspend pending. 1350 * 1351 * In case of core dump, suspend ourselves, so that the 1352 * kernel stack and therefore the userland registers saved 1353 * in the trapframe are around for coredump() to write them 1354 * out. We issue a wakeup on p->p_lwpcv so that sigexit() 1355 * will write the core file out once all other LWPs are 1356 * suspended. 1357 */ 1358 if ((l->l_flag & LW_WSUSPEND) != 0) { 1359 mutex_enter(p->p_lock); 1360 p->p_nrlwps--; 1361 cv_broadcast(&p->p_lwpcv); 1362 lwp_lock(l); 1363 l->l_stat = LSSUSPENDED; 1364 lwp_unlock(l); 1365 mutex_exit(p->p_lock); 1366 lwp_lock(l); 1367 mi_switch(l); 1368 } 1369 1370 /* Process is exiting. */ 1371 if ((l->l_flag & LW_WEXIT) != 0) { 1372 lwp_exit(l); 1373 KASSERT(0); 1374 /* NOTREACHED */ 1375 } 1376 } 1377 1378 #ifdef KERN_SA 1379 /* 1380 * Timer events are handled specially. We only try once to deliver 1381 * pending timer upcalls; if if fails, we can try again on the next 1382 * loop around. If we need to re-enter lwp_userret(), MD code will 1383 * bounce us back here through the trap path after we return. 1384 */ 1385 if (p->p_timerpend) 1386 timerupcall(l); 1387 if (l->l_flag & LW_SA_UPCALL) 1388 sa_upcall_userret(l); 1389 #endif /* KERN_SA */ 1390 } 1391 1392 /* 1393 * Force an LWP to enter the kernel, to take a trip through lwp_userret(). 1394 */ 1395 void 1396 lwp_need_userret(struct lwp *l) 1397 { 1398 KASSERT(lwp_locked(l, NULL)); 1399 1400 /* 1401 * Since the tests in lwp_userret() are done unlocked, make sure 1402 * that the condition will be seen before forcing the LWP to enter 1403 * kernel mode. 1404 */ 1405 membar_producer(); 1406 cpu_signotify(l); 1407 } 1408 1409 /* 1410 * Add one reference to an LWP. This will prevent the LWP from 1411 * exiting, thus keep the lwp structure and PCB around to inspect. 1412 */ 1413 void 1414 lwp_addref(struct lwp *l) 1415 { 1416 1417 KASSERT(mutex_owned(l->l_proc->p_lock)); 1418 KASSERT(l->l_stat != LSZOMB); 1419 KASSERT(l->l_refcnt != 0); 1420 1421 l->l_refcnt++; 1422 } 1423 1424 /* 1425 * Remove one reference to an LWP. If this is the last reference, 1426 * then we must finalize the LWP's death. 1427 */ 1428 void 1429 lwp_delref(struct lwp *l) 1430 { 1431 struct proc *p = l->l_proc; 1432 1433 mutex_enter(p->p_lock); 1434 lwp_delref2(l); 1435 mutex_exit(p->p_lock); 1436 } 1437 1438 /* 1439 * Remove one reference to an LWP. If this is the last reference, 1440 * then we must finalize the LWP's death. The proc mutex is held 1441 * on entry. 1442 */ 1443 void 1444 lwp_delref2(struct lwp *l) 1445 { 1446 struct proc *p = l->l_proc; 1447 1448 KASSERT(mutex_owned(p->p_lock)); 1449 KASSERT(l->l_stat != LSZOMB); 1450 KASSERT(l->l_refcnt > 0); 1451 if (--l->l_refcnt == 0) 1452 cv_broadcast(&p->p_lwpcv); 1453 } 1454 1455 /* 1456 * Drain all references to the current LWP. 1457 */ 1458 void 1459 lwp_drainrefs(struct lwp *l) 1460 { 1461 struct proc *p = l->l_proc; 1462 1463 KASSERT(mutex_owned(p->p_lock)); 1464 KASSERT(l->l_refcnt != 0); 1465 1466 l->l_refcnt--; 1467 while (l->l_refcnt != 0) 1468 cv_wait(&p->p_lwpcv, p->p_lock); 1469 } 1470 1471 /* 1472 * Return true if the specified LWP is 'alive'. Only p->p_lock need 1473 * be held. 1474 */ 1475 bool 1476 lwp_alive(lwp_t *l) 1477 { 1478 1479 KASSERT(mutex_owned(l->l_proc->p_lock)); 1480 1481 switch (l->l_stat) { 1482 case LSSLEEP: 1483 case LSRUN: 1484 case LSONPROC: 1485 case LSSTOP: 1486 case LSSUSPENDED: 1487 return true; 1488 default: 1489 return false; 1490 } 1491 } 1492 1493 /* 1494 * Return first live LWP in the process. 1495 */ 1496 lwp_t * 1497 lwp_find_first(proc_t *p) 1498 { 1499 lwp_t *l; 1500 1501 KASSERT(mutex_owned(p->p_lock)); 1502 1503 LIST_FOREACH(l, &p->p_lwps, l_sibling) { 1504 if (lwp_alive(l)) { 1505 return l; 1506 } 1507 } 1508 1509 return NULL; 1510 } 1511 1512 /* 1513 * Allocate a new lwpctl structure for a user LWP. 1514 */ 1515 int 1516 lwp_ctl_alloc(vaddr_t *uaddr) 1517 { 1518 lcproc_t *lp; 1519 u_int bit, i, offset; 1520 struct uvm_object *uao; 1521 int error; 1522 lcpage_t *lcp; 1523 proc_t *p; 1524 lwp_t *l; 1525 1526 l = curlwp; 1527 p = l->l_proc; 1528 1529 if (l->l_lcpage != NULL) { 1530 lcp = l->l_lcpage; 1531 *uaddr = lcp->lcp_uaddr + (vaddr_t)l->l_lwpctl - lcp->lcp_kaddr; 1532 return 0; 1533 } 1534 1535 /* First time around, allocate header structure for the process. */ 1536 if ((lp = p->p_lwpctl) == NULL) { 1537 lp = kmem_alloc(sizeof(*lp), KM_SLEEP); 1538 mutex_init(&lp->lp_lock, MUTEX_DEFAULT, IPL_NONE); 1539 lp->lp_uao = NULL; 1540 TAILQ_INIT(&lp->lp_pages); 1541 mutex_enter(p->p_lock); 1542 if (p->p_lwpctl == NULL) { 1543 p->p_lwpctl = lp; 1544 mutex_exit(p->p_lock); 1545 } else { 1546 mutex_exit(p->p_lock); 1547 mutex_destroy(&lp->lp_lock); 1548 kmem_free(lp, sizeof(*lp)); 1549 lp = p->p_lwpctl; 1550 } 1551 } 1552 1553 /* 1554 * Set up an anonymous memory region to hold the shared pages. 1555 * Map them into the process' address space. The user vmspace 1556 * gets the first reference on the UAO. 1557 */ 1558 mutex_enter(&lp->lp_lock); 1559 if (lp->lp_uao == NULL) { 1560 lp->lp_uao = uao_create(LWPCTL_UAREA_SZ, 0); 1561 lp->lp_cur = 0; 1562 lp->lp_max = LWPCTL_UAREA_SZ; 1563 lp->lp_uva = p->p_emul->e_vm_default_addr(p, 1564 (vaddr_t)p->p_vmspace->vm_daddr, LWPCTL_UAREA_SZ); 1565 error = uvm_map(&p->p_vmspace->vm_map, &lp->lp_uva, 1566 LWPCTL_UAREA_SZ, lp->lp_uao, 0, 0, UVM_MAPFLAG(UVM_PROT_RW, 1567 UVM_PROT_RW, UVM_INH_NONE, UVM_ADV_NORMAL, 0)); 1568 if (error != 0) { 1569 uao_detach(lp->lp_uao); 1570 lp->lp_uao = NULL; 1571 mutex_exit(&lp->lp_lock); 1572 return error; 1573 } 1574 } 1575 1576 /* Get a free block and allocate for this LWP. */ 1577 TAILQ_FOREACH(lcp, &lp->lp_pages, lcp_chain) { 1578 if (lcp->lcp_nfree != 0) 1579 break; 1580 } 1581 if (lcp == NULL) { 1582 /* Nothing available - try to set up a free page. */ 1583 if (lp->lp_cur == lp->lp_max) { 1584 mutex_exit(&lp->lp_lock); 1585 return ENOMEM; 1586 } 1587 lcp = kmem_alloc(LWPCTL_LCPAGE_SZ, KM_SLEEP); 1588 if (lcp == NULL) { 1589 mutex_exit(&lp->lp_lock); 1590 return ENOMEM; 1591 } 1592 /* 1593 * Wire the next page down in kernel space. Since this 1594 * is a new mapping, we must add a reference. 1595 */ 1596 uao = lp->lp_uao; 1597 (*uao->pgops->pgo_reference)(uao); 1598 lcp->lcp_kaddr = vm_map_min(kernel_map); 1599 error = uvm_map(kernel_map, &lcp->lcp_kaddr, PAGE_SIZE, 1600 uao, lp->lp_cur, PAGE_SIZE, 1601 UVM_MAPFLAG(UVM_PROT_RW, UVM_PROT_RW, 1602 UVM_INH_NONE, UVM_ADV_RANDOM, 0)); 1603 if (error != 0) { 1604 mutex_exit(&lp->lp_lock); 1605 kmem_free(lcp, LWPCTL_LCPAGE_SZ); 1606 (*uao->pgops->pgo_detach)(uao); 1607 return error; 1608 } 1609 error = uvm_map_pageable(kernel_map, lcp->lcp_kaddr, 1610 lcp->lcp_kaddr + PAGE_SIZE, FALSE, 0); 1611 if (error != 0) { 1612 mutex_exit(&lp->lp_lock); 1613 uvm_unmap(kernel_map, lcp->lcp_kaddr, 1614 lcp->lcp_kaddr + PAGE_SIZE); 1615 kmem_free(lcp, LWPCTL_LCPAGE_SZ); 1616 return error; 1617 } 1618 /* Prepare the page descriptor and link into the list. */ 1619 lcp->lcp_uaddr = lp->lp_uva + lp->lp_cur; 1620 lp->lp_cur += PAGE_SIZE; 1621 lcp->lcp_nfree = LWPCTL_PER_PAGE; 1622 lcp->lcp_rotor = 0; 1623 memset(lcp->lcp_bitmap, 0xff, LWPCTL_BITMAP_SZ); 1624 TAILQ_INSERT_HEAD(&lp->lp_pages, lcp, lcp_chain); 1625 } 1626 for (i = lcp->lcp_rotor; lcp->lcp_bitmap[i] == 0;) { 1627 if (++i >= LWPCTL_BITMAP_ENTRIES) 1628 i = 0; 1629 } 1630 bit = ffs(lcp->lcp_bitmap[i]) - 1; 1631 lcp->lcp_bitmap[i] ^= (1 << bit); 1632 lcp->lcp_rotor = i; 1633 lcp->lcp_nfree--; 1634 l->l_lcpage = lcp; 1635 offset = (i << 5) + bit; 1636 l->l_lwpctl = (lwpctl_t *)lcp->lcp_kaddr + offset; 1637 *uaddr = lcp->lcp_uaddr + offset * sizeof(lwpctl_t); 1638 mutex_exit(&lp->lp_lock); 1639 1640 KPREEMPT_DISABLE(l); 1641 l->l_lwpctl->lc_curcpu = (int)curcpu()->ci_data.cpu_index; 1642 KPREEMPT_ENABLE(l); 1643 1644 return 0; 1645 } 1646 1647 /* 1648 * Free an lwpctl structure back to the per-process list. 1649 */ 1650 void 1651 lwp_ctl_free(lwp_t *l) 1652 { 1653 lcproc_t *lp; 1654 lcpage_t *lcp; 1655 u_int map, offset; 1656 1657 lp = l->l_proc->p_lwpctl; 1658 KASSERT(lp != NULL); 1659 1660 lcp = l->l_lcpage; 1661 offset = (u_int)((lwpctl_t *)l->l_lwpctl - (lwpctl_t *)lcp->lcp_kaddr); 1662 KASSERT(offset < LWPCTL_PER_PAGE); 1663 1664 mutex_enter(&lp->lp_lock); 1665 lcp->lcp_nfree++; 1666 map = offset >> 5; 1667 lcp->lcp_bitmap[map] |= (1 << (offset & 31)); 1668 if (lcp->lcp_bitmap[lcp->lcp_rotor] == 0) 1669 lcp->lcp_rotor = map; 1670 if (TAILQ_FIRST(&lp->lp_pages)->lcp_nfree == 0) { 1671 TAILQ_REMOVE(&lp->lp_pages, lcp, lcp_chain); 1672 TAILQ_INSERT_HEAD(&lp->lp_pages, lcp, lcp_chain); 1673 } 1674 mutex_exit(&lp->lp_lock); 1675 } 1676 1677 /* 1678 * Process is exiting; tear down lwpctl state. This can only be safely 1679 * called by the last LWP in the process. 1680 */ 1681 void 1682 lwp_ctl_exit(void) 1683 { 1684 lcpage_t *lcp, *next; 1685 lcproc_t *lp; 1686 proc_t *p; 1687 lwp_t *l; 1688 1689 l = curlwp; 1690 l->l_lwpctl = NULL; 1691 l->l_lcpage = NULL; 1692 p = l->l_proc; 1693 lp = p->p_lwpctl; 1694 1695 KASSERT(lp != NULL); 1696 KASSERT(p->p_nlwps == 1); 1697 1698 for (lcp = TAILQ_FIRST(&lp->lp_pages); lcp != NULL; lcp = next) { 1699 next = TAILQ_NEXT(lcp, lcp_chain); 1700 uvm_unmap(kernel_map, lcp->lcp_kaddr, 1701 lcp->lcp_kaddr + PAGE_SIZE); 1702 kmem_free(lcp, LWPCTL_LCPAGE_SZ); 1703 } 1704 1705 if (lp->lp_uao != NULL) { 1706 uvm_unmap(&p->p_vmspace->vm_map, lp->lp_uva, 1707 lp->lp_uva + LWPCTL_UAREA_SZ); 1708 } 1709 1710 mutex_destroy(&lp->lp_lock); 1711 kmem_free(lp, sizeof(*lp)); 1712 p->p_lwpctl = NULL; 1713 } 1714 1715 /* 1716 * Return the current LWP's "preemption counter". Used to detect 1717 * preemption across operations that can tolerate preemption without 1718 * crashing, but which may generate incorrect results if preempted. 1719 */ 1720 uint64_t 1721 lwp_pctr(void) 1722 { 1723 1724 return curlwp->l_ncsw; 1725 } 1726 1727 /* 1728 * Set an LWP's private data pointer. 1729 */ 1730 int 1731 lwp_setprivate(struct lwp *l, void *ptr) 1732 { 1733 int error = 0; 1734 1735 l->l_private = ptr; 1736 #ifdef __HAVE_CPU_LWP_SETPRIVATE 1737 error = cpu_lwp_setprivate(l, ptr); 1738 #endif 1739 return error; 1740 } 1741 1742 #if defined(DDB) 1743 void 1744 lwp_whatis(uintptr_t addr, void (*pr)(const char *, ...)) 1745 { 1746 lwp_t *l; 1747 1748 LIST_FOREACH(l, &alllwp, l_list) { 1749 uintptr_t stack = (uintptr_t)KSTACK_LOWEST_ADDR(l); 1750 1751 if (addr < stack || stack + KSTACK_SIZE <= addr) { 1752 continue; 1753 } 1754 (*pr)("%p is %p+%zu, LWP %p's stack\n", 1755 (void *)addr, (void *)stack, 1756 (size_t)(addr - stack), l); 1757 } 1758 } 1759 #endif /* defined(DDB) */ 1760