1 /* $NetBSD: kern_lwp.c,v 1.137 2009/12/17 01:25:10 rmind Exp $ */ 2 3 /*- 4 * Copyright (c) 2001, 2006, 2007, 2008, 2009 The NetBSD Foundation, Inc. 5 * All rights reserved. 6 * 7 * This code is derived from software contributed to The NetBSD Foundation 8 * by Nathan J. Williams, and Andrew Doran. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS 20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 29 * POSSIBILITY OF SUCH DAMAGE. 30 */ 31 32 /* 33 * Overview 34 * 35 * Lightweight processes (LWPs) are the basic unit or thread of 36 * execution within the kernel. The core state of an LWP is described 37 * by "struct lwp", also known as lwp_t. 38 * 39 * Each LWP is contained within a process (described by "struct proc"), 40 * Every process contains at least one LWP, but may contain more. The 41 * process describes attributes shared among all of its LWPs such as a 42 * private address space, global execution state (stopped, active, 43 * zombie, ...), signal disposition and so on. On a multiprocessor 44 * machine, multiple LWPs be executing concurrently in the kernel. 45 * 46 * Execution states 47 * 48 * At any given time, an LWP has overall state that is described by 49 * lwp::l_stat. The states are broken into two sets below. The first 50 * set is guaranteed to represent the absolute, current state of the 51 * LWP: 52 * 53 * LSONPROC 54 * 55 * On processor: the LWP is executing on a CPU, either in the 56 * kernel or in user space. 57 * 58 * LSRUN 59 * 60 * Runnable: the LWP is parked on a run queue, and may soon be 61 * chosen to run by an idle processor, or by a processor that 62 * has been asked to preempt a currently runnning but lower 63 * priority LWP. 64 * 65 * LSIDL 66 * 67 * Idle: the LWP has been created but has not yet executed, 68 * or it has ceased executing a unit of work and is waiting 69 * to be started again. 70 * 71 * LSSUSPENDED: 72 * 73 * Suspended: the LWP has had its execution suspended by 74 * another LWP in the same process using the _lwp_suspend() 75 * system call. User-level LWPs also enter the suspended 76 * state when the system is shutting down. 77 * 78 * The second set represent a "statement of intent" on behalf of the 79 * LWP. The LWP may in fact be executing on a processor, may be 80 * sleeping or idle. It is expected to take the necessary action to 81 * stop executing or become "running" again within a short timeframe. 82 * The LP_RUNNING flag in lwp::l_pflag indicates that an LWP is running. 83 * Importantly, it indicates that its state is tied to a CPU. 84 * 85 * LSZOMB: 86 * 87 * Dead or dying: the LWP has released most of its resources 88 * and is about to switch away into oblivion, or has already 89 * switched away. When it switches away, its few remaining 90 * resources can be collected. 91 * 92 * LSSLEEP: 93 * 94 * Sleeping: the LWP has entered itself onto a sleep queue, and 95 * has switched away or will switch away shortly to allow other 96 * LWPs to run on the CPU. 97 * 98 * LSSTOP: 99 * 100 * Stopped: the LWP has been stopped as a result of a job 101 * control signal, or as a result of the ptrace() interface. 102 * 103 * Stopped LWPs may run briefly within the kernel to handle 104 * signals that they receive, but will not return to user space 105 * until their process' state is changed away from stopped. 106 * 107 * Single LWPs within a process can not be set stopped 108 * selectively: all actions that can stop or continue LWPs 109 * occur at the process level. 110 * 111 * State transitions 112 * 113 * Note that the LSSTOP state may only be set when returning to 114 * user space in userret(), or when sleeping interruptably. The 115 * LSSUSPENDED state may only be set in userret(). Before setting 116 * those states, we try to ensure that the LWPs will release all 117 * locks that they hold, and at a minimum try to ensure that the 118 * LWP can be set runnable again by a signal. 119 * 120 * LWPs may transition states in the following ways: 121 * 122 * RUN -------> ONPROC ONPROC -----> RUN 123 * > SLEEP 124 * > STOPPED 125 * > SUSPENDED 126 * > ZOMB 127 * > IDL (special cases) 128 * 129 * STOPPED ---> RUN SUSPENDED --> RUN 130 * > SLEEP 131 * 132 * SLEEP -----> ONPROC IDL --------> RUN 133 * > RUN > SUSPENDED 134 * > STOPPED > STOPPED 135 * > ONPROC (special cases) 136 * 137 * Some state transitions are only possible with kernel threads (eg 138 * ONPROC -> IDL) and happen under tightly controlled circumstances 139 * free of unwanted side effects. 140 * 141 * Migration 142 * 143 * Migration of threads from one CPU to another could be performed 144 * internally by the scheduler via sched_takecpu() or sched_catchlwp() 145 * functions. The universal lwp_migrate() function should be used for 146 * any other cases. Subsystems in the kernel must be aware that CPU 147 * of LWP may change, while it is not locked. 148 * 149 * Locking 150 * 151 * The majority of fields in 'struct lwp' are covered by a single, 152 * general spin lock pointed to by lwp::l_mutex. The locks covering 153 * each field are documented in sys/lwp.h. 154 * 155 * State transitions must be made with the LWP's general lock held, 156 * and may cause the LWP's lock pointer to change. Manipulation of 157 * the general lock is not performed directly, but through calls to 158 * lwp_lock(), lwp_relock() and similar. 159 * 160 * States and their associated locks: 161 * 162 * LSONPROC, LSZOMB: 163 * 164 * Always covered by spc_lwplock, which protects running LWPs. 165 * This is a per-CPU lock and matches lwp::l_cpu. 166 * 167 * LSIDL, LSRUN: 168 * 169 * Always covered by spc_mutex, which protects the run queues. 170 * This is a per-CPU lock and matches lwp::l_cpu. 171 * 172 * LSSLEEP: 173 * 174 * Covered by a lock associated with the sleep queue that the 175 * LWP resides on. Matches lwp::l_sleepq::sq_mutex. 176 * 177 * LSSTOP, LSSUSPENDED: 178 * 179 * If the LWP was previously sleeping (l_wchan != NULL), then 180 * l_mutex references the sleep queue lock. If the LWP was 181 * runnable or on the CPU when halted, or has been removed from 182 * the sleep queue since halted, then the lock is spc_lwplock. 183 * 184 * The lock order is as follows: 185 * 186 * spc::spc_lwplock -> 187 * sleeptab::st_mutex -> 188 * tschain_t::tc_mutex -> 189 * spc::spc_mutex 190 * 191 * Each process has an scheduler state lock (proc::p_lock), and a 192 * number of counters on LWPs and their states: p_nzlwps, p_nrlwps, and 193 * so on. When an LWP is to be entered into or removed from one of the 194 * following states, p_lock must be held and the process wide counters 195 * adjusted: 196 * 197 * LSIDL, LSZOMB, LSSTOP, LSSUSPENDED 198 * 199 * (But not always for kernel threads. There are some special cases 200 * as mentioned above. See kern_softint.c.) 201 * 202 * Note that an LWP is considered running or likely to run soon if in 203 * one of the following states. This affects the value of p_nrlwps: 204 * 205 * LSRUN, LSONPROC, LSSLEEP 206 * 207 * p_lock does not need to be held when transitioning among these 208 * three states, hence p_lock is rarely taken for state transitions. 209 */ 210 211 #include <sys/cdefs.h> 212 __KERNEL_RCSID(0, "$NetBSD: kern_lwp.c,v 1.137 2009/12/17 01:25:10 rmind Exp $"); 213 214 #include "opt_ddb.h" 215 #include "opt_lockdebug.h" 216 #include "opt_sa.h" 217 218 #define _LWP_API_PRIVATE 219 220 #include <sys/param.h> 221 #include <sys/systm.h> 222 #include <sys/cpu.h> 223 #include <sys/pool.h> 224 #include <sys/proc.h> 225 #include <sys/sa.h> 226 #include <sys/savar.h> 227 #include <sys/syscallargs.h> 228 #include <sys/syscall_stats.h> 229 #include <sys/kauth.h> 230 #include <sys/sleepq.h> 231 #include <sys/lockdebug.h> 232 #include <sys/kmem.h> 233 #include <sys/pset.h> 234 #include <sys/intr.h> 235 #include <sys/lwpctl.h> 236 #include <sys/atomic.h> 237 #include <sys/filedesc.h> 238 239 #include <uvm/uvm_extern.h> 240 #include <uvm/uvm_object.h> 241 242 struct lwplist alllwp = LIST_HEAD_INITIALIZER(alllwp); 243 244 struct pool lwp_uc_pool; 245 246 static pool_cache_t lwp_cache; 247 static specificdata_domain_t lwp_specificdata_domain; 248 249 void 250 lwpinit(void) 251 { 252 253 pool_init(&lwp_uc_pool, sizeof(ucontext_t), 0, 0, 0, "lwpucpl", 254 &pool_allocator_nointr, IPL_NONE); 255 lwp_specificdata_domain = specificdata_domain_create(); 256 KASSERT(lwp_specificdata_domain != NULL); 257 lwp_sys_init(); 258 lwp_cache = pool_cache_init(sizeof(lwp_t), MIN_LWP_ALIGNMENT, 0, 0, 259 "lwppl", NULL, IPL_NONE, NULL, NULL, NULL); 260 } 261 262 /* 263 * Set an suspended. 264 * 265 * Must be called with p_lock held, and the LWP locked. Will unlock the 266 * LWP before return. 267 */ 268 int 269 lwp_suspend(struct lwp *curl, struct lwp *t) 270 { 271 int error; 272 273 KASSERT(mutex_owned(t->l_proc->p_lock)); 274 KASSERT(lwp_locked(t, NULL)); 275 276 KASSERT(curl != t || curl->l_stat == LSONPROC); 277 278 /* 279 * If the current LWP has been told to exit, we must not suspend anyone 280 * else or deadlock could occur. We won't return to userspace. 281 */ 282 if ((curl->l_flag & (LW_WEXIT | LW_WCORE)) != 0) { 283 lwp_unlock(t); 284 return (EDEADLK); 285 } 286 287 error = 0; 288 289 switch (t->l_stat) { 290 case LSRUN: 291 case LSONPROC: 292 t->l_flag |= LW_WSUSPEND; 293 lwp_need_userret(t); 294 lwp_unlock(t); 295 break; 296 297 case LSSLEEP: 298 t->l_flag |= LW_WSUSPEND; 299 300 /* 301 * Kick the LWP and try to get it to the kernel boundary 302 * so that it will release any locks that it holds. 303 * setrunnable() will release the lock. 304 */ 305 if ((t->l_flag & LW_SINTR) != 0) 306 setrunnable(t); 307 else 308 lwp_unlock(t); 309 break; 310 311 case LSSUSPENDED: 312 lwp_unlock(t); 313 break; 314 315 case LSSTOP: 316 t->l_flag |= LW_WSUSPEND; 317 setrunnable(t); 318 break; 319 320 case LSIDL: 321 case LSZOMB: 322 error = EINTR; /* It's what Solaris does..... */ 323 lwp_unlock(t); 324 break; 325 } 326 327 return (error); 328 } 329 330 /* 331 * Restart a suspended LWP. 332 * 333 * Must be called with p_lock held, and the LWP locked. Will unlock the 334 * LWP before return. 335 */ 336 void 337 lwp_continue(struct lwp *l) 338 { 339 340 KASSERT(mutex_owned(l->l_proc->p_lock)); 341 KASSERT(lwp_locked(l, NULL)); 342 343 /* If rebooting or not suspended, then just bail out. */ 344 if ((l->l_flag & LW_WREBOOT) != 0) { 345 lwp_unlock(l); 346 return; 347 } 348 349 l->l_flag &= ~LW_WSUSPEND; 350 351 if (l->l_stat != LSSUSPENDED) { 352 lwp_unlock(l); 353 return; 354 } 355 356 /* setrunnable() will release the lock. */ 357 setrunnable(l); 358 } 359 360 /* 361 * Wait for an LWP within the current process to exit. If 'lid' is 362 * non-zero, we are waiting for a specific LWP. 363 * 364 * Must be called with p->p_lock held. 365 */ 366 int 367 lwp_wait1(struct lwp *l, lwpid_t lid, lwpid_t *departed, int flags) 368 { 369 struct proc *p = l->l_proc; 370 struct lwp *l2; 371 int nfound, error; 372 lwpid_t curlid; 373 bool exiting; 374 375 KASSERT(mutex_owned(p->p_lock)); 376 377 p->p_nlwpwait++; 378 l->l_waitingfor = lid; 379 curlid = l->l_lid; 380 exiting = ((flags & LWPWAIT_EXITCONTROL) != 0); 381 382 for (;;) { 383 /* 384 * Avoid a race between exit1() and sigexit(): if the 385 * process is dumping core, then we need to bail out: call 386 * into lwp_userret() where we will be suspended until the 387 * deed is done. 388 */ 389 if ((p->p_sflag & PS_WCORE) != 0) { 390 mutex_exit(p->p_lock); 391 lwp_userret(l); 392 #ifdef DIAGNOSTIC 393 panic("lwp_wait1"); 394 #endif 395 /* NOTREACHED */ 396 } 397 398 /* 399 * First off, drain any detached LWP that is waiting to be 400 * reaped. 401 */ 402 while ((l2 = p->p_zomblwp) != NULL) { 403 p->p_zomblwp = NULL; 404 lwp_free(l2, false, false);/* releases proc mutex */ 405 mutex_enter(p->p_lock); 406 } 407 408 /* 409 * Now look for an LWP to collect. If the whole process is 410 * exiting, count detached LWPs as eligible to be collected, 411 * but don't drain them here. 412 */ 413 nfound = 0; 414 error = 0; 415 LIST_FOREACH(l2, &p->p_lwps, l_sibling) { 416 /* 417 * If a specific wait and the target is waiting on 418 * us, then avoid deadlock. This also traps LWPs 419 * that try to wait on themselves. 420 * 421 * Note that this does not handle more complicated 422 * cycles, like: t1 -> t2 -> t3 -> t1. The process 423 * can still be killed so it is not a major problem. 424 */ 425 if (l2->l_lid == lid && l2->l_waitingfor == curlid) { 426 error = EDEADLK; 427 break; 428 } 429 if (l2 == l) 430 continue; 431 if ((l2->l_prflag & LPR_DETACHED) != 0) { 432 nfound += exiting; 433 continue; 434 } 435 if (lid != 0) { 436 if (l2->l_lid != lid) 437 continue; 438 /* 439 * Mark this LWP as the first waiter, if there 440 * is no other. 441 */ 442 if (l2->l_waiter == 0) 443 l2->l_waiter = curlid; 444 } else if (l2->l_waiter != 0) { 445 /* 446 * It already has a waiter - so don't 447 * collect it. If the waiter doesn't 448 * grab it we'll get another chance 449 * later. 450 */ 451 nfound++; 452 continue; 453 } 454 nfound++; 455 456 /* No need to lock the LWP in order to see LSZOMB. */ 457 if (l2->l_stat != LSZOMB) 458 continue; 459 460 /* 461 * We're no longer waiting. Reset the "first waiter" 462 * pointer on the target, in case it was us. 463 */ 464 l->l_waitingfor = 0; 465 l2->l_waiter = 0; 466 p->p_nlwpwait--; 467 if (departed) 468 *departed = l2->l_lid; 469 sched_lwp_collect(l2); 470 471 /* lwp_free() releases the proc lock. */ 472 lwp_free(l2, false, false); 473 mutex_enter(p->p_lock); 474 return 0; 475 } 476 477 if (error != 0) 478 break; 479 if (nfound == 0) { 480 error = ESRCH; 481 break; 482 } 483 484 /* 485 * The kernel is careful to ensure that it can not deadlock 486 * when exiting - just keep waiting. 487 */ 488 if (exiting) { 489 KASSERT(p->p_nlwps > 1); 490 cv_wait(&p->p_lwpcv, p->p_lock); 491 continue; 492 } 493 494 /* 495 * If all other LWPs are waiting for exits or suspends 496 * and the supply of zombies and potential zombies is 497 * exhausted, then we are about to deadlock. 498 * 499 * If the process is exiting (and this LWP is not the one 500 * that is coordinating the exit) then bail out now. 501 */ 502 if ((p->p_sflag & PS_WEXIT) != 0 || 503 p->p_nrlwps + p->p_nzlwps - p->p_ndlwps <= p->p_nlwpwait) { 504 error = EDEADLK; 505 break; 506 } 507 508 /* 509 * Sit around and wait for something to happen. We'll be 510 * awoken if any of the conditions examined change: if an 511 * LWP exits, is collected, or is detached. 512 */ 513 if ((error = cv_wait_sig(&p->p_lwpcv, p->p_lock)) != 0) 514 break; 515 } 516 517 /* 518 * We didn't find any LWPs to collect, we may have received a 519 * signal, or some other condition has caused us to bail out. 520 * 521 * If waiting on a specific LWP, clear the waiters marker: some 522 * other LWP may want it. Then, kick all the remaining waiters 523 * so that they can re-check for zombies and for deadlock. 524 */ 525 if (lid != 0) { 526 LIST_FOREACH(l2, &p->p_lwps, l_sibling) { 527 if (l2->l_lid == lid) { 528 if (l2->l_waiter == curlid) 529 l2->l_waiter = 0; 530 break; 531 } 532 } 533 } 534 p->p_nlwpwait--; 535 l->l_waitingfor = 0; 536 cv_broadcast(&p->p_lwpcv); 537 538 return error; 539 } 540 541 /* 542 * Create a new LWP within process 'p2', using LWP 'l1' as a template. 543 * The new LWP is created in state LSIDL and must be set running, 544 * suspended, or stopped by the caller. 545 */ 546 int 547 lwp_create(lwp_t *l1, proc_t *p2, vaddr_t uaddr, int flags, 548 void *stack, size_t stacksize, void (*func)(void *), void *arg, 549 lwp_t **rnewlwpp, int sclass) 550 { 551 struct lwp *l2, *isfree; 552 turnstile_t *ts; 553 554 KASSERT(l1 == curlwp || l1->l_proc == &proc0); 555 556 /* 557 * First off, reap any detached LWP waiting to be collected. 558 * We can re-use its LWP structure and turnstile. 559 */ 560 isfree = NULL; 561 if (p2->p_zomblwp != NULL) { 562 mutex_enter(p2->p_lock); 563 if ((isfree = p2->p_zomblwp) != NULL) { 564 p2->p_zomblwp = NULL; 565 lwp_free(isfree, true, false);/* releases proc mutex */ 566 } else 567 mutex_exit(p2->p_lock); 568 } 569 if (isfree == NULL) { 570 l2 = pool_cache_get(lwp_cache, PR_WAITOK); 571 memset(l2, 0, sizeof(*l2)); 572 l2->l_ts = pool_cache_get(turnstile_cache, PR_WAITOK); 573 SLIST_INIT(&l2->l_pi_lenders); 574 } else { 575 l2 = isfree; 576 ts = l2->l_ts; 577 KASSERT(l2->l_inheritedprio == -1); 578 KASSERT(SLIST_EMPTY(&l2->l_pi_lenders)); 579 memset(l2, 0, sizeof(*l2)); 580 l2->l_ts = ts; 581 } 582 583 l2->l_stat = LSIDL; 584 l2->l_proc = p2; 585 l2->l_refcnt = 1; 586 l2->l_class = sclass; 587 588 /* 589 * If vfork(), we want the LWP to run fast and on the same CPU 590 * as its parent, so that it can reuse the VM context and cache 591 * footprint on the local CPU. 592 */ 593 l2->l_kpriority = ((flags & LWP_VFORK) ? true : false); 594 l2->l_kpribase = PRI_KERNEL; 595 l2->l_priority = l1->l_priority; 596 l2->l_inheritedprio = -1; 597 l2->l_flag = 0; 598 l2->l_pflag = LP_MPSAFE; 599 TAILQ_INIT(&l2->l_ld_locks); 600 601 /* 602 * If not the first LWP in the process, grab a reference to the 603 * descriptor table. 604 */ 605 l2->l_fd = p2->p_fd; 606 if (p2->p_nlwps != 0) { 607 KASSERT(l1->l_proc == p2); 608 fd_hold(l2); 609 } else { 610 KASSERT(l1->l_proc != p2); 611 } 612 613 if (p2->p_flag & PK_SYSTEM) { 614 /* Mark it as a system LWP. */ 615 l2->l_flag |= LW_SYSTEM; 616 } 617 618 kpreempt_disable(); 619 l2->l_mutex = l1->l_cpu->ci_schedstate.spc_mutex; 620 l2->l_cpu = l1->l_cpu; 621 kpreempt_enable(); 622 623 lwp_initspecific(l2); 624 sched_lwp_fork(l1, l2); 625 lwp_update_creds(l2); 626 callout_init(&l2->l_timeout_ch, CALLOUT_MPSAFE); 627 callout_setfunc(&l2->l_timeout_ch, sleepq_timeout, l2); 628 cv_init(&l2->l_sigcv, "sigwait"); 629 l2->l_syncobj = &sched_syncobj; 630 631 if (rnewlwpp != NULL) 632 *rnewlwpp = l2; 633 634 uvm_lwp_setuarea(l2, uaddr); 635 uvm_lwp_fork(l1, l2, stack, stacksize, func, 636 (arg != NULL) ? arg : l2); 637 638 mutex_enter(p2->p_lock); 639 640 if ((flags & LWP_DETACHED) != 0) { 641 l2->l_prflag = LPR_DETACHED; 642 p2->p_ndlwps++; 643 } else 644 l2->l_prflag = 0; 645 646 l2->l_sigmask = l1->l_sigmask; 647 CIRCLEQ_INIT(&l2->l_sigpend.sp_info); 648 sigemptyset(&l2->l_sigpend.sp_set); 649 650 p2->p_nlwpid++; 651 if (p2->p_nlwpid == 0) 652 p2->p_nlwpid++; 653 l2->l_lid = p2->p_nlwpid; 654 LIST_INSERT_HEAD(&p2->p_lwps, l2, l_sibling); 655 p2->p_nlwps++; 656 657 if ((p2->p_flag & PK_SYSTEM) == 0) { 658 /* Inherit an affinity */ 659 if (l1->l_flag & LW_AFFINITY) { 660 /* 661 * Note that we hold the state lock while inheriting 662 * the affinity to avoid race with sched_setaffinity(). 663 */ 664 lwp_lock(l1); 665 if (l1->l_flag & LW_AFFINITY) { 666 kcpuset_use(l1->l_affinity); 667 l2->l_affinity = l1->l_affinity; 668 l2->l_flag |= LW_AFFINITY; 669 } 670 lwp_unlock(l1); 671 } 672 lwp_lock(l2); 673 /* Inherit a processor-set */ 674 l2->l_psid = l1->l_psid; 675 /* Look for a CPU to start */ 676 l2->l_cpu = sched_takecpu(l2); 677 lwp_unlock_to(l2, l2->l_cpu->ci_schedstate.spc_mutex); 678 } 679 mutex_exit(p2->p_lock); 680 681 mutex_enter(proc_lock); 682 LIST_INSERT_HEAD(&alllwp, l2, l_list); 683 mutex_exit(proc_lock); 684 685 SYSCALL_TIME_LWP_INIT(l2); 686 687 if (p2->p_emul->e_lwp_fork) 688 (*p2->p_emul->e_lwp_fork)(l1, l2); 689 690 return (0); 691 } 692 693 /* 694 * Called by MD code when a new LWP begins execution. Must be called 695 * with the previous LWP locked (so at splsched), or if there is no 696 * previous LWP, at splsched. 697 */ 698 void 699 lwp_startup(struct lwp *prev, struct lwp *new) 700 { 701 702 KASSERT(kpreempt_disabled()); 703 if (prev != NULL) { 704 /* 705 * Normalize the count of the spin-mutexes, it was 706 * increased in mi_switch(). Unmark the state of 707 * context switch - it is finished for previous LWP. 708 */ 709 curcpu()->ci_mtx_count++; 710 membar_exit(); 711 prev->l_ctxswtch = 0; 712 } 713 KPREEMPT_DISABLE(new); 714 spl0(); 715 pmap_activate(new); 716 LOCKDEBUG_BARRIER(NULL, 0); 717 KPREEMPT_ENABLE(new); 718 if ((new->l_pflag & LP_MPSAFE) == 0) { 719 KERNEL_LOCK(1, new); 720 } 721 } 722 723 /* 724 * Exit an LWP. 725 */ 726 void 727 lwp_exit(struct lwp *l) 728 { 729 struct proc *p = l->l_proc; 730 struct lwp *l2; 731 bool current; 732 733 current = (l == curlwp); 734 735 KASSERT(current || (l->l_stat == LSIDL && l->l_target_cpu == NULL)); 736 KASSERT(p == curproc); 737 738 /* 739 * Verify that we hold no locks other than the kernel lock. 740 */ 741 LOCKDEBUG_BARRIER(&kernel_lock, 0); 742 743 /* 744 * If we are the last live LWP in a process, we need to exit the 745 * entire process. We do so with an exit status of zero, because 746 * it's a "controlled" exit, and because that's what Solaris does. 747 * 748 * We are not quite a zombie yet, but for accounting purposes we 749 * must increment the count of zombies here. 750 * 751 * Note: the last LWP's specificdata will be deleted here. 752 */ 753 mutex_enter(p->p_lock); 754 if (p->p_nlwps - p->p_nzlwps == 1) { 755 KASSERT(current == true); 756 /* XXXSMP kernel_lock not held */ 757 exit1(l, 0); 758 /* NOTREACHED */ 759 } 760 p->p_nzlwps++; 761 mutex_exit(p->p_lock); 762 763 if (p->p_emul->e_lwp_exit) 764 (*p->p_emul->e_lwp_exit)(l); 765 766 /* Drop filedesc reference. */ 767 fd_free(); 768 769 /* Delete the specificdata while it's still safe to sleep. */ 770 specificdata_fini(lwp_specificdata_domain, &l->l_specdataref); 771 772 /* 773 * Release our cached credentials. 774 */ 775 kauth_cred_free(l->l_cred); 776 callout_destroy(&l->l_timeout_ch); 777 778 /* 779 * Remove the LWP from the global list. 780 */ 781 mutex_enter(proc_lock); 782 LIST_REMOVE(l, l_list); 783 mutex_exit(proc_lock); 784 785 /* 786 * Get rid of all references to the LWP that others (e.g. procfs) 787 * may have, and mark the LWP as a zombie. If the LWP is detached, 788 * mark it waiting for collection in the proc structure. Note that 789 * before we can do that, we need to free any other dead, deatched 790 * LWP waiting to meet its maker. 791 */ 792 mutex_enter(p->p_lock); 793 lwp_drainrefs(l); 794 795 if ((l->l_prflag & LPR_DETACHED) != 0) { 796 while ((l2 = p->p_zomblwp) != NULL) { 797 p->p_zomblwp = NULL; 798 lwp_free(l2, false, false);/* releases proc mutex */ 799 mutex_enter(p->p_lock); 800 l->l_refcnt++; 801 lwp_drainrefs(l); 802 } 803 p->p_zomblwp = l; 804 } 805 806 /* 807 * If we find a pending signal for the process and we have been 808 * asked to check for signals, then we loose: arrange to have 809 * all other LWPs in the process check for signals. 810 */ 811 if ((l->l_flag & LW_PENDSIG) != 0 && 812 firstsig(&p->p_sigpend.sp_set) != 0) { 813 LIST_FOREACH(l2, &p->p_lwps, l_sibling) { 814 lwp_lock(l2); 815 l2->l_flag |= LW_PENDSIG; 816 lwp_unlock(l2); 817 } 818 } 819 820 lwp_lock(l); 821 l->l_stat = LSZOMB; 822 if (l->l_name != NULL) 823 strcpy(l->l_name, "(zombie)"); 824 if (l->l_flag & LW_AFFINITY) { 825 l->l_flag &= ~LW_AFFINITY; 826 } else { 827 KASSERT(l->l_affinity == NULL); 828 } 829 lwp_unlock(l); 830 p->p_nrlwps--; 831 cv_broadcast(&p->p_lwpcv); 832 if (l->l_lwpctl != NULL) 833 l->l_lwpctl->lc_curcpu = LWPCTL_CPU_EXITED; 834 mutex_exit(p->p_lock); 835 836 /* Safe without lock since LWP is in zombie state */ 837 if (l->l_affinity) { 838 kcpuset_unuse(l->l_affinity, NULL); 839 l->l_affinity = NULL; 840 } 841 842 /* 843 * We can no longer block. At this point, lwp_free() may already 844 * be gunning for us. On a multi-CPU system, we may be off p_lwps. 845 * 846 * Free MD LWP resources. 847 */ 848 cpu_lwp_free(l, 0); 849 850 if (current) { 851 pmap_deactivate(l); 852 853 /* 854 * Release the kernel lock, and switch away into 855 * oblivion. 856 */ 857 #ifdef notyet 858 /* XXXSMP hold in lwp_userret() */ 859 KERNEL_UNLOCK_LAST(l); 860 #else 861 KERNEL_UNLOCK_ALL(l, NULL); 862 #endif 863 lwp_exit_switchaway(l); 864 } 865 } 866 867 /* 868 * Free a dead LWP's remaining resources. 869 * 870 * XXXLWP limits. 871 */ 872 void 873 lwp_free(struct lwp *l, bool recycle, bool last) 874 { 875 struct proc *p = l->l_proc; 876 struct rusage *ru; 877 ksiginfoq_t kq; 878 879 KASSERT(l != curlwp); 880 881 /* 882 * If this was not the last LWP in the process, then adjust 883 * counters and unlock. 884 */ 885 if (!last) { 886 /* 887 * Add the LWP's run time to the process' base value. 888 * This needs to co-incide with coming off p_lwps. 889 */ 890 bintime_add(&p->p_rtime, &l->l_rtime); 891 p->p_pctcpu += l->l_pctcpu; 892 ru = &p->p_stats->p_ru; 893 ruadd(ru, &l->l_ru); 894 ru->ru_nvcsw += (l->l_ncsw - l->l_nivcsw); 895 ru->ru_nivcsw += l->l_nivcsw; 896 LIST_REMOVE(l, l_sibling); 897 p->p_nlwps--; 898 p->p_nzlwps--; 899 if ((l->l_prflag & LPR_DETACHED) != 0) 900 p->p_ndlwps--; 901 902 /* 903 * Have any LWPs sleeping in lwp_wait() recheck for 904 * deadlock. 905 */ 906 cv_broadcast(&p->p_lwpcv); 907 mutex_exit(p->p_lock); 908 } 909 910 #ifdef MULTIPROCESSOR 911 /* 912 * In the unlikely event that the LWP is still on the CPU, 913 * then spin until it has switched away. We need to release 914 * all locks to avoid deadlock against interrupt handlers on 915 * the target CPU. 916 */ 917 if ((l->l_pflag & LP_RUNNING) != 0 || l->l_cpu->ci_curlwp == l) { 918 int count; 919 (void)count; /* XXXgcc */ 920 KERNEL_UNLOCK_ALL(curlwp, &count); 921 while ((l->l_pflag & LP_RUNNING) != 0 || 922 l->l_cpu->ci_curlwp == l) 923 SPINLOCK_BACKOFF_HOOK; 924 KERNEL_LOCK(count, curlwp); 925 } 926 #endif 927 928 /* 929 * Destroy the LWP's remaining signal information. 930 */ 931 ksiginfo_queue_init(&kq); 932 sigclear(&l->l_sigpend, NULL, &kq); 933 ksiginfo_queue_drain(&kq); 934 cv_destroy(&l->l_sigcv); 935 936 /* 937 * Free the LWP's turnstile and the LWP structure itself unless the 938 * caller wants to recycle them. Also, free the scheduler specific 939 * data. 940 * 941 * We can't return turnstile0 to the pool (it didn't come from it), 942 * so if it comes up just drop it quietly and move on. 943 * 944 * We don't recycle the VM resources at this time. 945 */ 946 if (l->l_lwpctl != NULL) 947 lwp_ctl_free(l); 948 949 if (!recycle && l->l_ts != &turnstile0) 950 pool_cache_put(turnstile_cache, l->l_ts); 951 if (l->l_name != NULL) 952 kmem_free(l->l_name, MAXCOMLEN); 953 954 cpu_lwp_free2(l); 955 uvm_lwp_exit(l); 956 957 KASSERT(SLIST_EMPTY(&l->l_pi_lenders)); 958 KASSERT(l->l_inheritedprio == -1); 959 if (!recycle) 960 pool_cache_put(lwp_cache, l); 961 } 962 963 /* 964 * Migrate the LWP to the another CPU. Unlocks the LWP. 965 */ 966 void 967 lwp_migrate(lwp_t *l, struct cpu_info *tci) 968 { 969 struct schedstate_percpu *tspc; 970 int lstat = l->l_stat; 971 972 KASSERT(lwp_locked(l, NULL)); 973 KASSERT(tci != NULL); 974 975 /* If LWP is still on the CPU, it must be handled like LSONPROC */ 976 if ((l->l_pflag & LP_RUNNING) != 0) { 977 lstat = LSONPROC; 978 } 979 980 /* 981 * The destination CPU could be changed while previous migration 982 * was not finished. 983 */ 984 if (l->l_target_cpu != NULL) { 985 l->l_target_cpu = tci; 986 lwp_unlock(l); 987 return; 988 } 989 990 /* Nothing to do if trying to migrate to the same CPU */ 991 if (l->l_cpu == tci) { 992 lwp_unlock(l); 993 return; 994 } 995 996 KASSERT(l->l_target_cpu == NULL); 997 tspc = &tci->ci_schedstate; 998 switch (lstat) { 999 case LSRUN: 1000 l->l_target_cpu = tci; 1001 break; 1002 case LSIDL: 1003 l->l_cpu = tci; 1004 lwp_unlock_to(l, tspc->spc_mutex); 1005 return; 1006 case LSSLEEP: 1007 l->l_cpu = tci; 1008 break; 1009 case LSSTOP: 1010 case LSSUSPENDED: 1011 l->l_cpu = tci; 1012 if (l->l_wchan == NULL) { 1013 lwp_unlock_to(l, tspc->spc_lwplock); 1014 return; 1015 } 1016 break; 1017 case LSONPROC: 1018 l->l_target_cpu = tci; 1019 spc_lock(l->l_cpu); 1020 cpu_need_resched(l->l_cpu, RESCHED_KPREEMPT); 1021 spc_unlock(l->l_cpu); 1022 break; 1023 } 1024 lwp_unlock(l); 1025 } 1026 1027 /* 1028 * Find the LWP in the process. Arguments may be zero, in such case, 1029 * the calling process and first LWP in the list will be used. 1030 * On success - returns proc locked. 1031 */ 1032 struct lwp * 1033 lwp_find2(pid_t pid, lwpid_t lid) 1034 { 1035 proc_t *p; 1036 lwp_t *l; 1037 1038 /* Find the process */ 1039 p = (pid == 0) ? curlwp->l_proc : p_find(pid, PFIND_UNLOCK_FAIL); 1040 if (p == NULL) 1041 return NULL; 1042 mutex_enter(p->p_lock); 1043 if (pid != 0) { 1044 /* Case of p_find */ 1045 mutex_exit(proc_lock); 1046 } 1047 1048 /* Find the thread */ 1049 l = (lid == 0) ? LIST_FIRST(&p->p_lwps) : lwp_find(p, lid); 1050 if (l == NULL) { 1051 mutex_exit(p->p_lock); 1052 } 1053 1054 return l; 1055 } 1056 1057 /* 1058 * Look up a live LWP within the speicifed process, and return it locked. 1059 * 1060 * Must be called with p->p_lock held. 1061 */ 1062 struct lwp * 1063 lwp_find(struct proc *p, int id) 1064 { 1065 struct lwp *l; 1066 1067 KASSERT(mutex_owned(p->p_lock)); 1068 1069 LIST_FOREACH(l, &p->p_lwps, l_sibling) { 1070 if (l->l_lid == id) 1071 break; 1072 } 1073 1074 /* 1075 * No need to lock - all of these conditions will 1076 * be visible with the process level mutex held. 1077 */ 1078 if (l != NULL && (l->l_stat == LSIDL || l->l_stat == LSZOMB)) 1079 l = NULL; 1080 1081 return l; 1082 } 1083 1084 /* 1085 * Update an LWP's cached credentials to mirror the process' master copy. 1086 * 1087 * This happens early in the syscall path, on user trap, and on LWP 1088 * creation. A long-running LWP can also voluntarily choose to update 1089 * it's credentials by calling this routine. This may be called from 1090 * LWP_CACHE_CREDS(), which checks l->l_cred != p->p_cred beforehand. 1091 */ 1092 void 1093 lwp_update_creds(struct lwp *l) 1094 { 1095 kauth_cred_t oc; 1096 struct proc *p; 1097 1098 p = l->l_proc; 1099 oc = l->l_cred; 1100 1101 mutex_enter(p->p_lock); 1102 kauth_cred_hold(p->p_cred); 1103 l->l_cred = p->p_cred; 1104 l->l_prflag &= ~LPR_CRMOD; 1105 mutex_exit(p->p_lock); 1106 if (oc != NULL) 1107 kauth_cred_free(oc); 1108 } 1109 1110 /* 1111 * Verify that an LWP is locked, and optionally verify that the lock matches 1112 * one we specify. 1113 */ 1114 int 1115 lwp_locked(struct lwp *l, kmutex_t *mtx) 1116 { 1117 kmutex_t *cur = l->l_mutex; 1118 1119 return mutex_owned(cur) && (mtx == cur || mtx == NULL); 1120 } 1121 1122 /* 1123 * Lock an LWP. 1124 */ 1125 kmutex_t * 1126 lwp_lock_retry(struct lwp *l, kmutex_t *old) 1127 { 1128 1129 /* 1130 * XXXgcc ignoring kmutex_t * volatile on i386 1131 * 1132 * gcc version 4.1.2 20061021 prerelease (NetBSD nb1 20061021) 1133 */ 1134 #if 1 1135 while (l->l_mutex != old) { 1136 #else 1137 for (;;) { 1138 #endif 1139 mutex_spin_exit(old); 1140 old = l->l_mutex; 1141 mutex_spin_enter(old); 1142 1143 /* 1144 * mutex_enter() will have posted a read barrier. Re-test 1145 * l->l_mutex. If it has changed, we need to try again. 1146 */ 1147 #if 1 1148 } 1149 #else 1150 } while (__predict_false(l->l_mutex != old)); 1151 #endif 1152 1153 return old; 1154 } 1155 1156 /* 1157 * Lend a new mutex to an LWP. The old mutex must be held. 1158 */ 1159 void 1160 lwp_setlock(struct lwp *l, kmutex_t *new) 1161 { 1162 1163 KASSERT(mutex_owned(l->l_mutex)); 1164 1165 membar_exit(); 1166 l->l_mutex = new; 1167 } 1168 1169 /* 1170 * Lend a new mutex to an LWP, and release the old mutex. The old mutex 1171 * must be held. 1172 */ 1173 void 1174 lwp_unlock_to(struct lwp *l, kmutex_t *new) 1175 { 1176 kmutex_t *old; 1177 1178 KASSERT(mutex_owned(l->l_mutex)); 1179 1180 old = l->l_mutex; 1181 membar_exit(); 1182 l->l_mutex = new; 1183 mutex_spin_exit(old); 1184 } 1185 1186 /* 1187 * Acquire a new mutex, and donate it to an LWP. The LWP must already be 1188 * locked. 1189 */ 1190 void 1191 lwp_relock(struct lwp *l, kmutex_t *new) 1192 { 1193 kmutex_t *old; 1194 1195 KASSERT(mutex_owned(l->l_mutex)); 1196 1197 old = l->l_mutex; 1198 if (old != new) { 1199 mutex_spin_enter(new); 1200 l->l_mutex = new; 1201 mutex_spin_exit(old); 1202 } 1203 } 1204 1205 int 1206 lwp_trylock(struct lwp *l) 1207 { 1208 kmutex_t *old; 1209 1210 for (;;) { 1211 if (!mutex_tryenter(old = l->l_mutex)) 1212 return 0; 1213 if (__predict_true(l->l_mutex == old)) 1214 return 1; 1215 mutex_spin_exit(old); 1216 } 1217 } 1218 1219 void 1220 lwp_unsleep(lwp_t *l, bool cleanup) 1221 { 1222 1223 KASSERT(mutex_owned(l->l_mutex)); 1224 (*l->l_syncobj->sobj_unsleep)(l, cleanup); 1225 } 1226 1227 1228 /* 1229 * Handle exceptions for mi_userret(). Called if a member of LW_USERRET is 1230 * set. 1231 */ 1232 void 1233 lwp_userret(struct lwp *l) 1234 { 1235 struct proc *p; 1236 void (*hook)(void); 1237 int sig; 1238 1239 KASSERT(l == curlwp); 1240 KASSERT(l->l_stat == LSONPROC); 1241 p = l->l_proc; 1242 1243 #ifndef __HAVE_FAST_SOFTINTS 1244 /* Run pending soft interrupts. */ 1245 if (l->l_cpu->ci_data.cpu_softints != 0) 1246 softint_overlay(); 1247 #endif 1248 1249 #ifdef KERN_SA 1250 /* Generate UNBLOCKED upcall if needed */ 1251 if (l->l_flag & LW_SA_BLOCKING) { 1252 sa_unblock_userret(l); 1253 /* NOTREACHED */ 1254 } 1255 #endif 1256 1257 /* 1258 * It should be safe to do this read unlocked on a multiprocessor 1259 * system.. 1260 * 1261 * LW_SA_UPCALL will be handled after the while() loop, so don't 1262 * consider it now. 1263 */ 1264 while ((l->l_flag & (LW_USERRET & ~(LW_SA_UPCALL))) != 0) { 1265 /* 1266 * Process pending signals first, unless the process 1267 * is dumping core or exiting, where we will instead 1268 * enter the LW_WSUSPEND case below. 1269 */ 1270 if ((l->l_flag & (LW_PENDSIG | LW_WCORE | LW_WEXIT)) == 1271 LW_PENDSIG) { 1272 mutex_enter(p->p_lock); 1273 while ((sig = issignal(l)) != 0) 1274 postsig(sig); 1275 mutex_exit(p->p_lock); 1276 } 1277 1278 /* 1279 * Core-dump or suspend pending. 1280 * 1281 * In case of core dump, suspend ourselves, so that the 1282 * kernel stack and therefore the userland registers saved 1283 * in the trapframe are around for coredump() to write them 1284 * out. We issue a wakeup on p->p_lwpcv so that sigexit() 1285 * will write the core file out once all other LWPs are 1286 * suspended. 1287 */ 1288 if ((l->l_flag & LW_WSUSPEND) != 0) { 1289 mutex_enter(p->p_lock); 1290 p->p_nrlwps--; 1291 cv_broadcast(&p->p_lwpcv); 1292 lwp_lock(l); 1293 l->l_stat = LSSUSPENDED; 1294 lwp_unlock(l); 1295 mutex_exit(p->p_lock); 1296 lwp_lock(l); 1297 mi_switch(l); 1298 } 1299 1300 /* Process is exiting. */ 1301 if ((l->l_flag & LW_WEXIT) != 0) { 1302 lwp_exit(l); 1303 KASSERT(0); 1304 /* NOTREACHED */ 1305 } 1306 1307 /* Call userret hook; used by Linux emulation. */ 1308 if ((l->l_flag & LW_WUSERRET) != 0) { 1309 lwp_lock(l); 1310 l->l_flag &= ~LW_WUSERRET; 1311 lwp_unlock(l); 1312 hook = p->p_userret; 1313 p->p_userret = NULL; 1314 (*hook)(); 1315 } 1316 } 1317 1318 #ifdef KERN_SA 1319 /* 1320 * Timer events are handled specially. We only try once to deliver 1321 * pending timer upcalls; if if fails, we can try again on the next 1322 * loop around. If we need to re-enter lwp_userret(), MD code will 1323 * bounce us back here through the trap path after we return. 1324 */ 1325 if (p->p_timerpend) 1326 timerupcall(l); 1327 if (l->l_flag & LW_SA_UPCALL) 1328 sa_upcall_userret(l); 1329 #endif /* KERN_SA */ 1330 } 1331 1332 /* 1333 * Force an LWP to enter the kernel, to take a trip through lwp_userret(). 1334 */ 1335 void 1336 lwp_need_userret(struct lwp *l) 1337 { 1338 KASSERT(lwp_locked(l, NULL)); 1339 1340 /* 1341 * Since the tests in lwp_userret() are done unlocked, make sure 1342 * that the condition will be seen before forcing the LWP to enter 1343 * kernel mode. 1344 */ 1345 membar_producer(); 1346 cpu_signotify(l); 1347 } 1348 1349 /* 1350 * Add one reference to an LWP. This will prevent the LWP from 1351 * exiting, thus keep the lwp structure and PCB around to inspect. 1352 */ 1353 void 1354 lwp_addref(struct lwp *l) 1355 { 1356 1357 KASSERT(mutex_owned(l->l_proc->p_lock)); 1358 KASSERT(l->l_stat != LSZOMB); 1359 KASSERT(l->l_refcnt != 0); 1360 1361 l->l_refcnt++; 1362 } 1363 1364 /* 1365 * Remove one reference to an LWP. If this is the last reference, 1366 * then we must finalize the LWP's death. 1367 */ 1368 void 1369 lwp_delref(struct lwp *l) 1370 { 1371 struct proc *p = l->l_proc; 1372 1373 mutex_enter(p->p_lock); 1374 KASSERT(l->l_stat != LSZOMB); 1375 KASSERT(l->l_refcnt > 0); 1376 if (--l->l_refcnt == 0) 1377 cv_broadcast(&p->p_lwpcv); 1378 mutex_exit(p->p_lock); 1379 } 1380 1381 /* 1382 * Drain all references to the current LWP. 1383 */ 1384 void 1385 lwp_drainrefs(struct lwp *l) 1386 { 1387 struct proc *p = l->l_proc; 1388 1389 KASSERT(mutex_owned(p->p_lock)); 1390 KASSERT(l->l_refcnt != 0); 1391 1392 l->l_refcnt--; 1393 while (l->l_refcnt != 0) 1394 cv_wait(&p->p_lwpcv, p->p_lock); 1395 } 1396 1397 /* 1398 * Return true if the specified LWP is 'alive'. Only p->p_lock need 1399 * be held. 1400 */ 1401 bool 1402 lwp_alive(lwp_t *l) 1403 { 1404 1405 KASSERT(mutex_owned(l->l_proc->p_lock)); 1406 1407 switch (l->l_stat) { 1408 case LSSLEEP: 1409 case LSRUN: 1410 case LSONPROC: 1411 case LSSTOP: 1412 case LSSUSPENDED: 1413 return true; 1414 default: 1415 return false; 1416 } 1417 } 1418 1419 /* 1420 * Return first live LWP in the process. 1421 */ 1422 lwp_t * 1423 lwp_find_first(proc_t *p) 1424 { 1425 lwp_t *l; 1426 1427 KASSERT(mutex_owned(p->p_lock)); 1428 1429 LIST_FOREACH(l, &p->p_lwps, l_sibling) { 1430 if (lwp_alive(l)) { 1431 return l; 1432 } 1433 } 1434 1435 return NULL; 1436 } 1437 1438 /* 1439 * lwp_specific_key_create -- 1440 * Create a key for subsystem lwp-specific data. 1441 */ 1442 int 1443 lwp_specific_key_create(specificdata_key_t *keyp, specificdata_dtor_t dtor) 1444 { 1445 1446 return (specificdata_key_create(lwp_specificdata_domain, keyp, dtor)); 1447 } 1448 1449 /* 1450 * lwp_specific_key_delete -- 1451 * Delete a key for subsystem lwp-specific data. 1452 */ 1453 void 1454 lwp_specific_key_delete(specificdata_key_t key) 1455 { 1456 1457 specificdata_key_delete(lwp_specificdata_domain, key); 1458 } 1459 1460 /* 1461 * lwp_initspecific -- 1462 * Initialize an LWP's specificdata container. 1463 */ 1464 void 1465 lwp_initspecific(struct lwp *l) 1466 { 1467 int error; 1468 1469 error = specificdata_init(lwp_specificdata_domain, &l->l_specdataref); 1470 KASSERT(error == 0); 1471 } 1472 1473 /* 1474 * lwp_finispecific -- 1475 * Finalize an LWP's specificdata container. 1476 */ 1477 void 1478 lwp_finispecific(struct lwp *l) 1479 { 1480 1481 specificdata_fini(lwp_specificdata_domain, &l->l_specdataref); 1482 } 1483 1484 /* 1485 * lwp_getspecific -- 1486 * Return lwp-specific data corresponding to the specified key. 1487 * 1488 * Note: LWP specific data is NOT INTERLOCKED. An LWP should access 1489 * only its OWN SPECIFIC DATA. If it is necessary to access another 1490 * LWP's specifc data, care must be taken to ensure that doing so 1491 * would not cause internal data structure inconsistency (i.e. caller 1492 * can guarantee that the target LWP is not inside an lwp_getspecific() 1493 * or lwp_setspecific() call). 1494 */ 1495 void * 1496 lwp_getspecific(specificdata_key_t key) 1497 { 1498 1499 return (specificdata_getspecific_unlocked(lwp_specificdata_domain, 1500 &curlwp->l_specdataref, key)); 1501 } 1502 1503 void * 1504 _lwp_getspecific_by_lwp(struct lwp *l, specificdata_key_t key) 1505 { 1506 1507 return (specificdata_getspecific_unlocked(lwp_specificdata_domain, 1508 &l->l_specdataref, key)); 1509 } 1510 1511 /* 1512 * lwp_setspecific -- 1513 * Set lwp-specific data corresponding to the specified key. 1514 */ 1515 void 1516 lwp_setspecific(specificdata_key_t key, void *data) 1517 { 1518 1519 specificdata_setspecific(lwp_specificdata_domain, 1520 &curlwp->l_specdataref, key, data); 1521 } 1522 1523 /* 1524 * Allocate a new lwpctl structure for a user LWP. 1525 */ 1526 int 1527 lwp_ctl_alloc(vaddr_t *uaddr) 1528 { 1529 lcproc_t *lp; 1530 u_int bit, i, offset; 1531 struct uvm_object *uao; 1532 int error; 1533 lcpage_t *lcp; 1534 proc_t *p; 1535 lwp_t *l; 1536 1537 l = curlwp; 1538 p = l->l_proc; 1539 1540 if (l->l_lcpage != NULL) { 1541 lcp = l->l_lcpage; 1542 *uaddr = lcp->lcp_uaddr + (vaddr_t)l->l_lwpctl - lcp->lcp_kaddr; 1543 return (EINVAL); 1544 } 1545 1546 /* First time around, allocate header structure for the process. */ 1547 if ((lp = p->p_lwpctl) == NULL) { 1548 lp = kmem_alloc(sizeof(*lp), KM_SLEEP); 1549 mutex_init(&lp->lp_lock, MUTEX_DEFAULT, IPL_NONE); 1550 lp->lp_uao = NULL; 1551 TAILQ_INIT(&lp->lp_pages); 1552 mutex_enter(p->p_lock); 1553 if (p->p_lwpctl == NULL) { 1554 p->p_lwpctl = lp; 1555 mutex_exit(p->p_lock); 1556 } else { 1557 mutex_exit(p->p_lock); 1558 mutex_destroy(&lp->lp_lock); 1559 kmem_free(lp, sizeof(*lp)); 1560 lp = p->p_lwpctl; 1561 } 1562 } 1563 1564 /* 1565 * Set up an anonymous memory region to hold the shared pages. 1566 * Map them into the process' address space. The user vmspace 1567 * gets the first reference on the UAO. 1568 */ 1569 mutex_enter(&lp->lp_lock); 1570 if (lp->lp_uao == NULL) { 1571 lp->lp_uao = uao_create(LWPCTL_UAREA_SZ, 0); 1572 lp->lp_cur = 0; 1573 lp->lp_max = LWPCTL_UAREA_SZ; 1574 lp->lp_uva = p->p_emul->e_vm_default_addr(p, 1575 (vaddr_t)p->p_vmspace->vm_daddr, LWPCTL_UAREA_SZ); 1576 error = uvm_map(&p->p_vmspace->vm_map, &lp->lp_uva, 1577 LWPCTL_UAREA_SZ, lp->lp_uao, 0, 0, UVM_MAPFLAG(UVM_PROT_RW, 1578 UVM_PROT_RW, UVM_INH_NONE, UVM_ADV_NORMAL, 0)); 1579 if (error != 0) { 1580 uao_detach(lp->lp_uao); 1581 lp->lp_uao = NULL; 1582 mutex_exit(&lp->lp_lock); 1583 return error; 1584 } 1585 } 1586 1587 /* Get a free block and allocate for this LWP. */ 1588 TAILQ_FOREACH(lcp, &lp->lp_pages, lcp_chain) { 1589 if (lcp->lcp_nfree != 0) 1590 break; 1591 } 1592 if (lcp == NULL) { 1593 /* Nothing available - try to set up a free page. */ 1594 if (lp->lp_cur == lp->lp_max) { 1595 mutex_exit(&lp->lp_lock); 1596 return ENOMEM; 1597 } 1598 lcp = kmem_alloc(LWPCTL_LCPAGE_SZ, KM_SLEEP); 1599 if (lcp == NULL) { 1600 mutex_exit(&lp->lp_lock); 1601 return ENOMEM; 1602 } 1603 /* 1604 * Wire the next page down in kernel space. Since this 1605 * is a new mapping, we must add a reference. 1606 */ 1607 uao = lp->lp_uao; 1608 (*uao->pgops->pgo_reference)(uao); 1609 lcp->lcp_kaddr = vm_map_min(kernel_map); 1610 error = uvm_map(kernel_map, &lcp->lcp_kaddr, PAGE_SIZE, 1611 uao, lp->lp_cur, PAGE_SIZE, 1612 UVM_MAPFLAG(UVM_PROT_RW, UVM_PROT_RW, 1613 UVM_INH_NONE, UVM_ADV_RANDOM, 0)); 1614 if (error != 0) { 1615 mutex_exit(&lp->lp_lock); 1616 kmem_free(lcp, LWPCTL_LCPAGE_SZ); 1617 (*uao->pgops->pgo_detach)(uao); 1618 return error; 1619 } 1620 error = uvm_map_pageable(kernel_map, lcp->lcp_kaddr, 1621 lcp->lcp_kaddr + PAGE_SIZE, FALSE, 0); 1622 if (error != 0) { 1623 mutex_exit(&lp->lp_lock); 1624 uvm_unmap(kernel_map, lcp->lcp_kaddr, 1625 lcp->lcp_kaddr + PAGE_SIZE); 1626 kmem_free(lcp, LWPCTL_LCPAGE_SZ); 1627 return error; 1628 } 1629 /* Prepare the page descriptor and link into the list. */ 1630 lcp->lcp_uaddr = lp->lp_uva + lp->lp_cur; 1631 lp->lp_cur += PAGE_SIZE; 1632 lcp->lcp_nfree = LWPCTL_PER_PAGE; 1633 lcp->lcp_rotor = 0; 1634 memset(lcp->lcp_bitmap, 0xff, LWPCTL_BITMAP_SZ); 1635 TAILQ_INSERT_HEAD(&lp->lp_pages, lcp, lcp_chain); 1636 } 1637 for (i = lcp->lcp_rotor; lcp->lcp_bitmap[i] == 0;) { 1638 if (++i >= LWPCTL_BITMAP_ENTRIES) 1639 i = 0; 1640 } 1641 bit = ffs(lcp->lcp_bitmap[i]) - 1; 1642 lcp->lcp_bitmap[i] ^= (1 << bit); 1643 lcp->lcp_rotor = i; 1644 lcp->lcp_nfree--; 1645 l->l_lcpage = lcp; 1646 offset = (i << 5) + bit; 1647 l->l_lwpctl = (lwpctl_t *)lcp->lcp_kaddr + offset; 1648 *uaddr = lcp->lcp_uaddr + offset * sizeof(lwpctl_t); 1649 mutex_exit(&lp->lp_lock); 1650 1651 KPREEMPT_DISABLE(l); 1652 l->l_lwpctl->lc_curcpu = (int)curcpu()->ci_data.cpu_index; 1653 KPREEMPT_ENABLE(l); 1654 1655 return 0; 1656 } 1657 1658 /* 1659 * Free an lwpctl structure back to the per-process list. 1660 */ 1661 void 1662 lwp_ctl_free(lwp_t *l) 1663 { 1664 lcproc_t *lp; 1665 lcpage_t *lcp; 1666 u_int map, offset; 1667 1668 lp = l->l_proc->p_lwpctl; 1669 KASSERT(lp != NULL); 1670 1671 lcp = l->l_lcpage; 1672 offset = (u_int)((lwpctl_t *)l->l_lwpctl - (lwpctl_t *)lcp->lcp_kaddr); 1673 KASSERT(offset < LWPCTL_PER_PAGE); 1674 1675 mutex_enter(&lp->lp_lock); 1676 lcp->lcp_nfree++; 1677 map = offset >> 5; 1678 lcp->lcp_bitmap[map] |= (1 << (offset & 31)); 1679 if (lcp->lcp_bitmap[lcp->lcp_rotor] == 0) 1680 lcp->lcp_rotor = map; 1681 if (TAILQ_FIRST(&lp->lp_pages)->lcp_nfree == 0) { 1682 TAILQ_REMOVE(&lp->lp_pages, lcp, lcp_chain); 1683 TAILQ_INSERT_HEAD(&lp->lp_pages, lcp, lcp_chain); 1684 } 1685 mutex_exit(&lp->lp_lock); 1686 } 1687 1688 /* 1689 * Process is exiting; tear down lwpctl state. This can only be safely 1690 * called by the last LWP in the process. 1691 */ 1692 void 1693 lwp_ctl_exit(void) 1694 { 1695 lcpage_t *lcp, *next; 1696 lcproc_t *lp; 1697 proc_t *p; 1698 lwp_t *l; 1699 1700 l = curlwp; 1701 l->l_lwpctl = NULL; 1702 l->l_lcpage = NULL; 1703 p = l->l_proc; 1704 lp = p->p_lwpctl; 1705 1706 KASSERT(lp != NULL); 1707 KASSERT(p->p_nlwps == 1); 1708 1709 for (lcp = TAILQ_FIRST(&lp->lp_pages); lcp != NULL; lcp = next) { 1710 next = TAILQ_NEXT(lcp, lcp_chain); 1711 uvm_unmap(kernel_map, lcp->lcp_kaddr, 1712 lcp->lcp_kaddr + PAGE_SIZE); 1713 kmem_free(lcp, LWPCTL_LCPAGE_SZ); 1714 } 1715 1716 if (lp->lp_uao != NULL) { 1717 uvm_unmap(&p->p_vmspace->vm_map, lp->lp_uva, 1718 lp->lp_uva + LWPCTL_UAREA_SZ); 1719 } 1720 1721 mutex_destroy(&lp->lp_lock); 1722 kmem_free(lp, sizeof(*lp)); 1723 p->p_lwpctl = NULL; 1724 } 1725 1726 /* 1727 * Return the current LWP's "preemption counter". Used to detect 1728 * preemption across operations that can tolerate preemption without 1729 * crashing, but which may generate incorrect results if preempted. 1730 */ 1731 uint64_t 1732 lwp_pctr(void) 1733 { 1734 1735 return curlwp->l_ncsw; 1736 } 1737 1738 #if defined(DDB) 1739 void 1740 lwp_whatis(uintptr_t addr, void (*pr)(const char *, ...)) 1741 { 1742 lwp_t *l; 1743 1744 LIST_FOREACH(l, &alllwp, l_list) { 1745 uintptr_t stack = (uintptr_t)KSTACK_LOWEST_ADDR(l); 1746 1747 if (addr < stack || stack + KSTACK_SIZE <= addr) { 1748 continue; 1749 } 1750 (*pr)("%p is %p+%zu, LWP %p's stack\n", 1751 (void *)addr, (void *)stack, 1752 (size_t)(addr - stack), l); 1753 } 1754 } 1755 #endif /* defined(DDB) */ 1756