1 /* $NetBSD: kern_lwp.c,v 1.157 2011/03/20 23:19:16 rmind Exp $ */ 2 3 /*- 4 * Copyright (c) 2001, 2006, 2007, 2008, 2009 The NetBSD Foundation, Inc. 5 * All rights reserved. 6 * 7 * This code is derived from software contributed to The NetBSD Foundation 8 * by Nathan J. Williams, and Andrew Doran. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS 20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 29 * POSSIBILITY OF SUCH DAMAGE. 30 */ 31 32 /* 33 * Overview 34 * 35 * Lightweight processes (LWPs) are the basic unit or thread of 36 * execution within the kernel. The core state of an LWP is described 37 * by "struct lwp", also known as lwp_t. 38 * 39 * Each LWP is contained within a process (described by "struct proc"), 40 * Every process contains at least one LWP, but may contain more. The 41 * process describes attributes shared among all of its LWPs such as a 42 * private address space, global execution state (stopped, active, 43 * zombie, ...), signal disposition and so on. On a multiprocessor 44 * machine, multiple LWPs be executing concurrently in the kernel. 45 * 46 * Execution states 47 * 48 * At any given time, an LWP has overall state that is described by 49 * lwp::l_stat. The states are broken into two sets below. The first 50 * set is guaranteed to represent the absolute, current state of the 51 * LWP: 52 * 53 * LSONPROC 54 * 55 * On processor: the LWP is executing on a CPU, either in the 56 * kernel or in user space. 57 * 58 * LSRUN 59 * 60 * Runnable: the LWP is parked on a run queue, and may soon be 61 * chosen to run by an idle processor, or by a processor that 62 * has been asked to preempt a currently runnning but lower 63 * priority LWP. 64 * 65 * LSIDL 66 * 67 * Idle: the LWP has been created but has not yet executed, 68 * or it has ceased executing a unit of work and is waiting 69 * to be started again. 70 * 71 * LSSUSPENDED: 72 * 73 * Suspended: the LWP has had its execution suspended by 74 * another LWP in the same process using the _lwp_suspend() 75 * system call. User-level LWPs also enter the suspended 76 * state when the system is shutting down. 77 * 78 * The second set represent a "statement of intent" on behalf of the 79 * LWP. The LWP may in fact be executing on a processor, may be 80 * sleeping or idle. It is expected to take the necessary action to 81 * stop executing or become "running" again within a short timeframe. 82 * The LP_RUNNING flag in lwp::l_pflag indicates that an LWP is running. 83 * Importantly, it indicates that its state is tied to a CPU. 84 * 85 * LSZOMB: 86 * 87 * Dead or dying: the LWP has released most of its resources 88 * and is about to switch away into oblivion, or has already 89 * switched away. When it switches away, its few remaining 90 * resources can be collected. 91 * 92 * LSSLEEP: 93 * 94 * Sleeping: the LWP has entered itself onto a sleep queue, and 95 * has switched away or will switch away shortly to allow other 96 * LWPs to run on the CPU. 97 * 98 * LSSTOP: 99 * 100 * Stopped: the LWP has been stopped as a result of a job 101 * control signal, or as a result of the ptrace() interface. 102 * 103 * Stopped LWPs may run briefly within the kernel to handle 104 * signals that they receive, but will not return to user space 105 * until their process' state is changed away from stopped. 106 * 107 * Single LWPs within a process can not be set stopped 108 * selectively: all actions that can stop or continue LWPs 109 * occur at the process level. 110 * 111 * State transitions 112 * 113 * Note that the LSSTOP state may only be set when returning to 114 * user space in userret(), or when sleeping interruptably. The 115 * LSSUSPENDED state may only be set in userret(). Before setting 116 * those states, we try to ensure that the LWPs will release all 117 * locks that they hold, and at a minimum try to ensure that the 118 * LWP can be set runnable again by a signal. 119 * 120 * LWPs may transition states in the following ways: 121 * 122 * RUN -------> ONPROC ONPROC -----> RUN 123 * > SLEEP 124 * > STOPPED 125 * > SUSPENDED 126 * > ZOMB 127 * > IDL (special cases) 128 * 129 * STOPPED ---> RUN SUSPENDED --> RUN 130 * > SLEEP 131 * 132 * SLEEP -----> ONPROC IDL --------> RUN 133 * > RUN > SUSPENDED 134 * > STOPPED > STOPPED 135 * > ONPROC (special cases) 136 * 137 * Some state transitions are only possible with kernel threads (eg 138 * ONPROC -> IDL) and happen under tightly controlled circumstances 139 * free of unwanted side effects. 140 * 141 * Migration 142 * 143 * Migration of threads from one CPU to another could be performed 144 * internally by the scheduler via sched_takecpu() or sched_catchlwp() 145 * functions. The universal lwp_migrate() function should be used for 146 * any other cases. Subsystems in the kernel must be aware that CPU 147 * of LWP may change, while it is not locked. 148 * 149 * Locking 150 * 151 * The majority of fields in 'struct lwp' are covered by a single, 152 * general spin lock pointed to by lwp::l_mutex. The locks covering 153 * each field are documented in sys/lwp.h. 154 * 155 * State transitions must be made with the LWP's general lock held, 156 * and may cause the LWP's lock pointer to change. Manipulation of 157 * the general lock is not performed directly, but through calls to 158 * lwp_lock(), lwp_unlock() and others. It should be noted that the 159 * adaptive locks are not allowed to be released while the LWP's lock 160 * is being held (unlike for other spin-locks). 161 * 162 * States and their associated locks: 163 * 164 * LSONPROC, LSZOMB: 165 * 166 * Always covered by spc_lwplock, which protects running LWPs. 167 * This is a per-CPU lock and matches lwp::l_cpu. 168 * 169 * LSIDL, LSRUN: 170 * 171 * Always covered by spc_mutex, which protects the run queues. 172 * This is a per-CPU lock and matches lwp::l_cpu. 173 * 174 * LSSLEEP: 175 * 176 * Covered by a lock associated with the sleep queue that the 177 * LWP resides on. Matches lwp::l_sleepq::sq_mutex. 178 * 179 * LSSTOP, LSSUSPENDED: 180 * 181 * If the LWP was previously sleeping (l_wchan != NULL), then 182 * l_mutex references the sleep queue lock. If the LWP was 183 * runnable or on the CPU when halted, or has been removed from 184 * the sleep queue since halted, then the lock is spc_lwplock. 185 * 186 * The lock order is as follows: 187 * 188 * spc::spc_lwplock -> 189 * sleeptab::st_mutex -> 190 * tschain_t::tc_mutex -> 191 * spc::spc_mutex 192 * 193 * Each process has an scheduler state lock (proc::p_lock), and a 194 * number of counters on LWPs and their states: p_nzlwps, p_nrlwps, and 195 * so on. When an LWP is to be entered into or removed from one of the 196 * following states, p_lock must be held and the process wide counters 197 * adjusted: 198 * 199 * LSIDL, LSZOMB, LSSTOP, LSSUSPENDED 200 * 201 * (But not always for kernel threads. There are some special cases 202 * as mentioned above. See kern_softint.c.) 203 * 204 * Note that an LWP is considered running or likely to run soon if in 205 * one of the following states. This affects the value of p_nrlwps: 206 * 207 * LSRUN, LSONPROC, LSSLEEP 208 * 209 * p_lock does not need to be held when transitioning among these 210 * three states, hence p_lock is rarely taken for state transitions. 211 */ 212 213 #include <sys/cdefs.h> 214 __KERNEL_RCSID(0, "$NetBSD: kern_lwp.c,v 1.157 2011/03/20 23:19:16 rmind Exp $"); 215 216 #include "opt_ddb.h" 217 #include "opt_lockdebug.h" 218 #include "opt_sa.h" 219 #include "opt_dtrace.h" 220 221 #define _LWP_API_PRIVATE 222 223 #include <sys/param.h> 224 #include <sys/systm.h> 225 #include <sys/cpu.h> 226 #include <sys/pool.h> 227 #include <sys/proc.h> 228 #include <sys/sa.h> 229 #include <sys/savar.h> 230 #include <sys/syscallargs.h> 231 #include <sys/syscall_stats.h> 232 #include <sys/kauth.h> 233 #include <sys/sleepq.h> 234 #include <sys/lockdebug.h> 235 #include <sys/kmem.h> 236 #include <sys/pset.h> 237 #include <sys/intr.h> 238 #include <sys/lwpctl.h> 239 #include <sys/atomic.h> 240 #include <sys/filedesc.h> 241 #include <sys/dtrace_bsd.h> 242 #include <sys/sdt.h> 243 #include <sys/xcall.h> 244 245 #include <uvm/uvm_extern.h> 246 #include <uvm/uvm_object.h> 247 248 static pool_cache_t lwp_cache __read_mostly; 249 struct lwplist alllwp __cacheline_aligned; 250 251 static void lwp_dtor(void *, void *); 252 253 /* DTrace proc provider probes */ 254 SDT_PROBE_DEFINE(proc,,,lwp_create, 255 "struct lwp *", NULL, 256 NULL, NULL, NULL, NULL, 257 NULL, NULL, NULL, NULL); 258 SDT_PROBE_DEFINE(proc,,,lwp_start, 259 "struct lwp *", NULL, 260 NULL, NULL, NULL, NULL, 261 NULL, NULL, NULL, NULL); 262 SDT_PROBE_DEFINE(proc,,,lwp_exit, 263 "struct lwp *", NULL, 264 NULL, NULL, NULL, NULL, 265 NULL, NULL, NULL, NULL); 266 267 struct turnstile turnstile0; 268 struct lwp lwp0 __aligned(MIN_LWP_ALIGNMENT) = { 269 #ifdef LWP0_CPU_INFO 270 .l_cpu = LWP0_CPU_INFO, 271 #endif 272 #ifdef LWP0_MD_INITIALIZER 273 .l_md = LWP0_MD_INITIALIZER, 274 #endif 275 .l_proc = &proc0, 276 .l_lid = 1, 277 .l_flag = LW_SYSTEM, 278 .l_stat = LSONPROC, 279 .l_ts = &turnstile0, 280 .l_syncobj = &sched_syncobj, 281 .l_refcnt = 1, 282 .l_priority = PRI_USER + NPRI_USER - 1, 283 .l_inheritedprio = -1, 284 .l_class = SCHED_OTHER, 285 .l_psid = PS_NONE, 286 .l_pi_lenders = SLIST_HEAD_INITIALIZER(&lwp0.l_pi_lenders), 287 .l_name = __UNCONST("swapper"), 288 .l_fd = &filedesc0, 289 }; 290 291 void 292 lwpinit(void) 293 { 294 295 LIST_INIT(&alllwp); 296 lwpinit_specificdata(); 297 lwp_sys_init(); 298 lwp_cache = pool_cache_init(sizeof(lwp_t), MIN_LWP_ALIGNMENT, 0, 0, 299 "lwppl", NULL, IPL_NONE, NULL, lwp_dtor, NULL); 300 } 301 302 void 303 lwp0_init(void) 304 { 305 struct lwp *l = &lwp0; 306 307 KASSERT((void *)uvm_lwp_getuarea(l) != NULL); 308 KASSERT(l->l_lid == proc0.p_nlwpid); 309 310 LIST_INSERT_HEAD(&alllwp, l, l_list); 311 312 callout_init(&l->l_timeout_ch, CALLOUT_MPSAFE); 313 callout_setfunc(&l->l_timeout_ch, sleepq_timeout, l); 314 cv_init(&l->l_sigcv, "sigwait"); 315 316 kauth_cred_hold(proc0.p_cred); 317 l->l_cred = proc0.p_cred; 318 319 lwp_initspecific(l); 320 321 SYSCALL_TIME_LWP_INIT(l); 322 } 323 324 static void 325 lwp_dtor(void *arg, void *obj) 326 { 327 lwp_t *l = obj; 328 uint64_t where; 329 (void)l; 330 331 /* 332 * Provide a barrier to ensure that all mutex_oncpu() and rw_oncpu() 333 * calls will exit before memory of LWP is returned to the pool, where 334 * KVA of LWP structure might be freed and re-used for other purposes. 335 * Kernel preemption is disabled around mutex_oncpu() and rw_oncpu() 336 * callers, therefore cross-call to all CPUs will do the job. Also, 337 * the value of l->l_cpu must be still valid at this point. 338 */ 339 KASSERT(l->l_cpu != NULL); 340 where = xc_broadcast(0, (xcfunc_t)nullop, NULL, NULL); 341 xc_wait(where); 342 } 343 344 /* 345 * Set an suspended. 346 * 347 * Must be called with p_lock held, and the LWP locked. Will unlock the 348 * LWP before return. 349 */ 350 int 351 lwp_suspend(struct lwp *curl, struct lwp *t) 352 { 353 int error; 354 355 KASSERT(mutex_owned(t->l_proc->p_lock)); 356 KASSERT(lwp_locked(t, NULL)); 357 358 KASSERT(curl != t || curl->l_stat == LSONPROC); 359 360 /* 361 * If the current LWP has been told to exit, we must not suspend anyone 362 * else or deadlock could occur. We won't return to userspace. 363 */ 364 if ((curl->l_flag & (LW_WEXIT | LW_WCORE)) != 0) { 365 lwp_unlock(t); 366 return (EDEADLK); 367 } 368 369 error = 0; 370 371 switch (t->l_stat) { 372 case LSRUN: 373 case LSONPROC: 374 t->l_flag |= LW_WSUSPEND; 375 lwp_need_userret(t); 376 lwp_unlock(t); 377 break; 378 379 case LSSLEEP: 380 t->l_flag |= LW_WSUSPEND; 381 382 /* 383 * Kick the LWP and try to get it to the kernel boundary 384 * so that it will release any locks that it holds. 385 * setrunnable() will release the lock. 386 */ 387 if ((t->l_flag & LW_SINTR) != 0) 388 setrunnable(t); 389 else 390 lwp_unlock(t); 391 break; 392 393 case LSSUSPENDED: 394 lwp_unlock(t); 395 break; 396 397 case LSSTOP: 398 t->l_flag |= LW_WSUSPEND; 399 setrunnable(t); 400 break; 401 402 case LSIDL: 403 case LSZOMB: 404 error = EINTR; /* It's what Solaris does..... */ 405 lwp_unlock(t); 406 break; 407 } 408 409 return (error); 410 } 411 412 /* 413 * Restart a suspended LWP. 414 * 415 * Must be called with p_lock held, and the LWP locked. Will unlock the 416 * LWP before return. 417 */ 418 void 419 lwp_continue(struct lwp *l) 420 { 421 422 KASSERT(mutex_owned(l->l_proc->p_lock)); 423 KASSERT(lwp_locked(l, NULL)); 424 425 /* If rebooting or not suspended, then just bail out. */ 426 if ((l->l_flag & LW_WREBOOT) != 0) { 427 lwp_unlock(l); 428 return; 429 } 430 431 l->l_flag &= ~LW_WSUSPEND; 432 433 if (l->l_stat != LSSUSPENDED) { 434 lwp_unlock(l); 435 return; 436 } 437 438 /* setrunnable() will release the lock. */ 439 setrunnable(l); 440 } 441 442 /* 443 * Restart a stopped LWP. 444 * 445 * Must be called with p_lock held, and the LWP NOT locked. Will unlock the 446 * LWP before return. 447 */ 448 void 449 lwp_unstop(struct lwp *l) 450 { 451 struct proc *p = l->l_proc; 452 453 KASSERT(mutex_owned(proc_lock)); 454 KASSERT(mutex_owned(p->p_lock)); 455 456 lwp_lock(l); 457 458 /* If not stopped, then just bail out. */ 459 if (l->l_stat != LSSTOP) { 460 lwp_unlock(l); 461 return; 462 } 463 464 p->p_stat = SACTIVE; 465 p->p_sflag &= ~PS_STOPPING; 466 467 if (!p->p_waited) 468 p->p_pptr->p_nstopchild--; 469 470 if (l->l_wchan == NULL) { 471 /* setrunnable() will release the lock. */ 472 setrunnable(l); 473 } else { 474 l->l_stat = LSSLEEP; 475 p->p_nrlwps++; 476 lwp_unlock(l); 477 } 478 } 479 480 /* 481 * Wait for an LWP within the current process to exit. If 'lid' is 482 * non-zero, we are waiting for a specific LWP. 483 * 484 * Must be called with p->p_lock held. 485 */ 486 int 487 lwp_wait1(struct lwp *l, lwpid_t lid, lwpid_t *departed, int flags) 488 { 489 struct proc *p = l->l_proc; 490 struct lwp *l2; 491 int nfound, error; 492 lwpid_t curlid; 493 bool exiting; 494 495 KASSERT(mutex_owned(p->p_lock)); 496 497 p->p_nlwpwait++; 498 l->l_waitingfor = lid; 499 curlid = l->l_lid; 500 exiting = ((flags & LWPWAIT_EXITCONTROL) != 0); 501 502 for (;;) { 503 /* 504 * Avoid a race between exit1() and sigexit(): if the 505 * process is dumping core, then we need to bail out: call 506 * into lwp_userret() where we will be suspended until the 507 * deed is done. 508 */ 509 if ((p->p_sflag & PS_WCORE) != 0) { 510 mutex_exit(p->p_lock); 511 lwp_userret(l); 512 #ifdef DIAGNOSTIC 513 panic("lwp_wait1"); 514 #endif 515 /* NOTREACHED */ 516 } 517 518 /* 519 * First off, drain any detached LWP that is waiting to be 520 * reaped. 521 */ 522 while ((l2 = p->p_zomblwp) != NULL) { 523 p->p_zomblwp = NULL; 524 lwp_free(l2, false, false);/* releases proc mutex */ 525 mutex_enter(p->p_lock); 526 } 527 528 /* 529 * Now look for an LWP to collect. If the whole process is 530 * exiting, count detached LWPs as eligible to be collected, 531 * but don't drain them here. 532 */ 533 nfound = 0; 534 error = 0; 535 LIST_FOREACH(l2, &p->p_lwps, l_sibling) { 536 /* 537 * If a specific wait and the target is waiting on 538 * us, then avoid deadlock. This also traps LWPs 539 * that try to wait on themselves. 540 * 541 * Note that this does not handle more complicated 542 * cycles, like: t1 -> t2 -> t3 -> t1. The process 543 * can still be killed so it is not a major problem. 544 */ 545 if (l2->l_lid == lid && l2->l_waitingfor == curlid) { 546 error = EDEADLK; 547 break; 548 } 549 if (l2 == l) 550 continue; 551 if ((l2->l_prflag & LPR_DETACHED) != 0) { 552 nfound += exiting; 553 continue; 554 } 555 if (lid != 0) { 556 if (l2->l_lid != lid) 557 continue; 558 /* 559 * Mark this LWP as the first waiter, if there 560 * is no other. 561 */ 562 if (l2->l_waiter == 0) 563 l2->l_waiter = curlid; 564 } else if (l2->l_waiter != 0) { 565 /* 566 * It already has a waiter - so don't 567 * collect it. If the waiter doesn't 568 * grab it we'll get another chance 569 * later. 570 */ 571 nfound++; 572 continue; 573 } 574 nfound++; 575 576 /* No need to lock the LWP in order to see LSZOMB. */ 577 if (l2->l_stat != LSZOMB) 578 continue; 579 580 /* 581 * We're no longer waiting. Reset the "first waiter" 582 * pointer on the target, in case it was us. 583 */ 584 l->l_waitingfor = 0; 585 l2->l_waiter = 0; 586 p->p_nlwpwait--; 587 if (departed) 588 *departed = l2->l_lid; 589 sched_lwp_collect(l2); 590 591 /* lwp_free() releases the proc lock. */ 592 lwp_free(l2, false, false); 593 mutex_enter(p->p_lock); 594 return 0; 595 } 596 597 if (error != 0) 598 break; 599 if (nfound == 0) { 600 error = ESRCH; 601 break; 602 } 603 604 /* 605 * The kernel is careful to ensure that it can not deadlock 606 * when exiting - just keep waiting. 607 */ 608 if (exiting) { 609 KASSERT(p->p_nlwps > 1); 610 cv_wait(&p->p_lwpcv, p->p_lock); 611 continue; 612 } 613 614 /* 615 * If all other LWPs are waiting for exits or suspends 616 * and the supply of zombies and potential zombies is 617 * exhausted, then we are about to deadlock. 618 * 619 * If the process is exiting (and this LWP is not the one 620 * that is coordinating the exit) then bail out now. 621 */ 622 if ((p->p_sflag & PS_WEXIT) != 0 || 623 p->p_nrlwps + p->p_nzlwps - p->p_ndlwps <= p->p_nlwpwait) { 624 error = EDEADLK; 625 break; 626 } 627 628 /* 629 * Sit around and wait for something to happen. We'll be 630 * awoken if any of the conditions examined change: if an 631 * LWP exits, is collected, or is detached. 632 */ 633 if ((error = cv_wait_sig(&p->p_lwpcv, p->p_lock)) != 0) 634 break; 635 } 636 637 /* 638 * We didn't find any LWPs to collect, we may have received a 639 * signal, or some other condition has caused us to bail out. 640 * 641 * If waiting on a specific LWP, clear the waiters marker: some 642 * other LWP may want it. Then, kick all the remaining waiters 643 * so that they can re-check for zombies and for deadlock. 644 */ 645 if (lid != 0) { 646 LIST_FOREACH(l2, &p->p_lwps, l_sibling) { 647 if (l2->l_lid == lid) { 648 if (l2->l_waiter == curlid) 649 l2->l_waiter = 0; 650 break; 651 } 652 } 653 } 654 p->p_nlwpwait--; 655 l->l_waitingfor = 0; 656 cv_broadcast(&p->p_lwpcv); 657 658 return error; 659 } 660 661 /* 662 * Create a new LWP within process 'p2', using LWP 'l1' as a template. 663 * The new LWP is created in state LSIDL and must be set running, 664 * suspended, or stopped by the caller. 665 */ 666 int 667 lwp_create(lwp_t *l1, proc_t *p2, vaddr_t uaddr, int flags, 668 void *stack, size_t stacksize, void (*func)(void *), void *arg, 669 lwp_t **rnewlwpp, int sclass) 670 { 671 struct lwp *l2, *isfree; 672 turnstile_t *ts; 673 lwpid_t lid; 674 675 KASSERT(l1 == curlwp || l1->l_proc == &proc0); 676 677 /* 678 * First off, reap any detached LWP waiting to be collected. 679 * We can re-use its LWP structure and turnstile. 680 */ 681 isfree = NULL; 682 if (p2->p_zomblwp != NULL) { 683 mutex_enter(p2->p_lock); 684 if ((isfree = p2->p_zomblwp) != NULL) { 685 p2->p_zomblwp = NULL; 686 lwp_free(isfree, true, false);/* releases proc mutex */ 687 } else 688 mutex_exit(p2->p_lock); 689 } 690 if (isfree == NULL) { 691 l2 = pool_cache_get(lwp_cache, PR_WAITOK); 692 memset(l2, 0, sizeof(*l2)); 693 l2->l_ts = pool_cache_get(turnstile_cache, PR_WAITOK); 694 SLIST_INIT(&l2->l_pi_lenders); 695 } else { 696 l2 = isfree; 697 ts = l2->l_ts; 698 KASSERT(l2->l_inheritedprio == -1); 699 KASSERT(SLIST_EMPTY(&l2->l_pi_lenders)); 700 memset(l2, 0, sizeof(*l2)); 701 l2->l_ts = ts; 702 } 703 704 l2->l_stat = LSIDL; 705 l2->l_proc = p2; 706 l2->l_refcnt = 1; 707 l2->l_class = sclass; 708 709 /* 710 * If vfork(), we want the LWP to run fast and on the same CPU 711 * as its parent, so that it can reuse the VM context and cache 712 * footprint on the local CPU. 713 */ 714 l2->l_kpriority = ((flags & LWP_VFORK) ? true : false); 715 l2->l_kpribase = PRI_KERNEL; 716 l2->l_priority = l1->l_priority; 717 l2->l_inheritedprio = -1; 718 l2->l_flag = 0; 719 l2->l_pflag = LP_MPSAFE; 720 TAILQ_INIT(&l2->l_ld_locks); 721 722 /* 723 * For vfork, borrow parent's lwpctl context if it exists. 724 * This also causes us to return via lwp_userret. 725 */ 726 if (flags & LWP_VFORK && l1->l_lwpctl) { 727 l2->l_lwpctl = l1->l_lwpctl; 728 l2->l_flag |= LW_LWPCTL; 729 } 730 731 /* 732 * If not the first LWP in the process, grab a reference to the 733 * descriptor table. 734 */ 735 l2->l_fd = p2->p_fd; 736 if (p2->p_nlwps != 0) { 737 KASSERT(l1->l_proc == p2); 738 fd_hold(l2); 739 } else { 740 KASSERT(l1->l_proc != p2); 741 } 742 743 if (p2->p_flag & PK_SYSTEM) { 744 /* Mark it as a system LWP. */ 745 l2->l_flag |= LW_SYSTEM; 746 } 747 748 kpreempt_disable(); 749 l2->l_mutex = l1->l_cpu->ci_schedstate.spc_mutex; 750 l2->l_cpu = l1->l_cpu; 751 kpreempt_enable(); 752 753 kdtrace_thread_ctor(NULL, l2); 754 lwp_initspecific(l2); 755 sched_lwp_fork(l1, l2); 756 lwp_update_creds(l2); 757 callout_init(&l2->l_timeout_ch, CALLOUT_MPSAFE); 758 callout_setfunc(&l2->l_timeout_ch, sleepq_timeout, l2); 759 cv_init(&l2->l_sigcv, "sigwait"); 760 l2->l_syncobj = &sched_syncobj; 761 762 if (rnewlwpp != NULL) 763 *rnewlwpp = l2; 764 765 uvm_lwp_setuarea(l2, uaddr); 766 uvm_lwp_fork(l1, l2, stack, stacksize, func, 767 (arg != NULL) ? arg : l2); 768 769 if ((flags & LWP_PIDLID) != 0) { 770 lid = proc_alloc_pid(p2); 771 l2->l_pflag |= LP_PIDLID; 772 } else { 773 lid = 0; 774 } 775 776 mutex_enter(p2->p_lock); 777 778 if ((flags & LWP_DETACHED) != 0) { 779 l2->l_prflag = LPR_DETACHED; 780 p2->p_ndlwps++; 781 } else 782 l2->l_prflag = 0; 783 784 l2->l_sigmask = l1->l_sigmask; 785 CIRCLEQ_INIT(&l2->l_sigpend.sp_info); 786 sigemptyset(&l2->l_sigpend.sp_set); 787 788 if (lid == 0) { 789 p2->p_nlwpid++; 790 if (p2->p_nlwpid == 0) 791 p2->p_nlwpid++; 792 lid = p2->p_nlwpid; 793 } 794 l2->l_lid = lid; 795 LIST_INSERT_HEAD(&p2->p_lwps, l2, l_sibling); 796 p2->p_nlwps++; 797 p2->p_nrlwps++; 798 799 if ((p2->p_flag & PK_SYSTEM) == 0) { 800 /* Inherit an affinity */ 801 if (l1->l_flag & LW_AFFINITY) { 802 /* 803 * Note that we hold the state lock while inheriting 804 * the affinity to avoid race with sched_setaffinity(). 805 */ 806 lwp_lock(l1); 807 if (l1->l_flag & LW_AFFINITY) { 808 kcpuset_use(l1->l_affinity); 809 l2->l_affinity = l1->l_affinity; 810 l2->l_flag |= LW_AFFINITY; 811 } 812 lwp_unlock(l1); 813 } 814 lwp_lock(l2); 815 /* Inherit a processor-set */ 816 l2->l_psid = l1->l_psid; 817 /* Look for a CPU to start */ 818 l2->l_cpu = sched_takecpu(l2); 819 lwp_unlock_to(l2, l2->l_cpu->ci_schedstate.spc_mutex); 820 } 821 mutex_exit(p2->p_lock); 822 823 SDT_PROBE(proc,,,lwp_create, l2, 0,0,0,0); 824 825 mutex_enter(proc_lock); 826 LIST_INSERT_HEAD(&alllwp, l2, l_list); 827 mutex_exit(proc_lock); 828 829 SYSCALL_TIME_LWP_INIT(l2); 830 831 if (p2->p_emul->e_lwp_fork) 832 (*p2->p_emul->e_lwp_fork)(l1, l2); 833 834 return (0); 835 } 836 837 /* 838 * Called by MD code when a new LWP begins execution. Must be called 839 * with the previous LWP locked (so at splsched), or if there is no 840 * previous LWP, at splsched. 841 */ 842 void 843 lwp_startup(struct lwp *prev, struct lwp *new) 844 { 845 846 SDT_PROBE(proc,,,lwp_start, new, 0,0,0,0); 847 848 KASSERT(kpreempt_disabled()); 849 if (prev != NULL) { 850 /* 851 * Normalize the count of the spin-mutexes, it was 852 * increased in mi_switch(). Unmark the state of 853 * context switch - it is finished for previous LWP. 854 */ 855 curcpu()->ci_mtx_count++; 856 membar_exit(); 857 prev->l_ctxswtch = 0; 858 } 859 KPREEMPT_DISABLE(new); 860 spl0(); 861 pmap_activate(new); 862 LOCKDEBUG_BARRIER(NULL, 0); 863 KPREEMPT_ENABLE(new); 864 if ((new->l_pflag & LP_MPSAFE) == 0) { 865 KERNEL_LOCK(1, new); 866 } 867 } 868 869 /* 870 * Exit an LWP. 871 */ 872 void 873 lwp_exit(struct lwp *l) 874 { 875 struct proc *p = l->l_proc; 876 struct lwp *l2; 877 bool current; 878 879 current = (l == curlwp); 880 881 KASSERT(current || (l->l_stat == LSIDL && l->l_target_cpu == NULL)); 882 KASSERT(p == curproc); 883 884 SDT_PROBE(proc,,,lwp_exit, l, 0,0,0,0); 885 886 /* 887 * Verify that we hold no locks other than the kernel lock. 888 */ 889 LOCKDEBUG_BARRIER(&kernel_lock, 0); 890 891 /* 892 * If we are the last live LWP in a process, we need to exit the 893 * entire process. We do so with an exit status of zero, because 894 * it's a "controlled" exit, and because that's what Solaris does. 895 * 896 * We are not quite a zombie yet, but for accounting purposes we 897 * must increment the count of zombies here. 898 * 899 * Note: the last LWP's specificdata will be deleted here. 900 */ 901 mutex_enter(p->p_lock); 902 if (p->p_nlwps - p->p_nzlwps == 1) { 903 KASSERT(current == true); 904 /* XXXSMP kernel_lock not held */ 905 exit1(l, 0); 906 /* NOTREACHED */ 907 } 908 p->p_nzlwps++; 909 mutex_exit(p->p_lock); 910 911 if (p->p_emul->e_lwp_exit) 912 (*p->p_emul->e_lwp_exit)(l); 913 914 /* Drop filedesc reference. */ 915 fd_free(); 916 917 /* Delete the specificdata while it's still safe to sleep. */ 918 lwp_finispecific(l); 919 920 /* 921 * Release our cached credentials. 922 */ 923 kauth_cred_free(l->l_cred); 924 callout_destroy(&l->l_timeout_ch); 925 926 /* 927 * Remove the LWP from the global list. 928 * Free its LID from the PID namespace if needed. 929 */ 930 mutex_enter(proc_lock); 931 LIST_REMOVE(l, l_list); 932 if ((l->l_pflag & LP_PIDLID) != 0 && l->l_lid != p->p_pid) { 933 proc_free_pid(l->l_lid); 934 } 935 mutex_exit(proc_lock); 936 937 /* 938 * Get rid of all references to the LWP that others (e.g. procfs) 939 * may have, and mark the LWP as a zombie. If the LWP is detached, 940 * mark it waiting for collection in the proc structure. Note that 941 * before we can do that, we need to free any other dead, deatched 942 * LWP waiting to meet its maker. 943 */ 944 mutex_enter(p->p_lock); 945 lwp_drainrefs(l); 946 947 if ((l->l_prflag & LPR_DETACHED) != 0) { 948 while ((l2 = p->p_zomblwp) != NULL) { 949 p->p_zomblwp = NULL; 950 lwp_free(l2, false, false);/* releases proc mutex */ 951 mutex_enter(p->p_lock); 952 l->l_refcnt++; 953 lwp_drainrefs(l); 954 } 955 p->p_zomblwp = l; 956 } 957 958 /* 959 * If we find a pending signal for the process and we have been 960 * asked to check for signals, then we lose: arrange to have 961 * all other LWPs in the process check for signals. 962 */ 963 if ((l->l_flag & LW_PENDSIG) != 0 && 964 firstsig(&p->p_sigpend.sp_set) != 0) { 965 LIST_FOREACH(l2, &p->p_lwps, l_sibling) { 966 lwp_lock(l2); 967 l2->l_flag |= LW_PENDSIG; 968 lwp_unlock(l2); 969 } 970 } 971 972 lwp_lock(l); 973 l->l_stat = LSZOMB; 974 if (l->l_name != NULL) 975 strcpy(l->l_name, "(zombie)"); 976 if (l->l_flag & LW_AFFINITY) { 977 l->l_flag &= ~LW_AFFINITY; 978 } else { 979 KASSERT(l->l_affinity == NULL); 980 } 981 lwp_unlock(l); 982 p->p_nrlwps--; 983 cv_broadcast(&p->p_lwpcv); 984 if (l->l_lwpctl != NULL) 985 l->l_lwpctl->lc_curcpu = LWPCTL_CPU_EXITED; 986 mutex_exit(p->p_lock); 987 988 /* Safe without lock since LWP is in zombie state */ 989 if (l->l_affinity) { 990 kcpuset_unuse(l->l_affinity, NULL); 991 l->l_affinity = NULL; 992 } 993 994 /* 995 * We can no longer block. At this point, lwp_free() may already 996 * be gunning for us. On a multi-CPU system, we may be off p_lwps. 997 * 998 * Free MD LWP resources. 999 */ 1000 cpu_lwp_free(l, 0); 1001 1002 if (current) { 1003 pmap_deactivate(l); 1004 1005 /* 1006 * Release the kernel lock, and switch away into 1007 * oblivion. 1008 */ 1009 #ifdef notyet 1010 /* XXXSMP hold in lwp_userret() */ 1011 KERNEL_UNLOCK_LAST(l); 1012 #else 1013 KERNEL_UNLOCK_ALL(l, NULL); 1014 #endif 1015 lwp_exit_switchaway(l); 1016 } 1017 } 1018 1019 /* 1020 * Free a dead LWP's remaining resources. 1021 * 1022 * XXXLWP limits. 1023 */ 1024 void 1025 lwp_free(struct lwp *l, bool recycle, bool last) 1026 { 1027 struct proc *p = l->l_proc; 1028 struct rusage *ru; 1029 ksiginfoq_t kq; 1030 1031 KASSERT(l != curlwp); 1032 1033 /* 1034 * If this was not the last LWP in the process, then adjust 1035 * counters and unlock. 1036 */ 1037 if (!last) { 1038 /* 1039 * Add the LWP's run time to the process' base value. 1040 * This needs to co-incide with coming off p_lwps. 1041 */ 1042 bintime_add(&p->p_rtime, &l->l_rtime); 1043 p->p_pctcpu += l->l_pctcpu; 1044 ru = &p->p_stats->p_ru; 1045 ruadd(ru, &l->l_ru); 1046 ru->ru_nvcsw += (l->l_ncsw - l->l_nivcsw); 1047 ru->ru_nivcsw += l->l_nivcsw; 1048 LIST_REMOVE(l, l_sibling); 1049 p->p_nlwps--; 1050 p->p_nzlwps--; 1051 if ((l->l_prflag & LPR_DETACHED) != 0) 1052 p->p_ndlwps--; 1053 1054 /* 1055 * Have any LWPs sleeping in lwp_wait() recheck for 1056 * deadlock. 1057 */ 1058 cv_broadcast(&p->p_lwpcv); 1059 mutex_exit(p->p_lock); 1060 } 1061 1062 #ifdef MULTIPROCESSOR 1063 /* 1064 * In the unlikely event that the LWP is still on the CPU, 1065 * then spin until it has switched away. We need to release 1066 * all locks to avoid deadlock against interrupt handlers on 1067 * the target CPU. 1068 */ 1069 if ((l->l_pflag & LP_RUNNING) != 0 || l->l_cpu->ci_curlwp == l) { 1070 int count; 1071 (void)count; /* XXXgcc */ 1072 KERNEL_UNLOCK_ALL(curlwp, &count); 1073 while ((l->l_pflag & LP_RUNNING) != 0 || 1074 l->l_cpu->ci_curlwp == l) 1075 SPINLOCK_BACKOFF_HOOK; 1076 KERNEL_LOCK(count, curlwp); 1077 } 1078 #endif 1079 1080 /* 1081 * Destroy the LWP's remaining signal information. 1082 */ 1083 ksiginfo_queue_init(&kq); 1084 sigclear(&l->l_sigpend, NULL, &kq); 1085 ksiginfo_queue_drain(&kq); 1086 cv_destroy(&l->l_sigcv); 1087 1088 /* 1089 * Free the LWP's turnstile and the LWP structure itself unless the 1090 * caller wants to recycle them. Also, free the scheduler specific 1091 * data. 1092 * 1093 * We can't return turnstile0 to the pool (it didn't come from it), 1094 * so if it comes up just drop it quietly and move on. 1095 * 1096 * We don't recycle the VM resources at this time. 1097 */ 1098 if (l->l_lwpctl != NULL) 1099 lwp_ctl_free(l); 1100 1101 if (!recycle && l->l_ts != &turnstile0) 1102 pool_cache_put(turnstile_cache, l->l_ts); 1103 if (l->l_name != NULL) 1104 kmem_free(l->l_name, MAXCOMLEN); 1105 1106 cpu_lwp_free2(l); 1107 uvm_lwp_exit(l); 1108 1109 KASSERT(SLIST_EMPTY(&l->l_pi_lenders)); 1110 KASSERT(l->l_inheritedprio == -1); 1111 KASSERT(l->l_blcnt == 0); 1112 kdtrace_thread_dtor(NULL, l); 1113 if (!recycle) 1114 pool_cache_put(lwp_cache, l); 1115 } 1116 1117 /* 1118 * Migrate the LWP to the another CPU. Unlocks the LWP. 1119 */ 1120 void 1121 lwp_migrate(lwp_t *l, struct cpu_info *tci) 1122 { 1123 struct schedstate_percpu *tspc; 1124 int lstat = l->l_stat; 1125 1126 KASSERT(lwp_locked(l, NULL)); 1127 KASSERT(tci != NULL); 1128 1129 /* If LWP is still on the CPU, it must be handled like LSONPROC */ 1130 if ((l->l_pflag & LP_RUNNING) != 0) { 1131 lstat = LSONPROC; 1132 } 1133 1134 /* 1135 * The destination CPU could be changed while previous migration 1136 * was not finished. 1137 */ 1138 if (l->l_target_cpu != NULL) { 1139 l->l_target_cpu = tci; 1140 lwp_unlock(l); 1141 return; 1142 } 1143 1144 /* Nothing to do if trying to migrate to the same CPU */ 1145 if (l->l_cpu == tci) { 1146 lwp_unlock(l); 1147 return; 1148 } 1149 1150 KASSERT(l->l_target_cpu == NULL); 1151 tspc = &tci->ci_schedstate; 1152 switch (lstat) { 1153 case LSRUN: 1154 l->l_target_cpu = tci; 1155 break; 1156 case LSIDL: 1157 l->l_cpu = tci; 1158 lwp_unlock_to(l, tspc->spc_mutex); 1159 return; 1160 case LSSLEEP: 1161 l->l_cpu = tci; 1162 break; 1163 case LSSTOP: 1164 case LSSUSPENDED: 1165 l->l_cpu = tci; 1166 if (l->l_wchan == NULL) { 1167 lwp_unlock_to(l, tspc->spc_lwplock); 1168 return; 1169 } 1170 break; 1171 case LSONPROC: 1172 l->l_target_cpu = tci; 1173 spc_lock(l->l_cpu); 1174 cpu_need_resched(l->l_cpu, RESCHED_KPREEMPT); 1175 spc_unlock(l->l_cpu); 1176 break; 1177 } 1178 lwp_unlock(l); 1179 } 1180 1181 /* 1182 * Find the LWP in the process. Arguments may be zero, in such case, 1183 * the calling process and first LWP in the list will be used. 1184 * On success - returns proc locked. 1185 */ 1186 struct lwp * 1187 lwp_find2(pid_t pid, lwpid_t lid) 1188 { 1189 proc_t *p; 1190 lwp_t *l; 1191 1192 /* Find the process. */ 1193 if (pid != 0) { 1194 mutex_enter(proc_lock); 1195 p = proc_find(pid); 1196 if (p == NULL) { 1197 mutex_exit(proc_lock); 1198 return NULL; 1199 } 1200 mutex_enter(p->p_lock); 1201 mutex_exit(proc_lock); 1202 } else { 1203 p = curlwp->l_proc; 1204 mutex_enter(p->p_lock); 1205 } 1206 /* Find the thread. */ 1207 if (lid != 0) { 1208 l = lwp_find(p, lid); 1209 } else { 1210 l = LIST_FIRST(&p->p_lwps); 1211 } 1212 if (l == NULL) { 1213 mutex_exit(p->p_lock); 1214 } 1215 return l; 1216 } 1217 1218 /* 1219 * Look up a live LWP within the specified process, and return it locked. 1220 * 1221 * Must be called with p->p_lock held. 1222 */ 1223 struct lwp * 1224 lwp_find(struct proc *p, lwpid_t id) 1225 { 1226 struct lwp *l; 1227 1228 KASSERT(mutex_owned(p->p_lock)); 1229 1230 LIST_FOREACH(l, &p->p_lwps, l_sibling) { 1231 if (l->l_lid == id) 1232 break; 1233 } 1234 1235 /* 1236 * No need to lock - all of these conditions will 1237 * be visible with the process level mutex held. 1238 */ 1239 if (l != NULL && (l->l_stat == LSIDL || l->l_stat == LSZOMB)) 1240 l = NULL; 1241 1242 return l; 1243 } 1244 1245 /* 1246 * Update an LWP's cached credentials to mirror the process' master copy. 1247 * 1248 * This happens early in the syscall path, on user trap, and on LWP 1249 * creation. A long-running LWP can also voluntarily choose to update 1250 * it's credentials by calling this routine. This may be called from 1251 * LWP_CACHE_CREDS(), which checks l->l_cred != p->p_cred beforehand. 1252 */ 1253 void 1254 lwp_update_creds(struct lwp *l) 1255 { 1256 kauth_cred_t oc; 1257 struct proc *p; 1258 1259 p = l->l_proc; 1260 oc = l->l_cred; 1261 1262 mutex_enter(p->p_lock); 1263 kauth_cred_hold(p->p_cred); 1264 l->l_cred = p->p_cred; 1265 l->l_prflag &= ~LPR_CRMOD; 1266 mutex_exit(p->p_lock); 1267 if (oc != NULL) 1268 kauth_cred_free(oc); 1269 } 1270 1271 /* 1272 * Verify that an LWP is locked, and optionally verify that the lock matches 1273 * one we specify. 1274 */ 1275 int 1276 lwp_locked(struct lwp *l, kmutex_t *mtx) 1277 { 1278 kmutex_t *cur = l->l_mutex; 1279 1280 return mutex_owned(cur) && (mtx == cur || mtx == NULL); 1281 } 1282 1283 /* 1284 * Lend a new mutex to an LWP. The old mutex must be held. 1285 */ 1286 void 1287 lwp_setlock(struct lwp *l, kmutex_t *new) 1288 { 1289 1290 KASSERT(mutex_owned(l->l_mutex)); 1291 1292 membar_exit(); 1293 l->l_mutex = new; 1294 } 1295 1296 /* 1297 * Lend a new mutex to an LWP, and release the old mutex. The old mutex 1298 * must be held. 1299 */ 1300 void 1301 lwp_unlock_to(struct lwp *l, kmutex_t *new) 1302 { 1303 kmutex_t *old; 1304 1305 KASSERT(lwp_locked(l, NULL)); 1306 1307 old = l->l_mutex; 1308 membar_exit(); 1309 l->l_mutex = new; 1310 mutex_spin_exit(old); 1311 } 1312 1313 int 1314 lwp_trylock(struct lwp *l) 1315 { 1316 kmutex_t *old; 1317 1318 for (;;) { 1319 if (!mutex_tryenter(old = l->l_mutex)) 1320 return 0; 1321 if (__predict_true(l->l_mutex == old)) 1322 return 1; 1323 mutex_spin_exit(old); 1324 } 1325 } 1326 1327 void 1328 lwp_unsleep(lwp_t *l, bool cleanup) 1329 { 1330 1331 KASSERT(mutex_owned(l->l_mutex)); 1332 (*l->l_syncobj->sobj_unsleep)(l, cleanup); 1333 } 1334 1335 /* 1336 * Handle exceptions for mi_userret(). Called if a member of LW_USERRET is 1337 * set. 1338 */ 1339 void 1340 lwp_userret(struct lwp *l) 1341 { 1342 struct proc *p; 1343 int sig; 1344 1345 KASSERT(l == curlwp); 1346 KASSERT(l->l_stat == LSONPROC); 1347 p = l->l_proc; 1348 1349 #ifndef __HAVE_FAST_SOFTINTS 1350 /* Run pending soft interrupts. */ 1351 if (l->l_cpu->ci_data.cpu_softints != 0) 1352 softint_overlay(); 1353 #endif 1354 1355 #ifdef KERN_SA 1356 /* Generate UNBLOCKED upcall if needed */ 1357 if (l->l_flag & LW_SA_BLOCKING) { 1358 sa_unblock_userret(l); 1359 /* NOTREACHED */ 1360 } 1361 #endif 1362 1363 /* 1364 * It should be safe to do this read unlocked on a multiprocessor 1365 * system.. 1366 * 1367 * LW_SA_UPCALL will be handled after the while() loop, so don't 1368 * consider it now. 1369 */ 1370 while ((l->l_flag & (LW_USERRET & ~(LW_SA_UPCALL))) != 0) { 1371 /* 1372 * Process pending signals first, unless the process 1373 * is dumping core or exiting, where we will instead 1374 * enter the LW_WSUSPEND case below. 1375 */ 1376 if ((l->l_flag & (LW_PENDSIG | LW_WCORE | LW_WEXIT)) == 1377 LW_PENDSIG) { 1378 mutex_enter(p->p_lock); 1379 while ((sig = issignal(l)) != 0) 1380 postsig(sig); 1381 mutex_exit(p->p_lock); 1382 } 1383 1384 /* 1385 * Core-dump or suspend pending. 1386 * 1387 * In case of core dump, suspend ourselves, so that the 1388 * kernel stack and therefore the userland registers saved 1389 * in the trapframe are around for coredump() to write them 1390 * out. We issue a wakeup on p->p_lwpcv so that sigexit() 1391 * will write the core file out once all other LWPs are 1392 * suspended. 1393 */ 1394 if ((l->l_flag & LW_WSUSPEND) != 0) { 1395 mutex_enter(p->p_lock); 1396 p->p_nrlwps--; 1397 cv_broadcast(&p->p_lwpcv); 1398 lwp_lock(l); 1399 l->l_stat = LSSUSPENDED; 1400 lwp_unlock(l); 1401 mutex_exit(p->p_lock); 1402 lwp_lock(l); 1403 mi_switch(l); 1404 } 1405 1406 /* Process is exiting. */ 1407 if ((l->l_flag & LW_WEXIT) != 0) { 1408 lwp_exit(l); 1409 KASSERT(0); 1410 /* NOTREACHED */ 1411 } 1412 1413 /* update lwpctl processor (for vfork child_return) */ 1414 if (l->l_flag & LW_LWPCTL) { 1415 lwp_lock(l); 1416 KASSERT(kpreempt_disabled()); 1417 l->l_lwpctl->lc_curcpu = (int)cpu_index(l->l_cpu); 1418 l->l_lwpctl->lc_pctr++; 1419 l->l_flag &= ~LW_LWPCTL; 1420 lwp_unlock(l); 1421 } 1422 } 1423 1424 #ifdef KERN_SA 1425 /* 1426 * Timer events are handled specially. We only try once to deliver 1427 * pending timer upcalls; if if fails, we can try again on the next 1428 * loop around. If we need to re-enter lwp_userret(), MD code will 1429 * bounce us back here through the trap path after we return. 1430 */ 1431 if (p->p_timerpend) 1432 timerupcall(l); 1433 if (l->l_flag & LW_SA_UPCALL) 1434 sa_upcall_userret(l); 1435 #endif /* KERN_SA */ 1436 } 1437 1438 /* 1439 * Force an LWP to enter the kernel, to take a trip through lwp_userret(). 1440 */ 1441 void 1442 lwp_need_userret(struct lwp *l) 1443 { 1444 KASSERT(lwp_locked(l, NULL)); 1445 1446 /* 1447 * Since the tests in lwp_userret() are done unlocked, make sure 1448 * that the condition will be seen before forcing the LWP to enter 1449 * kernel mode. 1450 */ 1451 membar_producer(); 1452 cpu_signotify(l); 1453 } 1454 1455 /* 1456 * Add one reference to an LWP. This will prevent the LWP from 1457 * exiting, thus keep the lwp structure and PCB around to inspect. 1458 */ 1459 void 1460 lwp_addref(struct lwp *l) 1461 { 1462 1463 KASSERT(mutex_owned(l->l_proc->p_lock)); 1464 KASSERT(l->l_stat != LSZOMB); 1465 KASSERT(l->l_refcnt != 0); 1466 1467 l->l_refcnt++; 1468 } 1469 1470 /* 1471 * Remove one reference to an LWP. If this is the last reference, 1472 * then we must finalize the LWP's death. 1473 */ 1474 void 1475 lwp_delref(struct lwp *l) 1476 { 1477 struct proc *p = l->l_proc; 1478 1479 mutex_enter(p->p_lock); 1480 lwp_delref2(l); 1481 mutex_exit(p->p_lock); 1482 } 1483 1484 /* 1485 * Remove one reference to an LWP. If this is the last reference, 1486 * then we must finalize the LWP's death. The proc mutex is held 1487 * on entry. 1488 */ 1489 void 1490 lwp_delref2(struct lwp *l) 1491 { 1492 struct proc *p = l->l_proc; 1493 1494 KASSERT(mutex_owned(p->p_lock)); 1495 KASSERT(l->l_stat != LSZOMB); 1496 KASSERT(l->l_refcnt > 0); 1497 if (--l->l_refcnt == 0) 1498 cv_broadcast(&p->p_lwpcv); 1499 } 1500 1501 /* 1502 * Drain all references to the current LWP. 1503 */ 1504 void 1505 lwp_drainrefs(struct lwp *l) 1506 { 1507 struct proc *p = l->l_proc; 1508 1509 KASSERT(mutex_owned(p->p_lock)); 1510 KASSERT(l->l_refcnt != 0); 1511 1512 l->l_refcnt--; 1513 while (l->l_refcnt != 0) 1514 cv_wait(&p->p_lwpcv, p->p_lock); 1515 } 1516 1517 /* 1518 * Return true if the specified LWP is 'alive'. Only p->p_lock need 1519 * be held. 1520 */ 1521 bool 1522 lwp_alive(lwp_t *l) 1523 { 1524 1525 KASSERT(mutex_owned(l->l_proc->p_lock)); 1526 1527 switch (l->l_stat) { 1528 case LSSLEEP: 1529 case LSRUN: 1530 case LSONPROC: 1531 case LSSTOP: 1532 case LSSUSPENDED: 1533 return true; 1534 default: 1535 return false; 1536 } 1537 } 1538 1539 /* 1540 * Return first live LWP in the process. 1541 */ 1542 lwp_t * 1543 lwp_find_first(proc_t *p) 1544 { 1545 lwp_t *l; 1546 1547 KASSERT(mutex_owned(p->p_lock)); 1548 1549 LIST_FOREACH(l, &p->p_lwps, l_sibling) { 1550 if (lwp_alive(l)) { 1551 return l; 1552 } 1553 } 1554 1555 return NULL; 1556 } 1557 1558 /* 1559 * Allocate a new lwpctl structure for a user LWP. 1560 */ 1561 int 1562 lwp_ctl_alloc(vaddr_t *uaddr) 1563 { 1564 lcproc_t *lp; 1565 u_int bit, i, offset; 1566 struct uvm_object *uao; 1567 int error; 1568 lcpage_t *lcp; 1569 proc_t *p; 1570 lwp_t *l; 1571 1572 l = curlwp; 1573 p = l->l_proc; 1574 1575 /* don't allow a vforked process to create lwp ctls */ 1576 if (p->p_lflag & PL_PPWAIT) 1577 return EBUSY; 1578 1579 if (l->l_lcpage != NULL) { 1580 lcp = l->l_lcpage; 1581 *uaddr = lcp->lcp_uaddr + (vaddr_t)l->l_lwpctl - lcp->lcp_kaddr; 1582 return 0; 1583 } 1584 1585 /* First time around, allocate header structure for the process. */ 1586 if ((lp = p->p_lwpctl) == NULL) { 1587 lp = kmem_alloc(sizeof(*lp), KM_SLEEP); 1588 mutex_init(&lp->lp_lock, MUTEX_DEFAULT, IPL_NONE); 1589 lp->lp_uao = NULL; 1590 TAILQ_INIT(&lp->lp_pages); 1591 mutex_enter(p->p_lock); 1592 if (p->p_lwpctl == NULL) { 1593 p->p_lwpctl = lp; 1594 mutex_exit(p->p_lock); 1595 } else { 1596 mutex_exit(p->p_lock); 1597 mutex_destroy(&lp->lp_lock); 1598 kmem_free(lp, sizeof(*lp)); 1599 lp = p->p_lwpctl; 1600 } 1601 } 1602 1603 /* 1604 * Set up an anonymous memory region to hold the shared pages. 1605 * Map them into the process' address space. The user vmspace 1606 * gets the first reference on the UAO. 1607 */ 1608 mutex_enter(&lp->lp_lock); 1609 if (lp->lp_uao == NULL) { 1610 lp->lp_uao = uao_create(LWPCTL_UAREA_SZ, 0); 1611 lp->lp_cur = 0; 1612 lp->lp_max = LWPCTL_UAREA_SZ; 1613 lp->lp_uva = p->p_emul->e_vm_default_addr(p, 1614 (vaddr_t)p->p_vmspace->vm_daddr, LWPCTL_UAREA_SZ); 1615 error = uvm_map(&p->p_vmspace->vm_map, &lp->lp_uva, 1616 LWPCTL_UAREA_SZ, lp->lp_uao, 0, 0, UVM_MAPFLAG(UVM_PROT_RW, 1617 UVM_PROT_RW, UVM_INH_NONE, UVM_ADV_NORMAL, 0)); 1618 if (error != 0) { 1619 uao_detach(lp->lp_uao); 1620 lp->lp_uao = NULL; 1621 mutex_exit(&lp->lp_lock); 1622 return error; 1623 } 1624 } 1625 1626 /* Get a free block and allocate for this LWP. */ 1627 TAILQ_FOREACH(lcp, &lp->lp_pages, lcp_chain) { 1628 if (lcp->lcp_nfree != 0) 1629 break; 1630 } 1631 if (lcp == NULL) { 1632 /* Nothing available - try to set up a free page. */ 1633 if (lp->lp_cur == lp->lp_max) { 1634 mutex_exit(&lp->lp_lock); 1635 return ENOMEM; 1636 } 1637 lcp = kmem_alloc(LWPCTL_LCPAGE_SZ, KM_SLEEP); 1638 if (lcp == NULL) { 1639 mutex_exit(&lp->lp_lock); 1640 return ENOMEM; 1641 } 1642 /* 1643 * Wire the next page down in kernel space. Since this 1644 * is a new mapping, we must add a reference. 1645 */ 1646 uao = lp->lp_uao; 1647 (*uao->pgops->pgo_reference)(uao); 1648 lcp->lcp_kaddr = vm_map_min(kernel_map); 1649 error = uvm_map(kernel_map, &lcp->lcp_kaddr, PAGE_SIZE, 1650 uao, lp->lp_cur, PAGE_SIZE, 1651 UVM_MAPFLAG(UVM_PROT_RW, UVM_PROT_RW, 1652 UVM_INH_NONE, UVM_ADV_RANDOM, 0)); 1653 if (error != 0) { 1654 mutex_exit(&lp->lp_lock); 1655 kmem_free(lcp, LWPCTL_LCPAGE_SZ); 1656 (*uao->pgops->pgo_detach)(uao); 1657 return error; 1658 } 1659 error = uvm_map_pageable(kernel_map, lcp->lcp_kaddr, 1660 lcp->lcp_kaddr + PAGE_SIZE, FALSE, 0); 1661 if (error != 0) { 1662 mutex_exit(&lp->lp_lock); 1663 uvm_unmap(kernel_map, lcp->lcp_kaddr, 1664 lcp->lcp_kaddr + PAGE_SIZE); 1665 kmem_free(lcp, LWPCTL_LCPAGE_SZ); 1666 return error; 1667 } 1668 /* Prepare the page descriptor and link into the list. */ 1669 lcp->lcp_uaddr = lp->lp_uva + lp->lp_cur; 1670 lp->lp_cur += PAGE_SIZE; 1671 lcp->lcp_nfree = LWPCTL_PER_PAGE; 1672 lcp->lcp_rotor = 0; 1673 memset(lcp->lcp_bitmap, 0xff, LWPCTL_BITMAP_SZ); 1674 TAILQ_INSERT_HEAD(&lp->lp_pages, lcp, lcp_chain); 1675 } 1676 for (i = lcp->lcp_rotor; lcp->lcp_bitmap[i] == 0;) { 1677 if (++i >= LWPCTL_BITMAP_ENTRIES) 1678 i = 0; 1679 } 1680 bit = ffs(lcp->lcp_bitmap[i]) - 1; 1681 lcp->lcp_bitmap[i] ^= (1 << bit); 1682 lcp->lcp_rotor = i; 1683 lcp->lcp_nfree--; 1684 l->l_lcpage = lcp; 1685 offset = (i << 5) + bit; 1686 l->l_lwpctl = (lwpctl_t *)lcp->lcp_kaddr + offset; 1687 *uaddr = lcp->lcp_uaddr + offset * sizeof(lwpctl_t); 1688 mutex_exit(&lp->lp_lock); 1689 1690 KPREEMPT_DISABLE(l); 1691 l->l_lwpctl->lc_curcpu = (int)curcpu()->ci_data.cpu_index; 1692 KPREEMPT_ENABLE(l); 1693 1694 return 0; 1695 } 1696 1697 /* 1698 * Free an lwpctl structure back to the per-process list. 1699 */ 1700 void 1701 lwp_ctl_free(lwp_t *l) 1702 { 1703 struct proc *p = l->l_proc; 1704 lcproc_t *lp; 1705 lcpage_t *lcp; 1706 u_int map, offset; 1707 1708 /* don't free a lwp context we borrowed for vfork */ 1709 if (p->p_lflag & PL_PPWAIT) { 1710 l->l_lwpctl = NULL; 1711 return; 1712 } 1713 1714 lp = p->p_lwpctl; 1715 KASSERT(lp != NULL); 1716 1717 lcp = l->l_lcpage; 1718 offset = (u_int)((lwpctl_t *)l->l_lwpctl - (lwpctl_t *)lcp->lcp_kaddr); 1719 KASSERT(offset < LWPCTL_PER_PAGE); 1720 1721 mutex_enter(&lp->lp_lock); 1722 lcp->lcp_nfree++; 1723 map = offset >> 5; 1724 lcp->lcp_bitmap[map] |= (1 << (offset & 31)); 1725 if (lcp->lcp_bitmap[lcp->lcp_rotor] == 0) 1726 lcp->lcp_rotor = map; 1727 if (TAILQ_FIRST(&lp->lp_pages)->lcp_nfree == 0) { 1728 TAILQ_REMOVE(&lp->lp_pages, lcp, lcp_chain); 1729 TAILQ_INSERT_HEAD(&lp->lp_pages, lcp, lcp_chain); 1730 } 1731 mutex_exit(&lp->lp_lock); 1732 } 1733 1734 /* 1735 * Process is exiting; tear down lwpctl state. This can only be safely 1736 * called by the last LWP in the process. 1737 */ 1738 void 1739 lwp_ctl_exit(void) 1740 { 1741 lcpage_t *lcp, *next; 1742 lcproc_t *lp; 1743 proc_t *p; 1744 lwp_t *l; 1745 1746 l = curlwp; 1747 l->l_lwpctl = NULL; 1748 l->l_lcpage = NULL; 1749 p = l->l_proc; 1750 lp = p->p_lwpctl; 1751 1752 KASSERT(lp != NULL); 1753 KASSERT(p->p_nlwps == 1); 1754 1755 for (lcp = TAILQ_FIRST(&lp->lp_pages); lcp != NULL; lcp = next) { 1756 next = TAILQ_NEXT(lcp, lcp_chain); 1757 uvm_unmap(kernel_map, lcp->lcp_kaddr, 1758 lcp->lcp_kaddr + PAGE_SIZE); 1759 kmem_free(lcp, LWPCTL_LCPAGE_SZ); 1760 } 1761 1762 if (lp->lp_uao != NULL) { 1763 uvm_unmap(&p->p_vmspace->vm_map, lp->lp_uva, 1764 lp->lp_uva + LWPCTL_UAREA_SZ); 1765 } 1766 1767 mutex_destroy(&lp->lp_lock); 1768 kmem_free(lp, sizeof(*lp)); 1769 p->p_lwpctl = NULL; 1770 } 1771 1772 /* 1773 * Return the current LWP's "preemption counter". Used to detect 1774 * preemption across operations that can tolerate preemption without 1775 * crashing, but which may generate incorrect results if preempted. 1776 */ 1777 uint64_t 1778 lwp_pctr(void) 1779 { 1780 1781 return curlwp->l_ncsw; 1782 } 1783 1784 /* 1785 * Set an LWP's private data pointer. 1786 */ 1787 int 1788 lwp_setprivate(struct lwp *l, void *ptr) 1789 { 1790 int error = 0; 1791 1792 l->l_private = ptr; 1793 #ifdef __HAVE_CPU_LWP_SETPRIVATE 1794 error = cpu_lwp_setprivate(l, ptr); 1795 #endif 1796 return error; 1797 } 1798 1799 #if defined(DDB) 1800 #include <machine/pcb.h> 1801 1802 void 1803 lwp_whatis(uintptr_t addr, void (*pr)(const char *, ...)) 1804 { 1805 lwp_t *l; 1806 1807 LIST_FOREACH(l, &alllwp, l_list) { 1808 uintptr_t stack = (uintptr_t)KSTACK_LOWEST_ADDR(l); 1809 1810 if (addr < stack || stack + KSTACK_SIZE <= addr) { 1811 continue; 1812 } 1813 (*pr)("%p is %p+%zu, LWP %p's stack\n", 1814 (void *)addr, (void *)stack, 1815 (size_t)(addr - stack), l); 1816 } 1817 } 1818 #endif /* defined(DDB) */ 1819