1 /* $NetBSD: kern_lwp.c,v 1.126 2008/10/28 22:11:36 wrstuden Exp $ */ 2 3 /*- 4 * Copyright (c) 2001, 2006, 2007, 2008 The NetBSD Foundation, Inc. 5 * All rights reserved. 6 * 7 * This code is derived from software contributed to The NetBSD Foundation 8 * by Nathan J. Williams, and Andrew Doran. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS 20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 29 * POSSIBILITY OF SUCH DAMAGE. 30 */ 31 32 /* 33 * Overview 34 * 35 * Lightweight processes (LWPs) are the basic unit or thread of 36 * execution within the kernel. The core state of an LWP is described 37 * by "struct lwp", also known as lwp_t. 38 * 39 * Each LWP is contained within a process (described by "struct proc"), 40 * Every process contains at least one LWP, but may contain more. The 41 * process describes attributes shared among all of its LWPs such as a 42 * private address space, global execution state (stopped, active, 43 * zombie, ...), signal disposition and so on. On a multiprocessor 44 * machine, multiple LWPs be executing concurrently in the kernel. 45 * 46 * Execution states 47 * 48 * At any given time, an LWP has overall state that is described by 49 * lwp::l_stat. The states are broken into two sets below. The first 50 * set is guaranteed to represent the absolute, current state of the 51 * LWP: 52 * 53 * LSONPROC 54 * 55 * On processor: the LWP is executing on a CPU, either in the 56 * kernel or in user space. 57 * 58 * LSRUN 59 * 60 * Runnable: the LWP is parked on a run queue, and may soon be 61 * chosen to run by an idle processor, or by a processor that 62 * has been asked to preempt a currently runnning but lower 63 * priority LWP. If the LWP is not swapped in (LW_INMEM == 0) 64 * then the LWP is not on a run queue, but may be soon. 65 * 66 * LSIDL 67 * 68 * Idle: the LWP has been created but has not yet executed, 69 * or it has ceased executing a unit of work and is waiting 70 * to be started again. 71 * 72 * LSSUSPENDED: 73 * 74 * Suspended: the LWP has had its execution suspended by 75 * another LWP in the same process using the _lwp_suspend() 76 * system call. User-level LWPs also enter the suspended 77 * state when the system is shutting down. 78 * 79 * The second set represent a "statement of intent" on behalf of the 80 * LWP. The LWP may in fact be executing on a processor, may be 81 * sleeping or idle. It is expected to take the necessary action to 82 * stop executing or become "running" again within a short timeframe. 83 * The LP_RUNNING flag in lwp::l_pflag indicates that an LWP is running. 84 * Importantly, it indicates that its state is tied to a CPU. 85 * 86 * LSZOMB: 87 * 88 * Dead or dying: the LWP has released most of its resources 89 * and is: a) about to switch away into oblivion b) has already 90 * switched away. When it switches away, its few remaining 91 * resources can be collected. 92 * 93 * LSSLEEP: 94 * 95 * Sleeping: the LWP has entered itself onto a sleep queue, and 96 * has switched away or will switch away shortly to allow other 97 * LWPs to run on the CPU. 98 * 99 * LSSTOP: 100 * 101 * Stopped: the LWP has been stopped as a result of a job 102 * control signal, or as a result of the ptrace() interface. 103 * 104 * Stopped LWPs may run briefly within the kernel to handle 105 * signals that they receive, but will not return to user space 106 * until their process' state is changed away from stopped. 107 * 108 * Single LWPs within a process can not be set stopped 109 * selectively: all actions that can stop or continue LWPs 110 * occur at the process level. 111 * 112 * State transitions 113 * 114 * Note that the LSSTOP state may only be set when returning to 115 * user space in userret(), or when sleeping interruptably. The 116 * LSSUSPENDED state may only be set in userret(). Before setting 117 * those states, we try to ensure that the LWPs will release all 118 * locks that they hold, and at a minimum try to ensure that the 119 * LWP can be set runnable again by a signal. 120 * 121 * LWPs may transition states in the following ways: 122 * 123 * RUN -------> ONPROC ONPROC -----> RUN 124 * > STOPPED > SLEEP 125 * > SUSPENDED > STOPPED 126 * > SUSPENDED 127 * > ZOMB 128 * 129 * STOPPED ---> RUN SUSPENDED --> RUN 130 * > SLEEP > SLEEP 131 * 132 * SLEEP -----> ONPROC IDL --------> RUN 133 * > RUN > SUSPENDED 134 * > STOPPED > STOPPED 135 * > SUSPENDED 136 * 137 * Other state transitions are possible with kernel threads (eg 138 * ONPROC -> IDL), but only happen under tightly controlled 139 * circumstances the side effects are understood. 140 * 141 * Migration 142 * 143 * Migration of threads from one CPU to another could be performed 144 * internally by the scheduler via sched_takecpu() or sched_catchlwp() 145 * functions. The universal lwp_migrate() function should be used for 146 * any other cases. Subsystems in the kernel must be aware that CPU 147 * of LWP may change, while it is not locked. 148 * 149 * Locking 150 * 151 * The majority of fields in 'struct lwp' are covered by a single, 152 * general spin lock pointed to by lwp::l_mutex. The locks covering 153 * each field are documented in sys/lwp.h. 154 * 155 * State transitions must be made with the LWP's general lock held, 156 * and may cause the LWP's lock pointer to change. Manipulation of 157 * the general lock is not performed directly, but through calls to 158 * lwp_lock(), lwp_relock() and similar. 159 * 160 * States and their associated locks: 161 * 162 * LSONPROC, LSZOMB: 163 * 164 * Always covered by spc_lwplock, which protects running LWPs. 165 * This is a per-CPU lock. 166 * 167 * LSIDL, LSRUN: 168 * 169 * Always covered by spc_mutex, which protects the run queues. 170 * This is a per-CPU lock. 171 * 172 * LSSLEEP: 173 * 174 * Covered by a lock associated with the sleep queue that the 175 * LWP resides on. 176 * 177 * LSSTOP, LSSUSPENDED: 178 * 179 * If the LWP was previously sleeping (l_wchan != NULL), then 180 * l_mutex references the sleep queue lock. If the LWP was 181 * runnable or on the CPU when halted, or has been removed from 182 * the sleep queue since halted, then the lock is spc_lwplock. 183 * 184 * The lock order is as follows: 185 * 186 * spc::spc_lwplock -> 187 * sleeptab::st_mutex -> 188 * tschain_t::tc_mutex -> 189 * spc::spc_mutex 190 * 191 * Each process has an scheduler state lock (proc::p_lock), and a 192 * number of counters on LWPs and their states: p_nzlwps, p_nrlwps, and 193 * so on. When an LWP is to be entered into or removed from one of the 194 * following states, p_lock must be held and the process wide counters 195 * adjusted: 196 * 197 * LSIDL, LSZOMB, LSSTOP, LSSUSPENDED 198 * 199 * Note that an LWP is considered running or likely to run soon if in 200 * one of the following states. This affects the value of p_nrlwps: 201 * 202 * LSRUN, LSONPROC, LSSLEEP 203 * 204 * p_lock does not need to be held when transitioning among these 205 * three states. 206 */ 207 208 #include <sys/cdefs.h> 209 __KERNEL_RCSID(0, "$NetBSD: kern_lwp.c,v 1.126 2008/10/28 22:11:36 wrstuden Exp $"); 210 211 #include "opt_ddb.h" 212 #include "opt_lockdebug.h" 213 #include "opt_sa.h" 214 215 #define _LWP_API_PRIVATE 216 217 #include <sys/param.h> 218 #include <sys/systm.h> 219 #include <sys/cpu.h> 220 #include <sys/pool.h> 221 #include <sys/proc.h> 222 #include <sys/sa.h> 223 #include <sys/savar.h> 224 #include <sys/syscallargs.h> 225 #include <sys/syscall_stats.h> 226 #include <sys/kauth.h> 227 #include <sys/sleepq.h> 228 #include <sys/user.h> 229 #include <sys/lockdebug.h> 230 #include <sys/kmem.h> 231 #include <sys/pset.h> 232 #include <sys/intr.h> 233 #include <sys/lwpctl.h> 234 #include <sys/atomic.h> 235 236 #include <uvm/uvm_extern.h> 237 #include <uvm/uvm_object.h> 238 239 struct lwplist alllwp = LIST_HEAD_INITIALIZER(alllwp); 240 241 POOL_INIT(lwp_uc_pool, sizeof(ucontext_t), 0, 0, 0, "lwpucpl", 242 &pool_allocator_nointr, IPL_NONE); 243 244 static pool_cache_t lwp_cache; 245 static specificdata_domain_t lwp_specificdata_domain; 246 247 void 248 lwpinit(void) 249 { 250 251 lwp_specificdata_domain = specificdata_domain_create(); 252 KASSERT(lwp_specificdata_domain != NULL); 253 lwp_sys_init(); 254 lwp_cache = pool_cache_init(sizeof(lwp_t), MIN_LWP_ALIGNMENT, 0, 0, 255 "lwppl", NULL, IPL_NONE, NULL, NULL, NULL); 256 } 257 258 /* 259 * Set an suspended. 260 * 261 * Must be called with p_lock held, and the LWP locked. Will unlock the 262 * LWP before return. 263 */ 264 int 265 lwp_suspend(struct lwp *curl, struct lwp *t) 266 { 267 int error; 268 269 KASSERT(mutex_owned(t->l_proc->p_lock)); 270 KASSERT(lwp_locked(t, NULL)); 271 272 KASSERT(curl != t || curl->l_stat == LSONPROC); 273 274 /* 275 * If the current LWP has been told to exit, we must not suspend anyone 276 * else or deadlock could occur. We won't return to userspace. 277 */ 278 if ((curl->l_flag & (LW_WEXIT | LW_WCORE)) != 0) { 279 lwp_unlock(t); 280 return (EDEADLK); 281 } 282 283 error = 0; 284 285 switch (t->l_stat) { 286 case LSRUN: 287 case LSONPROC: 288 t->l_flag |= LW_WSUSPEND; 289 lwp_need_userret(t); 290 lwp_unlock(t); 291 break; 292 293 case LSSLEEP: 294 t->l_flag |= LW_WSUSPEND; 295 296 /* 297 * Kick the LWP and try to get it to the kernel boundary 298 * so that it will release any locks that it holds. 299 * setrunnable() will release the lock. 300 */ 301 if ((t->l_flag & LW_SINTR) != 0) 302 setrunnable(t); 303 else 304 lwp_unlock(t); 305 break; 306 307 case LSSUSPENDED: 308 lwp_unlock(t); 309 break; 310 311 case LSSTOP: 312 t->l_flag |= LW_WSUSPEND; 313 setrunnable(t); 314 break; 315 316 case LSIDL: 317 case LSZOMB: 318 error = EINTR; /* It's what Solaris does..... */ 319 lwp_unlock(t); 320 break; 321 } 322 323 return (error); 324 } 325 326 /* 327 * Restart a suspended LWP. 328 * 329 * Must be called with p_lock held, and the LWP locked. Will unlock the 330 * LWP before return. 331 */ 332 void 333 lwp_continue(struct lwp *l) 334 { 335 336 KASSERT(mutex_owned(l->l_proc->p_lock)); 337 KASSERT(lwp_locked(l, NULL)); 338 339 /* If rebooting or not suspended, then just bail out. */ 340 if ((l->l_flag & LW_WREBOOT) != 0) { 341 lwp_unlock(l); 342 return; 343 } 344 345 l->l_flag &= ~LW_WSUSPEND; 346 347 if (l->l_stat != LSSUSPENDED) { 348 lwp_unlock(l); 349 return; 350 } 351 352 /* setrunnable() will release the lock. */ 353 setrunnable(l); 354 } 355 356 /* 357 * Wait for an LWP within the current process to exit. If 'lid' is 358 * non-zero, we are waiting for a specific LWP. 359 * 360 * Must be called with p->p_lock held. 361 */ 362 int 363 lwp_wait1(struct lwp *l, lwpid_t lid, lwpid_t *departed, int flags) 364 { 365 struct proc *p = l->l_proc; 366 struct lwp *l2; 367 int nfound, error; 368 lwpid_t curlid; 369 bool exiting; 370 371 KASSERT(mutex_owned(p->p_lock)); 372 373 p->p_nlwpwait++; 374 l->l_waitingfor = lid; 375 curlid = l->l_lid; 376 exiting = ((flags & LWPWAIT_EXITCONTROL) != 0); 377 378 for (;;) { 379 /* 380 * Avoid a race between exit1() and sigexit(): if the 381 * process is dumping core, then we need to bail out: call 382 * into lwp_userret() where we will be suspended until the 383 * deed is done. 384 */ 385 if ((p->p_sflag & PS_WCORE) != 0) { 386 mutex_exit(p->p_lock); 387 lwp_userret(l); 388 #ifdef DIAGNOSTIC 389 panic("lwp_wait1"); 390 #endif 391 /* NOTREACHED */ 392 } 393 394 /* 395 * First off, drain any detached LWP that is waiting to be 396 * reaped. 397 */ 398 while ((l2 = p->p_zomblwp) != NULL) { 399 p->p_zomblwp = NULL; 400 lwp_free(l2, false, false);/* releases proc mutex */ 401 mutex_enter(p->p_lock); 402 } 403 404 /* 405 * Now look for an LWP to collect. If the whole process is 406 * exiting, count detached LWPs as eligible to be collected, 407 * but don't drain them here. 408 */ 409 nfound = 0; 410 error = 0; 411 LIST_FOREACH(l2, &p->p_lwps, l_sibling) { 412 /* 413 * If a specific wait and the target is waiting on 414 * us, then avoid deadlock. This also traps LWPs 415 * that try to wait on themselves. 416 * 417 * Note that this does not handle more complicated 418 * cycles, like: t1 -> t2 -> t3 -> t1. The process 419 * can still be killed so it is not a major problem. 420 */ 421 if (l2->l_lid == lid && l2->l_waitingfor == curlid) { 422 error = EDEADLK; 423 break; 424 } 425 if (l2 == l) 426 continue; 427 if ((l2->l_prflag & LPR_DETACHED) != 0) { 428 nfound += exiting; 429 continue; 430 } 431 if (lid != 0) { 432 if (l2->l_lid != lid) 433 continue; 434 /* 435 * Mark this LWP as the first waiter, if there 436 * is no other. 437 */ 438 if (l2->l_waiter == 0) 439 l2->l_waiter = curlid; 440 } else if (l2->l_waiter != 0) { 441 /* 442 * It already has a waiter - so don't 443 * collect it. If the waiter doesn't 444 * grab it we'll get another chance 445 * later. 446 */ 447 nfound++; 448 continue; 449 } 450 nfound++; 451 452 /* No need to lock the LWP in order to see LSZOMB. */ 453 if (l2->l_stat != LSZOMB) 454 continue; 455 456 /* 457 * We're no longer waiting. Reset the "first waiter" 458 * pointer on the target, in case it was us. 459 */ 460 l->l_waitingfor = 0; 461 l2->l_waiter = 0; 462 p->p_nlwpwait--; 463 if (departed) 464 *departed = l2->l_lid; 465 sched_lwp_collect(l2); 466 467 /* lwp_free() releases the proc lock. */ 468 lwp_free(l2, false, false); 469 mutex_enter(p->p_lock); 470 return 0; 471 } 472 473 if (error != 0) 474 break; 475 if (nfound == 0) { 476 error = ESRCH; 477 break; 478 } 479 480 /* 481 * The kernel is careful to ensure that it can not deadlock 482 * when exiting - just keep waiting. 483 */ 484 if (exiting) { 485 KASSERT(p->p_nlwps > 1); 486 cv_wait(&p->p_lwpcv, p->p_lock); 487 continue; 488 } 489 490 /* 491 * If all other LWPs are waiting for exits or suspends 492 * and the supply of zombies and potential zombies is 493 * exhausted, then we are about to deadlock. 494 * 495 * If the process is exiting (and this LWP is not the one 496 * that is coordinating the exit) then bail out now. 497 */ 498 if ((p->p_sflag & PS_WEXIT) != 0 || 499 p->p_nrlwps + p->p_nzlwps - p->p_ndlwps <= p->p_nlwpwait) { 500 error = EDEADLK; 501 break; 502 } 503 504 /* 505 * Sit around and wait for something to happen. We'll be 506 * awoken if any of the conditions examined change: if an 507 * LWP exits, is collected, or is detached. 508 */ 509 if ((error = cv_wait_sig(&p->p_lwpcv, p->p_lock)) != 0) 510 break; 511 } 512 513 /* 514 * We didn't find any LWPs to collect, we may have received a 515 * signal, or some other condition has caused us to bail out. 516 * 517 * If waiting on a specific LWP, clear the waiters marker: some 518 * other LWP may want it. Then, kick all the remaining waiters 519 * so that they can re-check for zombies and for deadlock. 520 */ 521 if (lid != 0) { 522 LIST_FOREACH(l2, &p->p_lwps, l_sibling) { 523 if (l2->l_lid == lid) { 524 if (l2->l_waiter == curlid) 525 l2->l_waiter = 0; 526 break; 527 } 528 } 529 } 530 p->p_nlwpwait--; 531 l->l_waitingfor = 0; 532 cv_broadcast(&p->p_lwpcv); 533 534 return error; 535 } 536 537 /* 538 * Create a new LWP within process 'p2', using LWP 'l1' as a template. 539 * The new LWP is created in state LSIDL and must be set running, 540 * suspended, or stopped by the caller. 541 */ 542 int 543 lwp_create(lwp_t *l1, proc_t *p2, vaddr_t uaddr, bool inmem, int flags, 544 void *stack, size_t stacksize, void (*func)(void *), void *arg, 545 lwp_t **rnewlwpp, int sclass) 546 { 547 struct lwp *l2, *isfree; 548 turnstile_t *ts; 549 550 KASSERT(l1 == curlwp || l1->l_proc == &proc0); 551 552 /* 553 * First off, reap any detached LWP waiting to be collected. 554 * We can re-use its LWP structure and turnstile. 555 */ 556 isfree = NULL; 557 if (p2->p_zomblwp != NULL) { 558 mutex_enter(p2->p_lock); 559 if ((isfree = p2->p_zomblwp) != NULL) { 560 p2->p_zomblwp = NULL; 561 lwp_free(isfree, true, false);/* releases proc mutex */ 562 } else 563 mutex_exit(p2->p_lock); 564 } 565 if (isfree == NULL) { 566 l2 = pool_cache_get(lwp_cache, PR_WAITOK); 567 memset(l2, 0, sizeof(*l2)); 568 l2->l_ts = pool_cache_get(turnstile_cache, PR_WAITOK); 569 SLIST_INIT(&l2->l_pi_lenders); 570 } else { 571 l2 = isfree; 572 ts = l2->l_ts; 573 KASSERT(l2->l_inheritedprio == -1); 574 KASSERT(SLIST_EMPTY(&l2->l_pi_lenders)); 575 memset(l2, 0, sizeof(*l2)); 576 l2->l_ts = ts; 577 } 578 579 l2->l_stat = LSIDL; 580 l2->l_proc = p2; 581 l2->l_refcnt = 1; 582 l2->l_class = sclass; 583 584 /* 585 * If vfork(), we want the LWP to run fast and on the same CPU 586 * as its parent, so that it can reuse the VM context and cache 587 * footprint on the local CPU. 588 */ 589 l2->l_kpriority = ((flags & LWP_VFORK) ? true : false); 590 l2->l_kpribase = PRI_KERNEL; 591 l2->l_priority = l1->l_priority; 592 l2->l_inheritedprio = -1; 593 l2->l_flag = inmem ? LW_INMEM : 0; 594 l2->l_pflag = LP_MPSAFE; 595 l2->l_fd = p2->p_fd; 596 TAILQ_INIT(&l2->l_ld_locks); 597 598 if (p2->p_flag & PK_SYSTEM) { 599 /* Mark it as a system LWP and not a candidate for swapping */ 600 l2->l_flag |= LW_SYSTEM; 601 } 602 603 kpreempt_disable(); 604 l2->l_mutex = l1->l_cpu->ci_schedstate.spc_mutex; 605 l2->l_cpu = l1->l_cpu; 606 kpreempt_enable(); 607 608 lwp_initspecific(l2); 609 sched_lwp_fork(l1, l2); 610 lwp_update_creds(l2); 611 callout_init(&l2->l_timeout_ch, CALLOUT_MPSAFE); 612 callout_setfunc(&l2->l_timeout_ch, sleepq_timeout, l2); 613 mutex_init(&l2->l_swaplock, MUTEX_DEFAULT, IPL_NONE); 614 cv_init(&l2->l_sigcv, "sigwait"); 615 l2->l_syncobj = &sched_syncobj; 616 617 if (rnewlwpp != NULL) 618 *rnewlwpp = l2; 619 620 l2->l_addr = UAREA_TO_USER(uaddr); 621 uvm_lwp_fork(l1, l2, stack, stacksize, func, 622 (arg != NULL) ? arg : l2); 623 624 mutex_enter(p2->p_lock); 625 626 if ((flags & LWP_DETACHED) != 0) { 627 l2->l_prflag = LPR_DETACHED; 628 p2->p_ndlwps++; 629 } else 630 l2->l_prflag = 0; 631 632 l2->l_sigmask = l1->l_sigmask; 633 CIRCLEQ_INIT(&l2->l_sigpend.sp_info); 634 sigemptyset(&l2->l_sigpend.sp_set); 635 636 p2->p_nlwpid++; 637 if (p2->p_nlwpid == 0) 638 p2->p_nlwpid++; 639 l2->l_lid = p2->p_nlwpid; 640 LIST_INSERT_HEAD(&p2->p_lwps, l2, l_sibling); 641 p2->p_nlwps++; 642 643 mutex_exit(p2->p_lock); 644 645 mutex_enter(proc_lock); 646 LIST_INSERT_HEAD(&alllwp, l2, l_list); 647 mutex_exit(proc_lock); 648 649 if ((p2->p_flag & PK_SYSTEM) == 0) { 650 /* Locking is needed, since LWP is in the list of all LWPs */ 651 lwp_lock(l2); 652 /* Inherit a processor-set */ 653 l2->l_psid = l1->l_psid; 654 /* Inherit an affinity */ 655 if (l1->l_flag & LW_AFFINITY) { 656 proc_t *p = l1->l_proc; 657 658 mutex_enter(p->p_lock); 659 if (l1->l_flag & LW_AFFINITY) { 660 kcpuset_use(l1->l_affinity); 661 l2->l_affinity = l1->l_affinity; 662 l2->l_flag |= LW_AFFINITY; 663 } 664 mutex_exit(p->p_lock); 665 } 666 /* Look for a CPU to start */ 667 l2->l_cpu = sched_takecpu(l2); 668 lwp_unlock_to(l2, l2->l_cpu->ci_schedstate.spc_mutex); 669 } 670 671 SYSCALL_TIME_LWP_INIT(l2); 672 673 if (p2->p_emul->e_lwp_fork) 674 (*p2->p_emul->e_lwp_fork)(l1, l2); 675 676 return (0); 677 } 678 679 /* 680 * Called by MD code when a new LWP begins execution. Must be called 681 * with the previous LWP locked (so at splsched), or if there is no 682 * previous LWP, at splsched. 683 */ 684 void 685 lwp_startup(struct lwp *prev, struct lwp *new) 686 { 687 688 KASSERT(kpreempt_disabled()); 689 if (prev != NULL) { 690 /* 691 * Normalize the count of the spin-mutexes, it was 692 * increased in mi_switch(). Unmark the state of 693 * context switch - it is finished for previous LWP. 694 */ 695 curcpu()->ci_mtx_count++; 696 membar_exit(); 697 prev->l_ctxswtch = 0; 698 } 699 KPREEMPT_DISABLE(new); 700 spl0(); 701 pmap_activate(new); 702 LOCKDEBUG_BARRIER(NULL, 0); 703 KPREEMPT_ENABLE(new); 704 if ((new->l_pflag & LP_MPSAFE) == 0) { 705 KERNEL_LOCK(1, new); 706 } 707 } 708 709 /* 710 * Exit an LWP. 711 */ 712 void 713 lwp_exit(struct lwp *l) 714 { 715 struct proc *p = l->l_proc; 716 struct lwp *l2; 717 bool current; 718 719 current = (l == curlwp); 720 721 KASSERT(current || (l->l_stat == LSIDL && l->l_target_cpu == NULL)); 722 723 /* 724 * Verify that we hold no locks other than the kernel lock. 725 */ 726 LOCKDEBUG_BARRIER(&kernel_lock, 0); 727 728 /* 729 * If we are the last live LWP in a process, we need to exit the 730 * entire process. We do so with an exit status of zero, because 731 * it's a "controlled" exit, and because that's what Solaris does. 732 * 733 * We are not quite a zombie yet, but for accounting purposes we 734 * must increment the count of zombies here. 735 * 736 * Note: the last LWP's specificdata will be deleted here. 737 */ 738 mutex_enter(p->p_lock); 739 if (p->p_nlwps - p->p_nzlwps == 1) { 740 KASSERT(current == true); 741 /* XXXSMP kernel_lock not held */ 742 exit1(l, 0); 743 /* NOTREACHED */ 744 } 745 p->p_nzlwps++; 746 mutex_exit(p->p_lock); 747 748 if (p->p_emul->e_lwp_exit) 749 (*p->p_emul->e_lwp_exit)(l); 750 751 /* Delete the specificdata while it's still safe to sleep. */ 752 specificdata_fini(lwp_specificdata_domain, &l->l_specdataref); 753 754 /* 755 * Release our cached credentials. 756 */ 757 kauth_cred_free(l->l_cred); 758 callout_destroy(&l->l_timeout_ch); 759 760 /* 761 * While we can still block, mark the LWP as unswappable to 762 * prevent conflicts with the with the swapper. 763 */ 764 if (current) 765 uvm_lwp_hold(l); 766 767 /* 768 * Remove the LWP from the global list. 769 */ 770 mutex_enter(proc_lock); 771 LIST_REMOVE(l, l_list); 772 mutex_exit(proc_lock); 773 774 /* 775 * Get rid of all references to the LWP that others (e.g. procfs) 776 * may have, and mark the LWP as a zombie. If the LWP is detached, 777 * mark it waiting for collection in the proc structure. Note that 778 * before we can do that, we need to free any other dead, deatched 779 * LWP waiting to meet its maker. 780 */ 781 mutex_enter(p->p_lock); 782 lwp_drainrefs(l); 783 784 if ((l->l_prflag & LPR_DETACHED) != 0) { 785 while ((l2 = p->p_zomblwp) != NULL) { 786 p->p_zomblwp = NULL; 787 lwp_free(l2, false, false);/* releases proc mutex */ 788 mutex_enter(p->p_lock); 789 l->l_refcnt++; 790 lwp_drainrefs(l); 791 } 792 p->p_zomblwp = l; 793 } 794 795 /* 796 * If we find a pending signal for the process and we have been 797 * asked to check for signals, then we loose: arrange to have 798 * all other LWPs in the process check for signals. 799 */ 800 if ((l->l_flag & LW_PENDSIG) != 0 && 801 firstsig(&p->p_sigpend.sp_set) != 0) { 802 LIST_FOREACH(l2, &p->p_lwps, l_sibling) { 803 lwp_lock(l2); 804 l2->l_flag |= LW_PENDSIG; 805 lwp_unlock(l2); 806 } 807 } 808 809 lwp_lock(l); 810 l->l_stat = LSZOMB; 811 if (l->l_name != NULL) 812 strcpy(l->l_name, "(zombie)"); 813 if (l->l_flag & LW_AFFINITY) 814 l->l_flag &= ~LW_AFFINITY; 815 lwp_unlock(l); 816 p->p_nrlwps--; 817 cv_broadcast(&p->p_lwpcv); 818 if (l->l_lwpctl != NULL) 819 l->l_lwpctl->lc_curcpu = LWPCTL_CPU_EXITED; 820 mutex_exit(p->p_lock); 821 822 /* Safe without lock since LWP is in zombie state */ 823 if (l->l_affinity) { 824 kcpuset_unuse(l->l_affinity, NULL); 825 l->l_affinity = NULL; 826 } 827 828 /* 829 * We can no longer block. At this point, lwp_free() may already 830 * be gunning for us. On a multi-CPU system, we may be off p_lwps. 831 * 832 * Free MD LWP resources. 833 */ 834 #ifndef __NO_CPU_LWP_FREE 835 cpu_lwp_free(l, 0); 836 #endif 837 838 if (current) { 839 pmap_deactivate(l); 840 841 /* 842 * Release the kernel lock, and switch away into 843 * oblivion. 844 */ 845 #ifdef notyet 846 /* XXXSMP hold in lwp_userret() */ 847 KERNEL_UNLOCK_LAST(l); 848 #else 849 KERNEL_UNLOCK_ALL(l, NULL); 850 #endif 851 lwp_exit_switchaway(l); 852 } 853 } 854 855 /* 856 * Free a dead LWP's remaining resources. 857 * 858 * XXXLWP limits. 859 */ 860 void 861 lwp_free(struct lwp *l, bool recycle, bool last) 862 { 863 struct proc *p = l->l_proc; 864 struct rusage *ru; 865 ksiginfoq_t kq; 866 867 KASSERT(l != curlwp); 868 869 /* 870 * If this was not the last LWP in the process, then adjust 871 * counters and unlock. 872 */ 873 if (!last) { 874 /* 875 * Add the LWP's run time to the process' base value. 876 * This needs to co-incide with coming off p_lwps. 877 */ 878 bintime_add(&p->p_rtime, &l->l_rtime); 879 p->p_pctcpu += l->l_pctcpu; 880 ru = &p->p_stats->p_ru; 881 ruadd(ru, &l->l_ru); 882 ru->ru_nvcsw += (l->l_ncsw - l->l_nivcsw); 883 ru->ru_nivcsw += l->l_nivcsw; 884 LIST_REMOVE(l, l_sibling); 885 p->p_nlwps--; 886 p->p_nzlwps--; 887 if ((l->l_prflag & LPR_DETACHED) != 0) 888 p->p_ndlwps--; 889 890 /* 891 * Have any LWPs sleeping in lwp_wait() recheck for 892 * deadlock. 893 */ 894 cv_broadcast(&p->p_lwpcv); 895 mutex_exit(p->p_lock); 896 } 897 898 #ifdef MULTIPROCESSOR 899 /* 900 * In the unlikely event that the LWP is still on the CPU, 901 * then spin until it has switched away. We need to release 902 * all locks to avoid deadlock against interrupt handlers on 903 * the target CPU. 904 */ 905 if ((l->l_pflag & LP_RUNNING) != 0 || l->l_cpu->ci_curlwp == l) { 906 int count; 907 (void)count; /* XXXgcc */ 908 KERNEL_UNLOCK_ALL(curlwp, &count); 909 while ((l->l_pflag & LP_RUNNING) != 0 || 910 l->l_cpu->ci_curlwp == l) 911 SPINLOCK_BACKOFF_HOOK; 912 KERNEL_LOCK(count, curlwp); 913 } 914 #endif 915 916 /* 917 * Destroy the LWP's remaining signal information. 918 */ 919 ksiginfo_queue_init(&kq); 920 sigclear(&l->l_sigpend, NULL, &kq); 921 ksiginfo_queue_drain(&kq); 922 cv_destroy(&l->l_sigcv); 923 mutex_destroy(&l->l_swaplock); 924 925 /* 926 * Free the LWP's turnstile and the LWP structure itself unless the 927 * caller wants to recycle them. Also, free the scheduler specific 928 * data. 929 * 930 * We can't return turnstile0 to the pool (it didn't come from it), 931 * so if it comes up just drop it quietly and move on. 932 * 933 * We don't recycle the VM resources at this time. 934 */ 935 if (l->l_lwpctl != NULL) 936 lwp_ctl_free(l); 937 938 if (!recycle && l->l_ts != &turnstile0) 939 pool_cache_put(turnstile_cache, l->l_ts); 940 if (l->l_name != NULL) 941 kmem_free(l->l_name, MAXCOMLEN); 942 #ifndef __NO_CPU_LWP_FREE 943 cpu_lwp_free2(l); 944 #endif 945 KASSERT((l->l_flag & LW_INMEM) != 0); 946 uvm_lwp_exit(l); 947 KASSERT(SLIST_EMPTY(&l->l_pi_lenders)); 948 KASSERT(l->l_inheritedprio == -1); 949 if (!recycle) 950 pool_cache_put(lwp_cache, l); 951 } 952 953 /* 954 * Migrate the LWP to the another CPU. Unlocks the LWP. 955 */ 956 void 957 lwp_migrate(lwp_t *l, struct cpu_info *tci) 958 { 959 struct schedstate_percpu *tspc; 960 int lstat = l->l_stat; 961 962 KASSERT(lwp_locked(l, NULL)); 963 KASSERT(tci != NULL); 964 965 /* If LWP is still on the CPU, it must be handled like LSONPROC */ 966 if ((l->l_pflag & LP_RUNNING) != 0) { 967 lstat = LSONPROC; 968 } 969 970 /* 971 * The destination CPU could be changed while previous migration 972 * was not finished. 973 */ 974 if (l->l_target_cpu != NULL) { 975 l->l_target_cpu = tci; 976 lwp_unlock(l); 977 return; 978 } 979 980 /* Nothing to do if trying to migrate to the same CPU */ 981 if (l->l_cpu == tci) { 982 lwp_unlock(l); 983 return; 984 } 985 986 KASSERT(l->l_target_cpu == NULL); 987 tspc = &tci->ci_schedstate; 988 switch (lstat) { 989 case LSRUN: 990 if (l->l_flag & LW_INMEM) { 991 l->l_target_cpu = tci; 992 lwp_unlock(l); 993 return; 994 } 995 case LSIDL: 996 l->l_cpu = tci; 997 lwp_unlock_to(l, tspc->spc_mutex); 998 return; 999 case LSSLEEP: 1000 l->l_cpu = tci; 1001 break; 1002 case LSSTOP: 1003 case LSSUSPENDED: 1004 l->l_cpu = tci; 1005 if (l->l_wchan == NULL) { 1006 lwp_unlock_to(l, tspc->spc_lwplock); 1007 return; 1008 } 1009 break; 1010 case LSONPROC: 1011 l->l_target_cpu = tci; 1012 spc_lock(l->l_cpu); 1013 cpu_need_resched(l->l_cpu, RESCHED_KPREEMPT); 1014 spc_unlock(l->l_cpu); 1015 break; 1016 } 1017 lwp_unlock(l); 1018 } 1019 1020 /* 1021 * Find the LWP in the process. Arguments may be zero, in such case, 1022 * the calling process and first LWP in the list will be used. 1023 * On success - returns proc locked. 1024 */ 1025 struct lwp * 1026 lwp_find2(pid_t pid, lwpid_t lid) 1027 { 1028 proc_t *p; 1029 lwp_t *l; 1030 1031 /* Find the process */ 1032 p = (pid == 0) ? curlwp->l_proc : p_find(pid, PFIND_UNLOCK_FAIL); 1033 if (p == NULL) 1034 return NULL; 1035 mutex_enter(p->p_lock); 1036 if (pid != 0) { 1037 /* Case of p_find */ 1038 mutex_exit(proc_lock); 1039 } 1040 1041 /* Find the thread */ 1042 l = (lid == 0) ? LIST_FIRST(&p->p_lwps) : lwp_find(p, lid); 1043 if (l == NULL) { 1044 mutex_exit(p->p_lock); 1045 } 1046 1047 return l; 1048 } 1049 1050 /* 1051 * Look up a live LWP within the speicifed process, and return it locked. 1052 * 1053 * Must be called with p->p_lock held. 1054 */ 1055 struct lwp * 1056 lwp_find(struct proc *p, int id) 1057 { 1058 struct lwp *l; 1059 1060 KASSERT(mutex_owned(p->p_lock)); 1061 1062 LIST_FOREACH(l, &p->p_lwps, l_sibling) { 1063 if (l->l_lid == id) 1064 break; 1065 } 1066 1067 /* 1068 * No need to lock - all of these conditions will 1069 * be visible with the process level mutex held. 1070 */ 1071 if (l != NULL && (l->l_stat == LSIDL || l->l_stat == LSZOMB)) 1072 l = NULL; 1073 1074 return l; 1075 } 1076 1077 /* 1078 * Update an LWP's cached credentials to mirror the process' master copy. 1079 * 1080 * This happens early in the syscall path, on user trap, and on LWP 1081 * creation. A long-running LWP can also voluntarily choose to update 1082 * it's credentials by calling this routine. This may be called from 1083 * LWP_CACHE_CREDS(), which checks l->l_cred != p->p_cred beforehand. 1084 */ 1085 void 1086 lwp_update_creds(struct lwp *l) 1087 { 1088 kauth_cred_t oc; 1089 struct proc *p; 1090 1091 p = l->l_proc; 1092 oc = l->l_cred; 1093 1094 mutex_enter(p->p_lock); 1095 kauth_cred_hold(p->p_cred); 1096 l->l_cred = p->p_cred; 1097 l->l_prflag &= ~LPR_CRMOD; 1098 mutex_exit(p->p_lock); 1099 if (oc != NULL) 1100 kauth_cred_free(oc); 1101 } 1102 1103 /* 1104 * Verify that an LWP is locked, and optionally verify that the lock matches 1105 * one we specify. 1106 */ 1107 int 1108 lwp_locked(struct lwp *l, kmutex_t *mtx) 1109 { 1110 kmutex_t *cur = l->l_mutex; 1111 1112 return mutex_owned(cur) && (mtx == cur || mtx == NULL); 1113 } 1114 1115 /* 1116 * Lock an LWP. 1117 */ 1118 kmutex_t * 1119 lwp_lock_retry(struct lwp *l, kmutex_t *old) 1120 { 1121 1122 /* 1123 * XXXgcc ignoring kmutex_t * volatile on i386 1124 * 1125 * gcc version 4.1.2 20061021 prerelease (NetBSD nb1 20061021) 1126 */ 1127 #if 1 1128 while (l->l_mutex != old) { 1129 #else 1130 for (;;) { 1131 #endif 1132 mutex_spin_exit(old); 1133 old = l->l_mutex; 1134 mutex_spin_enter(old); 1135 1136 /* 1137 * mutex_enter() will have posted a read barrier. Re-test 1138 * l->l_mutex. If it has changed, we need to try again. 1139 */ 1140 #if 1 1141 } 1142 #else 1143 } while (__predict_false(l->l_mutex != old)); 1144 #endif 1145 1146 return old; 1147 } 1148 1149 /* 1150 * Lend a new mutex to an LWP. The old mutex must be held. 1151 */ 1152 void 1153 lwp_setlock(struct lwp *l, kmutex_t *new) 1154 { 1155 1156 KASSERT(mutex_owned(l->l_mutex)); 1157 1158 membar_exit(); 1159 l->l_mutex = new; 1160 } 1161 1162 /* 1163 * Lend a new mutex to an LWP, and release the old mutex. The old mutex 1164 * must be held. 1165 */ 1166 void 1167 lwp_unlock_to(struct lwp *l, kmutex_t *new) 1168 { 1169 kmutex_t *old; 1170 1171 KASSERT(mutex_owned(l->l_mutex)); 1172 1173 old = l->l_mutex; 1174 membar_exit(); 1175 l->l_mutex = new; 1176 mutex_spin_exit(old); 1177 } 1178 1179 /* 1180 * Acquire a new mutex, and donate it to an LWP. The LWP must already be 1181 * locked. 1182 */ 1183 void 1184 lwp_relock(struct lwp *l, kmutex_t *new) 1185 { 1186 kmutex_t *old; 1187 1188 KASSERT(mutex_owned(l->l_mutex)); 1189 1190 old = l->l_mutex; 1191 if (old != new) { 1192 mutex_spin_enter(new); 1193 l->l_mutex = new; 1194 mutex_spin_exit(old); 1195 } 1196 } 1197 1198 int 1199 lwp_trylock(struct lwp *l) 1200 { 1201 kmutex_t *old; 1202 1203 for (;;) { 1204 if (!mutex_tryenter(old = l->l_mutex)) 1205 return 0; 1206 if (__predict_true(l->l_mutex == old)) 1207 return 1; 1208 mutex_spin_exit(old); 1209 } 1210 } 1211 1212 u_int 1213 lwp_unsleep(lwp_t *l, bool cleanup) 1214 { 1215 1216 KASSERT(mutex_owned(l->l_mutex)); 1217 1218 return (*l->l_syncobj->sobj_unsleep)(l, cleanup); 1219 } 1220 1221 1222 /* 1223 * Handle exceptions for mi_userret(). Called if a member of LW_USERRET is 1224 * set. 1225 */ 1226 void 1227 lwp_userret(struct lwp *l) 1228 { 1229 struct proc *p; 1230 void (*hook)(void); 1231 int sig; 1232 1233 KASSERT(l == curlwp); 1234 KASSERT(l->l_stat == LSONPROC); 1235 p = l->l_proc; 1236 1237 #ifndef __HAVE_FAST_SOFTINTS 1238 /* Run pending soft interrupts. */ 1239 if (l->l_cpu->ci_data.cpu_softints != 0) 1240 softint_overlay(); 1241 #endif 1242 1243 #ifdef KERN_SA 1244 /* Generate UNBLOCKED upcall if needed */ 1245 if (l->l_flag & LW_SA_BLOCKING) { 1246 sa_unblock_userret(l); 1247 /* NOTREACHED */ 1248 } 1249 #endif 1250 1251 /* 1252 * It should be safe to do this read unlocked on a multiprocessor 1253 * system.. 1254 * 1255 * LW_SA_UPCALL will be handled after the while() loop, so don't 1256 * consider it now. 1257 */ 1258 while ((l->l_flag & (LW_USERRET & ~(LW_SA_UPCALL))) != 0) { 1259 /* 1260 * Process pending signals first, unless the process 1261 * is dumping core or exiting, where we will instead 1262 * enter the LW_WSUSPEND case below. 1263 */ 1264 if ((l->l_flag & (LW_PENDSIG | LW_WCORE | LW_WEXIT)) == 1265 LW_PENDSIG) { 1266 mutex_enter(p->p_lock); 1267 while ((sig = issignal(l)) != 0) 1268 postsig(sig); 1269 mutex_exit(p->p_lock); 1270 } 1271 1272 /* 1273 * Core-dump or suspend pending. 1274 * 1275 * In case of core dump, suspend ourselves, so that the 1276 * kernel stack and therefore the userland registers saved 1277 * in the trapframe are around for coredump() to write them 1278 * out. We issue a wakeup on p->p_lwpcv so that sigexit() 1279 * will write the core file out once all other LWPs are 1280 * suspended. 1281 */ 1282 if ((l->l_flag & LW_WSUSPEND) != 0) { 1283 mutex_enter(p->p_lock); 1284 p->p_nrlwps--; 1285 cv_broadcast(&p->p_lwpcv); 1286 lwp_lock(l); 1287 l->l_stat = LSSUSPENDED; 1288 lwp_unlock(l); 1289 mutex_exit(p->p_lock); 1290 lwp_lock(l); 1291 mi_switch(l); 1292 } 1293 1294 /* Process is exiting. */ 1295 if ((l->l_flag & LW_WEXIT) != 0) { 1296 lwp_exit(l); 1297 KASSERT(0); 1298 /* NOTREACHED */ 1299 } 1300 1301 /* Call userret hook; used by Linux emulation. */ 1302 if ((l->l_flag & LW_WUSERRET) != 0) { 1303 lwp_lock(l); 1304 l->l_flag &= ~LW_WUSERRET; 1305 lwp_unlock(l); 1306 hook = p->p_userret; 1307 p->p_userret = NULL; 1308 (*hook)(); 1309 } 1310 } 1311 1312 #ifdef KERN_SA 1313 /* 1314 * Timer events are handled specially. We only try once to deliver 1315 * pending timer upcalls; if if fails, we can try again on the next 1316 * loop around. If we need to re-enter lwp_userret(), MD code will 1317 * bounce us back here through the trap path after we return. 1318 */ 1319 if (p->p_timerpend) 1320 timerupcall(l); 1321 if (l->l_flag & LW_SA_UPCALL) 1322 sa_upcall_userret(l); 1323 #endif /* KERN_SA */ 1324 } 1325 1326 /* 1327 * Force an LWP to enter the kernel, to take a trip through lwp_userret(). 1328 */ 1329 void 1330 lwp_need_userret(struct lwp *l) 1331 { 1332 KASSERT(lwp_locked(l, NULL)); 1333 1334 /* 1335 * Since the tests in lwp_userret() are done unlocked, make sure 1336 * that the condition will be seen before forcing the LWP to enter 1337 * kernel mode. 1338 */ 1339 membar_producer(); 1340 cpu_signotify(l); 1341 } 1342 1343 /* 1344 * Add one reference to an LWP. This will prevent the LWP from 1345 * exiting, thus keep the lwp structure and PCB around to inspect. 1346 */ 1347 void 1348 lwp_addref(struct lwp *l) 1349 { 1350 1351 KASSERT(mutex_owned(l->l_proc->p_lock)); 1352 KASSERT(l->l_stat != LSZOMB); 1353 KASSERT(l->l_refcnt != 0); 1354 1355 l->l_refcnt++; 1356 } 1357 1358 /* 1359 * Remove one reference to an LWP. If this is the last reference, 1360 * then we must finalize the LWP's death. 1361 */ 1362 void 1363 lwp_delref(struct lwp *l) 1364 { 1365 struct proc *p = l->l_proc; 1366 1367 mutex_enter(p->p_lock); 1368 KASSERT(l->l_stat != LSZOMB); 1369 KASSERT(l->l_refcnt > 0); 1370 if (--l->l_refcnt == 0) 1371 cv_broadcast(&p->p_lwpcv); 1372 mutex_exit(p->p_lock); 1373 } 1374 1375 /* 1376 * Drain all references to the current LWP. 1377 */ 1378 void 1379 lwp_drainrefs(struct lwp *l) 1380 { 1381 struct proc *p = l->l_proc; 1382 1383 KASSERT(mutex_owned(p->p_lock)); 1384 KASSERT(l->l_refcnt != 0); 1385 1386 l->l_refcnt--; 1387 while (l->l_refcnt != 0) 1388 cv_wait(&p->p_lwpcv, p->p_lock); 1389 } 1390 1391 /* 1392 * lwp_specific_key_create -- 1393 * Create a key for subsystem lwp-specific data. 1394 */ 1395 int 1396 lwp_specific_key_create(specificdata_key_t *keyp, specificdata_dtor_t dtor) 1397 { 1398 1399 return (specificdata_key_create(lwp_specificdata_domain, keyp, dtor)); 1400 } 1401 1402 /* 1403 * lwp_specific_key_delete -- 1404 * Delete a key for subsystem lwp-specific data. 1405 */ 1406 void 1407 lwp_specific_key_delete(specificdata_key_t key) 1408 { 1409 1410 specificdata_key_delete(lwp_specificdata_domain, key); 1411 } 1412 1413 /* 1414 * lwp_initspecific -- 1415 * Initialize an LWP's specificdata container. 1416 */ 1417 void 1418 lwp_initspecific(struct lwp *l) 1419 { 1420 int error; 1421 1422 error = specificdata_init(lwp_specificdata_domain, &l->l_specdataref); 1423 KASSERT(error == 0); 1424 } 1425 1426 /* 1427 * lwp_finispecific -- 1428 * Finalize an LWP's specificdata container. 1429 */ 1430 void 1431 lwp_finispecific(struct lwp *l) 1432 { 1433 1434 specificdata_fini(lwp_specificdata_domain, &l->l_specdataref); 1435 } 1436 1437 /* 1438 * lwp_getspecific -- 1439 * Return lwp-specific data corresponding to the specified key. 1440 * 1441 * Note: LWP specific data is NOT INTERLOCKED. An LWP should access 1442 * only its OWN SPECIFIC DATA. If it is necessary to access another 1443 * LWP's specifc data, care must be taken to ensure that doing so 1444 * would not cause internal data structure inconsistency (i.e. caller 1445 * can guarantee that the target LWP is not inside an lwp_getspecific() 1446 * or lwp_setspecific() call). 1447 */ 1448 void * 1449 lwp_getspecific(specificdata_key_t key) 1450 { 1451 1452 return (specificdata_getspecific_unlocked(lwp_specificdata_domain, 1453 &curlwp->l_specdataref, key)); 1454 } 1455 1456 void * 1457 _lwp_getspecific_by_lwp(struct lwp *l, specificdata_key_t key) 1458 { 1459 1460 return (specificdata_getspecific_unlocked(lwp_specificdata_domain, 1461 &l->l_specdataref, key)); 1462 } 1463 1464 /* 1465 * lwp_setspecific -- 1466 * Set lwp-specific data corresponding to the specified key. 1467 */ 1468 void 1469 lwp_setspecific(specificdata_key_t key, void *data) 1470 { 1471 1472 specificdata_setspecific(lwp_specificdata_domain, 1473 &curlwp->l_specdataref, key, data); 1474 } 1475 1476 /* 1477 * Allocate a new lwpctl structure for a user LWP. 1478 */ 1479 int 1480 lwp_ctl_alloc(vaddr_t *uaddr) 1481 { 1482 lcproc_t *lp; 1483 u_int bit, i, offset; 1484 struct uvm_object *uao; 1485 int error; 1486 lcpage_t *lcp; 1487 proc_t *p; 1488 lwp_t *l; 1489 1490 l = curlwp; 1491 p = l->l_proc; 1492 1493 if (l->l_lcpage != NULL) { 1494 lcp = l->l_lcpage; 1495 *uaddr = lcp->lcp_uaddr + (vaddr_t)l->l_lwpctl - lcp->lcp_kaddr; 1496 return (EINVAL); 1497 } 1498 1499 /* First time around, allocate header structure for the process. */ 1500 if ((lp = p->p_lwpctl) == NULL) { 1501 lp = kmem_alloc(sizeof(*lp), KM_SLEEP); 1502 mutex_init(&lp->lp_lock, MUTEX_DEFAULT, IPL_NONE); 1503 lp->lp_uao = NULL; 1504 TAILQ_INIT(&lp->lp_pages); 1505 mutex_enter(p->p_lock); 1506 if (p->p_lwpctl == NULL) { 1507 p->p_lwpctl = lp; 1508 mutex_exit(p->p_lock); 1509 } else { 1510 mutex_exit(p->p_lock); 1511 mutex_destroy(&lp->lp_lock); 1512 kmem_free(lp, sizeof(*lp)); 1513 lp = p->p_lwpctl; 1514 } 1515 } 1516 1517 /* 1518 * Set up an anonymous memory region to hold the shared pages. 1519 * Map them into the process' address space. The user vmspace 1520 * gets the first reference on the UAO. 1521 */ 1522 mutex_enter(&lp->lp_lock); 1523 if (lp->lp_uao == NULL) { 1524 lp->lp_uao = uao_create(LWPCTL_UAREA_SZ, 0); 1525 lp->lp_cur = 0; 1526 lp->lp_max = LWPCTL_UAREA_SZ; 1527 lp->lp_uva = p->p_emul->e_vm_default_addr(p, 1528 (vaddr_t)p->p_vmspace->vm_daddr, LWPCTL_UAREA_SZ); 1529 error = uvm_map(&p->p_vmspace->vm_map, &lp->lp_uva, 1530 LWPCTL_UAREA_SZ, lp->lp_uao, 0, 0, UVM_MAPFLAG(UVM_PROT_RW, 1531 UVM_PROT_RW, UVM_INH_NONE, UVM_ADV_NORMAL, 0)); 1532 if (error != 0) { 1533 uao_detach(lp->lp_uao); 1534 lp->lp_uao = NULL; 1535 mutex_exit(&lp->lp_lock); 1536 return error; 1537 } 1538 } 1539 1540 /* Get a free block and allocate for this LWP. */ 1541 TAILQ_FOREACH(lcp, &lp->lp_pages, lcp_chain) { 1542 if (lcp->lcp_nfree != 0) 1543 break; 1544 } 1545 if (lcp == NULL) { 1546 /* Nothing available - try to set up a free page. */ 1547 if (lp->lp_cur == lp->lp_max) { 1548 mutex_exit(&lp->lp_lock); 1549 return ENOMEM; 1550 } 1551 lcp = kmem_alloc(LWPCTL_LCPAGE_SZ, KM_SLEEP); 1552 if (lcp == NULL) { 1553 mutex_exit(&lp->lp_lock); 1554 return ENOMEM; 1555 } 1556 /* 1557 * Wire the next page down in kernel space. Since this 1558 * is a new mapping, we must add a reference. 1559 */ 1560 uao = lp->lp_uao; 1561 (*uao->pgops->pgo_reference)(uao); 1562 lcp->lcp_kaddr = vm_map_min(kernel_map); 1563 error = uvm_map(kernel_map, &lcp->lcp_kaddr, PAGE_SIZE, 1564 uao, lp->lp_cur, PAGE_SIZE, 1565 UVM_MAPFLAG(UVM_PROT_RW, UVM_PROT_RW, 1566 UVM_INH_NONE, UVM_ADV_RANDOM, 0)); 1567 if (error != 0) { 1568 mutex_exit(&lp->lp_lock); 1569 kmem_free(lcp, LWPCTL_LCPAGE_SZ); 1570 (*uao->pgops->pgo_detach)(uao); 1571 return error; 1572 } 1573 error = uvm_map_pageable(kernel_map, lcp->lcp_kaddr, 1574 lcp->lcp_kaddr + PAGE_SIZE, FALSE, 0); 1575 if (error != 0) { 1576 mutex_exit(&lp->lp_lock); 1577 uvm_unmap(kernel_map, lcp->lcp_kaddr, 1578 lcp->lcp_kaddr + PAGE_SIZE); 1579 kmem_free(lcp, LWPCTL_LCPAGE_SZ); 1580 return error; 1581 } 1582 /* Prepare the page descriptor and link into the list. */ 1583 lcp->lcp_uaddr = lp->lp_uva + lp->lp_cur; 1584 lp->lp_cur += PAGE_SIZE; 1585 lcp->lcp_nfree = LWPCTL_PER_PAGE; 1586 lcp->lcp_rotor = 0; 1587 memset(lcp->lcp_bitmap, 0xff, LWPCTL_BITMAP_SZ); 1588 TAILQ_INSERT_HEAD(&lp->lp_pages, lcp, lcp_chain); 1589 } 1590 for (i = lcp->lcp_rotor; lcp->lcp_bitmap[i] == 0;) { 1591 if (++i >= LWPCTL_BITMAP_ENTRIES) 1592 i = 0; 1593 } 1594 bit = ffs(lcp->lcp_bitmap[i]) - 1; 1595 lcp->lcp_bitmap[i] ^= (1 << bit); 1596 lcp->lcp_rotor = i; 1597 lcp->lcp_nfree--; 1598 l->l_lcpage = lcp; 1599 offset = (i << 5) + bit; 1600 l->l_lwpctl = (lwpctl_t *)lcp->lcp_kaddr + offset; 1601 *uaddr = lcp->lcp_uaddr + offset * sizeof(lwpctl_t); 1602 mutex_exit(&lp->lp_lock); 1603 1604 KPREEMPT_DISABLE(l); 1605 l->l_lwpctl->lc_curcpu = (int)curcpu()->ci_data.cpu_index; 1606 KPREEMPT_ENABLE(l); 1607 1608 return 0; 1609 } 1610 1611 /* 1612 * Free an lwpctl structure back to the per-process list. 1613 */ 1614 void 1615 lwp_ctl_free(lwp_t *l) 1616 { 1617 lcproc_t *lp; 1618 lcpage_t *lcp; 1619 u_int map, offset; 1620 1621 lp = l->l_proc->p_lwpctl; 1622 KASSERT(lp != NULL); 1623 1624 lcp = l->l_lcpage; 1625 offset = (u_int)((lwpctl_t *)l->l_lwpctl - (lwpctl_t *)lcp->lcp_kaddr); 1626 KASSERT(offset < LWPCTL_PER_PAGE); 1627 1628 mutex_enter(&lp->lp_lock); 1629 lcp->lcp_nfree++; 1630 map = offset >> 5; 1631 lcp->lcp_bitmap[map] |= (1 << (offset & 31)); 1632 if (lcp->lcp_bitmap[lcp->lcp_rotor] == 0) 1633 lcp->lcp_rotor = map; 1634 if (TAILQ_FIRST(&lp->lp_pages)->lcp_nfree == 0) { 1635 TAILQ_REMOVE(&lp->lp_pages, lcp, lcp_chain); 1636 TAILQ_INSERT_HEAD(&lp->lp_pages, lcp, lcp_chain); 1637 } 1638 mutex_exit(&lp->lp_lock); 1639 } 1640 1641 /* 1642 * Process is exiting; tear down lwpctl state. This can only be safely 1643 * called by the last LWP in the process. 1644 */ 1645 void 1646 lwp_ctl_exit(void) 1647 { 1648 lcpage_t *lcp, *next; 1649 lcproc_t *lp; 1650 proc_t *p; 1651 lwp_t *l; 1652 1653 l = curlwp; 1654 l->l_lwpctl = NULL; 1655 l->l_lcpage = NULL; 1656 p = l->l_proc; 1657 lp = p->p_lwpctl; 1658 1659 KASSERT(lp != NULL); 1660 KASSERT(p->p_nlwps == 1); 1661 1662 for (lcp = TAILQ_FIRST(&lp->lp_pages); lcp != NULL; lcp = next) { 1663 next = TAILQ_NEXT(lcp, lcp_chain); 1664 uvm_unmap(kernel_map, lcp->lcp_kaddr, 1665 lcp->lcp_kaddr + PAGE_SIZE); 1666 kmem_free(lcp, LWPCTL_LCPAGE_SZ); 1667 } 1668 1669 if (lp->lp_uao != NULL) { 1670 uvm_unmap(&p->p_vmspace->vm_map, lp->lp_uva, 1671 lp->lp_uva + LWPCTL_UAREA_SZ); 1672 } 1673 1674 mutex_destroy(&lp->lp_lock); 1675 kmem_free(lp, sizeof(*lp)); 1676 p->p_lwpctl = NULL; 1677 } 1678 1679 #if defined(DDB) 1680 void 1681 lwp_whatis(uintptr_t addr, void (*pr)(const char *, ...)) 1682 { 1683 lwp_t *l; 1684 1685 LIST_FOREACH(l, &alllwp, l_list) { 1686 uintptr_t stack = (uintptr_t)KSTACK_LOWEST_ADDR(l); 1687 1688 if (addr < stack || stack + KSTACK_SIZE <= addr) { 1689 continue; 1690 } 1691 (*pr)("%p is %p+%zu, LWP %p's stack\n", 1692 (void *)addr, (void *)stack, 1693 (size_t)(addr - stack), l); 1694 } 1695 } 1696 #endif /* defined(DDB) */ 1697